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Abstract In this work we seek to provide insight on the general topic of soft biomet-
rics. We firstly present a new refined definition of soft biometrics, emphasizing on
the aspect of human compliance, and then proceed to identify candidate traits that
accept this novel definition. We then address relations between traits and discuss
associated benefits and limitations of these traits. We also consider two novel soft
biometric traits, namely weight and color of clothes and we analyze their reliability.
Related promising results on the performance are provided. Finally, we consider a
new application, namely human identification solely carried out by a bag of facial,
body and accessory soft biometric traits, and as an evidence of its practicality, we
provide preliminary promising results.

Keywords Soft biometrics · Weight · Clothes color · Bag of soft biometrics ·
Human identification · Multibiometrics · Biometrics

1 Introduction

Classical biometry offers a natural and reliable solution for establishing the identity
of an individual. The use of human physical and behavioral characteristics has
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been increasingly adopted in security applications due to various advantages, such
as universality, robustness, permanence and accessibility. Currently state-of-the-art
intrusion detection and security mechanism systems include meanwhile by default at
least one biometric trait. The latest addition of soft biometry inherits a main part of
the advantages of classical biometry and furthermore endorses by its own assets.

The beginnings of soft biometrics science were laid by Alphonse Bertillon in
the nineteenth century, who firstly introduced the idea for a personal identification
system based on biometric, morphological and anthropometric determinations [57].
He used traits like colors of eye, hair, beard and skin; shape and size of the head;
general discriminators like height or weight and also description of indelible marks
such as birth marks, scars or tattoos. A great majority of those descriptors fall at the
present time into the category of soft biometrics. Jain et al. first introduced the term
soft biometrics to be a set of characteristics that provide some information about the
individual, but are not able to individually authenticate the person, mainly due to lack
of distinctiveness and permanence [31]. Later on, the work in [32] additionally noted
that soft biometrics are not expensive to compute, can be sensed at a distance, do
not require the cooperation of the surveillance subjects and have the aim to narrow
down the search from a group of candidate individuals. Moreover we here note that
the human compliance of soft biometrics is a main factor, which differentiates soft
biometrics from classical biometrics offering new application fields.

New def inition Soft biometric traits are physical, behavioral or adhered human
characteristics, classifiable in pre-defined human compliant categories. These cat-
egories are, unlike in the classical biometric case, established and time-proven
by humans with the aim of differentiating individuals. In other words the soft
biometric traits instances are created in a natural way, used by humans to distinguish
their peers. We note that the human compliant labeling is referred to as semantic
annotation in [59].

Based on this new definition in this paper we proceed to ascertain candidate soft
biometric traits and to elaborate advantages, relations and limitations among traits.
We identify hereafter two novel traits, weight and clothes color, which involve both
anthropometric measures as well as accessories attributes. We present associated
estimation methods and provide results on their accuracy.

The plethora of soft biometrics related benefits motivates the application exam-
ination of employing solely soft biometric traits with the purpose of human iden-
tification. This approach is new and has several advantages over classical biometry
human identification, as non obtrusiveness, computational and time efficiency to
name a few. Towards the named application we create a Bag of Soft Biometrics
(BoSB) by a previously presented set of facial soft biometrics and the new introduced
traits, weight and clothes color. We analyze the identification potential of the facial,
body and accessory system and proceed to show very promising results on the full
Bag of Soft Biometrics.

The paper is organized as follows. Section 2 introduces a candidate list of soft
biometric traits and portrays pertinent advantages and limitations. The same section
also identifies former related work on soft biometric traits. In Section 3 three
application scenarios are provided. Along with the already known and established
efforts on fusion and filtering for/with hard biometrics, a novel application, namely
human identification, is motivated. In Section 4 a set of six facial soft biometrics
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is elaborated, for which estimation algorithms are featured, along with the related
experimental results. Section 5 establishes two novel soft biometric traits, weight
and color of clothes, providing related experimental results of reliability and per-
formance. Finally, towards a statistical analysis of a holistic body and face soft
biometric system, Section 6 presents a framework for human identification, the
related relevant parameters and design aspects. An example for a specific soft-
biometric system reveals an intuition on the potential and the relation between
complexity and performance.

2 Soft biometrics

Soft biometrics have gained more and more interest of the biometry and other
communities for various reasons, like the need for higher reliability in biometric
systems and the great number of advantages coming along with the integration of
soft biometric traits in systems. In this chapter we want to provide an overview
of soft biometric traits, their classification, the related advantages and limitations.
Furthermore we take a look at work already performed on soft biometrics traits or
systems integrating soft biometric traits.

2.1 Soft biometric traits

We here proceed to illustrate (see Table 1) a range of characteristics which accept the
above stated definition. The presented soft biometric traits list is not exhaustive and
will increase with technological progress. In a first attempt to differentiate between
soft biometric traits we firstly identify the affiliation to face, body or accessory
categories. We here note that even though classically accessories do not belong to
biometry, the above stated definition clearly includes them in the category of soft
biometrics. A further argumentation can be the intuitive human use of obvious
accessory items as a mean of description and discrimination, for example “the person
in the red shirt”. Further significant factors for classifying soft biometric traits are
distinctiveness and permanence. Distinctiveness is the strength with which a trait is
able to distinguish between individuals. Beard as an example has a low distinctiveness,
since it can only be applied to the male part of the population and furthermore has
binary categories. The latter points out a certain correlation between distinctiveness
and nature of value. Continuous traits are in general more distinctive than discrete
and moreover binary ones. In this context we want to mention the difference between
nature of value and human labeling of traits. While hair color has different nuances
and is thus of continuous character, humans tend to label it for convenience purposes
as discrete. This approach will as well be followed by soft biometric estimation
algorithms, detecting for example hair color in categories (black, blond, brown, etc.)
rather than RGB values.

The permanence of a trait plays a major role for the employable application. As
an example an application, where identification within a day is required will accept
low permanent traits like age, weight or clothes color.

