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Abstract Realistic talking heads have important use in interactive multimedia ap-
plications. This paper presents a novel framework to synthesize realistic facial
animations driven by motion capture data using Laplacian deformation. We first
capture the facial expression from a performer, then decompose the motion data
into two components: the rigid movement of the head and the change of the facial
expression. By making use of the local-detail preserving property of the Laplacian
coordinate, we clone the captured facial expression onto a neutral 3D facial model
using Laplacian deformation. We choose some expression “independent points”
in the facial model as the fixed points when solving the Laplacian deformation
equations. Experimental results show that our approach can synthesize realistic facial
expressions in real time while preserving the facial details. We compare our method
with the state-of-the-art facial expression synthesis methods to verify the advantages
of our method. Our approach can be applied in real-time multimedia systems.

Keywords Facial animation · Motion capture · Laplacian deformation ·
Expression transfer · Multimedia application

1 Introduction

Realistic facial animation conveys subtle consciousness and has wide applications in
multimedia systems, computer games, online chatting, computer animation and other
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human-computer interactive interfaces. However, high quality facial expression
synthesis remains one of the most challenging problems as it requires the analysis of
the facial skin deformation, the underlying facial muscle and the skeleton changes.
As people are very familiar with all kinds of facial expressions, it is easy to detect the
small implausibility in the synthesized expression.

Great efforts have been made and a lot of algorithms have been developed to
synthesize realistic expressions. Many researchers tried to add as much facial details
as possible to improve the reality of the ultimate results [2, 3, 18]. The facial details
recorded in and synthesized by these methods are usually from the same subject.
However, as different people have different facial details due to age, gender and
bone structure difference, it may bring problems if we synthesize the same details into
different facial models. When we synthesize facial expressions, it is very important
to preserve the original facial details, which are critical to the representations of the
characteristics of the input facial model. Zhao et al. [35] proposed to transfer facial
expressions from 2D videos to 3D faces using dual Laplacian deformation. However,
as their approach moves the facial feature points only in the X-Y plane, unnatural
results may arise when the movement of feature points in the Z plane is large.

High quality motion capture settings make it possible to capture subtle facial
expressions in real time. We use a motion capture system to record subtle facial
changes of the performer and then use the captured data to drive a neutral face model
to synthesize corresponding expressions. During the capture process, the performer
is allowed to move his head naturally just as he usually does in daily conversation.
We retarget the captured facial expression onto a neutral 3D face model with the
original facial details preserved. Our framework can transfer the captured expression
onto any virtual face models effectively without geometric restrictions.

Contributions We present a novel framework to transfer the facial expression from
a performer to a virtual neutral face using Laplacian deformation. As we employ
Laplacian coordinates to represent the facial model, geometric details of the face
are preserved when the original face is deformed due to the displacements of the
feature points, and therefore more natural results are obtained. When we solve
the Laplacian deformation equations, we choose some points in the facial model
which are approximately independent of the facial expression as the fixed points.
In addition, we propose a new scheme to decompose the motion capture data into
the rigid head motion and the facial expression.

The remainder of this paper is organized as follows. Section 2 reviews the related
work on facial expression synthesis. In Section 3, we present the detailed description
of our approach, including the overview of our facial animation framework, the facial
motion capture procedure and the preprocessing of the recorded motion data, and
our expression transferring algorithm. Experimental results are given in Section 4.
Section 5 concludes the paper and introduces the further work.

2 Previous work

This section gives a brief description of the realistic facial expression synthesis
methods. We limit our discussion to three categories: detailed facial expression
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acquisition and synthesis, blendshape interpolation, and direct expression transfer.
More discussions about realistic facial animation can be found in [9, 15, 25].

Facial details can improve the reality of facial animation greatly. Considerable
efforts have been made to add lifelike details to the synthesized expression. Real-
time 3D scanning systems make it possible to record and synthesize the expression
details in multi-scales. Bickel et al. [2] proposed to decompose the facial features into
fine, medium and coarse spatial scales, each representing a different level of motion
detail. Finer scale wrinkles were added to the coarser-scale facial base mesh using
the non-linear energy optimization. Later, by using radial basis functions (RBF)
[4, 11, 24], they extended their algorithm to interpolate medium scale wrinkles and
generate new facial performances [3]. Ma et al. [18] introduced an automated method
to model and synthesize facial performances using realistic dynamic wrinkles and fine
scale facial details, which allows the recreation of large-scale muscle deformations,
medium and fine wrinkles, and dynamic skin pore details. Ju et al. [12] pursued to
capture various stochastic patterns from the actors and used the recorded patterns
to add lifelike subtle movements to a synthetic face. However, it is not trivial to
obtain facial details for the ordinary users, which limits the application of these
methods.

