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Abstract This paper proposes a novel descriptor, referred to as the localized angular
phase (LAP), which is robust to illumination, scaling, and image blurring. LAP
utilizes the phase information from the Fourier transform of the pixels in localized
polar space with a fixed radius. The application examples of LAP are presented in
terms of content-based image retrieval, classification, and feature extraction of real-
world degraded images and computer-aided diagnosis using medical images. The
experimental results show that the classification performance of LAP in terms of
the latter application examples are better than those of local phase quantization
(LPQ), local binary patterns (LBP), and local Fourier histogram (LFH). Specially,
the capability of LAP to analyze degraded images and classify abnormal regions
in medical images are superior to those of other methods since the best overall
classification accuracy of LAP, LPQ, LBP, and LFH using degraded textures are
91.26, 61.23, 35.79, and 33.47%, respectively, while the sensitivity of LAP, LBP, and
spatial gray level dependent method (SGLDM) in classifying abnormal lung regions
in CT images are 100, 95.5, and 93.75%, respectively.

Keywords Texture descriptor · Robust texture feature extraction ·
Local angular phase

1 Introduction

Texture represents the coarseness and statistical characteristics of the local variation
of brightness between neighboring pixels, and plays an important role in image
analysis and pattern recognition [46]. Texture analysis is indispensable for important
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applications, such as in medical image analysis, document analysis, target detection,
industrial surface detection, and remote sensing [41].

The texture model involves basic texture primitives that form texture elements,
called textons [14] or texels [11] and there are four major issues in texture analysis
[21], namely texture feature, texture discrimination, texture classification, and shape
from texture. This paper focuses on texture feature and texture discrimination.
There is a wide range of image recognition methods using various texture feature
approaches; basically, these can be divided into four approaches [18]; statistical
(histogram, co-occurrence and autocorrelation), structural (Voronoi tessellation),
model based (Markov random field), and spectral (Gabor filter, wavelet). These
approaches can be carried out in the spatial domain (local binary patterns (LBP),
Markov random field) or frequency domain (local Fourier histogram (LFH), Gabor
filter, phase) depending on the required applications and the various domains.

There are two main classes of descriptors, namely, the sparse and dense descrip-
tors [6]. The sparse descriptor detects the interest points in a given image, samples a
local patch, and describes its invariant features [22, 23], whereas the dense descriptor
extracts the local features pixel by pixel over the input image [26, 27, 37]. One well
known sparse descriptor is the scale-invariant feature transform (SIFT), and the most
popular dense descriptors are the Gabor filter [20] and LBP [26, 29]. In texture
analysis, the dense descriptor shows better performance than the sparse descriptor
since it describes the textons of the texture.

Textures often vary due to variations in illumination, scaling changes, blurring
effects, or other visual appearance perturbations. One of the texture descriptors
that are robust against illumination changes is LBP because it applies the difference
values between pixels. Another simple approach of achieving illumination invariance
is to use the phase of the image, which is invariant to pixel value shifts [25, 31].
Some methods achieve invariance against scaling and rotational changes by using
the polar space, where the image scaling and rotations are converted into image
translations [5, 36]. Approaches using the Zernike moment and Fourier magnitude
are also shown to be invariant to the translations and rotations of the images [43].
For achieving invariance against blurring, the most famous approach is the image
moment method [7, 19], and another approach is to exploit the phase of the image,
which has proven to be insensitive to Gaussian blurring [30, 33].

However, most methods proposed for overcoming these texture visual appearance
problems have high computational complexities [37]. Moreover, texture descriptor
methods that have good overall integrated invariance with respect to illumination,
scale and blurring have yet to be proposed; therefore, a versatile texture descriptor
that has low computational complexity and is invariant to illumination and scaling
changes as well as blurring is highly desirable.

This paper proposes a new versatile dense texture descriptor that is called the
localized angular phase (LAP); it applies local analysis over the input image because
of the superiority of the dense descriptor method in terms of classifying texture. The
spectral-based texture feature is applied using the phase of the image in order to
achieve invariance against illumination and scaling changes and blurring. LAP is
based on the localized Fourier transform that provides information in both the time
(position) and frequency domains [39]. In contrast with the 2D short term Fourier
transform (STFT), the LAP applies the 1D Fourier transform locally over a 1D signal
of image pixels that have been converted into the polar space with a fixed radius. The
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phase sign is analyzed to form 8-bit codewords where the distribution of their decimal
values is used to describe textures.

In contrast with LPQ, the LAP applies the 1D Fourier transform locally over a
1D signal of image pixels that have been converted into the polar space with a fixed
radius which increases the performance of the descriptor even on a very small image,
e.g., a 3 × 3 image. LAP is the generic version of a previous descriptor [25] where
the redundant information is discarded and includes multiple radii versions of the
descriptor. Compared to the texture descriptor [24], LAP utilizes phase information
instead of magnitude information which increases the discrimination power and
robustness of the descriptor.

The remainder of this paper is organized as follows: in Section 2, related works
of the current research are presented; in Section 3, detailed construction of the LAP
method and its properties are presented; experimental studies and evaluations are
described in Section 4; in Section 5, the application of the descriptor is presented and
finally conclusions are given in Section 6.

2 Related works

2.1 Local binary patterns

Ojala et al. [26] proposed a robust way for describing pure local binary patterns
(LBP) of texture in an image. In the original version, there are only 28 = 256 possible
texture units. The original 3 × 3 neighborhood, as shown in Fig. 1a, is thresholded by
the value of the center pixel. If the neighboring pixel values are larger or equal to the
center pixel, then the values are set to 1; otherwise, they are set to 0. The values of
the pixels in the thresholded neighborhood, as shown in Fig. 1b, are then multiplied
by the weights given to the corresponding pixels, as is shown in Fig. 1c; the results of
this example are shown in Fig. 1d. Finally, the values of the eight pixels are summed
to obtain the texture unit value for the 3 × 3 neighborhood.

The LBP method is invariant to gray scales and the enhanced version of LBP
[29] implements circular neighborhoods and uniform patterns. An image can be
converted to its texture spectrum image by replacing the pixels’ gray level values with
the values of the corresponding texture units. It is shown that the texture spectrum
image takes on the visual character of the original image, and the image texture can
be represented by the 256-bin LBP histogram for the frequency of the value of the
texture units.

The extremely simple computations for constructing the the LBP make it very
fast in classifying textures. However, a primary disadvantage of this is that the LBP

Fig. 1 The basic LBP texture
method

(a) (b) (c) (d)
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method is sensitive to image degradation under blurring situations and it is sensitive
to image rescaling because any interpolation applied in the image scaling changes the
pixel values resulting in image quality degradation.

2.2 Local Fourier histogram

Zhou et al. [46] proposed a texture descriptor by using the magnitude of the 1D local
Fourier transform with a 3 × 3 local window, as is shown in Fig. 2 and Ashan et al.
compared this performance with others [1] as well as proposed the extended version
of the method [2]. For each local window, a Fourier transform is obtained over the
neighborhood from x(0) to x(7), as is shown in Fig. 2 which can be calculated by using
the following formula:

X(k) = 1
8

7∑

n=0

x(n)e− π i
4 kn (1)

where x(n) and X(k) are the coefficients in the spatial and frequency domains,
respectively.