The final subdivision subjective perception stands for the ability of humans to
unambiguously identify specific soft biometric traits. Again the nature of value plays
an important role, since characteristics with binary categories, are generally more
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Table 1 Table of soft biometric traits

Soft biometric trait Face/body/ Nature Permanence Distinctiveness Subjective
accessory of value perception

Skin color Face Continuous Medium Low Medium
Hair color Face Continuous Medium Medium Medium
Eye color Face Continuous High Medium Medium
Beard Face Binary Low/medium Low Medium
Moustache Face Binary Low/medium Low Medium
Facial measurements Face Continuous High Medium Medium/high
Facial shapes Face Discrete High High High
Facial feature Face Continuous High High Medium/high

measurements
Facial feature shapes Face Discrete High High High
Make-up Face Discrete Low Low Medium
Ethnicity Face Discrete High Medium Medium
Marks Face/body Discrete High Medium/high Low
Gender Face/body Binary High Low Low
Age Face/body Continuous Low/medium Medium Medium
Height Body Continuous Medium/high Medium Medium
Weight Body Continuous Low/medium Medium Medium
Gait Body Continuous Medium Medium High
Body measurements Body Continuous Medium/high Medium/high Medium
Body shapes Body Discrete Medium Medium Medium
Clothes color Accessory Discrete Low Medium Medium
Glasses Accessory Binary Low/medium Low Low

straightforward to be sensed than continuous ones. Increased subjective perception
of discrete or continuous traits is further due to the not well-defined categories
or the different beholder’s percipience. In fact the notion of soft biometrics bares
subjectivity even in the decision of the nature of value. With other words, colors can
be argued to be continues, due to the huge variance in nuances blending into each
other, or discrete due to the fact that colors can be described by discrete RGB values.

We note that the classification of soft biometric traits can be expanded and aspects
like accuracy and importance can be evaluated or deduced respectively, depending
on the cause for specification (e.g. suitability for a specific application).

2.2 Characteristics, advantages and limitations

Soft biometrics has carried in some extent the attributes of classical biometrics over,
as the idea of identification management based on who you are is still pursuit. The
traits provide weak biometrical information about the individual and correspond-
ingly have inherited the predicates to be universal, measurable and acceptable; the
trait’s detection algorithm(s) performance should be able to meet the application’s
requirements. To a certain degree also the aspects uniqueness, permanence and
circumvention play a role for soft biometrics, but are treated to a greater extend
flexible.

Recently, soft biometric traits have been employed to preliminary narrow down
the search of a database, in order to decrease the computational time for the
classical biometric trait. Another application approach is to fuse soft biometrics and
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classical biometric traits to increase the system reliability. Soft biometrics impart
systems substantial advantages: they can be partly derived from main detected
classical biometric identifier, their acquisition is non obtrusive and does not require
enrolment; training can be performed in advance on individuals out of the specific
identification group. Summarizing soft biometric traits typically are:

– Human compliant: Traits are conform with natural human description labels.
– Computational efficient: Sensor and computational requirements are marginal.
– Enrolment free: Training of the system is performed off-line and without prior

knowledge of the inspected individuals.
– Deducible from classical biometrics: Traits can be partly derived from images

captured for primary (classical) biometric identifier (e.g. eye color from iris
images).

– Non intrusive: Data acquisition is user friendly or can be fully imperceptible.
– Identifiable from a distance: Data acquisition is achievable at long range.
– Not requiring the individual’s cooperation: Consent and contribution from the

subject are not needed.
– Preserving human privacy: The stored signatures are visually available to every-

one and serve in this sense privacy.

The plethora of utilities related to soft biometrics comes along with limitations,
namely the lack of distinctiveness and permanence. A system consisting of fused soft
biometric traits can overcome the lack of distinctiveness associated with a single trait.
The lack of permanence affects and designates feasible applications.

2.3 Former work on soft biometric traits

Here we want to outline work pertinent to soft biometrics. This overview does
not claim to be an exhaustive state of the art, but rather a highlight selection on
performed scientific studies.

2.3.1 Facial soft biometrics

Former work on soft biometrics has been performed predominantly with the aim
of preprocessing. In face recognition for person identification, for instance, beard
detection and removal serves an improvement of recognition results, disregarding
the information of the presence of beard.

Color based facial soft biometrics The color based facial soft biometric traits (eye,
skin, and hair color) are the most obvious facial identifiers, mentioned primarily by
humans, when portraying unknown individuals. Challenges for skin classification are
on the one hand the low spread of different skin colors in color space, and as a
consequence, on the other hand the high illumination dependance of classification.
Latter is described in various skin locus papers, for example in [25].

Hair color is detected by similar techniques like skin color and often researched
along, but has more broadly scattered color categories. In [60] a method for human
head detection based on hair-color is proposed through the use of Gaussian mixture
density models describing the distribution of hair color. In [24] the fuzzy theory is
used to detect faces in color images, where two fuzzy models describe the skin color
and hair color, respectively.
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Eye color detection, unlike the other color based facial soft biometrics is a
relatively new research topic. Few publications offer insight (e.g. [14]), probably
due to the fact that 90% of humans possess brown eyes. An advantage of eye color
detection is the availability of all necessary information in images used for iris pattern
analysis, with other words iris color is a free side effect. Work on fusion between
iris texture and color can be found in [71], where the authors fuse iris and iris color
with fingerprint and provide performance improvement in respect with the unimodal
systems. In [56] iris color is used to successfully support an iris indexing method.

Beard and moustache detection Presence of beard and moustache are not appearing
in literature as an identification trait, but rather as an obstacle for face recognition,
which is why their removal is performed as a preprocessing step. As an example, in
[38] a beard removal algorithm from bearded images is shown using the concept of
structural similarity and coordinate transformations.

Age Age plays an important role for long time employable systems based on face
or body and is a challenging and relatively new field. An interesting study on face
changes over time can be found in [54], which spans a biometric, forensic, and
anthropologic review, and further discusses work on synthesizing images of aged
faces. In [67] the authors distinguish children from adults based on the face/iris size
ratio. Viola–Jones face detection technique [64] is used, followed by an iterative
Canny edge detection and a modified circular Hough transform for iris measuring,
with good results. In [52] the authors observe facial skin regions of Caucasian women
and build partial least square regression models to predict the chronological and the
perceived age. They find out that the eye area and the skin color uniformity are the
main attributes related to perceived age.

Gender Gender perception and recognition has been immensely researched al-
ready in social and cognitive psychology work in the context of face recognition.
From image processing point of view, the topic offers as well myriads of approaches.
The latest efforts employ a selection of fused biometric traits to deduce gender
information. For example in [6] gait energy images and facial features are fused
and classified by support vector machines. Another approach in [58] proposes a
combined gender and expression recognition system by modeling the face using
an Active Appearance Model, feature extraction and finally linear, polynomial and
radial based function based support vector machines for classification. The work in
[3] proposes using adaboost on several weak classifiers, applied on low resolution
grey scale images with good results. Matta et al. [46] present a novel multimodal
gender recognition system, based on facial appearance, head and mouth motion,
employing the means of a unified probabilistic framework.