Blendshape interpolation [22, 23] is widely used to generate realistic facial an-
imation in recent applications. Pyun et al. [26] presented an example-based facial
animation cloning approach. Chuang et al. [7] presented a performance-driven facial
animation system [33] using blendshape interpolation. Blendshape interpolation is
an intuitive and easy-to-use method to generate expressional and coherent facial
animations. However, this kind of methods [12, 22, 23] needs a proper expression
library which can span the entire expressional space. The quality of the ultimate
animation synthesized by these methods largely depends on the given blendshapes
and the calculation of the interpolation weights. The library is usually constructed
at the expense of manual work, which is a non-trivial task even for a professional
animator. During the blendshape interpolation, it is important to choose a basis
of expressions that exhibits a coordination of facial expressions of the entire facial
space. Otherwise, one expression may interfere with another, and this makes the
blend weight estimation noisy. Many algorithms have been developed for the con-
struction of blendshapes and the interpolation. Given the sketched blendshapes, Liu
et al. [17] presented an automatic labor-saving method to construct optimal facial
animation blendshapes. They also proposed an accurate method to compute the
blendshape weights from the facial motion capture data to avoid error accumulation.
Realistic facial animations can be synthesized by these optimized blendshapes.
However, during the motion capture process, the performer is required to limit his
head rotation within small angles so that a linear optimization can be applied. In
a recent work, Ma et al. [19] presented a facial editing style learning framework
from a small number of facial-editing pairs and applied the learning results to
automate the editing of the remaining facial animation frames or transfer the editing
styles between different animation sequences. However, the common limitation of
blendshape interpolation, which uses linear blendshapes to reproduce highly non-
linear facial expressions, remains unresolved.

Direct facial expression transfer [21, 31] is another solution to facial animation.
Noh et al. [21] presented a novel approach to clone facial expressions for new
models. They mapped different mesh structures with RBFs followed by cylindrical
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projections and retargeted the motion vector from the source to the target. Given
the motion displacements of the facial feature points, the displacements of the
non-feature points should be calculated to obtain the ultimate positions of all the
facial vertices. RBF interpolation [3, 11, 24] is a popular interpolation method
adopted in the expressional facial animation. Using Euclidean distances between
the feature points and the non-feature points, the displacements of the non-feature
points consistent with those of the feature points can be computed using RBF
interpolation efficiently. However, as there are holes in the face mesh model (the
regions of the eyes and the mouth), the RBF method utilizing Euclidean distances
may induce artifacts as shown in the third row of Fig. 5. By extending the feature
point based mesh deformation approach proposed by [14], Deng et al. proposed
to use “mesh distance” [10] for the measuring of the facial motion propagation.
This method produces better results than the RBF method based on Euclidean
distances. Using the feature point movements directly, Zhao et al. [35] proposed to
transfer expressions using the dual Laplacian deformation. However, the authors
pointed out that this approach may produce artifacts as it does not take the 3D
facial movements into consideration. Vlasic et al. [31] proposed a face transfer
method with multilinear models. Cao et al. [5] proposed another direct expression
transfer method, which employed the Independent Component Analysis (ICA) to
decompose the facial motion signals into the emotion and the speech components,
and then performed various editing operations on different ICA components. Yang
et al. [34] generated different facial expressions based on the roughly marked
positions of eyes, eyebrows and mouth in the given photo. Chou et al. [6] proposed
to generate virtual humans from 2D images by using kernel regression with elliptic
radial basis functions (ERBFs) and locally weighted regression (LOESS). Kim et al.
[13] presented a scheme to simplify 3D facial models for real-time animation. The
simplified neutral model can be used to improve the efficiency of direct expression
transfer. Most of the aforementioned direct expression transfer methods focus on
transferring the expressions [3, 10, 14, 21]. Few of them consider the preservation of
the facial details in the neutral model.

3 Our approach

Our facial animation system synthesizes realistic facial animation from the motion
capture data using Laplacian deformation, which can preserve the original facial
details. Figure 1 shows the framework of our facial animation system.