From the Fourier transform, the magnitudes of the first five coefficients, |X(0)|,
|X(1)|, . . ., |X(4)| are used for the texture description and the computed coefficients
are then normalized to take values from 0 to 255. Next, |X(0)| is linearly quantized
into eight bins, and |X(1)| through |X(4)| are linearly quantized into sixteen bins.
For describing the texture, all the eight bins of |X(0)| and the first eight bins of
the remaining coefficients are used as the feature descriptor. As mentioned in [33],
the magnitude contains less information about the image compared to the phase.
Therefore, LFH only possesses less discrimination power than those methods using
the phase of the image.

2.3 Local phase quantization

Ojansivu et al. [31] noticed that each coefficient of the Fourier transform with
centrally symmetric 2D signals is always real-valued, and its phase is only a two
valued function. Based on this property, a blur insensitive descriptor, named LPQ
can be constructed using simple steps with 5 × 5 neighborhoods, as illustrated in
Fig. 3. The coefficients are computed in the 5 × 5 neighborhood of the pixel for the
lowest horizontal, vertical, and diagonal frequencies (a, 0); (0, a); (a, a); and (a,−a),
respectively. For this case, the value of parameter a is set to 1. The imaginary and real
parts of these four frequency coefficients are binary quantized, based on their sign,
resulting in an 8-bit binary number, which is a decimal number between 0 and 255.

Fig. 2 A 3 × 3 window
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Fig. 3 The LPQ method: the image illustrates the computation of the LPQ code for the gray pixel
using a 5 × 5 neighborhood. The codes for every pixel are added to a histogram

The quantization can be made more efficient by decorrelating the frequency
coefficients using the whitening transform before quantization. It is because infor-
mation will be maximally preserved in scalar quantization if the coefficients are
statistically independent. The one with the decorrelation is called the whitened LPQ
whereas the one without the decorrelation is called the non-whitened LPQ. The
extended version of the LPQ shows that it is also invariant to rotations [32].

LPQ is a good method for classifying blurred texture images, but it has some
disadvantages such as its sensitivity to geometrical changes and its dependability on
the vertical and horizontal information in each window. Because it is based on the
short term Fourier transform (STFT), large samples are needed to produce relevant
information of the input samples. With a small 3 × 3 window, its invariance to
blurred images becomes less insensitive and its description capability also decreases.
In addition, it takes a long time for LPQ to extract the texture feature because it
needs to perform the Fourier transform for every row and column, and thus the
computational time needed increases rapidly as the local window size grows.

3 The proposed method

3.1 Localized angular phase

This section presents the proposed localized angular phase algorithm. As shown in
Fig. 4, let the window be the subimage s(x, y) in the Cartesian coordinate where
s(0, 0) pixel is at the center of the subimage. This 3 × 3 subimage is then converted
into the fixed-radius polar space p(r, θ) using the following formula:

p(r, θ) = s(x, y), r = 1, θ = 0◦, 40◦, . . . , 320◦, x = r cos θ, y = r sin θ (2)

Some s(x, y) points do not fall on the rectangular grid. These values need to be
interpolated using bilinear interpolation given by [10]:

s(x′, y′) = ax′ + b y′ + cx′y′ + d (3)

where a, b , c and d are the four nearest neighbors of point s(x′, y′). Because r is fixed
to 1, p(r, θ) can be seen as a 1D discrete signal with nine samples. We denote this
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Fig. 4 The LAP algorithm

discrete signal by p(n), n = 0, 1, . . . , 8. The Fourier transform and inverse transform
of p(n) are given by

P(k) =
N−1∑

n=0

p(n)e− 2π i
N kn (4)

p(n) = 1
N

N−1∑

k=0

P(k)e− 2π i
N kn (5)

where N is the number of samples in p(n), and for 3 × 3 subimage, N is 9. Using (4),
the discrete signals p(n) are converted to the Fourier coefficients P(k).

The reason to transform the image into polar space is to achieve invariance against
image scaling, and blurring and to significantly reduce the number of elements to
be transformed into the Fourier domain. By reducing the number of elements, the
computational speed of LAP can be increased significantly. Moreover, by applying
the Fourier transform in the polar space with fixed radius, invariance against blurring
can be achieved.

After the Fourier transform, the values of nine complex coefficients P(0), P(1),
. . . , P(8) are obtained. The next step is to select some complex coefficients to extract
the phase information. The P(0) is the DC value of the Fourier transform and
contains no phase information; thus it is excluded from the selected coefficients.
Because the image contains only real values, its Fourier transform becomes centrally
symmetric where half of the coefficients are redundant.

The reason for using an angle interval of 40◦ is to obtain the appropriate odd
number of samples. In previous research [25], eight circular neighbors were used
as input for the Fourier transform. If the number of samples is even, e.g., eight
samples, then the resulting complex coefficients will have another DC value. This
extra DC value will reduce the number of useful non redundant complex coefficients;
so, to avoid information loss, the LAP method uses nine samples, instead. This will
result in only one DC value. Then, four non redundant complex coefficients are
selected, whereby half of the complex coefficients are either P(1), P(2), P(3), P(4)

or P(5), P(6), P(7), P(8), as is shown in the box in Fig. 4. The phase information can
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be extracted from these four complex coefficients by observing the signs of each real
and imaginary part of the four complex coefficients, as is shown in Fig. 4. Let the C
matrix contain the information of these four complex coefficients given by

C = [
Re{X(4)}Im{X(4)}Re{X(3)}Im{X(3)}Re{X(2)}Im{X(2)}
Re{X(1)}Im{X(1)}] (6)

where matrix C is then quantized into 8-bit binary code by using the following
formula:

b(k) =
{

1, if Ck ≥ 0
0, otherwise

(7)

where b(k) is the sign of each coefficient. By arranging b(1), b(2), . . . , b(7), the 8 bit
binary code can be formulated, and a binomial factor is assigned as 2 for each b(k);
hence, it is possible to transform (7) into a unique LAP number, given by

LAP =
8∑

k=1

b(k)2k−1 (8)

Based on (8), this LAP is a decimal value between 0 and 255 resulting from the 8-bit
binary code. Next, a histogram is constructed with 256 dimensions using the LAP
codes, and the histogram denotes the distribution. Finally, the texture descriptor
is obtained from the histogram. A statistical approach using the distribution of the
feature values is known to work well for micro-textures [11, 26].

The LAP is also a dense descriptor that analyzes the textons of the texture by
locally extracting the texture feature on a moving window of a small size. Another
advantage of using the polar space with a fixed radius is that the number of samples
will not change much even when different radii are used. For example, 12 samples
(angle interval 30◦) are used for a LAP with radius 2 (window size 5 × 5), while
18 samples (angle interval 20◦) are used for a LAP with radius 3 (window size 7 ×
7). Similar to LAP with radius 1, complex coefficients from the second to the fifth
of the 12 or 18 samples are used to create the binary code. With this characteristic,
the LAP method does not significantly require more computation effort for a larger
window. Note that an odd number of samples is not needed for the LAP with larger
windows, such as 3 × 3 and 5 × 5, because the number of useful non redundant
complex coefficients is sufficient.