Ethnicity Ethnicity recognition is an ethically and sociological hot debated trait,
once again relevant for face recognition. In the context of ethnicity a uniquely
defined classification is a difficult and important task. For recognition of Asian and
non-Asian faces in [44] machine learning framework applies a linear discriminant
analysis (LDA) and multi scale analysis. A further framework, integrating the LDA
analysis for input face images at different scales, further improves the classification
performance. In the paper [28] an ethnicity recognition approach is based on Gabor
Wavelets Transformation, combined with retina sampling for key facial features
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extraction. Finally support vector machines are used for ethnicity classification
providing very good results, even in the presence of various lighting conditions.

Facial measurements Facial measurements were early on found as very distinctive
and helpful in the context of facial recognition [51]. Later studies continue employing
facial measurements, and apply on 3D [7].

Recent work on facial soft biometrics is performed on scars, marks and tattoos by
the authors in [42].

2.3.2 Body soft biometrics

Height, gait, body weight and color of clothes concern the body and are the main
traits that can be extracted from a distance. The best distinctiveness is provided by
gait detection, which is why gait occasionally is referred to as a classical biometric.

Gait Gait is a complex pattern that involves not only some anthropometric pa-
rameters but also behavioral information. It is one of the few traits that can be
gathered at a distance. A preliminary experiment on gait analysis is presented in
[36], where the author uses lights attached to the joints of the human body to
record subjects’ gait models. The author demonstrates how observers can recognize
walking people familiar to them just by the light traces. Since 1970’s many other
authors were interested in the topic of automatic gait recognition: in [65] a spatio-
temporal signature is extracted by the moving silhouette, a principal component
analysis is employed later to discard irrelevant information and finally supervised
pattern classification techniques are performed in the lower-dimensional eigenspace.
For recognition with this analysis both the structural and behavioral characteristics of
gait are captured. Another interesting work is proposed in [59], where gait is chosen
as primary biometric trait to be coupled with “semantic biometrics”, that seems to
be a very similar concept to soft biometrics. The system merges the results of the
signature generated by gait with the one generated by the semantic information in
order to identify users of the biometric system. A recent approach based on soft
biometrics is provided in [49].

Height For automatical height estimation foreground and background recognition
is necessary, which can be adopted by diverse silhouette extraction techniques used
for gait recognition. Height is a trait employed for human tracking or as an aid for
other algorithms, like gait. Important publications in this context are [11, 33] and [45],
where single and multiple calibrated camera systems are used for height estimation,
respectively. The estimation is performed via the computation of height related to
the real world coordinates estimated in camera images.

Body measures Work on anthropomeasures was done in [4] and [10] and involve
height estimation plus shoulder breadth [4] or height estimation and stride informa-
tion [10] as for building up a multimodal identification system.

Weight To the best of our knowledge, the only paper on soft biometrics which
involves weight [2], uses a scale to weigh users of a fingerprint recognition system.
By exploiting weight and body fat measurements the authors reduce the total error
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rate of the system by 2.4%. It is clear that weight represents a novel soft biometric
trait that still has to be explored especially for what concerns its measurement.

2.3.3 Accessory soft biometrics

The new soft biometrics definition allows the inclusion of accessories among these
traits. Accessories can indeed be related to personal characteristics (as sight prob-
lems in case of glases), or personal choices (as adornment in case of jewelry).

Eye glasses detection The forerunner for glasses detection are Jiang et al. [34],
performing classically edge detection on a preprocessed gray level image. Certain
face areas are observed and an indicator for glasses is searched for. The most
successful identifier region for glasses is found to be the nose part of the glasses,
between the eyes. A different approach for glasses extraction is employed in [70],
where a face model is established based on the Delaunay triangulation. A 3D method
to detect glasses frames is presented in [69], where 3D features are obtained by a
trinocular stereo vision system. The best results on glasses detection up to now are
achieved on thermal images [26].

2.3.4 Combined soft biometrics

Since soft biometrics is individually not distinctive and permanent, a combination
of traits could overcome those limits. In this context, many recent papers deal with
fusion of classical biometry and soft biometry or exclusively with fusion of soft
biometric traits. An example for latter is the work in [53]. The authors propose
algorithms for gender, body size, height, cadence, and stride using a novel gait
analysis tool. In [18] height, and appearance are extracted from videos and exploited
in a multiple camera video surveillance scenario in order to track the subjects that
cross the surveillance network. In [43] a novel approach for recognizing the gender,
ethnicity and age with facial images is proposed. The approach is a novel combination
of Gabor filter, Adaboost learning and support vector machine classifier. The
experiment results of the system based on this approach are reported to show a
good performance. A further hybrid classification based on gender and ethnicity is
considered in [23] and [22]. The hybrid approach consists of an ensemble of radial
basis function networks and inductive decision trees. The authors show robustness
and good perfomance. A different approach for analysis in hybrid soft biometric
systems is provided in [59], where semantic information (which corresponds to
soft biometric classifiers) is manually extracted from a series of videos. Using the
analysis of variance the authors select a pool of traits which are considered the most
representative. Those traits are then used together with gait information. The authors
demonstrate that the additional information provided by the semantic traits increases
the performance of the people recognition system based on gait. The authors in
[1] go one step further and study the relation of human body measures, which
allows for certain applications the prediction of missing body measures. In [62] the
authors propose an approach for people search in surveillance data, characterized
by three main elements: sensors, body parts, and their attributes. The body parts and
attributes are hereby closely related to soft biometrics. In [13] a theoretical analysis of
reliability performance of soft biometrics employed for identification is presented. In
this work identification errors due to collision are considered. The statistical behavior
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of soft biometric systems is analyzed in the asymptotic setting of a large number of
facial and body feature categories.

3 Domains of application

As already mentioned, most of biometric systems in scientific literature use a
single trait for recognition, for which reason they are sometimes called unimodal
biometric systems. It is well known that these kinds of systems are affected by
problems like noisy sensor data, low permanence and/or lack of distinctiveness of
the chosen biometric trait, unacceptable error rates, and spoof attacks. Some of the
problems associated with unimodal biometric systems can be overcome by the use
of multimodal biometric systems that combine the evidence obtained from multiple
sources [27]. A multimodal biometric system based on different biometric identifiers
like fingerprint, iris, face, and hand-geometry can be expected to be more robust to
noise, to address the issue of non-universality, to improve the matching accuracy,
and to provide reasonable protection against spoof attacks. However, such a system
will require a longer time of the matching step, thereby causing inconvenience to the
users. A possible solution to the problem of designing a reliable and user-friendly
biometric system is to use soft biometric signatures to improve the performance of
the primary biometric system.

