
Multimed Tools Appl (2012) 57:175–197
DOI 10.1007/s11042-010-0680-2

Abstracting and reasoning over ship trajectories
and web data with the Simple Event Model (SEM)

Willem Robert van Hage · Véronique Malaisé ·
Gerben K. D. de Vries · Guus Schreiber ·
Maarten W. van Someren

Published online: 7 January 2011
© The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Bridging the gap between low-level features and semantics is a problem
commonly acknowledged in the Multimedia community. Event modeling can fill
this gap by representing knowledge about the data at different level of abstraction.
In this paper we present the Simple Event Model (SEM) and its application in a
Maritime Safety and Security use case about Situational Awareness, where the data
also come as low-level features (of ship trajectories). We show how we abstract over
these low-level features, recognize simple behavior events using a Piecewise Linear
Segmentation algorithm, and model the resulting events as instances of SEM. We
aggregate web data from different sources, apply deduction rules, spatial proximity
reasoning, and semantic web reasoning in SWI-Prolog to derive abstract events from
the recognized simple events. The use case described in this paper comes from the
Dutch Poseidon project.

Keywords Event modeling · Piecewise linear segmentation · Prolog · Semantic web ·
Maritime safety and security · Situational awareness

W. R. van Hage (B) · V. Malaisé · G. Schreiber
Web & Media Group, VU University Amsterdam, Amsterdam, The Netherlands
e-mail: wrvhage@few.vu.nl

V. Malaisé
e-mail: vmalaise@few.vu.nl

G. Schreiber
e-mail: schreiber@cs.vu.nl

G. K. D. de Vries · M. W. van Someren
TCS Group, University of Amsterdam, Amsterdam, The Netherlands

G. K. D. de Vries
e-mail: G.K.D.deVries@uva.nl

M. W. van Someren
e-mail: M.W.vanSomeren@uva.nl

176 Multimed Tools Appl (2012) 57:175–197

1 Introduction

The notion of “bridging the gap” [20] is well known in the Multimedia field: the
missing chain link between low-level data (e.g. features extracted from a video, or
in the case of this paper, sensory data reporting ship movement) and semantics.
Event modeling can fill the gap, cf. [8]. In this paper we show how the Simple
Event Model (SEM) can be used as a semantic layer over abstractions derived from
domain-level raw data. Data processing techniques can yield knowledge about the
world at different levels of abstraction. For example, in the field of moving object
analysis, there are machine learning techniques for recognizing flocking based on
GPS data, and there are approaches for discovering the goal of a trip, like going back
and forth to the office or the supermarket. The results of the latter technique give
higher-level knowledge about the world than those of the former. With respect to
multimedia applications Westermann and Jain state (in [24]) that “Basing the rep-
resentation of events in multimedia applications on a common model makes it easier
to create homogeneous event views based on the same model that syndicate events
from dif ferent applications. Thus, a common multimedia event model promotes the
integration of applications. It also facilitates homogeneous access to and interlinking
of events from dif ferent applications, thereby potentially giving users insights that they
couldn’t obtain from one application alone.” Although the application discussed in
this paper comes from a different domain, the main goal of SEM is the same: to
facilitate the integration of knowledge at different levels of abstraction. Problems
that come with the integration of knowledge obtained from different methods are
heterogeneity and incompleteness. SEM was designed to be robust against missing
and duplicate information. We demonstrate the use of SEM to reason over ship
behavior at various levels of abstraction integrating knowledge from the web. This
use case is particularly interesting, because it shows how track data is not enough for
a human system operator to get a good understanding of the maritime situation. This
can only be achieved by combining the tracks with external knowledge.

We get ship movement tracks from Marine Automatic Identification System
(AIS)1 messages, sent by ships at a regular interval to receivers. AIS messages post
the ship’s navigation parameters. We describe a method to recognize meaningful
events in this ship movement data, and to model them as instances of SEM. We write
rules in SWI-Prolog [26] that determine the semantics of these movement events,
and integrate them with GeoNames2 concepts. This determination process follows
a layered approach. First we recognize simple movement events like stopping and
moving, then we build on these events to define more complex movement event
patterns like trips (series of consecutive movements). These are then combined with
knowledge about the surroundings and the ships to yield semantically richer events
like anchoring (a stop at an anchorage), harbor approaches (movements that end in
a stop at a harbor), and ferry trips (repetitive trips between the same two harbors).

The rest of this paper is organized as follows. We present SEM itself in Section 2,
and its relation to existing event models in Section 3. We continue with the descrip-
tion of our use case: the automatic generation of SEM Events from AIS messages

1http://en.wikipedia.org/wiki/Automatic_Identification_System
2http://www.geonames.org/

http://en.wikipedia.org/wiki/Automatic_Identification_System
http://www.geonames.org/

Multimed Tools Appl (2012) 57:175–197 177

for Situational Awareness in Section 4. We conclude and discuss future work in
Section 5.

2 SEM: Simple Event Model

SEM was designed to represent events in the broad sense of the word, derived from
various sources (from the web, sensory data, historical documents, etc.). These data
can be incomplete (e.g. missing values) and partial (e.g. missing entire facets), and
they follow different design decisions. SEM has to be very flexible to cope with
these issues. As SEM is meant to represent data from uncontrollable sources, the
notions of temporary validity (during what temporal interval an event or a statement
holds), roles (the kind of participation in an event) and authority (according to
whom an event or statement holds) become important. It is also important to allow
all classes and properties in the model to be optional and duplicable, and to be
flexible towards different ways of modeling time, place, role, and type. In the rest
of this section we describe how these requirements are implemented in SEM. First
we discuss the classes and properties that make up SEM; then how to model views,
roles and temporary validity as constraints on properties, the notion of authority;
how to model time and space with symbols (c.q. URIs) or values (c.q. coordinates).
We illustrate these with a simple example of how a maritime event can be modeled
in SEM, represented in Fig. 5.

Classes SEM’s classes are divided in three groups: Core classes, Types, and
Constraints. This is illustrated in Fig. 1. There are four core classes: sem:Event (what
happens), sem:Actor (who or what participated), sem:Place (where), sem:Time
(when). Each core class has an associated sem:Type class, which contains resources
that indicate the type of a core individual. Individuals and their types are usu-
ally borrowed from other vocabularies. For example, the sem:Place “Harwich”
(geo:7116094) from our example (see Figs. 5 and 6) and its sem:PlaceType
“Harbor” (geo:H.HBR) are borrowed from the geographic ontology GeoNames.3

Alternatively, the types could also be borrowed from the LSCOM4 ontology.
The sem:Type classes exist to aggregate the various implementations of type

systems in any vocabulary. Some vocabularies do not have properties that exactly
correspond to the sem:type property, even though a type can be derived from the
value of other properties. This can be done by using Alan Rector’s Value Sets and
Value Partition patterns.5 These design patterns are illustrated in Fig. 2. Having
explicit sem:Type classes provides a placeholder to define these patterns. If you
want to make the class of all harbors using GeoNames’ geo:featureCode property
you could do this in the following two ways. You could define geo:featureCode to
be a subproperty of sem:placeType. This makes geo:H.HBR a class, containing all
geo:Features that are a harbor. If you do not want to turn the individual geo:H.HBR
into a class you can follow the value sets pattern and define the set of harbors to be a