Although both LPQ and LAP are using the phase, there are distinctive differences
in the construction, and theoretical background between LAP and LPQ. LAP is
based on the robustness of phase in polar space whereas LPQ is based on the phase in
image space. LPQ uses discrete 2D Fourier transform on the local window whereas
LAP uses polar Fourier transform with fixed radius on the local window. This polar
Fourier transform with fixed radius can be simplified by performing 1D Fourier
transform to the interpolated elements in the polar space with a fixed radius [3].
The Fourier transform elements of LPQ are depending on the number of pixels
whereas the Fourier transform elements of LAP are not. It is because LAP utilizes
polar transform that can interpolate unrestricted number of elements from any given
pixels in a local window. This is the main reason of the effectiveness of LAP in robust
texture classification even with small local window, e.g., 3 × 3 window. And lastly,
the construction of LAP is based on invariance against image blurring, scaling, and
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illumination whereas LPQ is only based on invariance against image blurring. Due to
the differences in theoretical background, one cannot assume that LAP is a variation
of LPQ.

3.2 The properties of LAP

As mentioned in section 1, the LAP method is robust with respect to illumination
variations, scaling changes and image blurring. This section explains each of these
properties. Basically,the properties are obtained by exploiting two main elements:
the phase and polar spaces.

3.2.1 The signif icance of LAP information

Images can be presented in the spatial domain or frequency domain; the spatial
domain represents the normal image space, whereas the frequency domain repre-
sents the variation of brightness across the image. The frequency domain analysis
can be performed by applying the Fourier transform to an image. A 2D Fourier
transform and inverse Fourier transform of an image f (x, y) can be calculated using
the following formula [10]:

F(m, n) =
M−1∑

x=0

N−1∑

y=0

f (x, y)e− j
(

2πxm
M + 2πyn

N

)
(9)

f (x, y) = 1
MN

M−1∑

m=0

N−1∑

n=0

F(m, n)e j
(

2πxm
M + 2πyn

N

)
(10)

where f (x, y) is an image with size M × N. The magnitude and phase are calculated
using the following formula:

| F(m, n) | =
√

Re{F(m, n)}2 + Im{F(m, n)}2 (11)

φ(m, n) = tan−1
(

Im{F(m, n)}
Re{F(m, n)}

)
(12)

In order to transform the magnitude and phase back to the spatial domain, their
values need to be combined by converting them into complex numbers. The formula
to do this conversion is as follows:

C(m, n) = |F(m, n)|e jθ(m,n) (13)

where C(m, n) are 2D values containing complex numbers that have the same size as
that of the original image f (x, y). By applying formula (10) to C(m, n), the original
image f (x, y) is retained.

There has been much research on phase-only image analysis [13, 33], and these
studies show that the information saved in the phase is more significant than that
in the magnitude. The next example demonstrates the significance of information
contained in the phase. The Fourier transform is applied to an image, as shown in
Fig. 5a, and its magnitude values are obtained using (11). Next, the Fourier transform
is applied to an image as shown in Fig. 5b, and its phase values are then obtained
using (12). Using (13), the magnitude values of the image in Fig. 5a are combined
with the phase values of the image in Fig. 5b and converted into complex values
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(a) (b) (c)

Fig. 5 a Barbara image used to generate magnitude. b Clown image used to generate the phase.
c The resulting image by combining the magnitude from the Barbara image and phase from the
Clown image

C(m, n). Using (10), these complex values C(m, n) are then converted back to the
spatial space, and the resultant image c(x, y) is shown in Fig. 5c.

As can be seen in Fig. 5c, the reconstructed image closely resembles the image
in Fig. 5b yet it has no visible similarity to the image in Fig. 5a even though the
magnitude of the reconstructed image is obtained from the image in Fig. 5a. This
shows how significant the phase information is compared to that from the magnitude.

3.2.2 Robustness against illumination change

An image can be seen as a 2D discrete signal, and the gray values correspond to the
samples of the signal. As mentioned before, the phase is also invariant to illumination
change [30, 31] because the phase does not change even if the samples of a signal are
changed uniformly. For example, let the signal in Fig. 6a have nine samples, and
Fig. 6b shows their phase values. The signal in Fig. 6c is uniformly modified from the
original signal in Fig. 6a and d shows the phase values of the signal in Fig. 6c. As seen
in Fig. 6d, the phase values of the uniformly modified signal produce the same values
of the phase of the unmodified signal in Fig. 6b.

For a gray image where the samples of the signal range from 0 to 255, an
illumination change shifts the gray values in the image. Because the phase is invariant
to shifts in the gray values, invariance can be easily obtained in the illumination
changes. The LAP phase contains the overall information of the images because
it is generated in the Fourier domain. Even if the gray value shift is nonlinear or
random as is in natural illumination change, the phase is still able to extract sufficient

a b c d

Fig. 6 An example of signals and their phases
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information from the images. Another phase-based image feature also proved that
the phase is invariant to illumination and contrast [16].

3.2.3 Robustness against blurring

Image blurring can be modeled as a linear shift invariant system in which the relation
between an image f (x, y) and its observed image g(x, y) is given by

g(x, y) = f (x, y) ∗ h(x, y) + n(x, y) (14)

where h(x, y) is the point spread function (PSF) of the system that causes the
blurring, n(x, y) is the additive noise, and * denotes the 2D convolution operation
[30]. If the noise is excluded, then formula (14) can be expressed in the frequency
domain given by

G(m, n) = F(m, n) • H(m, n) (15)

where G(u, v), F(u, v), and H(u, v) are the Fourier transforms of g(x, y), f (x, y), and
h(x, y), respectively. The values are complex numbers and can be expressed in polar
form given by

|G(m, n)| φg(m, n) = |F(m, n)|φ f (m, n) • |H(m, n)| φh(m, n) (16)

where | ◦ |denotes the magnitude of the complex coefficient, and φ denotes the
phase angle of the complex coefficient. It is understood that a signal convolved with
any zero-phase signal such as the Gaussian blur, will produce another signal with
the same phase as that of the original signal [33]. With this property, it is easy to
achieve the blur invariant property just by using only the phase of a signal. Some
other research [7] found that if a point spread function (PSF) h(x, y) is centrally
symmetric, namely h(x, y) = h(−x, −y), then its Fourier transform H(m, n) is always
real-valued, and as a consequence its phase is only a two-valued function, given by

φh(m, n) =
{

0, if H(m, n) ≥ 0
π, if H(m, n) < 0 (17)

And because of the periodicity of the tangent

tan
[
φg(m, n)

] = tan
[
φg(m, n) + φh(m, n)

] = tan
[
φ f (m, n)