3.1 Fusion with classical biometric traits

A general framework to integrate the information provided by soft biometric
signatures with the ones of a primary biometric system is described in Fig. 1. This
implementation serves an increase of detection reliability and was suggested in [31].

Fig. 1 Framework of integration of soft biometrics to improve the accuracy of classical biometric
systems
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The suggested framework can be described as follows. Let W = {w1, w2, ..., wn}
be the set of the n users enrolled in the database, and let x be the feature vector
corresponding to the primary biometric system. Without loss of generality, we can
assume that the output of the primary biometric system is of the form P(wi|x),
i = 1, 2, ..., n, where P(wi|x) is the probability that the test user is wi given the feature
vector x. Let y = {y1, y2, ..., ym} be the soft biometric feature vector, the updated
probability of user wi, given the primary biometric feature vector x and the soft
biometric feature vector y, P(wi|x, y), can be calculated using the Bayes rule as:

P(wi|x, y) = p(y|wi)P(wi|x)
∑n

j=1 p(y|wj)P(wj|x)
(1)

In the above formulation it is necessary to take into account that all m soft
biometric variables are not equally weighted. In practice, some soft biometric
variables may contain more information than others. Therefore, it is necessary
to introduce a weighting scheme for soft biometric traits based on an index of
distinctiveness and permanence, i.e., traits that have smaller variability and larger
distinguishing capability will be given more weight in the computation of the final
matching probabilities. In the same way, smaller weights should be assigned to the
soft biometric traits compared to those assigned to the primary biometric traits. This
differential weighting also has another implicit advantage: even if a soft biometric
trait of a user is measured incorrectly (e.g., a male user is identified as a female), there
is only a small reduction in the posteriori probability and the user is not immediately
rejected. In this case, if the primary biometric produces a good match, the user may
still be accepted. Only in the case that several soft biometric traits do not match, there
is significant reduction in the posteriori probability and the user could be possibly
rejected. If the devices that measure the soft biometric traits are reasonably accurate,
such a situation has very low probability of occurrence.

The described approach has been followed, for example, in [31]. In this paper the
authors show the benefits of using gender, ethnicity and height information of the
user in addition to fingerprint. The use of these soft biometric signatures leads to an
improvement of approximately 5% over the primary biometric system.

Similar results were obtained in [2], in which the authors combine body weight and
fat measurements with fingerprint. The experimental results show that the total error
rate improves from 3.9% to 1.5% when body weight score is fused with fingerprint
score.

3.2 Pruning the search

Other than improving the performance of a classical biometric system, soft biometric
signatures were used in the scientific literature to prune large biometric database in
order to improve the search efficiency of the biometric system, as shown in Fig. 2.

In this scenario the soft biometric signature is used as a side information to filter
the original dataset W and to find a subset of the dataset Z = {

wj ∈ W|P(wj|y)
}
.

The selected dataset Z = {
z1, z2, ..., zp

}
will contain the p (with p <= n) elements

of W that satisfy the soft biometric information y. The new filtered dataset will
then be used in the classical biometric system to find the user identity based on the
probability P(zi|x).



Multimed Tools Appl (2011) 51:739–777 749

Fig. 2 Framework of integration of soft biometrics to improve the search efficiency of classical
biometric systems

As shown in the figure, filtering refers to limiting the number of entries in
a database to be searched, based on characteristics of the interacting user. For
example, if the user can somehow be identified as a middle-aged male, the search
can be restricted only to subjects enrolled in the database with this profile. This
greatly improves the speed or the search efficiency of the biometric system. While
filtering reduces the time required for identification, errors in filtering can degrade
the recognition performance. This is a delicate aspect to take into account when
designing the biometric system.

Wayman [66] proposed as an example the use of gender and age for filtering a
large biometric database.

The framework introduced in Fig. 2 can be also useful to tune the parameters of
the classical biometric system. Some studies [20, 50] have shown that factors such as
age, gender, race, and occupation can affect the performance of a biometric system.
For example, a young female Asian mine-worker is seen as the most difficult subject
for a fingerprint system. This provides the motivation for tuning the biometric system
parameters (dotted line arrow in the figure), such as the threshold on the matching
score in a unimodal biometric system or the weights of the different modalities in a
multimodal biometric system, to obtain the optimum performance for a particular
user or a class of users. Filtering and system parameters tuning require an accurate
classification of a user into a particular class or bin (e.g., male or female, blue or
brown eyes, Caucasian or Asian or African). This requires a filtering module that
can accurately perform this classification.

In this paper we introduce a new application of soft biometry, that is person
identification. While it is obvious that the accuracy provided by the use of soft traits is
limited with respect to classical biometric systems, in some scenarios they can provide
useful information to identify and recognize people, as explained in the next section.

3.3 Human identification

As mentioned above distinctiveness is the power a biometric trait has for distinguish-
ing different subjects. Considering this definition, it is straightforward to understand
why distinctiveness is one of the leading characteristics of a biometric identifier. The
higher this value is, the lower will be the possibility of the system to confuse two or
more identities.
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Intuitively it is easy to achieve good distinctiveness by using complex natural
patterns, like iris and fingerprint. On the other hand poor distinctiveness and low
permanence of soft biometric traits do not allow their individual use as features for
the identification process. Hair color, like body weight or height, are features not dis-
criminative enough to unambiguously identify a subject. Indulging the comparison, a
single minutia or one ridge, or a small section of the iris, could not be representative
and discriminative enough for the recognition process. Only by gathering many small
features we are able to build a model of the biometric trait that represents the identity
of the subject we want to recognise.

Considering this idea and extending the concept of Bag of Features, we introduce
in this section the notion of Bag of Soft Biometrics (BoSB) for human identification.
A BoSB computes a signature, constructed by an ensemble of extracted soft biomet-
ric features.

The concept of Bag of Soft Biometrics is directly inspired from the idea of Bag of
Words [35, 68] and Bag of Features [41] developed under the context of text mining
and content based image retrieval. In those cases the “items” of the bag are words
occurrences in the first case, features extracted from the image in the second one. In
our case the components of the bag are the soft biometric signatures we extract from
the visual appearance of the subject.

