
A study on multimedia file carving method

Byeongyeong Yoo & Jungheum Park & Sungsu Lim &

Jewan Bang & Sangjin Lee

Published online: 19 January 2011
Springer Science+Business Media, LLC 2011

Abstract File carving is a method that recovers files at unallocated space without any file
information and used to recover data and execute a digital forensic investigation. In general, the
file carving recovers files using the inherent header and footer in files or the entire file size
determined in the file header. The largely used multimedia files, such as AVI, WAV, and MP3,
can be exactly recovered using an internal format in files as they are continuously allocated. In
the case of the NTFS, which is one of the most widely used file system, it supports an internal
data compression function itself, but the NTFS compression function has not been considered
in file carving. Thus, a large part of file carving tools cannot recover NTFS compressed files.
Also, for carving the multimedia files compressed by the NTFS, a recovery method for such
NTFS compressed files is required. In this study, we propose a carving method for multimedia
files and represent a recovery plan for deleted NTFS compressed files. In addition, we propose a
way to apply such a recovery method to the carving of multimedia files.

Keywords Multimedia file . File carving . NTFS compressed file

1 Introduction

According to the increase in digital devices, a large part of information has been stored
as a type of digital data. Therefore, digital evidences are recognized as an important

Multimed Tools Appl (2012) 61:243–261
DOI 10.1007/s11042-010-0704-y

B. Yoo : J. Park : S. Lim : J. Bang : S. Lee (*)
Center for Information Security Technologies, Korea University, Seoul, Republic of Korea
e-mail: sangjin@korea.ac.kr

B. Yoo
e-mail: pinpanel@korea.ac.kr

J. Park
e-mail: junghmi@korea.ac.kr

S. Lim
e-mail: nemography@korea.ac.kr

J. Bang
e-mail: jwbang@korea.ac.kr

factor in various criminal investigations. As such digital data can be easily fabricated
and modified, it is necessary to carefully manage the data in order to use it as legal
evidences because it can be very easily damaged using the conventional data
management method. Thus, digital forensics has been raised to treat technical and
procedural issues for collecting, producing, analyzing, and processing digital evidences.
The objective of digital forensics is to clarify realistic truth by analyzing the stored data
in a digital device that is related to a criminal case and accept it as an effective
evidence in a court.

In a digital forensic investigation, an evidence recovering process is generally
implemented through an evidence collection process, and an evidence analysis is carried
out using the data in this process. The evidence recovering process is an important step to
obtain evidences in a digital forensic investigation. The process can be classified as a
method that uses the information or meta data in file systems and a file carving method that
recovers files based on signatures and file architectures in the unallocated space of a storage
region without any information [4, 7].

Studies on the file carving have been focused on the recovery of document or
image files. Thus, there are few studies on the recovery of multimedia files like video

Fig. 1 AVI file header

Fig. 2 AVI file structure

244 Multimed Tools Appl (2012) 61:243–261

and audio files. The largely used multimedia files, such as AVI, WAV, and MP3, can
be exactly recovered using an internal format in files as they are continuously
allocated.

Also, the file carving tools widely used at the present time cannot exactly recover
NTFS compressed files. It is due to the fact that such carving tools are not considered
for that files. As the NTFS compression has been frequently used to save data storage
space, there is a high possibility in presenting deleted NTFS compressed files in
unallocated space. If multimedia files are stored as the NTFS compressed files, the
exact recovery of files is difficult. Therefore, it is necessary to study a recovery method
for such deleted NTFS compressed files in file carving.

In this study, we propose a carving method for multimedia files and represent a recovery
plan for deleted NTFS compressed files. In addition, we propose a way to apply such a
recovery method to the carving of multimedia files.

2 Multimedia file carving method

The carving of multimedia files can be performed using an internal format by dividing
the files using the Signature of the file header. In general, although the files, which are
recovered using the file carving method, can be executed using a specific application of
such files if the data of files is perfectly presented, the data of multimedia files can be
verified by reproducing them up to the middle of the recovered section through
executing it if a space between the header of files and a specific data area exists in
most multimedia files.

Fig. 3 hdrl list format

Fig. 4 Movi list format

Multimed Tools Appl (2012) 61:243–261 245

In this study, we propose a file recovery method that can reproduce data for the carving
of multimedia files based on the characteristics of multimedia files. The next section
represents the carving of AVI, WAV, and MP3 files.