]
(18)

where φ f and φg are the phase of the original image and the blurred image, respec-
tively. Thus, tan[φg(m, n)] is invariant to the convolution of the original image with
any centrally symmetric PSF. The phase is the arctangent of the division between
imaginary and real coefficients. Thus, the tangent of the phase will result in

tan[φg(m, n)] = tan
[

tan−1
(

Im{G(m, n)}
Re{G(m, n)}

)]
= Im{G(m, n)}

Re{G(m, n)} (19)

where G(m, n) is the Fourier transform of the blurred image. By using the imaginary
and real coefficients, we can also achieve the blur insensitive property, as applied by
LAP. In the case of LAP, the Fourier transform is done in the Polar space, not in
Cartesian space. However, robustness against blurring is still achievable. A blurred
image g(x, y) is the result of a convolution operation between the original image
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f (x, y) and a PSF h(x, y) in the Cartesian space as shown in (14). This convolution
can be modeled in the polar space using the following formula [3]:

g(r, θ) = f (r, θ) ∗ h(r, θ) =
∫ ∞

0

∫ 2π

0
h(r, θ) f (r − r0, θ − θ0)drdθ (20)

For a fixed-radius polar transformation, the convolution in the polar space becomes
an angular convolution where the convolution is only carried out over the angular
variable with a fixed value of r. This angular convolution is defined as:

f (r, θ) ∗θ h(r, θ) = 1
2π

∫ 2π

0
f (r, θ0) f (r, θ − θ0)dθ (21)

where the notation of ∗θ is used to denote the angular convolution. This equation is
proven to be a multiplication between the original image and PSF in the polar space
[3] such that:

if g(r, θ) = f (r, θ) ∗θ h(r, θ), then G(ρ, ϕ) = F(ρ, ϕ) • H(ρ, ϕ), (22)

This is the same result obtained from the Fourier series of the 1D periodic function
[3], which means that the values of the polar frequency vector (ρ, ϕ) can be seen as a
1D discrete signal. G(ρ, ϕ) can be expressed in polar form given by

∣∣G
(−→w )∣∣ = ∣∣F

(−→w )∣∣ • ∣∣H
(−→w )∣∣ and φg

(−→w ) = φf
(−→w ) + φh

(−→w )
(23)

where |◦| denotes the magnitude of the complex coefficient, φ denotes the phase
angle of the complex coefficients, and (−→w ) denotes the polar frequency vector (ρ, ϕ).

If PSF in the spatial space h(x, y) is centrally symmetric, then the polar transform
of PSF with fixed radius h(r, θ) will produce a uniform or symmetrical 1D discrete
signal. Let xh(n) be a 1D discrete signal that contains the uniform or symmetrical
values of h(r, θ). The Fourier transform Xh(n) is always real-valued, and as a result
its phase ∠Xh is equal to zero. In the following Lemmas, 1 and 2, this property is
verified.

Lemma 1 The Fourier Transform of a symmetrical signal results in a zero phase value.

Proof Let xh(n) be a symmetrical sequence, i.e., xh(−n) = xh(n), n = 0, . . . , N − 1,
and k = 0, . . . N − 1,

Xh(k) = 1
N

N−1∑

n=0

xh(n)e
−i2πnk

N

= 1
N

N−1∑

n=0

xh(n)

(
cos(

2πnk
N

) − i sin
(

2πnk
N

))

= 1
N

[
N−1∑

n=0

xh(n) cos
(

2πnk
N

)]

Lemma 2 The Fourier Transform of a uniform signal results in a zero phase value.
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Proof Let xh(n) be a uniform discrete signal of equal-strength impulses where

xh(n) =
N−1∑

n=0

δ(n), n = 0, 1, . . . N − 1

Xh(k) = 1
N

N−1∑

n=0

xh(n)e
−i2πnk

N

= 1
N

N−1∑

n=0

xh(n)e
−i2πnk

N

= 1
N

N−1∑

n=0

e
−i2πnk

N

= δ(n)

�	

From Lemma 1, it can be seen that the result is real valued because there is no
imaginary part in the formula. The phase of this 1D signal is given by

∠Xh = Im{Xh(n)}
Re{Xh(n)} (24)

So, if Im{Xh(n)} is equal to zero, then ∠Xh is also equal to zero. Therefore, the phase
of the symmetrical sequenced signal is zero. From Lemma 2, the Fourier transform
of a uniform signal will only result in a single real value, so the phase ∠Xh is also
equal to zero. As seen, ∠Xh is the phase of a PSF in polar phase, and it is equal to
φh(

−→w ). Because φh(
−→w ) becomes zero with a centrally symmetric PSF h(x, y), (23)

can be converted into

φg
(−→w ) = φ f

(−→w )
if h(x, y) is centrally symmetric (25)

It is clearly seen that the phase of the blurred image in polar space is equal to the
phase of the original image in polar space. In other words, the phase of the image in
the polar space is invariant to blurring with a centrally symmetric PSF.

For example, consider a centrally symmetric PSF, such as the PSF of Gaussian
blur, defined by

hG(x, y) = 1
2πσ 2 e− x2+y2

2σ2 (26)

where σ is the standard deviation of the Gaussian distribution [38]. By replacing x, y
with r sin θ and r cos θ , formula (26) can be converted into polar space, given by

hG(r, θ) = 1
2πσ 2 e− r2

2σ2 (27)

As can be seen, θ is excluded in the right side of (27). This means that θ is uniform for
each radius r. With a fixed radius polar transform, hG(r, θ) has uniform values and
its Fourier transform will result in a single real value so that its phase φh(

−→w ) is equal
to zero. By referring to (25), it is seen that the phase of the image in the polar space
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a b c d

Fig. 7 Concentric circles and radial lines in Cartesian space and Polar space

φh(
−→w ) is invariant to blurring with a centrally symmetric PSF, such as the Gaussian

blur PSF, average PSF, or disk PSF.

3.2.4 Robustness against scale change

A polar transform maps the circle Fig. 7a into the vertical lines shown in Fig. 7b
and the lines at any angle through the center of the image shown in Fig. 7c into
horizontal lines as shown in Fig. 7d, with rotation and scale invariance when the
origin of the polar plane does not change [17]. In other words, rotating an image
results in a vertical displacement (with modulo 2π) and a changing the image size
results in a horizontal displacement. The distribution of LAP codes is robust to image
translation, and this will affect LAP in achieving robustness against scale change.

The scale-space theory is a framework for multi-scale signal representation with
complementary motivations from physics and biological vision. It is a formal theory
for handling image structures at different scales, by representing an image as a one-
parameter family of blurred or smoothed or blurred images [45]. As our proposed
LAP is robust to these smoothed images, theoretically, it also can be robust to the
scale change.

As explained in this section, the phase is significant and robust to illumination,
scaling, and blurring. We also showed that the phase is invariant to image blurring
with centrally symmetric PSF by applying the polar transform with fixed radius that is
implemented in the LAP algorithm. Because of these great advantages of phase, it is
applied as the main feature in the LAP method in order to generate a robust and high
discriminative texture descriptor. As we can see, the construction of LAP is based on
a local analysis of the image. Because it is not based on global image analysis, it could
not achieve 100% of the properties explained in this section, especially invariance
against scaling, and blurring properties. However, LAP is still robust to illumination,
scaling and blurring to a certain level where application utilizing the robust texture
feature is pertinent.