Analog to fusing small feature components in classical biometry, we will proceed
to show how increasing the number of soft biometric traits involved in the com-
putation leads to a rise of the system’s distinctiveness. The identification approach
we present is based on a signature composed by soft biometric traits, which can be

Database
W={w 1, w2, …, w n}

Description
provided by
human user

BOSB
computation

Camera
network

Hairs color

Beard/moustache

Glasses

Body size

Skin color

…

y

matching
module

Decision module

User identity

P(w i| y)

1st scenario

2nd scenario

y1

y2

Fig. 3 The scheme presents the design of an identification system based on soft biometric traits. The
bag of soft biometrics can be extracted directly from the image/videos of the subject to identify, or
by a description of the physical aspect provided by a human operator
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extracted from images or videos. The general framework of the system is presented
in Fig. 3. Here the camera network is connected to the system that extracts the
features, which will compose the signature. These features become part of the Bag
of Soft Biometrics which can be stored in a database for further availability. The
database is accessible by the matching module, which has the purpose to compare
the signature of the person we want to identify with the ones stored in the database.
One noteworthy aspect is that the signature is human compliant: as an input we can
provide a human description, as well as images/videos from a camera to automatically
extract an identification signature (see the bottom part of Fig. 3).

In order to better clarify the possible uses of such a system, two different scenarios
are presented hereafter. The first one concerns mainly the use of images or videos
to extract the signature. In this case a security agent can exploit the information of
the last location of a theft victim to detect the thief in surveillance videos. Once
the criminal has been detected at the moment of the theft, his/her Bag of Soft Bio-
metrics can be extracted from the images and used to track him/her over the entire
network.

In the second scenario the signature is not extracted from multimedia content
but is obtained through the description of the person to be identified. As example
let us consider a mother who lost her child in a supermarket. She can provide a
description to the security officer, who will send these information into the Soft
Biometric identification system. The algorithm will then find the current location
of the missing child exploiting the Bag of Soft Biometrics associated to the child
description.

As one can observe, the Bag of Soft Biometrics allows to fill the gap between the
human and the machine as such signature is human readable by definition. Addi-
tionally, the signature extraction does not need the cooperation of the subject. This
makes the Bag of Soft Biometrics suitable for all surveillance applications, where
such cooperation is impossible or really difficult to achieve, as for the aforemen-
tioned scenarios.

In the following sections we will introduce the soft biometric traits for our Bag of
Soft Biometrics which include both facial and body related characteristics. We will
see that the use of multiple soft biometrics can guarantee enough distinctiveness to
differentiate individuals and then to identify them.

4 Set of facial soft biometrics

As elaborated in the previous section higher and more satisfactory distinctiveness
can be achieved by using more than one trait, rather than a single trait. Thus we

Table 2 Table of facial soft
biometric traits

SB trait Algorithm Database

Skin color Deduced from [37] Feret
Hair color Deduced from [61] Feret
Eye color Own developed Ubiris 2
Beard Own developed Feret
Moustache Own developed Feret
Glasses Deduced from [34] Feret
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Fig. 4 ROI for the set of facial soft biometrics. Outlier filtering was a function of the standard
deviation σ and the mean μ for each of the H, S and V parameters

here propose a set of facial soft biometrics that later in Section 6 will be exploited
for human identification. In an effort to find a good balance between authentication-
reliability and complexity, we here propose a soft-biometric system that focuses on
simple and robust detection from a bounded set of traits and their trait-instances. In
what follows, we will describe these basic elements, as well as the employed detection
algorithms.

In the presented set of facial soft biometric traits, we allocate 6 traits, which we
choose and label as shown in Table 2.

We proceed now to specify basic aspects of the detection algorithms that were
used for trait-instance identification.

4.1 Detection algorithms

The basic detector consisted of an automatic frontal face and facial features detector,
which was partially drawn and modified from the algorithms in [64]. Implementation
of the different detection algorithms (see Table 2 for an overview) was performed
using OpenCV.1

Before describing some basic aspects of the implemented trait detection algo-
rithms, we note few pertinent issues that accompany detection. Regarding coordinate
determination, we note that typical eye, skin and hair color detectors require knowl-
edge of the eye coordinates, and similarly hair color detection requires knowledge of
the coordinates for the upper head region. The precise computation and extraction
of the characteristic regions of interest (ROI) (see Fig. 4) for the eyes, mouth, nose
and upper face coordinates, are essential for the subsequent detection. For higher
accuracy, only in the training step, all coordinates were manually annotated. The
considered ROIs for the selected soft biometric traits are illustrated in Fig. 4. Iden-
tification of the ROI was generally followed by acquisition of the Hue, Saturation
and Value (HSV) values. We note that the HSV color-space was chosen for being
robust to illumination changes, as well as for the fact that it allows for a high degree
of independence between the H, S, and V parameters, which renders the system
capable to better handle light changes or shadows. Regarding outlier filtering, we

1OpenCV webpage on Source forge http://souceforge.net/projects/opencvlibrary/.

http://souceforge.net/projects/opencvlibrary/
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Fig. 5 Facial soft biometric
traits algorithmic
dependencies

used a simple threshold on the HSV values, based on the color standard-deviation
σ . This was followed by HSV normalization. Regarding the statistical modelling,
the probability density functions of skin, eye and hair color were computed using
3-component Gaussian mixture models whose parameters were estimated using the
EM algorithm. Posterior probabilities over the observed HSV vectors for all trained
trait instances were computed, followed by a majority vote decision on the detected
trait instance.

1. Eye color detection: In this setting, careful and precise consideration of the
ROI was particularly important, due to the regions inherently small size. The
specific ROIs were retrieved using the circular Hough transformation, followed
by pupil and reflection extraction, and then by acquisition of the HSV vectors.
Regarding the training step, each eye color group was trained using images from
the Ubiris22 database.

2. Hair color detection: The hair color ROI was chosen as a thin bar in the upper
head region, as indicated in Fig. 4. Training utilized 30 Feret3 images for each of
the hair colors, where the annotation was done manually.

3. Skin color: Detection of skin color was done in accordance to the eye coordinates
which defined the ROI for the skin color detection to be the area underneath the
ocular region. Training utilized 33 Feret images per skin color group, which were
again annotated manually.

4. Eye glasses detection: Towards glasses detection, we considered that the areas
around the eyes can be searched both for hints of glasses as well as for glass
reflections. Challenges related to the fact that glasses frames are either occasion-
ally absent, or that they often resemble wrinkles, brows, shades and hair. Further
challenge came from the fact that illumination variances hindered the appear-
ance of reflections. These challenges were handled by placing emphasis on a ROI
corresponding to the nose part of the glasses. The specific algorithm consisted of
eye position detection, grey-level conversion, histogram equalization, extraction
of region between the eyes, Laplacian edge detection and finally line detection.

5. Beard and moustache detection: In this case, face detection and feature localiza-
tion were followed by identification of the ROIs. These ROIs include the chin
for the beard, and the area between the mouth and nose for the moustache.
The color estimation was followed by outlier extraction and HSV normalization.