2.1 AVI files carving

AVI files are one of the most largely used video files at the present time. The AVI files internally
use a resource interchange file format (RIFF). The RIFF is a common format used to store
various types of data, such as image and audio, as a single file and used as a base format of the
multimedia application ofWindows. The RIFF consists of several Chunks, Lists, and Data. It is
used in various files, but it shows different types of Chunks and Lists used inside the files [1, 2].

For carving AVI files, the Signatures of the header is first to be identified. The AVI file
header is a size of 12 Bytes, and Fig. 1 shows its structure.

As shown in Fig. 1, it can be seen that the 4 Bytes 0x52494646 RIFF Signature with
offset 0 and the 0x41564920 AVI Signature with offset 8 exist at the AVI file header. After
verifying AVI files using such Signatures, it is possible to obtain the data of files using the
size of four Bytes with offset 4 that represents the size of the file.

It should verify that whether the minimum data, which is reproducible, exists by
checking the format of AVI files before obtaining the data of files. If there is no
reproducible data, the file is not recovered.

Figure 2 shows the structure of AVI files. The hdrl List, movi List, and idx1 Chunk are
located under the most upper Header. The hdrl List defines the format of data, the movi List
stores the actual data of streams, and the idx1 Chunk stores the Data Block information of
the movi List. As the original data from the Header to the header of the idx1 Chunk, the all
streams that are actually reproduced can be recovered. Also, as a part of the movi List data
exist, the recovery can be performed as much as the existing data and that can also be

Fig. 5 Idx1 Chunk format

Fig. 6 WAV header format

246 Multimed Tools Appl (2012) 61:243–261

reproduced. If the movi List does not exist, the recovery will not be carried out under the
judgement that cannot recover the subject files.

The hdrl List exists right after the header. Figure 3 shows the structure of the hdrl List. It
is possible to find the 4 Bytes 0x4c495354 List Signature with offset 0 and the four Bytes
0x6864726c hdrl Signature with offset eight at the beginning of the hdrl List. If the
Signature of the hdrl List is checked, the beginning of the movi List can be seen using the
List Size with offset four.

Figure 4 shows the structure of the movi List. As shown in Fig. 4, the four Bytes
0x4c495354 List Signature with offset 0 and the four Bytes 0x6d6f7669 movi
Signature with offset eight are to be seen at the beginning of the movi List. If the
Signature of the movi List is checked and a some part of data exist, the recovery can
be attempted. For checking whether files are perfectly presented, it can be verified by
moving the position to the beginning of the idx1 Chunk using the List Size with
offset four.

Figure 5 shows the structure of the idx1 Chunk. As shown in Fig. 5, if the four Bytes
0x69647831 idx1 Signature with offset 0 is verified at the beginning of the idx1 Chunk, it
can be regarded that all practically reproducible data exist.

2.2 WAV file carving

WAV files are one of the most widely used audio files at the present time. As well as the
AVI files, the WAV files use the RIFF internally. For carving WAV files, it is necessary to
first identify the Signatures in the header. The size of the WAV file header is 12 Bytes.
Figure 6 represents the structure of the header.

Fig. 7 fmt Chunk format

Fig. 8 Figdata Chunk format

Multimed Tools Appl (2012) 61:243–261 247

As shown in Fig. 6, the four Bytes 0x52494646 RIFF Signature with offset 0 and the
0x57415645 WAV Signature with offset 8 are verified at the WAV file header. After
verifying the WAV file using the Signature, the data of files can be obtained using the four
Bytes file size with offset four.

It should verify that whether the minimum data, which is reproducible, exists by
checking the format of WAV files before obtaining the data of files. If there is no
reproducible data, the file is not recovered. The fmt Chunk and data Chunk are presented
under the most upper Header. The fmt Chunk defines the format of data, and the data
Chunk stores actual audio data as the unit of a specific block. As WAV files represent no
footers of the data Chunk where actual stream data do not exist differed from AVI files, it is
not possible to verify whether the data files exist perfectly. However, as the reproducing is
possible as a part of data stream exist for a specific level, the recovery is attempted under
the consideration that a some part of stream data exist as the Signature of the data
Chunk is verified. However, if the Signature is not verified, the recovery will not be
performed [6, 10].