4 Experimental studies and evaluations

4.1 Experimental environment and dataset

In the experimental studies, the consistency and classification accuracy of LAP are
measured in terms of various conditions, such as normal, blurred, scaled, and gray
shifted cases. Three other local-based texture descriptors, such as LPQ, LBP and
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LFH have been compared with the new proposed LAP method. A non-whitened
LPQ is applied with window size 3 × 3 and a frequency parameter of a = 1, while
the enhanced LBP [14] and LFH [1] methods use a neighborhood with a radius
of one. The non-whitened LPQ is used to measure its raw performance without
decorrelation because the proposed method is seen to perform well even without
decorrelation. The experiment is conducted on computer with an Intel Core2Duo
2.33 GHz quad core processor and 2GB of main memory. All of the codes are written
in MATLAB environment with Window XP operating system. The fft MATLAB
function is used to generate LAP and LFH methods, while the fft2 MATLAB
function is used to generate the LPQ method.

Three texture datasets are implemented in the experiment. The first one gives
40 different texture classes from Brodatz texture (http://www.ux.uis.no/∼tranden/
brodatz.html), and a set of Emphysema subregion images from Inha University
Hospital, which have been used in previous works [24, 25]. For each texture, 16
sample images of size 50 × 50 are extracted. To imitate the diverse conditions of
natural textures, each texture image is blurred using a Gaussian blur operation with
a standard deviation of 0.5, which mimics the atmospheric turbulence [4], and blur
radii of 1 and 2 pixels. Each class of texture contains 48 images. So, the total texture
images used in these experiments is 1,968 images, including normal as well as two
levels of blurred images. The second texture dataset is the KTH-TIPS [8] texture
database where KTH-TIPS contains the planar samples of each of ten materials
under varying illumination, pose and scale cases. The KTH-TIPS texture dataset
contains ten texture classes with 810 images and the images are 200 × 200 pixels
in size. The database contains images at nine scales spanning two octaves, under
three different illumination directions, and three different poses. The last texture
dataset implemented in the experiments is the Outex_TC_00000 test suite [28], which
contains 24 texture classes with 480 images of size 128 × 128. Sample of images from
the three dataset are shown in Fig. 8.

4.2 Experiment set-up and results

This section describes the performance measure and the results of consistency and
classification accuracy in terms of various conditions such as normal, blurred, scaled,
and gray shifted cases. For texture classification, the k nearest neighbor (k-NN) is
used, which has also been successfully utilized in texture classification [6, 31]. In
these experiments, the k values used are 1, 3, 7, and 15. The classifier is trained and
tested using appropriate sets of images to classify each query image. The Manhattan

Fig. 8 The sample images from Brodatz, KTH-TIPS and Outex_TC_00000

http://www.ux.uis.no/~tranden/brodatz.html
http://www.ux.uis.no/~tranden/brodatz.html
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distance has been used to measure the distance between LAP, LBP, LPQ, and LFH
equalized histograms. Herein, the classification accuracy can be calculated using the
following formula:

accuracy(%) = no. of correctly classifications
no. of total images

(28)

In the Brodatz texture image database, each texture class is randomly divided into
four groups. Each group contains 12 images for each texture class. The same process
is carried out for the KTH-TIPS database, where three groups contain 20 images for
each texture class and one group contains 21 images for each texture class. As for the
Outex_TC_00000 test suite, each group contains five images for each texture class.
The classification is executed using the 4-fold cross-validation scheme. Classifications
are performed four times, where on each time, one group of the dataset is used for
testing and the remaining groups are used for training. The average accuracy of the
classifications is recorded as the final accuracy. For the invariant texture classification
experiments, the blurred, scaled, and gray shifted images are generated from images
in the testing group of Outex_TC_00000 test suite.

4.2.1 Evaluation of invariance

This experiment evaluates the histogram consistency of each method, namely LAP,
LPQ, LBP, and LFH with respect to various illuminations, scaling and blurring. For
this test, 44 images from the USC-SIPI image database (http://sipi.usc.edu/database/
database.cgi?volume=misc&image=12) are used. The images are rescaled into 128 ×
128 and converted into 8-bit gray image for achieving feature extraction efficiency,
as is shown in Fig. 9. Ten images are randomly selected from the image database and
labeled as the original group. These images are then degraded in terms of changed
illumination, blurring, and scale changed, and labeled as the modified group. For
illumination changed images, the gray values of the images are shifted by adding and
subtracting 10, 20, 30, and 50 gray values. For scale changed images, the images are
rescaled using bilinear interpolation [10] with the scales of 0.5, 0.6, 0.7, 0.8, 0.9, 1.2,
1.4, 1.6, 1.8, and 2.0. And for blurred images, the images are blurred using Gaussian
blurring with a 3 × 3 kernel. The standard deviations used for the Gaussian blurring
are 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, and 1.4.

Standard deviation (SD) of the histogram is used to represent the normalized
histogram of each method with a single feature value. These SD values are extracted

Fig. 9 The sample of images
used in the consistency test

http://sipi.usc.edu/database/database.cgi?volume=misc&image=12
http://sipi.usc.edu/database/database.cgi?volume=misc&image=12
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Table 1 t-test result of the illumination, blurring, and scale invariance test

Method Illumination changed Blurred Rescaled

Variance t p Variance t p Variance t p

LAP 0.00006 −1.21860 0.24565 0.00058 0.15405 0.88064 0.00002 −0.12942 0.89938
LPQ 0.00025 −4.98676 0.00027 0.00220 −1.32366 0.217492 0.00009 −0.05821 0.95465
LBP 0.00650 −2.80451 0.01416 0.00470 −4.09351 0.002109 0.00150 −0.13140 0.89780
LFH 0.00055 0.23172 0.82086 0.00078 0.77036 0.458342 0.00020 −0.01437 0.98880

from each image in both original and modified groups. The consistency of SD values
between original and modified groups is measured by scrutinizing the p-value of the
t-test. The significance level used in the t-test is 0.05. p-value that is lower than 0.05
validates significant difference between the original and modified groups, and thus
proving the inconsistency of SD values between the original and modified groups. If
the descriptor is robust to degraded images, then it will generate similar SD values
for both original and modified images and will result in high p-value. The result of
the t-test with respect to various illuminations, scaling, and blurring are shown in
Table 1. The distributions of SD values for each method are normalized into the
range between 0 and 1 by dividing them with the maximum SD values of each method
and the box plots of the normalized distributions are shown in Fig. 10.

As we can see from the p-value of each test, LAP achieved a high p-value that
is larger than the 0.05 significance level. This proves the consistency of the texture
feature extracted using LAP. This also supports the proofs and related studies on
the properties of LAP presented in previous section. In the scale invariance test,
LPQ and LBP are not consistent since their p-values are lower than 0.05. In the blur
invariance test, only LBP shows inconsistent SD values between original and blurred
images. In the illumination invariance test, all of the descriptors show consistent
SD values since all of them achieve high p-values. Each method uses the same
input images. By comparing the variances of SD values for each method, one also
can measure the consistency performance. As we can see, LAP achieves the lowest
variance in all of the tests. The variance of LAP is about four times smaller than
that of LPQ for each test. This shows that the SD values of LAP are consistent
compared to that of LPQ. As shown in Fig. 10, the box plot shows that LAP is
consistent because the distribution of the SD values generated by LAP is very narrow
in each test whereas the LBP is not consistent because the distribution of SD values
generated by LBP shows wide range.