2Available for download at http://iris.di.ubi.pt/ubiris2.html.
3Available for download at http://www.itl.nist.gov/iad/humanid/feret.

http://iris.di.ubi.pt/ubiris2.html
http://www.itl.nist.gov/iad/humanid/feret
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Table 3 Glasses, beard, and moustache detection results. The experiments are conducted on the well
known Feret database

SB trait Detection rate (%) FPR (%) FNR (%)

Glasses 87.17 7.17 5.66
Beard 80.7 8.1 11.2
Moustache 72.8 12.7 14.5

The presence of beard and/or moustache was based on the Euclidean distance
between the processed observation and skin and hair-color information respec-
tively. The presence of moustache was determined independently.

Algorithmic dependencies As it is the case with general optimization problems,
identification of algorithmic dependencies endows the system with increased reli-
ability and computational efficiency. Towards this we refer to notable examples
of such dependencies, such as that between skin color and glasses where, due to
ROI overlapping, the presence of glasses has an impact on the perceived skin color.
This information can be utilized and employed by modifying the ROI for skin color
detection. Additionally we recall that skin color is employed in the detection of hair,
beard and moustache, where furthermore the latter two traits are also contingent
upon hair color. Figure 5 sketches further dependencies of the mentioned facial soft
biometric traits. Some of these dependencies were partly exploited in the process of
detection.

4.2 Experimental results

The above introduced algorithms for detection of the chosen facial soft biometric
traits are here examined and evaluated. It is to be noted that the traits glasses, beard
and moustache are of a binary character, whereas the color based facial traits possess
discrete traits instances.

Glasses Tests for eye glasses detection were performed on a testing set of images
of Feret4 database. The threshold based algorithm provided a correct detection
rate (containing the true positive and true negative rate) of 87.17% (see Table 3)
comparable to the results in [34].

Color based facial soft biometric traits: eye, skin and hair color In the context of the
color based facial soft biometrics it is to be noted, that the number of the established
classification groups was adjusted to both, the performance and limitations of human
perception and estimation capabilities. Results are presented in true positive rates
and confusion matrices in Fig. 6. For the latter the values range from white (no
confusion) to black (maximum confusion). The diagonal fields correspond to the
true positive rates. Eye color results were performed on a testing set containing 5 eye
color groups, namely black, brown, blue, gray and green. The images were retrieved
from the Ubiris25 database and results are presented in Table 4 and in Fig. 6a. We

4Available for download at http://www.itl.nist.gov/iad/humanid/feret.
5Available for download at http://iris.di.ubi.pt/ubiris2.html.

http://www.itl.nist.gov/iad/humanid/feret
http://iris.di.ubi.pt/ubiris2.html
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(a) (b) (c)

Fig. 6 Confusion matrices: a eye color b hair color and c skin color

here briefly note the peak confusion rate between blue and gray eye color, mostly
responsible for the overall break-in in the true positive rate. Hair color is classified in
5 groups, black, brown, red, blond and grey. A testing set of Feret images provided
the in Table 4 and Fig. 6b presented results. Skin color exhibits low variation in color
spaces and thus slightly illumination changes result in wrong classifications. Due to
this challenge the limitation of 3 skin color groups was adopted with related results
presented in Table 4 and Fig. 6c. The confusions were mostly due to illumination
variances and detected shadows, which result in a shift on the skin color shades.

Beard and moustache detection Once more a set of Feret images was employed for
the validation of beard an moustache. The binary character of the traits (present or
not present) is in real images ambiguous, due to various lengths and shapes of beard
and moustache. This factor made a unique annotation and then in turn estimation
difficult and led to the results shown in Table 3. A small fraction of the wrong
detections is due to the not correspondence between hair color and beard/moustache
color, which we assumed in the detection algorithm.

This chapter presented six facial soft biometric traits, which will be in the following
a part of a Bag of Soft Biometrics, see Section 6. The referred bag will be furthermore
constructed by the novel soft biometric traits introduced in the next chapter, and will
constitute a tool for human identification.

5 Novel soft biometric traits

As already explained in the introduction, a contribution of this work is the descrip-
tion of two new soft biometric traits: weight and clothes color.

Although marginally introduced as possible soft biometric trait [31], and although
being already exploited in [2], to the best of our knowledge no other work on
weight relates to soft biometrics exists. As already mentioned in Section 2 the main
limitation for its use has probably been the need of specialised sensors and the
obliged cooperation of the user, limitations that contrast with the general use of soft

Table 4 Eye, skin and hair color true positive rates

Eye color Skin color Hair color

True positive rate 72.6% 79.2% 70.08%
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biometrics. By using a scale in [2] the authors weigh clients of a fingerprint system.
The identification score given by the fingerprint matching is coupled with the one of
the weight. It has been proved that the latter one allows to increase the performances
in terms of smaller EER. Although the contribution of weight as soft biometric trait
has been proved being positive, alternative ways for measuring it had never been
explored, that is to say we are bound to use the scale as unique tool for weighing
people. Such limitation makes the use of this trait at a distance almost impossible,
impairing many applications that could exploit this soft biometric trait. In Section 5.1
we present a preliminary analysis to overcome this limitation and to automatically
estimate body weight at a distance. To the best of our knowledge this is the first
attempt in this direction.

The second trait we introduce in this section is clothes color. It has never been
considered as a soft biometric trait, since it is not a feature belonging to the human
itself and thus it cannot be considered bio-inspired. Moreover its variability over
time is high also in the same session (a session could be the time a selected human
appear in the field of views of a camera network). However, clothes color is probably,
together with weight and height, the main signature that the human visual system
perceives about people appearance. For this reason this trait can be used to describe
and identify human beings especially in complex scenarios like video-surveillance in
which it is more difficult to access the face signatures, as introduced in the previous
section. In this regards it is clear that clothes color could belong to the list of human
compliant soft biometrics. In Section 5.2 we will introduce a new color descriptor
designed to this aim and we will analyze its performance for humans identification.

5.1 Weight estimation

In order to study the feasibility of weight estimation, a model has to be found that
could perform the assessment from anthropometric measurements.

Anthropometric and forensic studies have for long researched the relations among
body parts and human body traits. A clear example is the relation among bones
length and height found by [17, 19]. The basic assumption is that a relation can be
inferred between height and other anthropometric measurements which are highly
correlated with the stature.

Our hypothesis is derived directly from this idea: given a set of measures com-
prehensive of the whole body (upper and lower part), it is possible to infer a
correspondence between such measures and the weight. Following our assumptions
we defined a set of anthropometric features related to each part of the body (Fig. 7);
altogether they describe the full body (height), the torso (waist), and the limbs (arms
and legs measures).