The fmt Chunk exists right after the header. Figure 7 shows the fmt Chunk format. It is
possible to verify the four Bytes 0x666d7420 fmt Signature with offset 0 at the beginning
of the fmt Chunk. If the Signature of the fmt Chunk is verified, the beginning of the data
Chunk can be checked using the Chunk Size with offset four.

Figure 8 represents the data Chunk format. As shown in Fig. 8, the four Bytes
0x64617461 data Signature with offset 0 can be verified at the beginning of the data Chunk.
If the Signature of the data Chunk is checked and a some part of data exist, the recovery can
be attempted. As mentioned above, however, there are no footer, it is difficult to verify
whether the data of files exist perfectly.

Fig. 9 MP3 file structure

Fig. 10 AAU header

248 Multimed Tools Appl (2012) 61:243–261

2.3 MP3 file carving

The MP3 (MPEG Audio Layer-3) is a lossy compression format developed as an MPEG-1
audio specification. It has been considered as the most popular audio file format due to the
improvement version of the MP1 and MP2.

Figure 9 shows the MP3 file structure. The MP3 file stores data as a frame unit
called AAU (Audio Access Unit). Also, each AAU consists of Header, CRC, Side Info,
and Main Data. The AAU stores actual stream data in the Main Data area, and the
stream data can be reproduced using a single AAU only because each AAU stores data
independently.

Figure 10 represents the AAU Header format. There exists the two Bytes 0xfffb
Signature with offset 0 from the beginning of the Header. The first four bits in the one Byte
with offset two shows the Bit Rate, and the next two bits represent the Sampling Frequency,
and the next one bit shows the Padding. Tables 1 and 2 represent the Bit Rate and Sampling
Frequency, respectively, according to each bit [8].

Then, each AAU size can be calculated using the equation of 144»Bit Rate=½
Sampling Frequencyþ Paddingð Þ� based on these properties. For instance, the Bit Rate
presented in Fig. 10 is 00001001, it becomes 128 kbps. Also, as the Sampling Frequency is 00,
it becomes 44100, and the Padding is 0. The the size can be calculated as 417 Bytes by
substituting these values to the equation as 144»128000= 44100þ 0ð Þ ¼ 417½ � [8].

bits BitRate, Unit :kbps (kbit/second)

00000000 free

00000001 32

00000010 40

00000011 48

00000100 56

00000101 64

00000110 80

00000111 96

00001000 112

00001001 128

00001010 160

00001011 192

00001100 224

00001101 256

00001110 320

00001111 bad

Table 1 Bit rate for each bit

Bits Sampling frequency, Unit : hz

00 44100

01 48000

10 32000

11 reserved

Table 2 Sampling frequency for
each bit

Multimed Tools Appl (2012) 61:243–261 249

The MP3 file can be classified into three different types, such as the format that is
configured by using the AAU only, the ID3 Tag Ver.1 that stores tags at the AAU and the
end of the file, and the ID3 Tag Ver.2 that stores tags at the AAU and both the beginning
and the end of the file. Because each type shows different configurations, the carving for
each type is also a bit different [8].

The carving of the file, which is configured by the AAU only, verifies whether the
file is the MP3 file format using the Signature of the AAU Header. Then, the Signature

Fig. 11 ID3 Tag Ver.2 header

Fig. 12 Window for the config-
uration of drive compression

250 Multimed Tools Appl (2012) 61:243–261

of the next AAU is to be verified by checking the size of the AAU after that
verification. If the Signature is agreed, the next AAU can be searched using the same
way. However, the Signature is not the same, the verified AAU is to be recovered only.
In the case of the MP3 file that is configured by the AAU only, it is difficult to verify
whether the file is perfectly recovered because the footer of the file or the entire size
does not exist. However, if all data are continuously allocated, the file can be fully
recovered. Also, if all data are not presented, it is possible to recover the data up to the
range where the AAU exists.

The carving of the ID3 Tag Ver.1 MP3 file can be performed as the same way used
in the MP3 file that is configured by the AAU only. Regarding the difference between
these two methods, as the tag data is presented at the end of the file in the ID3 Tag
Ver.1, the 0x544155 3 Bytes determined by the Signature of the tag are to be
determined as the end of the file and that leads to perfectly recover the file including
the tag of 128 Bytes. If the tag data is not verified, the verified AAU is only
recovered.

The carving of the ID3 Tag Ver.2 MP3 file is performed by verifying the tag because the
tag is presented at the beginning of the file.