3http://www.geonames.org/
4http://www.lscom.org/ontology/
5http://www.w3.org/TR/swbp-specified-values/

http://www.geonames.org/
http://www.lscom.org/ontology/
http://www.w3.org/TR/swbp-specified-values/

178 Multimed Tools Appl (2012) 57:175–197

sem:has
SubEvent

sem:Event sem:Actor sem:Place sem:Time

sem:hasTime

sem:hasActor

sem:hasPlace

sem:PlaceType

sem:placeType

sem:EventType

sem:eventType

sem:ActorType

sem:actorType

sem:TimeType

sem:Type

sem:timeType

sem:Core

sem:Role
sem:Temporary

sem:Constraint
sem:View

sem:RoleType

sem:roleType

sem:hasTimeStamp

sem:hasSubType

C
o

re C
lasses

(F
o

reig
n

)
T

yp
e S

ystem
P

ro
p

erty
C

o
n

strain
ts

the Simple Event Model (SEM)

Literal sem:hasTimeStamp

Literal sem:hasTimeStamp

sem:
accordingTosem:Authority

sem:hasTime

Fig. 1 The classes of the Simple Event Model. Arrows with open arrow heads symbolize
rdfs:subClassOf properties. Dashed arrows symbolize subproperties of rdf:type; regular arrows
represent other properties

subclass of sem:Place and an owl:Restriction on the geo:featureCode property with
owl:hasValue geo:H.HBR. This approach keeps geo:H.HBR an individual.

Besides the sem:Actor class, a class sem:Object has been defined as a rdfs:sub-
ClassOf sem:Actor, for the cases where it is necessary to specify a distinction between
these two concepts. For example, a container loaded on a container ship is a simple
object that does not participate in a trip, but might be interesting to mention in the
context of the event. If there would be an event in which the container falls overboard
then it would be a sem:Actor even though, like the ship, it is an inanimate object.

The class sem:Authority is used to indicate according to whom a statement is valid.
Individuals of sem:Authority can be, but are not necessarily sem:Actors. They can
also symbolize data sources, such as the URN of a web services. The sem:Authority
class is meant as a hook for provenance and trust reasoning, even though SEM
itself does not explicitly provides these. Additional trust reasoning, like evidential
reasoning [4], can be superimposed on SEM.

The class sem:Place defines a symbolic place, which does not need to have a
location indicated by coordinates per se, but which can be given a geolocation. This
way SEM can represent both concrete and symbolic places (e.g. “sandy desert”). In
our use case, the location of events is attached to the segment using properties from
the W3C WGS84 vocabulary.6 This is illustrated in Fig. 7 on line 11.

6http://www.w3.org/2003/01/geo/

http://www.w3.org/2003/01/geo/

Multimed Tools Appl (2012) 57:175–197 179

sem:Event

Stena Hollandica
from Harwich to

Hoek van Holland this
monday evening at 23:45

rdf:type

sem:EventType

ferry trip

rdf:type

sem:eventType

Ferry Trips

rdfs:subClassOfsem:eventType
(hasValue revolution)

rdf:type

Person

John

rdf:type

Health_Value

good_health

rdf:type

has_health_status

Healthy_Person

rdfs:subClassOf
has_health_status

(hasValue revolution)

rdf:type

anchored poor_health

rdf:typerdf:type

Simple Event Model Rector
Value Sets

has_health_status
(someValuesFrom)

sem:eventType
(someValuesFrom)

sem:Event

rdf:type

rdf:type

sem:eventType

Ferry Trips

rdfs:subClassOf

rdf:type

Person

John

Health_Value

Good_health
_value

has_health_status

Healthy_Person

rdfs:subClassOf

rdf:type

Poor_health
_value

sem:EventType

tripanchored

sem:subTypeOf

maritime
event

rdf:type

ferry trip type

rdfs:
subClassOf

John's
Health

rdf:type

rdfs:subClassOf

rdf:type

Simple Event Model
Rector

Value Partition

Stena Hollandica
from Harwich to

Hoek van Holland this
monday evening at 23:45

Fig. 2 Alan Rector’s value sets (top) and value partition (bottom) patterns applied to SEM (left)
compared to the original examples from the W3C working group note (right)

The class sem:Time defines a symbolic time, analogous to the symbolic places
described above, which values can be taken from the W3C’s Time ontology7 amongst
other time ontologies. It is also possible to define time as a simple (set of) data
value(s) in SEM, see the presentation of the sem:hasTimeStamp properties below.
In our use case, time is represented as data values in ISO 8601 as a RDF Literal or
TIMEX format8 as a RDF Literal of type rdf:XMLLiteral attached to the segment
with sem:hasBeginTimeStamp and sem:hasEndTimeStamp, both subproperties of
sem:hasTimeStamp. This is illustrated in Fig 7 on line 13 to 16.

Properties SEM’s properties are divided in three kinds: sem:eventProperties,
sem:type properties and a few miscellaneous properties like sem:accordingTo
and sem:hasTimeStamp’s subproperties, see Fig. 3. The sem:eventProperties relate
sem:Events to other individuals. A sem:type relates individuals of the sem:Core
class to individuals of sem:Type. There are specific subproperties of sem:type for
each of the core classes, for example sem:eventType, to facilitate querying. They
reduce the strain on reasoners, because sem:eventType subproperty already tells
you that it points to an individual of sem:EventType, hence this does not have
to be derived by subsumption reasoning. sem:accordingTo relates a sem:View
to a sem:Authority and is used to represent opinions. There are seven sem:has-
TimeStamp properties. One for single time values, sem:hasTimeStamp; two for
time intervals, sem:hasBeginTimeStamp and sem:hasEndTimeStamp; and four for

7http://www.w3.org/TR/owl-time/
8http://fofoca.mitre.org/

http://www.w3.org/TR/owl-time/
http://fofoca.mitre.org/

180 Multimed Tools Appl (2012) 57:175–197

sem:has
SubEvent

sem:Event sem:Actor sem:Place sem:Time

sem:hasTime

sem:hasPlace

sem:PlaceType

sem:placeType

sem:EventType

sem:eventType

sem:ActorType

sem:actorType

sem:TimeType

sem:Type

sem:timeType

sem:Core

sem:roleType

sem:hasSubType

Literal
sem:has

TimeStamp

sem:type

rdf:type

sem:eventProperty

sem:hasActor

owl:ObjectProperty owl:DatatypeProperty

sem:
accordingTo

sem:Authority

owl:ObjectProperty

sem:Role
sem:Temporary

sem:Constraint
sem:View

sem:RoleType

sem:hasEarliest
EndTimeStamp

sem:hasLatest
BeginTimeStamp

sem:hasEarliest
BeginTimeStamp

sem:hasLatest
EndTimeStamp

sem:hasBeginTimeStamp sem:hasEndTimeStamp

Literal sem:has
TimeStamp

sem:hasTime

Fig. 3 The properties of the Simple Event Model. Arrows with open arrow heads symbolize
rdfs:subPropertyOf properties. Dashed arrows symbolize subproperties of rdf:type; regular arrows
represent other properties

uncertain time intervals, sem:hasEarliestBeginTimeStamp, sem:hasLatestBegin-
TimeStamp, sem:hasEarliestEndTimeStamp, and sem:hasLatestEndTimeStamp.
The latter kind of intervals is used to describe any kind of uncertainty about the
begin or end of a period. It does not imply, for example, a fuzzy interpretation of
time. Open-ended intervals can be expressed by omitting begin or end timestamps.