Our purpose is to understand the underlying relation between the weight and each
of these features, or each of their possible combinations. We propose to create a
model that starting from this measurements values, can provide a good estimate of
subjects weight.

To the best of our knowledge no work exists exploring the relation among these
body measurements and weight. Since a determined relation could not be found, we
explored the assumption of a linear dependency. In order to generate our model, we
based our approach on multiple linear regression analysis, as this kind of analysis
provides a powerful tool for problem fitting.
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Fig. 7 Measures taken into
account in weight estimation

The equation will then be of the form: y = β1x1 + · · · + βpxp; where y represents
the estimate, x the measures of the features, and β the corresponding coefficients. To
find the solution, the ordinary least squares method was adopted for minimizing the
sum of squared residuals and providing the optima β coefficients which minimize the
estimation error.

The rest of this section will be devoted to the introduction of the dataset used
in the experiments; subsequently the results of our weight estimation system will be
presented.

5.1.1 Experimental results

As already introduced in [8, 29, 47], weight is considered a significant body trait
from the medical community in many applications (anesthesia, quality of life in-
dex, nutritional situation); for this reason many medical databases include weight
information. Together with height it is used to compute the Body Mass Index (BMI)
and to identify possible weight disorders. NHANES [9] is one of these datasets, it
is unique because of its characteristics: size of the population (more than 28,000
people), and time span analysis (from 1999 to 2005). The purpose of this database was
the monitoring of American population, and the assessment of health and nutritional
conditions. Data was collected by trained personnel, which guarantees the same
measurement conditions, and reasonably excludes the possibility of errors.

To test our weight estimation framework we conducted two different experiments.
The first one is related to ideal conditions (i.e. the raw data coming from NHANES
dataset), the second one utilises anthropometric measurements estimated directly
from the images of a standard resolution camera commonly employed in video
surveillance (for this a self-made dataset was recorded).

The first part of our work is the model creation, for which we used the raw data of
the NHANES dataset. We consider the use of such data as ideal conditions since the
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database is not expected to have high measurements error (the data was gathered by
trained personnel).

Particularly an analysis was conducted where the fitting was performed while
varying the number of involved features from 1 to 7, so that all the possible
combinations of features were explored (i.e. 27 − 1 = 127). In a scenario that involves
weight estimation at a distance, not all the measures we defined could be available.
For this reason, having an estimator for each combination of traits, always allows to
assess the weight of the subject within a given range of accuracy.

To perform the experiments we divided the database in training and testing
set, respectively 70 and 30% of the available data. Training means finding the β

coefficients by minimizing the sum of squared residuals. Hereafter we report as
example the estimator that considers all the features at once:

weight = −122.27 + 0.48 f1 − 0.17 f2 + 0.52 f3

+ 0.16 f4 + 0.77 f5 + 0.49 f6 + 0.58 f7, (2)

where f1, . . . , f7 refers to the list of measurements already described in Fig. 7. All 127
combinations of parameters were evaluated, and the best result (shown in Table 5)
was obtained by the combination that involves all features (Eq. 3). This combination
provides us a good estimate of subjects’ weight (considered to be ±10% from the
medical community) for 93% of the testing set.

The result of our analysis is hereafter compared with experimental results from
human estimates. To do so, we report the results of an experiment conducted at the
Western Hospital of Melbourne documented in [47]. The subjects of the evaluation
were 1,137 patients. Three human estimations were collected during this test: a first
self-made by the patient, a second one by the nurses, and a last one by the physicians.
The estimation was performed visually, that makes this experiment comparable with
the one we propose. For comparison we report in Table 5 the results of the study.
Our system’s results clearly outperform human estimations of nurses and physicians
and furthermore are comparable with the patients’ estimations, which we assume
closest to the reality. Thus our approach and the related results can be considered
promising.

In order to measure the estimation performance of our system in a real case
scenario a second experiment was conducted on real images. To the best of our
knowledge, databases presenting weight as ground truth and fitting our needs are
not available to the community. For this reason we created a test set of images and

Table 5 Performance
comparison between our
estimation system and the
human visual estimation
in [47]

Error range (%)

±5% ±10%

Our system 62 93
Patients 74 91
Nurses 44 78
Physicians 33 59
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ground truths (using a scale) of 20 persons (15 male and 5 female), captured by a
video surveillance camera to recreate a possible application scenario. The images
were taken at a fixed distance from the camera. A total of 40 (profile/frontal) pictures
are available in the database. Example images are shown in Fig. 8.

Since important information about the 3D shape of the body is not available, and
the body part measures are of paramount importance in our study, an estimate of
the anthropometric measurements was performed. For what concerns the circum-
ferences involved in the computation, we considered the width of the body part
(upper arm, leg, waist, and calf) as the diameter of the cylinder that approximates
that particular body part. This is obviously a straightforward approximation of the
real measure that introduces errors in the process, nevertheless the results of our
estimation look promising. Several techniques are present in the literature about
body parts detection, like [48], and each of them could serve for the purpose of
this technique. However, being this a preliminary analysis for this work, a manual
tagging of the markers used for length information was performed directly on the
images.

Our experiment can be divided in the following steps:

1. Height estimation: we trivially compared the height of the subject with an object
of known height within the scene.

2. Approximation of the other measures: for exploiting the estimated height a
proportional coefficient was used to estimate each measure as function of the
height.

3. Weight estimation: application of our model for weight estimation.

The dataset we are considering is composed by images of dressed persons;
for which (in contrast with the NHANES dataset) we can expect errors in the

Fig. 8 An example of the two poses recorded during our database collection. A frontal and a profile
pose are experimented. One should notices how the clothes of the second subject are hiding the real
shape of his body
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Table 6 The estimation results obtained from our database. The error is shown in percentage w.r.t.
the real weight of the person

Subject ID 1 2 3 4 5 6 7 8 9 10
Error (%) 1.23 1.79 6.19 8.97 6.48 0.15 8.66 2.01 1.23 4.47

Subject ID 11 12 13 14 15 16 17 18 19 20
Error (%) 1.38 4.94 3.15 2.17 8.51 2.11 2.16 3.44 0.21 16.25

measurements’ approximation. Because of this we do not expect that the condition
of “best model” for the previous analysis will still hold. To assess such hypothesis
all the 127 combinations were tested once again. The experimental results confirmed
our hypothesis. Among all the estimators tested, the one that reports the best results
is not taking into account the calf information ( f3) since the trousers of the subjects
are commonly large enough to make the body shape underneath the fabric hard to
estimate; this affects negatively the performance of the calf contribute.