Figure 11 shows the tag header of the beginning of the ID3 Tag Ver.2 MP3 file. As the
three Bytes 0x494433 with offset 0 is verified from the beginning of the tag header, it is
necessary to move the position to the beginning of the AAU through verifying the tag of the
four Bytes with offset six. The tag size can be obtained by adding the size of the tag header

Fig. 14 State of the file compression

Fig. 13 Window for the config-
uration of file compression

Multimed Tools Appl (2012) 61:243–261 251

(ten Bytes) to the residual bits, which are continuously calculated, except for the left first bit
in each byte. Then, the carving is to be carried out using the same way as the ID3 Tag Ver.1
MP3 file.

3 NTFS conpression files carving

Since the NTFS version 5.0, it provides a compression function at a file system level. As
the compression is executed at a file system level, it is not necessary to consider whether
the subjective files are compressed in application programs [3].

As shown in Fig. 12, the configuration of the NTFS compression is implemented at the
disk properties or at the window of the advanced attributes for files or folders as shown in
Fig. 13.

Although the NTFS compression file is useful to increase the efficiency of storage
space, it represents a difficulty in carving the file. In practice, most carving tools and
studies do not consider such NTFS compression file. Therefore, in this research, we
describe the basic concept of the NTFS compression and represent a carving method
for the file. Also, we propose a practical application of this method to multimedia
files.

3.1 NTFS compression

In the NTFS compression, it is not carried out for the entire files, but for the unit size
of 16 clusters. Also, this unit is used to process the reading and writing of data. If the
size of clusters is defined by 512 bytes, the compression unit is 8 KB (512 * 16) [5, 9].

Fig. 15 Allocation state of the newly generated compressed file

Fig. 16 Allocation state of the compression of normal files

252 Multimed Tools Appl (2012) 61:243–261

The compression unit consists of several compression blocks. After implementing a
compression process, as represented in Fig. 14, each compression block shows three
different states, such as compressed data, uncompressed data, and data with sparse
properties, according to the condition of original files. Also, it may represent file slacks at
the end of the compression unit due to the compression [5, 9].

In the file compression policy in NTFS files, it can be varied by the case that newly
generates files in the same storage space as the partition or folder, which applies
compression properties, and the case that applies the compression for the files, which are
already stored in a common partition.

In the case that newly generates compression files, the compression unit is continuously
allocated as shown in Fig. 15 as it is allocated as a continuous manner.

In the case that applies the compression for the normal files, which are already
stored, the compression is uniformly carried out with a constant interval with 16
clusters as illustrated in Fig. 16. Also, the data is not to be continuously stored due to
the generation of unallocated space as much as the reduced data caused by the
compression.

The NTFS compression uses an LZNTI algorithm based on the LZ77 algorithm. The
LZNT1 algorithm implements the compression with the previously mentioned
compression unit, and each compression block in the compression unit consists of a
2-byte header and several data groups. Table 3 shows the information of the header for
each bit [5].

The first 12 bits in 16 bits represent the size of the compression block. The starting
position of the next compression block can be determined by calculating the position of the
present compression block + the size of the present compression block + 3. If the first two
bytes in the next compression block is 0x0000, the position ranged from the next value to
the end of the cluster is a file slack region. The last bit in 16 bits shows whether the data is
compressed. As the subjective bit is one, the data stored in the compression block is
compressed. In the case of the bit that is defined by 0, the data is not compressed. In the
case of the data that is not compressed, the original data is to be stored without changes. If
it is compressed, the data will be compressed according to the LZNT1 compression
algorithm [5, 9].

Figure 17 illustrates the composition of the data group in the compression block.
As there is not data group in the compression block, the data consists of tag bytes and

normal eight bytes as illustrated in Fig. 17. The data group located at the right side in

Bits Description

0–11 Compressed data size

12–14 Unknown

15 Data is compressed

Table 3 Header information of
the compression block

Fig. 17 Composition of the compression block data

Multimed Tools Appl (2012) 61:243–261 253

Fig. 17 represents two compression bytes in the data group. A single compression byte is
composed by two bytes. Therefore, an increase in the compression byte by one increases
the size of the data group by one byte. The data group in Fig. 17 has a total of ten bytes
because it has two compression bytes [5].

A tag byte plays a role in presenting the position of compression bytes in the data group.
As the tag byte is considered as a bit unit, in the case of the bit value that is determined by
one, the byte at the subjective position is the compression byte. The data group located at
the right side in Fig. 17 represents the compression byte at the third and sixth bytes. Thus,
the bit value of the tag byte is 0x00100100 (Bits) [5].