Without loss of generality, triangular meshes are used to represent neutral face
models. We employ an optical motion capture system to capture the performer’s
facial movement. The top left corner of Fig. 1 shows a frame of the captured video
clip. To obtain the precise facial expression of the performer, our system decomposes
the recorded motion data into subtle facial expressions and rigid head motions. The
subtle facial expression is firstly transferred to the neutral face model using Laplacian
deformation, and we obtain the expressional target model corresponding to the
performer’s expression without head gestures (see the lower right corner image of
Fig. 1). The rigid head motion which describes the performer’s head gesture is then
applied to the target model. As a result, we obtain the synthesized facial expressions
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Fig. 1 The framework of our facial animation system

which are consistent with those of the performer, as shown in the top right corner of
Fig. 1.

3.1 Facial expression capture and preprocessing

3.1.1 Facial expression capture

We use a VICON optical motion capture system to acquire the high fidelity facial
motion data. Based on the definition of the MPEG-4 standard and the observation of
the facial expression deformation, we can find that the changes of facial expressions
mainly focus on the feature points such as the eyebrows, the eyes and the mouth.
According to the geometric property of a neutral facial model, we put 36 markers

Fig. 2 The left image shows part of the facial feature points defined in the MPEG-4 standard, the
middle image illustrates the facial markers adopted in our motion capture system and the right image
is a frame of the motion capture data
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around such prominent feature positions (the blue points in Fig. 2c). With these
markers, we can capture the changes of the performer’s facial expression.

In our daily conversation, people exhibit diverse expressions with various head
poses to express different attitudes and intentions. Therefore, we do not impose
any restrictions on the performer’s head movement during the motion capture
session. Motion data captured in this way includes not only the facial expressional
information, but also the stochastic movement of the head. The facial expressional
information records diverse expressions which describe the expressional change of
the performer. The head movement captures the change of the head gesture. It
consists of the head rotation and the head translation. In our motion capture system,
we put another five markers on the performer’s forehead and one marker on the tip
of his nose to record the head’s movement (the green points in Fig. 2c), which is an
approximate rigid transformation during the motion capture process. With the help
of these six rigid markers, we can separate the head movement and the expressional
change of the performer. Figure 2 illustrates all the markers our system adopts.

3.1.2 Motion capture data preprocessing

Given the positions of all these 42 markers in frame t, we define a position vector
Ft = {p1

t , ..., p42
t }. Here, {pi

t, i = 1, 2, ..., 6} are the positions of six rigid markers and
{pi

t, i = 7, 8, ..., 42} are the positions of 36 facial markers. We use F0 to represent the
initial position of the performer. Such recorded motion data include two types of
movements: the facial expressional information and the stochastic head movement
[12]. We use rigid transformation At to approximate the stochastic movement of the
head from frame t − 1 to t (t = 1, 2, ...). The rigid transformation can be further
factorized into a rotation matrix Rt and a translation matrix Tt, i.e., At(pi

t) =
Rt(pi

t) + Tt, i = 1, 2, ..., 42. The relationship between the head movement and the
facial expression can be described by the following formula [12, 14]:

Ft = RtF′
t + Tt (1)

where F′
t is the expressional vector without the rigid head movement in frame t.

Ideally, for all these six rigid markers, we assume that they only have the rigid
transformation without the expressional change, so the rigid transformation At

satisfies the following formulae:

At
(
pi

t−1

) = pi
t, i = 1, 2, ..., 6. (2)

However, during the motion capture session, the rigid markers may have subtle
non-rigid movements. For example, when the performer closes his eyes, the marker
on the tip of his nose will have slight non-rigid movement. In other words, the
movement of the rigid markers is not exactly a rigid transformation. Therefore, we
calculate the approximate optimal rigid transformation At in a least-square sense,
which corresponds to solving the following minimization problem:

arg min
At

6∑

i=1

∣∣∣∣At
(
pi

t−1

) − pi
t

∣∣∣∣2
. (3)

The above energy function cannot be solved analytically, therefore we calculate At

approximately.
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In order to compute the rotation part Rt of the rigid transformation At, as in [20],
we construct matrix Lt as

Lt =
6∑

i=1

(
pi

t − p∗
t

) (
pi

t−1 − p∗
t−1

)T
(4)

where p∗
t−1 and p∗

t are the centroids of the six rigid markers in frame t − 1 and t
respectively. Rt can be approximated as the rotation part of Lt. We use Singular
Value Decomposition (SVD) [8] to calculate the rotation matrix.