There are two aggregation relations amongst the sem:eventProperty and sem:type
properties: sem:hasSubEvent (see the example in Fig. 6) and sem:hasSubType.
These can be used to indicate that respectively a sem:Event or sem:Type is related
to another more generic sem:Event or sem:Type, without any further commitments.
For example, poseidon:anchored has sem:subTypeOf poseidon:stopped; and the
sem:Event instance ex:wimbledon_2010_mahut_isner_game_183 sem:subEventOf
ex:wimbledon_2010_first-round_match_mahut_isner. More specific relations bet-
ween events and between types are not part of SEM and should be taken from other
ontologies, like GEM [27].

Constraints Property constraints can be applied to any property. They constrain the
validity of the property and are expressed as either a reification of the property or by
adding attributes to the property and turning it into an n-ary relation. There are three
permissible ways to represent sem:Constraints: as a named graph, as a reification

Multimed Tools Appl (2012) 57:175–197 181

(with rdf:Statement, see http://www.w3.org/TR/rdf-schema/#ch_statement) and with
an rdf:value pattern (see http://www.w3.org/TR/2004/REC-rdf-primer-20040210/
#example16). The default representation is the rdf:value pattern, which is often used
when representing the unit of measure of a value.9

There are three kinds of sem:Constraints: sem:Role, sem:Temporary and
sem:View. sem:Role defines the role that an individual of a class is playing in the
context of a specific event (i.e. to which it is linked with a sem:eventProperty). Roles
can be specified for all sem:Core individuals, for example, Actors (“pusher” in the
case of a Tugboat, or “anchorman” in the case of a news item) as well as places
(“destination”). sem:Roles are not meant to model roles in the sense of temporary
or dependent types, like “mother”. Instead, sem:Role explicitly models the event-
bounded role. For example, a maritime pilot is guiding ships through dangerous or
congested waters, such as harbors or river mouths. In the case of an event “Ship
arriving in a harbor”, the maritime pilot has the role “guide”, which is bounded to the
sem:Event. sem:Temporary defines the temporal boundary within which a property
holds. For example, the flag or name of a ship can change during its existence,
independently from any event. sem:View defines points of view, opinions: in the
case of a collision, the description of the event might well depend on the person
who reports it. This can be modeled as a sem:View constraint on the property
sem:roleType, for example, if the responsibility (the actor’s role) is contested. A view
holds sem:accordingTo a sem:Authority. Another example of the use of sem:View is
to distinguish the sources of two conflicting ship positions for a ship at a given time.
Multiple kinds of sem:Constraints can be used in combination to create conjunctive
statements.

Availability and extension SEM is available online at the URL: http://semanticweb.
cs.vu.nl/2009/11/sem/. It is mapped to a set of event models: Event Ontology [15];
CultureSampo [17]; Dublin Core10; CIDOC-CRM [6], and of commonly used upper
level ontologies: DOLCE [5]; SUMO11; and CYC.12 This set of mappings has been
modeled in SKOS.13

3 Related work

With respect to the semantic analysis of moving objects, comparable work has
been done by [14]. Their work mainly focuses on describing collective behavior in
OWL, we focus more on developing a framework for integrating external knowledge
sources. Also, we choose to use all of Prolog as our reasoning tool as opposed to an
OWL reasoner.

With respect to event models, different other models have been proposed to
bridge the gap between domain-level features and the semantic level. For example,

9Cf. the MUO ontology http://forge.morfeo-project.org/wiki_en/index.php/How_to_use_MUO.
10http://dublincore.org/
11http://www.ontologyportal.org/
12http://www.cyc.com/cyc/opencyc/
13http://www.w3.org/2004/02/skos/

http://www.w3.org/TR/rdf-schema/#ch_statement
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/#example16
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/#example16
http://semanticweb.cs.vu.nl/2009/11/sem/
http://semanticweb.cs.vu.nl/2009/11/sem/
http://forge.morfeo-project.org/wiki_en/index.php/How_to_use_MUO
http://dublincore.org/
http://www.ontologyportal.org/
http://www.cyc.com/cyc/opencyc/
http://www.w3.org/2004/02/skos/

182 Multimed Tools Appl (2012) 57:175–197

the MPEG-7 [12] Multimedia Description Scheme contains the two aspects. The
model is complex, though, and linking the low-level to semantics via MPEG-7
itself is hardly ever done. The usual approach is to combine MPEG-7 with an
ontology [10, 22]. COMM [2] allows combination of descriptions from MPEG-7 with
a semantic description. In [2], they take as example DOLCE [13] and its extension,
the Description and Situation pattern [5], to describe the semantics related to the
low-level data described. COMM leaves the choice of the semantic description model
to the user. It provides a place holder for semantic descriptions that can be filled by
either a single item (like a tag) or a complex description, typically event models (as
suggested in [10]). We adopted the same idea and designed SEM in the purpose of
associating different levels of semantics to abstractions over low-level data. The event
models that had the greatest influence on the development of SEM are: EO [15],
CIDOC-CRM [6], LODE [19], and E [23].

Event models can be described through different characteristics: concept-based
[6, 10] vs property based modeling [15, 17, 19]; size (minimal number of classes and
properties like EO versus large ontology of CIDOC-CRM); level of axiomatization
(lightweight like EO versus more constrained model like LODE). SEM defines a
set of classes and properties to represent and reason about events, standing between
concept-based and property-based models. SEM is also average with respect to size,
and it does not import any restrictive semantics from other models. In particular, the
links to other models and ontologies are done with SKOS mappings in order to avoid
inheriting constraints from these external resources.

We present here a more detailed overview of the relationships between SEM and
three RDF based event models. These models were selected as representatives of
the aforementioned overlapping categories: EO as a concept-based lightweight small
ontology, LODE as a lightweight property based ontology with some restrictions
and CIDOC-CRM as a large concept-based ontology with no formal restriction.
We discuss these models on basis of how they model (or not) the notions of Role,
Type, View and Temporary. These notions go beyond the most common components
(event, participant, time and place) and are part of our requirements.