The LZNT1 compression implements a compression work that stores the offset and size
of the subjective data as the previously stored data has duplicated contents.

Figure 18 represents an example of the storing of compressed data. The value of
‘00000000 (Bits)’ in Fig. 18 shows the expression of one byte to bits and is a tag byte
that is used as an index value, which identifies a compression byte in the last eight
bytes. The compressed byte stores the offset and size of the compressed original data.
As shown in Fig. 18, the third line, ‘00000100 (Bits)’, shows the third byte, 0x8807, in
the last eight bytes. By using it, it is possible to calculate the offset and size of the data
[5].

The offset can be calculated by adding 1 after shifting the compressed data 11 times
to the right side and multiplies −1 to the calculation. The size can be calculated by
adding three after applying 0x07FF and AND with the compressed data. Figure 19
illustrates the results of the offset and size of the compressed data of 0x8807. Using the
results of this calculation, it can be seen that the actual data of 0x8807 represents the
data, which is moved by −18 from the present location, that is ten for the string of
“abcdefghij”.

As the compressed data in Fig. 18 is fully decompressed, it represents the string as
shown in Fig. 20

3.2 Method for the NTFS compressed file carving

3.2.1 LZNT1 compression determine whether measures

It is necessary to process a procedure that identifies whether the subjective clusters are
compressed for carving NTFS compressed files.

As mentioned in Section 3.1, the LZNT1 compression algorithm is composed by a
compression unit with 16 clusters, and the compression unit consists of several
compression blocks. The position of the next compression block can be identified using

Fig. 19 Calculation of the offset
and size of compressed data

Fig. 18 Example of the storing of compressed data

254 Multimed Tools Appl (2012) 61:243–261

the size information in the header of the compression block in which the last
compression block represents the value of 0x0000 at the header of the next compression
block. Regarding that a sequential round in the header of the compression block is
carried out by using this position, it can be regarded that the corresponding 16 clusters
are normal data without the LZNT1 compression as the value of 0x0000, which
represents the last compression block, does not exist and that exceeds the range of the
compression unit.

In addition, in the case of normal compression blocks, the size information of the
header of the compression block should represent the same value as the summation of
the size of data groups in actual compression blocks. If the value is different, the
corresponding compression unit can be regarded as normal data without the LZNT1
compression.

In the case of the data compression using the LZNT1 compression, the compression unit
is to be generally determined by the size of 16 clusters. That is, the original data that is
actually compressed has the size below 16 clusters. Therefore, the decompression for a
normal compression file cannot represent more than 16 clusters. If the decompressed data
shows more than 16 clusters, the data can be considered as normal data without
compression.

3.2.2 Carving algorithm of the NTFS compressed file

For carving a NTFS compressed file, the comparison of file signature is to be possibly
implemented. The first two bytes in the NTFS compressed file is the header of the
compression block, and the third byte represents the index of the compressed data. Thus,
the signature of the file is stored from the fourth byte.

Fig. 20 Decompressed strings

Fig. 21 Compression block header and the file signature

Multimed Tools Appl (2012) 61:243–261 255

Figure 21 shows the header of the compression block and the file signature. Also, it is
possible to identify the two-byte compression block header and the signature of a MP3 file
with 0x494443. It is difficult to identify the duplication of the first data in the compression
block. Also, because the signature does not apply duplicated values, the data is not
compressed but stored. Thus, in a carving process, the start position of the compressed file
can be identified by checking the signature from the fourth byte. If the signature of a

Fig. 22 Carving algorithm for the NTFS compressed file

256 Multimed Tools Appl (2012) 61:243–261

compressed file is searched, the original data can be obtained by decompressing the
corresponding compression block using the LZNT1 algorithm.

Compressed file uses a 16-cluster compression unit, and the compression unit cannot be
separated. That is, it is possible to exactly recover the file using a file carving process
because the compressed file below 16 clusters is not separated.