Fig. 10 The box plot of SD values from both original and modified groups for each method in three
categories (illumination, scaling, and blurring)



Multimed Tools Appl (2012) 59:717–747 733

4.2.2 Texture classif ication using the original datasets

Previous experiments only measure the consistency of the feature generated by
LAP, LPQ, LBP, and LFH methods. In order to evaluate the discrimination power
of the descriptor, texture classification experiment must to be conducted. In this
subsection, the classification accuracies of the LAP, LPQ, LBP, and LFH methods
are calculated and compared using the measures discussed in Section 4.1. The result
of the texture classification using the Brodatz, KTH-TIPS, and Outex_TC_00000
datasets are shown in Table 2. For Brodatz textures, LAP performs the best with an
average accuracy of 97.21% using 7-NN, while LFH performs the worst with 80.54%
using 15-NN. For the KTH-TIPS textures, LAP still achieves the highest accuracy
with 88.79% using 1-NN, and it can be seen that LBP performs the worst with 55.75%
using 15-NN even though it is invariant to illumination changes. This is because LBP
is very sensitive to pose, and scale changes. The KTH-TIPS dataset contains images
with different illumination, pose and scales that make the classification of these
images more difficult than those in the Brodatz and the Outex_TC_00000 textures.
For the Outex_TC_00000 textures, the classification accuracy of the LAP and LPQ
are the highest with 99.79% using 1-NN. On the other hand, LFH performs the
worst because it only applies the magnitude. It can be seen that magnitude contains
less information than the phase even though the combined approach of structural
and statistics is implemented. Generally, the classification accuracies decrease as
the number of nearest neighbor of the k-NN increases. However, the number of
nearest neighbor of the k-NN does not significantly affects the classification accuracy
for Brodatz and KTH-TIPS databases (p > 0.05) but only significantly affects the
classification accuracy for Outex database (p < 0.05). This may be caused by the fine
quality and the detailed structure of textures in Outex database where the images are
captured using three CCD sensors [28].

As for the overall performance, LAP and LPQ obtain high classification accuracy
because of the significant information extracted from the phase information of the
images. From this classification experiment, it can be seen that LAP does not just
extract consistent features, but also extracts highly discriminating features that can
be classified even with using a simple classifier. Even though LFH also extracts
consistent feature, its feature is not highly discriminating. This means that LFH
extracts a similar feature from different images that result in low classification
accuracy.

4.2.3 Texture classif ication using modif ied datasets

To evaluate the discrimination power and consistency in terms of various illu-
minations, scaling, and blurring, texture classification using degraded textures is
performed using the measures discussed in Section 4.1. This experiment uses
Outex_TC_00000 because of its high classification accuracy shown in previous exper-
iments. For this experiment, only the images in the testing group will be modified,
and the images in the training group are the same as the original images. The 4-
fold cross-validation scheme is conducted in this classification experiment, and the
average accuracy of the 4-fold classification is recorded.

The image illumination is changed by adding and subtracting the amounts of
gray values, which are 50 and 80. It is observed that the contrast is changed as the
gray values are added and subtracted. As the values of the pixels grow beyond the
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gray value range, the values will be cut-off into the gray value range and change the
contrast of the image. In other words, this experiment also evaluates the robustness
of each descriptor when the contrast is changed. The image is rescaled using bilinear
interpolation with scaling factors of 0.5, 0.75, 1.5, and 2. Finally, the image is blurred
using Gaussian blur with standard deviation of 1. The blurring kernel sizes used in
this experiment are 3 × 3, 5 × 5, and 7 × 7 sized kernels. Some samples images of
modified textures are shown in Fig. 11.

The average classification accuracies are shown in Table 3. Overall, the clas-
sification accuracies using 3-NN are the highest and the classification accuracies using
15-NN are the lowest. The result shows that LAP, LPQ, and LBP achieve persis-
tent accuracies in classifying the textures with different illumination and contrast.
Although LFH is proven to be invariant to gray displacement and linear transform
[46], the LFH performance decreases for large values of gray value addition and
subtraction. This is because the contrast changes and the transforms are no longer
linear. By down-scaling the image, some information is distorted and mixed due to
the aliasing effects. For the up-scaled images, it is seen that the image is blurred
because, in up-scaling, the image signals are stretched far from their original signals
and bilinear interpolation cannot perfectly estimate these stretched signal values.
The average classification accuracy of LAP in classifying rescaled images is only
decreased by 15% from the classification accuracy using the original image whereas
the average classification accuracy of other methods is decreased by more than
50%. LBP performs the worst in the rescaled classification experiment due to its
dependency on window size. The larger or smaller the scaling factor that is applied,
the lower the classification accuracy is.

The peak signal-to-noise ratios (PSNR) have been calculated to measure the
degradation of the blurred images. The PSNR of the blurred images with kernels
3 × 3, 5 × 5, and 7 × 7 are 23.6, 22.5, and 22.3 dB, respectively. Typical values for
the PSNR in lossy image compressions are between 30 and 50 dB, so it can be seen
that the blurred images are about 40% more degraded than the lossy compressed
images by scrutinizing the PSNR values. The results show that the classification
accuracy of LAP decreases slowly compared to the three other texture descriptors.
With the blurring kernels of size 3 × 3, the LAP method achieves 92.3% of the
classification accuracy, which is 6% less than the classification accuracy using the
original texture image, whereas the classification accuracy of the LPQ, LBP, and
LFH methods decreases by more than 30% of its original accuracy. One can see
that LAP manages to get accuracy above 84% even with Gaussian blurring with
7 × 7 kernel size (blurring radius 3). It is because the polar transform in LAP is able
to interpolate sufficient number of elements to achieve invariance against blurring.
From the result, we can also see that LAP is applicable in classifying blurred images

Fig. 11 Sample of illumination changed, rescaled and blurred images of Outex_TC_00000
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with various radii. Although LPQ is a blur invariant descriptor, the classification
accuracy of LPQ is significantly lower than that of LAP because it uses 2D STFT
that needs larger windows to increase its performance; in fact, a suitable window
size for the LPQ method to perform blurring invariant effect is 7 × 7 [30]. The best
overall classification using degraded textures from the Outex_TC_00000 databases
for LAP, LPQ, LBP, and LFH are 91.26, 61.23, 35.79, and 33.47%, respectively. This
high accuracy shows that LAP is able to produce a robust and high discrimination
feature.

4.2.4 The ef f iciency evaluation

In this section, the efficiency of LAP, LPQ, LBP, and LFH is evaluated in terms
of texture feature extraction by using 400 randomly selected texture images from
Outex_TC_0000 (128 × 128 size images), Outex_TC_0001 (64 × 64 size images), and
Outex_TC_0002 (32 × 32 size images) databases. Three windows of size 3 × 3, 5 ×
5, and 7 × 7 are applied in the experiment, respectively. The feature extraction is
repeated 100 times, and two ANOVA tests are conducted to see the significance of
time difference in terms of different image sizes and different window sizes for each
method, respectively.