3.1 EO

In the context of musical performances Queen Mary University of London devel-
oped the Event Ontology14 (EO) [15]. EO has a very simple design. It consists of four
classes (eo:Event and three implicit classes which are the ranges of EO properties:
Agent, Factor and Product) and seventeen properties. EO defines a minimal event,
and relies on external vocabularies to refine the knowledge expressed. For example,
no Agent class is defined per se, but their eo:agent property has foaf:Agent as a
range: EO benefits therefore from the richness of the FOAF vocabulary.15 Roles,
Types, Views and Temporary are not defined in EO. Place, Time and Agent are
defined via range restrictions on EO’s properties. The explicit linking to vocabularies

14http://motools.sourceforge.net/event/event.html
15http://www.foaf-project.org/

http://motools.sourceforge.net/event/event.html
http://www.foaf-project.org/

Multimed Tools Appl (2012) 57:175–197 183

brings EO its richness, but also constrains the possible values for these properties.
SEM is compatible with more Place, Time and Actor representations, as we decided
not to have such restrictions. The main common point between SEM and EO is
the modularity in the design: most classes are optional in EO; In SEM, even the
sem:Event class is optional. This allows the representation of actors without events
in which they participate. This is useful when the different parts of the event are
gathered from different sources, as in our use case.

3.2 LODE

LODE [19] also aims at a minimal modeling of events. It contains one class (Event)
and six properties: lode:atTime, lode:circa, lode:inSpace, lode:atPlace, lode:involved
and lode:involvedAgent. Both the class and the properties are formally mapped to
other event models like the CIDOC-CRM, EO and DOLCE’s DUL version, by the
use of owl:sameAs and rdfs:subPropertyOf. In this way, interoperability is enabled
and a user can benefit from existing more complex vocabularies, while LODE itself
keeps its own classes and properties at the lowest possible number. Role, Type and
View can be expressed via their mapping to DUL, by using the Description and
Situation patterns, or via the interpretation and mereology patterns of F [18].16

In SEM, we also adopt the principle of using external vocabularies for modeling
properties that are beyond the model’s scope, like the causality. But to the difference
with LODE, we do not make formal mappings, functional property restrictions and
do not conform to one single vocabulary for our properties. We do not benefit
from the other models or vocabularies directly, but stay open to more diversity.
The other vocabularies can be connected to SEM via our placeholders for Role
and Type. Time is expressed using the OWL Time ontology,17 in which temporal
entities are represented instances, as opposed to data values. This complicates the
representation of time unnecessarily for our use case. Another reason why we did
not use LODE for this work is that, like EO, LODE does not have explicit Actor and
Place classes.

3.3 CIDOC-CRM

CIDOC-CRM [6] was created for describing museum artifacts, in the goal of en-
hancing their exchange across musea. The whole model is quite large: it contains
140 classes and 144 properties. A subset of these can be used to represent events.
Roles are represented in the same fashion as in SEM: as constraints on a property.
But unlike SEM, the Role can only be assigned to the Actor. Types can apply to all
entities of CIDOC-CRM, but time-stamps (modeled with a two-position pattern) can
only apply to TemporalEntities. Roles, Types and other event constituants cannot
be time-stamped. We generalize the CIDOC-CRM’s model with SEM, and add the
representation of View. The reason why we did not use CIDOC-CRM for our use

16F specializes D&S patterns from DUL.
17http://www.w3.org/2006/time

http://www.w3.org/2006/time

184 Multimed Tools Appl (2012) 57:175–197

case is that it only allows one type per object. This means that a ship can only have
one type, but also that its behavior can only have one type, which is too restrictive
for this work.

3.4 Comparison

SEM gathers the elements that give a light-weight description of events, but
without importing strong semantic definitions that easily lead to inconsistency,
e.g. owl:FunctionalProperty, owl:disjointWith. In addition to this SEM specifies the
necessary additions for dealing with heterogeneous and messy data from the web,
i.e. foreign types, constraints, and authority.

4 Use case: maritime situational awareness

We describe a Semantic Web application in which we automatically recognize events
from domain-level data representing ship trajectories. From these atomic events,
modeled as SEM instances, we derive ship behavior types (slowing down, speeding
up, anchored) to reason about patterns, e.g. ship maneuvering when approaching
an anchorage or a ferry trip. The reasoning involves various type of knowledge,
which we fetch from various sources. We describe these sources in Section 4.1.
We transform the ship trajectories into segments of consistent movement using
a piecewise linear segmentation compression (PLS) algorithm. This gives us our
low-level SEM event instances. The PLS algorithm is described in Section 4.2. We
describe the conversion to SEM in Section 4.3 and the matching of ships and places
to external resources that describe them in Section 4.4. The architecture of the system
is shown in Fig. 4. In Section 4.5 we show how we make abstractions over and
reason about the data sources that we gather. We define rules building on these basic
blocks. These rules yield more complex SEM events, like trips. Then we add relevant
maritime geographical features from GeoNames and define further rules over these
two sources of knowledge, that determine higher-level events, like ferry trips and
anchoring.

Reasoning Inter-
pretation

Feature Recognition FeaturesData

Ship
descriptions
on the web

(HTML)

MySQL
Database

D2RQ
RDF

wrapper

Maritime
Knowledgebase

(SWI-Prolog)

Semi-structured
data wrapper

GeoNames on the
web (RDF)

Behavior
Classification
(Prolog rules)

Track segments
(SEM RDF)

Ship behavior
(SEM RDF)

Ship descriptions
(RDF)

Piecewise Linear
Segmentation

AIS data
(NMEA)

Fig. 4 Data flow diagram of the entire ship behavior recognition system

Multimed Tools Appl (2012) 57:175–197 185

4.1 Data sources

The main data source for ship trajectory data in our application comes from the
Automatic Identification System (AIS).18 Each commercial vessel over 300 tons
carries an AIS transponder. This transponder sends updates at regular intervals (in
the order of seconds) about, among other things, the ship’s location, speed over
ground and course over ground.

We use GeoNames as ontology of geographic data. We extended GeoNames
with 64 harbors and anchorages and corrected the position of 36 existing harbors.
GeoNames is created collaboratively with a wiki where anybody can add and change
features. The RDF version of GeoNames is periodically generated automatically
from the wiki data.

Ship information, like the callsign, flag, and owner, are fetched from various
websites: http://www.marinetraffic.com/, http://www.vesseltracker.com/, http://www.
havenais.com/, and http://www.xvas.it/. We use Marinetraffic.com as a baseline and
extend it with information from the other websites. During the course of the project
Xvas.it restricted its access policy. The information about ship types derived from
these sources is converted to our own small internal actor type vocabulary, which is
aligned to WordNet19 2.0 with SKOS properties.

4.2 From AIS data to segments of consistent movement

In this section we briefly describe a method to automatically convert “raw” move-
ment data in the form of trajectories into SEM events that we call segments. This
method is based on a piecewise linear segmentation compression technique for tra-
jectories. The compression of single AIS messages into segments decreases the total
number of atomic events we have to deal with roughly by a factor 25, which makes
further processing significantly faster. We detail this technique and describe how we
use it to create segment SEM events. These segments contain the parameters that
Andrienko and Andrienko [1] identify as the basic data for describing movements:
the entity (via an identifier), the (geo)-coordinates where the event starts and stops
and the time when the start and stop occurs. Furthermore, these segments can easily
be classified as stop or move. These concepts where recently identified [21] as the
first step in giving semantics to moving object trajectories.