The singular value decomposition of matrix A is a matrix decomposition of
the form A = U�V∗, where U is a unitary matrix, � is a diagonal matrix with
nonnegative real numbers on the diagonal, and V∗ denotes the conjugate transpose
of V which is also a unitary matrix. The singular value decomposition is equivalent
to the polar decomposition since A = U�V∗ = (UV∗) · (V�V∗) = RP, where R is
a unitary matrix and P is a positive-semidefinite Hermitian matrix. Intuitively, the
polar decomposition separates A into a rotation component represented by R and
a component that stretches the space along a set of orthogonal axes, represented
by P. According to the definition of the polar decomposition, UV∗ is the rotation
component of the polar decomposition of matrix A, and V�V∗ is the corresponding
stretch component.

After applying the singular value decomposition introduced above to matrix Lt,

Lt = Ut�tV∗
t = (

UtV∗
t

) (
Vt�tV∗

t

)
(5)

we obtain the rotation component UtV∗
t of Lt which approximates the rotation

part Rt, where Vt�tV∗
t is the stretch component. The translation part Tt of rigid

transformation At can then be easily calculated using the following formula [27]:

Tt = p∗
t − Rtp∗

t−1. (6)

By now, we have obtained the approximate rigid transformation At of the
performer’s head movement from frame t − 1 to t. According to formula (1), we can
obtain the expressional vector for 36 facial markers:

F′
t = R−1

t (Ft − Tt) (7)

and hence get the facial displacement vector F′
t − F′

t−1 from frame t − 1 to t.

Fig. 3 The left image is the smiling performer without the rigid head motion, the middle one is the
corresponding motion capture data, and the right one is the corresponding expressional 3D model
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Fig. 4 Two representative expressions synthesized by our method

As the rigid transformation can be extracted from the raw motion capture data,
our approach can efficiently deal with all kinds of facial expressions with or without
rigid head motion. In the following section, we apply these two types of movements
to a neutral facial model and synthesize the final facial animation which is consistent
with that of the performer. Figures 3 and 4 show the examples with and without the
rigid head motion respectively.

3.2 Facial expression and head motion transfer

3.2.1 Facial expression transfer based on Laplacian deformation

We use 36 markers around the prominent feature positions to record the subtle
facial expressional changes of the performer. Each marker corresponds to a vertex
in the neutral face mesh. We manually pick all the corresponding vertices for the
markers on the face model and mark them as the feature points of the face. Based
on the expressional displacements extracted from the motion capture data, we
obtain the corresponding displacements of these feature points in the neutral face
model. In order to propagate the feature points’ displacements to the whole facial
model, we provide a smooth deformation method which can preserve geometric
details. As the Laplacian mesh editing [1, 16] has the detail preserving property, we
transfer the subtle facial expression onto the neutral 3D facial model using Laplacian
deformation [28, 29] in our facial expression system.

We describe the facial model M by a pair (E, V), where E is the edges of the facial
mesh, V = {v1, ..., vn} describes the geometric positions of the facial vertices in R3,
and n is the number of model vertices. The Laplacian coordinate δi of the vertex vi is
represented by the difference between vi and the average of its neighbors.

δi =
(
δ

(x)

i , δ
(y)

i , δ
(z)

i

)
= vi − 1

di

∑

j∈N(i)

v j (8)

where N(i) = { j|(i, j) ∈ E} is the set of subscripts of the adjacent vertices of the vertex
vi, and di = |N(i)| is the number of elements in Ni, i.e., the degree of vi.
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Let A be the mesh adjacency matrix which describes the connectivity of the
mesh. The mesh adjacency matrix is defined as follows: Aij = 1, if there is an edge
between vertex vi and vertex v j; Aij = 0, if vertex vi and vertex v j are disconnected.
That is,

Aij =
{

1, if(i, j) ∈ E
0, otherwise.

(9)

Let D = diag(d1, ..., dn) be the degree matrix, where di is the number of adjacent
vertices of vertex vi, i = 1, 2, ..., n. Laplacian coordinates � can be described by the
mesh adjacency matrix and the degree matrix,

� = LV (10)

where L = I − D−1A and I is the identity matrix.
The rank of L is n − 1, which means V can be recovered from D by fixing part of

these vertices and solving a linear system.
To perform the facial deformation using Laplacian coordinates �, we fix the

positions of m points [1],

v′
i = ui, i ∈ {1, ..., m}, m < n (11)

and solve for the remaining vertices {v′
i, i = m + 1, ..., n} by fitting Laplacian coor-

dinates of geometry V′ to the given Laplacian coordinates �. We observe that the
solution is better if the constraints {ui} are satisfied in a least square sense rather
than solved exactly [16, 30]. This results in the following error function:

E(V′) =
n∑

i=1

∣
∣
∣
∣δi (vi) − δi

(
v′

i

)∣∣
∣
∣2 +

m∑

i=1

∣
∣
∣
∣v′

i − ui
∣
∣
∣
∣2 (12)

which has to be minimized to find a suitable set of coordinates V′. Solving this
quadratic minimization problem results in a sparse linear equation system.