The average computational time with respect to various image sizes of LAP,
LPQ, LBP, and LFH are shown in Fig. 12 and the descriptive statistics is shown
in Table 4. From the figure, it can be seen that the computational time increases
as the window size increases. However the increase of computational time for
LAP, LBP, and LFH are so small and almost not visible in Fig. 12. On the other
hand, we can clearly see that the increase of computational time for LPQ is large,
especially for the texture extraction of 128 × 128 size images. LBP consumes the
shortest time to extract the texture feature. It is because LBP does not utilize the
complex image transform and only uses addition and multiplication operations in its
construction. This simple construction result in fast computation but high sensitivity
against scaling, and blurring.

Among the method that utilize Fourier transform, LAP achieves the fastest
feature extraction time with overall average of 4.43 s. LFH consumes second shortest
time because it needs to construct five histograms before generating the feature vec-
tor, whereas LAP only needs to generate one histogram. LPQ consumes the longest
time because it requires a long computational time to calculate the 2D Fourier
transform. It also can be perceived that the computational time increases as the
size of the image increases. The computational time of LPQ increases quadratically

Fig. 12 The computational time of LAP, LPQ, LBP, and LFH with various images sizes and three
different window sizes (left 3 × 3, center 5 × 5, right 7 × 7)
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compared to that of the other method due to the steeper incline of its line. From the
both ANOVA tests, it can be concluded that the image size significantly affects the
efficiency of each method for all 3 × 3, 5 × 5, and 7 × 7 windows (p < 0.01) and
the window size significantly affects the efficiency of each method for all image sizes
(p < 0.01). From this efficiency experiment, it can be observed that LAP is not only
a robust and high discriminating descriptor, but it is also fast in extracting the texture
feature.

5 Application examples

Image blurring frequently occurs when capturing real-world images due to the
movement of the camera and object, and out-of-focus views. The illuminations in
real-world images often change, and they depend on the weather. Finally, objects in
the real-world are diverse in sizes. The range between the object and camera will
also affect the size of the images that will be taken. To analyze images of different
sizes, a multi-scale image analysis approach is needed. The scope of applications,
such as plate number detection and recognition, content-based image retrieval
(CBIR) of real-world images, computer-aided diagnosis (CAD) in the medical field,
face detection and recognition, etc. demands integrated invariance against those
degradations such as blurring, illumination, and scaling.

In this section, the applications of LAP in the field of pattern recognition and
classification using real-world images are presented. The performance of LAP in
terms of image retrieval, detection and classification is evaluated by using real-world
blurred images, images in three different illuminations, and medical images with
different resolutions and types. All the experiment set-ups used in this section are
based on the measures discussed in Section 4.1.

5.1 Evaluation with real-world degraded images

5.1.1 Evaluation with real-world blurred images

To evaluate the performance of LAP using images with various real-world blurring
effects, CBIR is conducted as presented in [42]. For this experiment, a set of 20
pairs of images (http://sipi.usc.edu/database/database.cgi?volume=misc&image=12)
is used as the image database. Each pair has the same scene but different image
blurring. The blur is caused by changing the acquisition parameters such as shutter
time, aperture, and relative movement between the camera and object. The sample
images are shown in Fig. 13. In order to extract the features from the images, each

Fig. 13 Example of images
with real-world blurring effect:
a, b motion blur, c change in
focus from foreground to
background, and d
out-of-focus blur

(a) (b) (c) (d)

http://sipi.usc.edu/database/database.cgi?volume=misc&image=12


740 Multimed Tools Appl (2012) 59:717–747

Table 5 Rank and ANAR of
four methods using real-world
blurred images

RANK 1 2 >2 ANAR

LAP 14 0 6 0.05
LPQ 10 1 9 0.14
LBP 4 1 15 0.32
LFH 8 2 10 0.29

image is equally divided into 16 × 16 subimages. The texture feature is then extracted
from each subimage. Finally, the texture features from each subimage are combined
continuously into one long histogram. The retrieval is based on the Manhattan
distance between the histograms of the query image and the images in the database.

The retrieval performance is assessed by using the ranked results of correct
matches and the normalized average rank (NAR), which can be calculated using the
following formula:

N AR = 1
NNR

(
NR∑

i=1

Ri − NR (NR + 1)

2

)
(29)

where N is the number of images in the database, NR the number of relevant images
to the query, Ri is the rank at which the ith relevant image is retrieved. A NAR of
zero indicates perfect results, and a NAR of 0.5 is equal to random retrieval. The
average NAR over all queries is recorded as the average performance and indicated
by ANAR, and the result is shown in Table 5. As shown in Table 5, LAP achieves
the lowest ANAR indicating high retrieval performance. Most of the images are
retrieved with rank 1, and the others are retrieved with more than rank 2. The low
ANAR value of LAP shows that the retrieval rank is not large compared to that of
other methods. From this test, it can be seen that LAP is robust to various blurring
effects.

5.1.2 Evaluation with real-world illumination changed images

A texture classification test is conducted to evaluate the performance of LAP in
analyzing images that are changed by the real-world illumination. The impact of
illumination changes on the computed features of LAP are compared with that of
other methods. For this purpose, the Outex_TC_00014 test suit is used as the dataset.
This database contains images with different illuminations that were captured using
three simulated illuminating sources: incandescent, horizon sunlight, and fluorescent
tl84. Each illumination group contains 68 texture classes with 1,360 images of size
128 × 128. The sample images are shown in Fig. 14.

Fig. 14 Sample images in
different illuminations: left
incandescent, middle horizon
and right tl84
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Table 6 Classification accuracy with images in different illuminations

Method LAP LPQ LBP LFH

Accuracy 82.52 77.95 51.90 51.47

3-fold cross-validation scheme is applied using three groups with different illu-
minations in the classification and the average classification accuracy is recorded as
overall performance. The classification result is shown in Table 6. As it can be seen,
the accuracy of LAP outperforms other methods with an average of 82.52%. Even
though LBP and LFH are invariant to linear illumination change, they are not robust
to nonlinear or random illumination change. Compared to LBP and LFH, the phase-
based descriptors (LAP and LPQ) achieve high classification accuracies. This shows
that phase-based descriptors are not also robust to constant illumination change,
but also robust to nonlinear and random illumination change. This also supports the
theoretical assertion discussed in Section 3.2.2.

5.1.3 Evaluation with real-world scale changed images

In this section, the consistency of LAP in terms of texture feature extraction is
evaluated by using the Emphysema regions with different image types and resolu-
tions. A chest Computed tomography (CT) image can appear in different conditions
depending on its type and dose. A high Resolution CT (HRCT) image has more
details and contains more texture information of the lung. A standard CT image
of the lung contains more homogeneous region than the textured region, and the
image is blurrier than the HRCT image. Generally, a high radiation dose results in
high-resolution images, while a lower dose leads to increased image noise and results
in unsharp images [15]. The CT images can also appear in different resolution or
scale depending on the machine and the physical attribute of the patient. Because
of the various conditions of CT images, the texture information of the Emphysema
subregion may vary. Therefore, a texture descriptor that robust to those variations is
needed to extract consistent texture features from various types of CT images.