Trajectories We mentioned that the ship trajectory data in our application comes
from the Automatic Identification System (AIS). Now, let us define a trajectory
more formally as: T = {(x1, y1, v1, c1, t1), . . . , (xn, yn, vn, cn, tn)}, where x and y are
the coordinates,20 v the speed, and c the course at time t. As useful shorthands we also
define: T(i) = (xi, yi, vi, ci, ti) and T(i, j) = {(xi, yi, vi, ci, ti), . . . , (x j, y j, v j, c j, t j)},
furthermore, T ′((xi, yi, vi, ci, ti)) = i.

18http://www.uais.org/
19http://www.w3.org/TR/wordnet-rdf/
20Usually these are latitude and longitude, which, because of the shape of the earth, do not allow for
easy geometrical computations. However we assume here that we can do this, e.g. because they are
adequately projected.

http://www.marinetraffic.com/
http://www.vesseltracker.com/
http://www.havenais.com/
http://www.havenais.com/
http://www.xvas.it/
http://www.uais.org/
http://www.w3.org/TR/wordnet-rdf/

186 Multimed Tools Appl (2012) 57:175–197

Algorithm 1 pls(T, ε)

1 We use end to indicate the index of the last element of a trajectory.
2 dmax = 0
3 imax = 0
4 for i = 2 to end − 1 do
5 d = E(T(i), {T(1), T(end)})
6 if d > dmax then
7 imax = i
8 dmax = d
9 end

10 end
11 if dmax ≥ ε then
12 A = pls(T(1, imax), ε)

13 B = pls(T(imax, end), ε)

14 TC = {A, B(2, end)}
15 else
16 TC = {T(1), T(end)}
17 end
18 return TC

As the trajectories are from ships, they describe movements of relatively large
objects. Such large objects are constrained in possible trajectories, e.g. large objects
do not jump around, nor turn and accelerate very fast. In a sense, this type of
movement data is highly regular and is quite predictable.

Piecewise linear segmentation The above mentioned regularity of the trajectories
suggests that they can be compressed quite well using piecewise linear representation
techniques. The idea behind using a piecewise linear representation method is that
this technique segments a trajectory into pieces which have more or less constant
movement. These segments of constant behavior are the lowest level SEM events
and the building blocks for more complex events.

We use a two-step variant of piecewise linear segmentation, described in
Algorithms 1 and 2. This two-step version, which first looks at the speed of a moving
object (Algorithm 1) and then at the location (Algorithm 2), is better at preserving
the concepts of stop and move that we mentioned above.21

First, we consider the standard piecewise linear segmentation algorithm given in
Algorithm 1 which is used twice in our two-step variant. This algorithm goes by many
names [11]. It is best known as the Douglas-Peucker algorithm [7] in carthography
and Ramer’s algorithm [16] in image processing. The algorithm recursively com-
presses a line, or in our case a trajectory T, defined as a list of points, into linear
segments. The start and end point of the line or trajectory are selected and for each
point in between, the error with respect to the linear interpolation between the start
and end point is computed. The point with the maximum error, higher than a fixed

21We will explore this issue more in a future paper.

Multimed Tools Appl (2012) 57:175–197 187

threshold ε is kept and the recursion continues with that point as a new start and end
point. Recursion stops when there is no point with an error higher than ε.

There are a number of options for the error function (Algorithm 1, line 5) that
piecewise linear segmentation can use, especially when considering trajectories (cf.
[3, 9]). We only use two. The first one is simple two dimensional euclidean distance,
defined for our trajectories as:

E2((xi, yi, vi, ci, ti), {(x1, y1, v1, c1, t1), (xn, yn, vn, cn, tn)})

=
√(

xi − x′
i

)2 + (
yi − y′

i

)2
, (1)

where (x′
i, y′

i) is the closest point on the line-segment {(x1, y1), (xn, yn)}.
The second one is defined on the speed attribute. Here we compare the speed at

a certain time ti to the speed that we would get if we linearly interpolate between t1
and tn at the same ti.

Ev((xi, yi, vi, ci, ti), {(x1, y1, v1, c1, t1), (xn, yn, vn, cn, tn)}) = ‖vi − v′
i‖ (2)

where v′
i is the point on the line-segment {(v1, t1), (vn, tn)} with time ti.

In our two-step variant of piecewise linear segmentation, given in Algorithm 2,
we apply Algorithm 1 to a trajectory in two steps. First we only compress based
on the speed (v) of the trajectory (line 1 of Algorithm 2). In this case we use the
error function Ev . Then we apply compression to each segment created in the first
compression step (line 6 of Algorithm 2), but we look at location,22 which only takes
into account x and y. Here we use the error function E2.

Algorithm 2 2step-pls(T, εv, εp)

1 A = pls(T, εv)

2 TC = ∅
3 for i = 1 to ‖VC‖ − 1 do
4 m = T ′(A(i))
5 n = T ′(A(i + 1))

6 B = pls(T(m, n), εp)

7 TC = TC ∪ B
8 end
9 return TC

Storing the segments The result of the two-step piecewise linear segmentation,
described above, is stored in an SQL-database in the table segments, see Fig. 4. A
segment describes a constant piece of movement. Let T be a trajectory as defined
earlier, then TC is its compressed variant: TC = 2step-pls(T, εv, εp).

Now, we insert the following tuples into the segments table:

〈uri, xi, yi, xi+1, yi+1, vi, vi+1, ci, ci+1, ti, ti+1〉
for all i such that TC(i) = (xi, yi, vi, ci, ti)

and TC(i + 1) = (xi+1, yi+1, vi+1, ci+1, ti+1). (3)

22This is the traditional Douglas-Peucker algorithm.

188 Multimed Tools Appl (2012) 57:175–197

sem:Actor

sem:ActorType

sem:actorType

rdf:type

rdf:type

sem:hasActor
ex:Stena

Hollandica

sem:PlaceType

geo:H.HBR

rdf:type

wordnet:ferry-1

sem:Place

sem:placeType

"harbor"skos:prefLabel

sem:EventType

sem:Event

ex:departure_x

rdf:type rdf:type

geo:7116094seg:has
BeginPlace

wordnet:depart-3

"lat"wgs84:lat

wgs84:long
"long"

2009-12-07
T24:45:00Z

sem:hasBegin
TimeStamp

sem:eventType

rdf:type

"Harwich
International

Ferry Terminal"

geo:name

Fig. 5 An example of an event describing the departure of a ferry from Harwich. Segment events
initially do not have a meaningful place, only an anonymous place (c.q. blank node) with coordinates.
The meaningful place shown in this example is attached to the event by conflating it to the
anonymous place of the segment by means of spatial proximity reasoning

For each segment we generate a URI based on the ship’s unique identifier, the
Maritime Mobile Service Identity (MMSI) number, and the start time (ti). This URI
uniquely identifies the segment. Furthermore, the segment contains a start (xi, yi)
and end (xi+1, yi+1) position, a start (vi) and end (vi+1) speed, a start (ci) and end
(ci+1) course, and a start (ti) and end (ti+1) time.