In the continuous allocation of the NTFS compressed files with more than 16 clusters,
the header of the file can be searched by checking the signature from the fourth byte as the
same way as the carving of the compressed files with below 16 clusters. As the header of
the file is searched, it is necessary to identify the LZNT1 compression of the next 16
clusters after decompressing the file. If the corresponding clusters are compressed, it can be
identified that whether the data is composed by a single perfect file through connecting it to the
previously obtained data after decompressing the compressed file. For implementing this work,
a general carving method that compares the footer of a file is used. In the results of the
comparison, as the file is not a perfect figure, the file recovering is carried out by repeating the
comparison using the next 16 clusters until it represents a perfect file. If it is identified as a none-
compressed cluster during the comparison, the carving will be halted due to the fact that the data
of the corresponding file is vanished during the process (Fig. 22).

In the case of multimedia files, the data can be reproduced even though the entire data
are not presented. Thus, it is possible to recover the data up to the section in which the
format of multimedia files is verified using the carving method as mentioned above even
though all data are not perfectly presented.

As mentioned in Section 3.1, the file allocation policy shows a different way for the new
generation of files in the partition where the compression is applied as the same as the
compression of the normal files, which are already stored. Therefore, it is necessary to
consider two different cases that verify both the next clusters after the present compressed
clusters and the clusters after the 16 clusters when the verification of the compression of
data is carried out through moving it to the next clusters.

By using this method, it is possible to implement the carving for the continuously
allocated compressed files with more than 16 clusters. Figure 12 shows the pseudo-code for
the carving algorithm of the NTFS compressed file. Whereas, it did not consider the carving
for the discontinuously allocated compressed file more than 16 clusters.

4 Experiments

We compared the multimedia file carving results of proposed method from this paper and
commercial file carving tools. Next tables show AVI, WAV, MP3 file carving result
Tables 4, 5, 6.

First column of each table represents the capacity and used capacity of each hard
disk. And the rest of column data represents the number of recovered files, the file

Table 4 AVI files carving result comparison

Disk\carving tool The proposed method Carving tool A Carving tool B

Disk A (143/250 GB) 9 (9–100%) 12 (8–66.6%) 9 (7–77.7%)

Disk B (231/500 GB) 11 (9–81.8%) 16 (9–56.2%) 11 (7–63.6%)

Disk C (76/100 GB) 5 (5–100%) 7 (5–71.4%) 7 (5–71.4%)

Multimed Tools Appl (2012) 61:243–261 257

number and percentage of normal execution. Recovered files number of the proposed
method from this paper less than commercial file carving tools. But the number of
normal executed file is same and rate is high. Therefore, recovered file verification time
is reduced. And, after delete the NTFS compression multimedia files, we performed a
file carving. As a result, if using proposed method from this paper, we confirmed that
deleted NTFS compression files are recovered. But, the commercial file carving tools
did not recover the files.

5 Conclusion

In this research, we proposed a carving method for multimedia files. Also, we proposed a
carving method for the NTFS compression file and its practical application method for
multimedia files. According to the increase in the performance of computers and in the
storage capacity of hard disks, storing user’s data as video and audio files has been
increasing in recent years. Therefore, it can be considered that the importance of such
multimedia files has also been increased. The method proposed in this study is able to
perfectly recover AVI, WAV, and MP3 files as the files are continuously allocated. In
addition, although the files are discontinuously allocated or the entire data of the files are
not allocated, it can be verified by recovering the data, which are continuously presented,
only due to the characteristics of multimedia files.

In addition, in the case of the multimedia files that are stored as the NTFS compression
format, this study proposed a carving method using the characteristics of the NTFS
compression file. Although the NTFS compression represents an efficient way to use
storage space, it shows a difficulty in obtaining deleted data. However, it is possible to
recover the average files and multimedia files that are stored as the NTFS compression
format using the method proposed in this study.

Table 6 MP3 files carving result comparison

Disk\carving tool The proposed method Carving tool A Carving tool B

Disk A (143/250 GB) 121 (121–100%) 145 (121–83.4%) 112 (98–87.5%)

Disk B (231/500 GB) 23 (23–100%) 25 (23–92%) 17 (15–88.2%)

Disk C (76/100 GB) 0 (0–100%) 0 (0–100%) 0 (0–100%)

Table 5 WAV files carving result comparison

Disk\carving tool The proposed method Carving tool A Carving tool B

Disk A (143/250 GB) 34 (31–91.1%) 43 (31–72%) 36 (25–69.4%)

Disk B (231/500 GB) 49 (41–83.6%) 67 (41–61.1%) 52 (32–61.5%)

Disk C (76/100 GB) 29 (27–93.1) 37 (27–72.9%) 31 (22–70.9%)

258 Multimed Tools Appl (2012) 61:243–261

5.1 Future work

We are study on the carving method for other multimedia files such as MPEG(Moving
Picture Experts Group), WMV(Windows Media Video), FLV(Flash Video). And we will
develop a carving tool using multimedia files carving method.