In this experiment, standard CT and HRCT images, which are gathered from Inha
University Hospital, are applied. These standard CT and HRCT images are saved
from the CT machine software in three different sizes which are 100%, 200%, and
400% of the original size, respectively. For each size, 30 Emphysema subregions,
with a size of 30 × 30 pixels are randomly selected from the standard CT and HRCT
images. There are now a total of 180 images of Emphysema subregions, and a sample
of these images can be viewed in Fig. 15.

The SD values of histograms for LAP, LPQ, LBP, and LFH are calculated and
shown in Fig. 16, and the descriptive statistics of SD values for these methods are

Fig. 15 Sample images of
Emphysema subregion with
respect to various CT image
types and sizes
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Fig. 16 The SD values of
histogram for LAP, LPQ,
LBP, and LFH with respect
to various Emphysema
subregions

shown in Table 7. As it can be seen, the SD values of LAP histogram are more
uniform than those of LPQ, LBP and LFH. This means that the LAP histogram for
each Emphysema subregion is consistent. Even though the distribution of SD values
of LAP and LPQ are similar, but they are significantly different (t = −6.21, p <

0.01). From the table, it can be seen that LAP shows the lowest variance among
all methods. The robustness of LAP in extracting texture feature from degraded
textures enables LAP to extract a consistent texture feature from different types and
sizes of CT images.

5.2 Application example in medical image analysis

LAP can be utilized in a lot of applications due to its robustness against blurring,
illumination, and scaling. In this paper, one of the applications in the field of pattern
recognition is presented. Recently, a number of computer-aided diagnosis (CAD)
systems have been developed to help the radiologists to diagnose diseases. Using
CAD systems to detect lung diseases such as emphysema, lung cancer, etc., is one of
the important fields of medical image processing nowadays [34]. Feature extraction
is one of the most important steps for recognizing abnormal regions in medical
images. In the past decades, texture features such as the gray level difference method
(GLDM) [44], the gray level run-length method (GLRLM) [9], the spatial gray level
dependent method (SGLDM) [12], and the LBP have been widely used for medical
image analysis. The combination of LBP and gray level generates a powerful texture
descriptor in classifying three types of Emphysema and lung regions [35, 40].

With the characteristics of CT images, the pathological change of tissues in CT
image is usually characterized with some local texture and brightness characteristics.
The emphysema region is darker than the normal region and, its surface is smooth.
Therefore, the combination of texture and brightness information will increase
the classification of abnormal region. As shown in Fig. 17, a new Emphysema
subregion representation is presented based on LAP. First, the histogram of LAP

Table 7 Descriptive statistics of various feature extraction methods

Methods N Mean Variance Min Max

LAP 180 0.0057 6.4E-07 0.0046 0.0115
LPQ 180 0.0065 2.6E-6 0.0036 0.0165
LBP 180 0.0628 4.3E-4 0.0272 0.1317
LFH 180 0.0351 8.1E-5 0.0222 0.0627
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Fig. 17 The algorithm to
implement LAP for
Emphysema region
feature extraction

and gray value is constructed and combined into one long histogram. This feature
dimension is too high, and implementing high dimensional feature vector will result
in low efficiency in detecting and categorizing the abnormal region in CT images.
In order to reduce the feature dimension, principle component analysis (PCA) is
implemented. Ten significance principle components are selected as the final feature
of the emphysema region or normal region.

288 CT images are taken from Inha University Hospital, including 108 normal
images and 180 emphysema ones. The size of the images is 1,024 × 1,024 and the gray
value depth is 8-bit. Lung regions without vessels are first located and subregions are
then obtained. The texture features are then extracted from the subregions covering
more than 70% of the lung. 1,500 subregions, which are separated into two classes-
1000 normal subregions and 500 emphysema subregions, are randomly selected for
the following experiments. Fig. 18 shows some normal and emphysema subregions.

To evaluate the performance of LAP, classification is performed between the
Emphysema and normal subregions. We compared the classification performance of
LAP with LBP and SGLDM. The algorithm used in extracting subregions feature for
LBP and SGLDM is the same as the one implemented in literature [35]. The support
Vector Machine (SVM) is used to classify the Emphysema and normal subregions.
LAP and LBP are applied with a neighborhood radius of one while three directions
of 0, 45, and 90◦ are applied to SGLDM. 100 normal subregions and 100 emphysema
subregions are used to train the SVM. The remainder subregions (900 normal ones
and 400 emphysema ones) are used for testing.

Table 8 shows the true positive (TP), true negative (TN), false positive (FP),
false negative (FN), sensitivity, and specificity of the LAP, LBP, and SGLDM,
respectively. As we can see, the performance of correctly classifying the emphysema
regions of SGLDM depends on the feature extraction directions. The texture fea-
tures extracted by LBP include multiple directions. Hence, LBP’s performance is the
best compared with that of SGLDM from any direction. Since LAP extracts more in-
formation and is more robust than LBP, it achieves the best sensitivity and specificity
performances compared to LBP and SGLDM. This shows that LAP demonstrates
the technical viability for implementation in texture analysis applications, especially
for computer-aided diagnosis.

Fig. 18 First row, samples of
Emphysema subregions, and
second row, samples of normal
subregions
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Table 8 The classification performance of Emphysema and normal region

Method LAP LBP SGLDM

direction 0 45 90

TP 400 382 375 373 369
FP 2 4 13 11 15
FN 0 18 25 27 31
TN 898 896 887 889 885
Sensitivity(%) 100 95.50 93.75 93.25 92.25
Specificity(%) 99.78 99.56 98.56 98.77 98.33

TP: the number of emphysema regions that is correctly classified
TN: the number of normal regions that is correctly classified
FP: the number of normal regions that is incorrectly classified as emphysema regions
FN: the number of emphysema regions that is incorrectly classified as normal regions
Sensitivity (%) = TP / (TP + FN)*100
Specificity (%) = TN / (FP + TN)*100

6 Conclusions and future work

In this paper, a versatile texture descriptor LAP based on the 1D local Fourier
transform in the polar space has been presented. The phases of the four selected
complex coefficients are uniformly quantized into 8-bit binary code which is then
transformed into decimal numbers to generate a unique number between 0 and
255. The decimal values that are calculated locally for each local neighborhood are
collected and transformed into a histogram, which describes the texture used for the
classification.

Although LAP could not achieve perfect invariance due to the local approach, it
is still robust to image blurring and scale changes, and it achieves high classification
accuracy for those modified textures. By comparing the LAP, LPQ, LBP, and LFH
methods, it is possible to see that LAP is reliable for classifying degraded textures.
The application of LAP in image retrieval, classification, and CAD system also shows
good results, and hence exhibits technical feasibility to be employed in real world
applications or industries.

Real-world textures can occur at arbitrary spatial rotations, and this has inspired
many studies regarding rotation invariance. Many methods apply the polar transform
in order to get invariance to rotations by converting image rotation into image
translation. The LAP method also utilizes the polar transform, but the phase is
still variant to translations and future work in LAP intends to enhance the perfor-
mance of the proposed method by extending it to be a rotation invariant texture
descriptor.
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