4.3 From segments to semantics

Segments as events in SEM Every segment in the database is assigned either the
two basic movement types stop or move. These are stored in an additional column
in the MySQL database. Stops are determined by means of a threshold23 on the
average speed of the segment. All additional semantics are described outside of
the database, in RDF. To make the transition from the database to RDF we use
the D2RQ server24 by the Free University Berlin. This is a database wrapper that
provides an RDF graph view over the flat database table we use to store the
segments, see Fig. 4. Each segment (c.q. row in the database) corresponds to a single
instance of a sem:Event, with an additional sem:eventType poseidon:etype_stopped
or poseidon:etype_moving depending on the basic movement type of the segment.
Also, each segment describes the state of a single ship, identified by its MMSI
number, which corresponds to a single instance of a sem:Actor, which is connected to
the segment event by the sem:hasActor property. The ship gets a ais:mmsi property
to the value of its MMSI number. Additional properties of the ship that are fetched
from the web are added later as properties of the instance representing the ship.
The begin place and end place are represented as two instances of sem:Place,

23In the order of 0.1 knots.
24http://www4.wiwiss.fu-berlin.de/bizer/d2rq/

http://www4.wiwiss.fu-berlin.de/bizer/d2rq/

Multimed Tools Appl (2012) 57:175–197 189

sem:hasSubEvent
inferred from
time series of
place types

space_within_range

ex:segment_x2
sem:

eventType

rdf:type

wordnet:
move-4

sem:Actor sem:ActorType

sem:actorType
inferred from being

the actor of a
ferry trip

rdf:type rdf:type

sem:hasActor

ex:Stena
Hollandica

sem:PlaceType

geo:H.HBR

rdf:type

2009-12-08T07:45:00+01:00

wordnet:
ferry-1

sem:Place

rdf:type

seg:has
EndPlace

ex:place_x3

sem:hasEndTimeStamp

sem:
placeType

"harbor"

skos:prefLabel

ex:trip_x1

sem:EventType

sem:
eventType

rdf:typewordnet:
trip-1

sem:Event

ex:departure_x4

rdf:type rdf:type

geo:7116094seg:has
BeginPlace

wordnet:
depart-3

"lat1"wgs84:lat

wgs84:long "long1"

2009-12-07T24:45:00+00:00

sem:hasBeginTimeStamp

rdf:type geo:7116101

"lat2"

wgs84:lat

"long2"

sem:placeType

sem:
eventType

rdf:type
seg:hasEndPlace
spatially inferred

by proximity

rdf:type
wordnet:

passenger_ship-1

sem:actorType

wgs84:long

"Harwich
International

Ferry Terminal"

geo:name

Fig. 6 An example of two subevents of a ferry trip, an arrival (ex:segment_x2) and a departure
(ex:departure_x4). This example shows the seg:hasEndPlace property instance that is inferred by
conflation of places. For the sake of readability not all properties and inferences are shown

which are connected to the event by the seg:hasBeginPlace and seg:hasEndPlace
properties, subproperties of sem:hasPlace. We attach the additional properties
like begin and end speed to the event instance by segment-specific properties like
seg:hasBeginSpeedOverGround. An example of the RDF generated in this way is
shown in Fig. 7. A simple illustration of the structure of the resulting RDF graph is
shown in Fig. 5 and an elaborate example in Fig. 6.

4.4 Conflation of places and actors

Matching places To classify the places at which events happen we use GeoNames
Features. We relate the location of anonymous places (see line number 7 to 12 in
Fig. 7) indicated with wgs84:lat and wgs84:long in the RDF representation of the
segments to the typed places in GeoNames by geographical proximity reasoning
using the Haversine distance function:

d = R · 2 arctan2 (√
a,

√
1 − a

)

a = sin2(δlat/2) + cos
(
lat1

) · cos
(
lat2

) · sin2(δlong/2)

where R = the earth’s radius, δlat is the difference in latitude and δlong is the
difference in longitude. Using the SWI-Prolog Space Package, based on an R*-tree
implementation from the spatialindex package,25 we can efficiently derive whether
a ship is lying still in a harbor, perhaps moored, or at an offshore anchorage or

25http://trac.gispython.org/spatialindex/

http://trac.gispython.org/spatialindex/

190 Multimed Tools Appl (2012) 57:175–197

Fig. 7 A ship behavior segment modeled in SEM. Line 1–23 illustrates the SEM RDF format of
segment events that is provided by the D2RQ database wrapper. Line 26–31 shows a GeoNames
Feature that was conflated with the sem:Place of the event. In this case, the ship is at a harbor

just somewhere out at sea. GeoNames associates instances of places with geo-
coordinates to GeoNames feature codes like geo:H.HBR (harbor), and geo:H.ANCH
(anchorage). The Space Package derives that the coordinates of a given segments are
close to coordinates defined in GeoNames, and further reasoning can then use the
associated semantic type to refine the classification of a ship’s behavior: a segment
typed as poseidon:etype_stopped and for which the place of stop has the type
geo:H.HBR, gets the additional sem:eventType poseidon:etype_stopped_in_harbor.
The spatial conflation is illustrated in Fig. 6 and in the code example in Fig. 8 on
line 4–8.

Matching actors We automatically convert the information about ships described in
the various websites mentioned in Section 4.1 to RDF properties of the ships (Actors
in SEM). Amongst these properties are datatype properties like ais:length and
ais:callsign, but also types, like passenger vessel, which we map to our local vocabu-
lary that is aligned to WordNet. In this case, passenger vessel would be translated to

Multimed Tools Appl (2012) 57:175–197 191

Fig. 8 First part of a code example illustrating how we use SWI-Prolog rules to derive simple
(stopped) and complex (ferry trip) event types from low-level segment events in SEM RDF format.
The example is continued in Fig. 9. The rules shown in this figure show how you can define the
behavior of “stopping”, “stopping at a harbor”, “trip”, and making a “ferry trip”. The actual assertion
of the RDF statements that classify the behavior exhibited in segments is shown in Fig. 9

poseidon:atype_passenger_vessel, which is aligned to wordnet:synset-passenger_
ship-noun-1. This is illustrated in Fig. 7 on line 20.

4.5 Deriving complex SEM events

To derive more complex behavior than the simple poseidon:etype_(stopped|moving)
events we defined a set of rules that build on the typed segment event. For example,
to derive the complex behavior “trip” we use a rule that is based on the assumption
that if we do not know about an explicit stop between consecutive moving events that
it does not exist, i.e. we temporarily make a closed world assumption. This allows us
to deal with missing ship observations (which happens frequently). We conclude that
if we do not know about any stop at a harbor between two stops at harbors a and b,
that there was a trip between harbor a and b. This is shown in line 14–21 of Fig. 8. We
encode this trip as a new event, which sem:hasSubEvent the segments that compose

192 Multimed Tools Appl (2012) 57:175–197

the trip. This is shown in line 32–50 of Fig. 9. The harbors of departure and arrival, a
and b, become seg:has(Begin|End)Place properties of the new trip event.