Acknowledgment This work was supported by the IT R&D program of MKE/KEIT[10035157,
Development of Digital Forensic Technologies for Real-Time Analysis].

References

1. AVI File Format, http://www.alexander-noe.com/video/documentation/avi.pdf
2. AVI RIFF File Reference, http://msdn.microsoft.com/en-us/library/ms779636(VS.85).aspx
3. Brian Carrier, File System Forensic Analysis, Addison-Wesley Professional, 22 March 2005
4. Garfinkel SL (2007) Carving contiguous and fragmented files with fast object validation. Digital

Invesigation 4(1)
5. Joachim Metz, “carving NTFS-compressed files”, Hoffmann Investigations, 2 September 2009, http://

www.forensicfocus.com/carving-ntfs-compressed-files
6. Library of Congress, “WAVE Audio File Format”, 6 December 2009
7. Mikus NA (2005) An analysis of disc carving techniques, Master's thesis. Naval Postgraduate School,

March 2005
8. MP3 File Format, http://mpgedit.org/mpgedit/mpeg_format/mpeghdr.htm
9. Sanderson P (2000) NTFS compression—a forensic view, Sanderson Forensics, October 2002
10. WAVE File Format, http://web.archive.org/web/19991115123323/http://www.borg.com/~jglatt/tech/

wave.htm

Byeongyeong Yoo received his B.S. degree in Computer Science from Sangmyung University, He is now
studying master course in Graduate School of Information Management and Security, Korea University. He
is currently working for Digital Forensic Research Center in Korea University. He has performed projects
related to file system analysis and file carving. His research interests are digital forensics, file system
analysis, file carving.

Multimed Tools Appl (2012) 61:243–261 259

http://www.alexander-noe.com/video/documentation/avi.pdf
http://msdn.microsoft.com/en-us/library/ms779636(VS.85).aspx
http://www.forensicfocus.com/carving-ntfs-compressed-files
http://www.forensicfocus.com/carving-ntfs-compressed-files
http://mpgedit.org/mpgedit/mpeg_format/mpeghdr.htm
http://web.archive.org/web/19991115123323/http://www.borg.com/~jglatt/tech/wave.htm
http://web.archive.org/web/19991115123323/http://www.borg.com/~jglatt/tech/wave.htm

Jungheum Park is a doctoral student in Graduate School of Information Management and Security at
Korea University and a senior researcher of Digital Forensic Research Center in Korea University
since 2009. He has performed projects related to data carving, registry analysis, electronic document
analysis and anti-anti forensics. His research interests are digital forensics, file carving and anti-anti
forensics.

Sungsu Lim received his B.S. degree in Electronics engineering from Yonsei University, He is now studying
master course in Graduate School of Information Management and Security, Korea University. He is
currently working for Digital Forensic Research Center in Korea University. He has performed projects
related to database forensics, file carving and forensic corpora. His research interests are digital forensics,
virtualization, file carving, database forensics.

260 Multimed Tools Appl (2012) 61:243–261

Jewan Bang is a doctoral student in Graduate School of Information Management and Security at Korea
University and a senior researcher of Digital Forensics Research Center in Korea University since 2009. He
has performed projects related to Embedded system forensics. His research interests are digital forensics, data
recovery and reverse engineering.

Sangjin Lee Received his Ph.D. degree from Korea University. He is now a Professor in Graduate School of
Information Management and Security at Korea University and the head of Digital Forensic Research Center
in Korea University since 2008. He has published many research papers in international journals and
conferences. He has been serving as chairs, program committee members, or organizing committee chair for
many domestic conferences and workshops. His research interests include digital forensic, steganography,
cryptography and cryptanalysis.

Multimed Tools Appl (2012) 61:243–261 261

	A study on multimedia file carving method
	Abstract
	Introduction
	Multimedia file carving method
	AVI files carving
	WAV file carving
	MP3 file carving

	NTFS conpression files carving
	NTFS compression
	Method for the NTFS compressed file carving
	LZNT1 compression determine whether measures
	Carving algorithm of the NTFS compressed file

	Experiments
	Conclusion
	Future work

	References