The expressional displacement between two frames is Et = F′
t − F′

t−1. We use this
vector as the displacements of the feature points of the 3D neutral face model. The
facial expressional change has little influence on the forehead and the neck, therefore
we choose 19 points from these two regions in the facial model as the fixed points for
Laplacian deformation. With the expressional displacements of the feature points (36
points) and the fixed points (19 points), we can calculate the new positions for all the
remaining vertices of the face. The algorithm consists of the following three steps.
Firstly, given a neutral facial model, we calculate the Laplacian coordinates of all the
vertices. Secondly, the expressional displacements of the facial markers extracted in
Section 3.1.2 are used as the displacements of the feature points in the neutral face.
Several vertices above the forehead and around the neck are chosen as the fixed
points. In our current implementation, we set m to 55 which is the sum of the number
of feature points (36) and the number of fixed points (19). The constraints for the
markers are v′

i = vi + Ei
t, i ∈ {1, 2, ..., 36} and the constraints for the fixed points are

v′
i = vi, i ∈ {37, ..., 55}. Lastly, we obtain the ultimate positions of all the remaining

facial vertices V′
t = {v′

i, 1 ≤ i ≤ n − 55} by solving the least-square equation (12) and
get the facial expression M′

t = (V′
t, Et, Ft) consistent with the performer’s expression
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in frame t. Figure 3 shows a smile expression synthesized by our system, where the
performer does not exhibit rigid head motion.

3.2.2 Pose recovery of expressional facial model

With the Laplacian deformation algorithm described above, we obtain the expres-
sional facial model M′

t = (V′
t, Et, Ft) corresponding to the performer’s expression in

frame t. Currently, this expressional face is not in the same pose as the performer.
With the rigid motion At extracted in Section 3.1.2, which includes a rotation matrix
Rt and a translation matrix Tt, the ultimate facial model in a gesture consistent with
the performer can be recovered using the following formula:

M′′
t = RtM′

t + Tt. (13)

4 Experimental results and discussions

We have implemented our facial expression synthesis algorithm on a 2.53GHz
Intel Core 2 Duo E7200 CPU with 2GB main memory. To test the utility of this
method, we choose a realistic female facial model and the cartoon-Yoda for our
experiments. The female model contains 23,656 vertices and 46,336 triangles. The
Laplacian deformation involves 5,272 vertices and 10,330 triangles. For other parts of
the model such as the eyes and the teeth, only the rigid transformation is considered.
Yoda contains 2,123 vertices and 3,934 triangles. For comparison, we have also
implemented two typical direct expression transfer methods: the RBF-based facial
transferring method [21] and the feature point based method [10]. For the female
model, after a preprocessing of 13.812 sec, our method costs only 0.0353 sec for each
frame, whereas the RBF-based method and the feature point based method need 0.32
and 0.072 sec, respectively. This shows that our approach outperforms the previous
methods in time efficiency and it can be performed in real time. Furthermore, our
system is easy-to-use as for any virtual face-like models, the only work we need to do
is to select some feature points corresponding to the motion capture markers. After
the preprocessing, we can create lively expressions in real time.

Figure 4 shows two frames from the accompanying video. The images with a smile
expression are in the upper row and those with a surprised expression are in the lower
low. The first column shows the images of the performer while the second column
shows the corresponding motion data. The cloned female expressions without pose
recovery are shown in the third column and the fourth column shows the final results
with the rigid head motion recovered. The last column displays the expressional
Yoda. This figure and the accompanying video demonstrate that our framework
can transfer facial expressions from the performer to any face-like model efficiently
while keeping the original model’s characteristics. Even for the cartoon-Yoda, our
approach can still achieve satisfactory results.