When the RDF describing trip events has been added to the knowledgebase we
can use it as a new layer on which we can build new rules. For example, we can define
a ferry trip as a trip back and forth between two different harbors, see line 23–30 of
Fig. 8. The ferry trips recognized in this way can subsequently be inserted into the
knowledgebase as new events, like the trips, but not referring to segments anymore.
The trip and the return trip composing the ferry trip become subevents of the event
representing the ferry trip. This is described on line 54–66 of Fig. 9.

An important advantage of storing the intermediate results of all the rules at
various layers of abstraction is that it does not matter in which way the RDF
representing an event was generated. For example, as long as its subevents exist
we can derive ferry trips. This means that some trips could be derived from AIS

Fig. 9 Second part of a code example illustrating how we use SWI-Prolog rules to derive complex
event types (regular trips and ferry trips) from low-level segment events in SEM RDF format. The
first part of this example is shown in Fig. 8. The rules shown in this figure show how the RDF
assertions are made that classify the behavior exhibited in movement segments

Multimed Tools Appl (2012) 57:175–197 193

segments, like discussed before, while others could be derived from another source,
like radar, text mining on a ferry schedule on the web, or even manual extension or
correction of the knowledgebase.

5 Conclusion and future work

We learn event instances from raw data: AIS transceivers transmitting information
about ship navigation parameters. To recognize simple behavior events from these
sensor data, we use a compression algorithm, Piecewise Linear Segmentation. This
decreases the number of atomic events we have to deal with roughly by a factor
25, which greatly improves the processing speed of the rest of our system. We
represent the different facets of behavior events, when (sem:hasTimeStamp) did
who (sem:Actor) do what (sem:Event), where (sem:Place), in the Simple Event
Model. We combine spatial reasoning, semantic web reasoning and rules in SWI-
Prolog to create new, higher-level, events on top of the recognized movement
patterns. This allows representation of events at different levels of abstraction.
We keep the link between the different layers of semantics, information and data
that come from very different applications (machine learning and text mining). We
syndicate the output of the applications in a single event representation. Our event
model also enables the combination of events with other background knowledge.
The integration happens at the knowledge level. Abstraction, syndication and the
integration with background knowledge are part of the requirements for a relevant
Event Model for Multimedia defined by [24]. The author emphasises one drawback
of current models: “Although event detection on various abstraction levels and for
dif ferent domains is a central topic in content analysis, the focus has mostly been on
the use of content features for detecting events within media and less on the modeling of
the detected events or their use for detection of higher-level events. Thus, event models
applied in multimedia content analysis, if made at all explicit, typically lack media
independence. . .” SEM addresses this by modeling events independently from the
data.

In the future SEM will be used as a basic schema supported by the Semantic
Search Engine ClioPatria26 [25]. SEM will also be used in completely different
domains than maritime safety, e.g. in Cultural Heritage and historical applications.
In these domains SEM can also be used to bridge the gap between data (low-level
object and fact descriptions) and semantics at the level of human queries by offering
a new conceptual event-based semantic description. Although SEM, as an event
model, does not provide all of the steps necessary for bridging the semantic gap (part
of the bridging is done by signal processing and rules linking the different levels
of abstraction together), it is at the core of the process: a unique interface for the
representation of heterogeneous data, that allows for a unified reasoning.

As future work, we would like to extend the SWI-Prolog Space Package to deal
with moving object indexing. This would allow us to write efficient rules about the
relative position of moving ships with respect to each other. Currently, this is not
possible, as we use an R*-tree which can not natively deal with time-parametrized

26http://e-culture.multimedian.nl/software/ClioPatria.shtml

http://e-culture.multimedian.nl/software/ClioPatria.shtml

194 Multimed Tools Appl (2012) 57:175–197

geometries. We would like to extend the web information extraction toolkit we use
to find ship information to find more properties of ships so that we can extend the
range of queries we can formulate about ships (banned ships, historical records, etc.).
A future challenge is to move from only using existing place features like harbors to
also using automatically discovered points of interest, like unofficial ship lanes or
queues for tankers in front of a harbor.

Acknowledgements This work has been carried out as a part of the Poseidon project in collabora-
tion with Thales Nederland, under the responsibilities of the Embedded Systems Institute (ESI). This
project is partially supported by the Dutch Ministry of Economic Affairs under the BSIK program.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in
any medium, provided the original author(s) and source are credited.

References

1. Andrienko N, Andrienko G (2007) Designing visual analytics methods for massive collections of
movement data. Cartographica 42(2):117–138

2. Arndt R, Troncy R, Staab S, Hardman L, Vacura M (2008) COMM: designing a well-founded
multimedia ontology for the web. In: The semantic web: ISWC 2007 + ASWC 2007. Lecture
notes in computer science, vol 4825. Springer, Berlin, Heidelberg, pp 30–43

3. Cao H, Wolfson O, Trajcevski G (2006) Spatio-temporal data reduction with deterministic error
bounds. VLDB J 15(3):211–228

4. Ceolin D, van Hage WR, Fokkink W (2010) A trust model to estimate quality of annotations
using the web. In: WebSci10: extending the frontiers of society on-line

5. Claudio Masolo SB, Gangemi A, Guarino N, Oltramari A, Schneider L (2003) Wonderweb
deliverable d18. Ontology library library. Technical report, ISTC-CNR WonderWeb project

6. Crofts N, Doerr M, Gill T, Stead S, Stiff M (eds) (2009) Definition of the CIDOC conceptual
reference model. Online, November. http://www.cidoc-crm.org/official_release_cidoc.html

7. Douglas D, Peucker T (1973) Algorithms for the reduction of the number of points required to
represent a digitized line or its caricature. The Canadian Cartographer 10(2):112–122

8. Gangemi A, Catenacci C, Battaglia M (2004) Inflammation ontology design pattern: an exercise
in building a core biomedical ontology with descriptions and situations. Stud Health Technol
Inform 102:64–80

9. Gudmundsson J, Katajainen J, Merrick D, Ong C, Wolle T (2009) Compressing spatio-temporal
trajectories. Comput Geom 42(9):825–841

10. Hunter J (2002) Combining the CIDOC CRM and MPEG-7 to describe multimedia in museums.
In: Museums and the web international conference. Boston

11. Keogh EJ, Chu S, Hart D, Pazzani MJ (2001) An online algorithm for segmenting time series. In:
Cercone N, Lin TY, Wu X (eds) ICDM. IEEE Computer Society, pp 289–296

12. Martínez JM, Koenen R, Pereira F (2002) MPEG-7: the generic multimedia content description
standard, vol 9, no 2. IEEE Computer Society, pp 78–87

13. Masolo C, Borgo S, Gangemi A, Guarino N, Oltramari A, Schneider L (2002) The wonderweb
library of foundational ontologies and the DOLCE ontology. Technical report, WonderWeb

14. Orellana D, Renso C (2009) Developing an interactions ontology for characterising pedestrian
movement behavior. In: Wachowicz M (ed) Movement-aware applications for sustainable mo-
bility: technologies and approaches. IGI Global Publishing

15. Raimond Y, Abdallah S (2007) The event ontology. Online, http://purl.org/NET/c4dm/event.owl
16. Ramer U (1972) An iterative procedure for the polygonal approximation of plane curves.

Comput Graph Image Process 1(2):244–256
17. Ruotsalo T, Hyvönen E (2007) An event-based approach for semantic metadata interoperability.

In: 6th international and 2nd Asian semantic web conference (ISWC2007+ASWC2007), pp 407–
420

http://www.cidoc-crm.org/official_release_cidoc.html
http://purl.org/NET/c4dm/event.owl

Multimed Tools Appl (2012) 57:175–197 195

18. Scherp A, Franz T, Saathoff C, Staab S (2009) F—a model of events based on the foundational
ontology dolce+dns ultralight. In: International conference on Knowledge Capturing (K-CAP).
Redondo Beach, CA, USA

19. Shaw R, Troncy R, Hardman L (2009) Lode: linking open descriptions of events. In: 4th annual
Asian semantic web conference (ASWC’09), 6–9 December, Shanghai, China, pp 153–167

20. Smeulders AWM, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval
at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349–1380

21. Spaccapietra S, Parent C, Damiani ML, de Macêdo JAF, Porto F, Vangenot C (2008) A concep-
tual view on trajectories. Data Knowl. Eng. 65(1):126–146

22. Tsinaraki C, Polydoros P, Kazasis F, Christodoulakis S (2005) Ontology-based semantic indexing
for MPEG-7 and tv-anytime audiovisual content. Multimed Tools Appl 26(3):299–325

23. Westermann U, Jain R (2006) E—a generic event model for event-centric multimedia data
management in echronicle applications. In: ICDEW ’06: proceedings of the 22nd international
conference on data engineering workshops. IEEE Computer Society, Washington, DC, USA,
p 106

24. Westermann U, Jain R (2007) Toward a common event model for multimedia applications. IEEE
Multimedia 14:19–29

25. Wielemaker J, Hildebrand M, van Ossenbruggen J, Schreiber G (2008) Thesaurus-based search
in large heterogeneous collections, pp 695–708

26. Wielemaker J, Huang Z, van der Meij L (2008) Swi-prolog and the web. In: Bossi A (ed) Theory
and practice of logic programming, vol 8. Cambridge University Press, pp 363–392

27. Worboys MF, Hornsby K (2004) From objects to events: GEM, the geospatial event model.
In: Egenhofer MJ, Freksa C, Miller HJ (eds) Third international conference on geographic
information science, GIScience 2004. Lecture notes in computer science, vol 3234. Springer,
pp 327–344

Willem Robert van Hage is an assistant professor at the VU University Amsterdam. He studied
theoretical computer science at the University of Amsterdam, after which he obtained a PhD on the
thesis “Evaluating Ontology-Alignment Techniques” at the Netherlands Organization for Applied
Scientific Research (TNO) and the VU University Amsterdam in 2008. His research interests are
mainly in Information Integration and Reasoning. In the past, he has worked on XML retrieval,
ontology alignment, and information extraction with applications to the domains of life sciences
and food safety. His current research involves spatial and temporal indexing and reasoning over
the behavior of moving objects in the POSEIDON project.

196 Multimed Tools Appl (2012) 57:175–197

Véronique Malaisé is a Postdoctoral researcher at the VU University of Amsterdam, in the Web
and Media Group. She obtained a PhD in Linguistics, with a specialisation in Natural Language
Processing, from the University of Paris VII in 2005. She then obtained a Postdoc position in the
Dutch NWO CHOICE project, working in collaboration with the Netherlands Institute for Sound
and Vision, the Dutch National Audiovisual Archives. This research topic was centered around
ontologies and audiovisual documents annotation. She is currently working on a Dutch project
aiming at combining low-level features with semantic representation in the maritime domain: the
POSEIDON project, and on a European project, NoTube, about the interaction between Web and
TV activities.

Gerben K. D. de Vries is a PhD student at the Theory of Computer Science group in the Informatics
Institute of the University of Amsterdam supervised by Pieter Adriaans and Maarten van Someren.
He is working on spatiotemporal datamining in the maritime context of the POSEIDON project,
with a special interest in the compression and clustering of moving object trajectories.

Multimed Tools Appl (2012) 57:175–197 197

Guus Schreiber is a professor of Intelligent Information Systems at the Department of Computer
Science of the VU University Amsterdam. His research interests are mainly in knowledge and
ontology engineering, with a special interest for applications in the field of cultural heritage. He was
one of the key developers of the CommonKADS methodology. He acts as chair of W3C groups
for Semantic Web standards such as OWL, SKOS and RDFa. His research group is involved a
wide range of national and international research projects. He is now project coordinator of the
EU Integrated Project NoTube concerned with integration of Web and TV data with the help of
semantics and was previously Scientific Director of the EU Network of Excellence “Knowledge
Web”.

Schreiber studied medicine at the University of Utrecht. After working two years at the Univer-
sity of Leiden in the Medical Informatics department he joined in 1986 the SWI (Social Science
Informatics) group of Bob Wielinga at the University of Amsterdam, where he was involved in
research on knowledge engineering. In 1992 he was awarded a PhD on a thesis entitled “Pragmatics
of the Knowledge Level”. In 2003 he moved to the VU.

Maarten W. van Someren studied Psychology in Amsterdam. He spent one year as a researcher
at the Dutch Royal Air Force and one year as a graduate student at the Department of Artificial
Intelligence at the University of Edinburgh. Since 1985 he has been working at the Department of
Social Science Informatics, teaching Artificial Intelligence, Prolog, Cognitive Modelling and Machine
Learning. His current interests include machine learning with applications in knowledge engineering
and modelling human learning and problem solving. He is co-author with J. Sandberg and Y. Barnard
of a book on the Think Aloud Method. He was coordinator of MLNET II (Network of Excellence
in Machine Learning) and COIL (Cluster of Networks on Computational Intelligence). Recent
interests are adaptive interactive systems and multi-agent learning. Organized many conferences
and workshops, including the Belgian-Dutch Artificial Intelligence Conference BNAIC 2001.

	Abstracting and reasoning over ship trajectories and web data with the Simple Event Model (SEM)
	Abstract
	Introduction
	SEM: Simple Event Model
	Related work
	EO
	LODE
	CIDOC-CRM
	Comparison

	Use case: maritime situational awareness
	Data sources
	From AIS data to segments of consistent movement
	From segments to semantics
	Conflation of places and actors
	Deriving complex SEM events

	Conclusion and future work
	References