We have compared our algorithm with the RBF-based facial transferring ap-
proach [21] and the feature point based method [10]. Figure 5 shows five frames
with neutral, smile, laugh, surprised, and happy expressions respectively. The first
row lists the images of the performer with markers. The second row shows the ex-
pressions synthesized by our method. The third row is the corresponding expressions
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Fig. 5 The comparison between different facial expression synthesis methods

synthesized by the RBF-based approach and the fourth row is the results produced
by the feature point based method using mesh distance. From the comparison of the
images, it is easy to find that the results generated by our method are the most natural
and similar to the expressions of the performer, especially in the region near the
mouth. The main reason is that the RBF interpolation scheme employs the Euclidean
distance as the measure of the distance between a face vertex and a feature point, but
it does not take the topological and geometric information of the facial model into
consideration. The Euclidean distance between two facial vertices does not always
correspond to the expressional displacement in the facial deformation, especially
when there are some holes in the face model [10]. Let A be a feature point on the
upper lip, B be a feature point on the lower lip. In the RBF interpolation scheme,
A’s movement will have severe influence on the vertices around B as they are close.
When the performer opens his mouth, the vertices near B are dragged upwards by A,
and pushed downwards by B simultaneously. Thus, the RBF interpolation method
results in stretched lips. The feature point based method uses the mesh distance as the
measurement of facial motion propagation. The smaller the mesh distance between
two vertices is, the more one vertex is affected by another. This method alleviates the
artifacts mentioned above greatly, but it still cannot avoid the inherent shortcoming
that the expressional movement is measured by the distance between two vertices.
Since both the topological and geometric properties of the original mesh model
are considered in the Laplacian deformation approach, our method can synthesize
expressions which are the most natural and similar to those of the performer. Figure 6



120 Multimed Tools Appl (2012) 58:109–123

Smile Laugh Surprised Happy

Feature point based 
method

RBF method

Our method

Fig. 6 The results of the region near the mouth using our method, the RBF, and the feature point
based method respectively

shows the zoom-in results around the mouth synthesized by these three methods. The
lips are stretched vertically in the RBF interpolation approach (see the second row
of Fig. 6). It is difficult for the mouth to open in the feature point based method
(see the third row of Fig. 6). The accompanying demo shows the complete animation
comparison.

To evaluate our facial expression synthesis approach objectively, we have con-
ducted an experiment consisting of 40 human raters using empirical validation. We
invited 20 students in our lab and 20 people outsides to be our raters. Each rater
was presented with the expression video clips synthesized by our method, the RBF
method and the feature point based method respectively. The raters were asked
to give an overall evaluation of the naturalness of the expression videos and rank
them according to their naturalness. 12 (out of 20) raters from our lab and 15 (out
of 20) raters outside considered the expression video synthesized by our approach
as the most natural one. Six (out of 20) raters from our lab and four (out of 20)
raters outside considered the result synthesized by the feature point based method
as the most natural one. Two (out of 20) raters from our lab and one (out of 20)
rater outside considered the result synthesized by the RBF method as the most
natural one. Statistics show that most of the raters both professional and non-
professional affirm the effectiveness of our method. During the evaluation of the
naturalness of the results synthesized by these three methods, most of the raters paid
more attention on the mouth and two eyes, which is coherent with the discussion
above.

5 Conclusions and future work

We have proposed a novel framework to synthesize facial expressions captured
from a performer and a new method to decompose the motion capture data into
the rigid motion and the subtle expression. Compared with the blendshape based
approaches, our scheme does not need to construct a face expression library. We can
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transfer the captured expression to any face-like models. As we adopt the Laplacian
deformation, the geometric details are preserved when the neutral face is deformed.
This makes the results natural and lifelike. As the synthesis can be performed in real
time, our approach can be used in interactive multimedia systems, online chatting,
virtual reality and computer games. We have compared our method with the RBF-
based deformation method and the feature point based method to demonstrate the
advantages of the presented scheme.

Our approach has the following limitations. First, compared with the methods
which try to add facial details into the facial animation to improve its reality
[2, 3, 18], our Laplacian deformation method cannot synthesize new expressional
details such as wrinkles above the forehead if such wrinkles do not exist initially.
Second, unlike the RBF-based deformation method, which is independent of the
underlying representation of the geometric model, our approach is dependent on
the representation of the input face model. Our method fails when the input model
consists of multiple mesh components. Third, our method involves solving a large
linear system. When the number of vertices in the input face model is large, the
process is slow and memory intensive although it can be pre-computed.

In our expression synthesis system, we do not take the complex eye-movement
and teeth-movement into consideration. Incorporating these factors into our system
will enhance the reality of the synthesized animation. By simplifying the neutral
face based on the approach described in [13], the performance of our animation
system can be further improved. Combining our system with the virtual environments
presented by [32], we can construct vivid 3D characters for multimedia applications
such as video conferences, education systems and virtual simulations.
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