A summary of our results can be found in Table 6. The average estimate error for
this experiment is 4.3%, which confirms that our system is able to estimate the weight
from visual clues with an approximation of ±5% of error w.r.t. the real weight of the
subject.

A further important consideration must be done. Usually people refer to the
aspect (body build) of someone’s body saying it is normoweight or respectively
under/overweight. Weight measure is not enough to establish such a correspondence,
as another important information is missing. Indeed we need to know the relation
between height and weight to understand how weight is distributed on the whole
body. Leveraging again ideas from the medical community, we found it opportune to
use the Body Mass Index (BMI), which was introduced by [39] as (BMI = W

H2 ) and is
still used for distinguishing people in the aforementioned classes (for the exact values
refer to Table 7). For this reason the BMI is the component which will describe the
according body characteristic in our Bag of Soft Biometrics.

5.2 Clothes color

In this section we introduce the idea of using color, and specifically the clothes color,
as a soft biometric information which could be used to identify and recognize people
at a distance. Subjects walking across the FOVs of a camera network, indeed, can be
identified using the color of the clothes they wear. Generally, in a subject appearance,
we can distinguish two main colors (or set of colors) describing the upper and lower
parts of the body. Thus the proposed soft biometrics information consists of 2 traits,
the torso and the legs color.

In this regard we need to define a color descriptor which should be able to
resemble the way the human visual system describes and perceives color. In the

Table 7 The values that defines the BMI classes

Body condition Underweight Normoweight Overweight Severe overweight

BMI values range <18.5 [18.5, 25) [25, 30) >30
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following section we will introduce a new approach to describe a robust, illumination
and shadows invariant color descriptor.

5.2.1 Probabilistic color histogram

Color perception and understanding is an extremely complicated and nonlinear
science and defining a robust color descriptor could be a not easy task. This is
particularly true in the case of video-surveillance systems in which we must account
for spatially-distributed cameras operating under different lighting conditions and
with varying color sensitivity. In order to achieve robustness in a so complex scenario
the first step of the proposed approach consists of performing a color quantization
based on eleven colors: black, white, red, yellow, green, blue, brown, purple, pink,
orange, and grey. These colors are usually referred to as culture colors [5] and
describe the set of color terms that can be considered as universal constants among
languages and cultures. Culture colors represent the way human way of perceiving
and describing colors, thus they seem to be particularly suitable to describe human
compliant soft biometrics. One might argue that having a finer quantization may
better discern different objects. Berlin et al. [5] showed that finer quantization
leads to less reliable color prediction, and can be counter-productive in improving
prediction accuracy.

Color quantization in the eleven culture colors is performed in the Lab color space
using a fuzzy k-nearest neighbor (KNN) clustering algorithm [40]. In fuzzy clustering,
data elements can belong to more than one cluster, and associated with each element
n is a membership vector u(n) = {u1(n), u2(n), ..., uC(n)} describing the strength of
the association between that element and all the possible C clusters. The possible
clusters in our case are the eleven previously defined culture colors, thus C = 11.

The KNN algorithm is trained on a dataset of samples describing the eleven
culture colors in the Lab color space. The design of the training set is crucial in the
proposed approach. To this aim, we follow the methodology described by D’Angelo
et al. [15] consisting of collected samples describing the culture colors under various
lighting conditions and in different sensors camera. In order to obtain a so diversified
dataset of colors, the authors collected pixel samples from video clips of sport teams
with uniform color corresponding to the culture colors. The video clips of the selected
teams were randomly chosen from the web. This procedure allows to obtain a great
number of samples in real illumination conditions and thus to obtain a quantization
process as much as possible robust to variations in illumination. Following the
described approach, we collected about 1,200 samples that we used as training set
for the discussed classifier.

Based on the previous considerations, the fuzzy KNN classifier is applied to
each pixel of the Lab version of the selected segments (the human torso and legs)
using the training set designed as above. The classifier assigns to each pixel a label
corresponding to one of the classes describing the culture colors, as we can observe
in the example shown in Fig. 9c, where it is applied to the torso of a subject extracted
from the CAVIAR6 database.

As already explained, the advantage of using a soft classifier (like the fuzzy
classifier) with respect to the hard classifier, is that to each pixel n a membership

6Available for download at http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/.

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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Fig. 9 Example of fuzzy color quantization: a bounding box of the detected people; b extracted
torso; c quantized torso through fuzzy KNN classifier; d corresponding probabilistic color histogram

vector u(n) is associated, describing the probabilities of the membership of the pixel
to the 11 possible classes. This information is exploited in the definition of the new
color descriptor.

A color descriptor H(X) = {H1(X), H2(X), .., H11(X)} is assigned to each quan-
tized segment X, based on the definition of a probabilistic color histogram (PCH)
described as follows:

Hc(X) = 1

M

M∑

n=1

uc(Xn) c = 1, ..., 11 (3)

and representing for each class c the sum of the probabilities that all the M pixels in
the segment belong to that class. The PCH corresponding to the quantized torso in
Fig. 9c is shown in Fig. 9d. As expected, the dominant color is white.

Since the dominant color is usually not enough to provide a description of the
clothes color, we can sort the PCH in a descending order and consider the set of the
most probable colors as the features vector describing the clothes color. The idea of
using the most probable colors to describe the clothes is well suited to the proposed
approach thanks to the probabilistic description provided by the fuzzy classifier.
Moreover it is closer to real scenarios for which it is more probable to have clothes
with several colors instead of monochromatic ones.

Let Hs(X) = {Hs1(X), Hs2(X), .., Hs11(X)} be the PCH H(X) sorted in a de-
scending order. In the proposed approach, each segment will be described by the set
of the first most probable N colors {Hs1(X), Hs2(X), .., HsN(X)}, with N <= 11.

N can be defined as the kth-percentile of the probability density function Hs(X)

of the random variable X describing the color of the selected segment, where N is
the minimum number of color bins so that P(X < x) <= k. It follows that:

N =
{

min y ∈ {1, 2, ..., 11} |
y∑

i=1

Hsi(X) >= k

}

(4)

It is obvious that the number of color bins necessary to describe the selected
segment is strictly dependent on the value of the threshold k. The higher the value of
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Fig. 10 Some examples from the VIPeR dataset

k, the higher will be N with a consequent increase of the true positive (tpr) but also
false positive (fpr) rate. The choice of k should be the good trade-off between these
aspects.

5.2.2 Experimental results

In this section we summarize the experimental results that validate the described
approach. The goal is to show that the proposed color descriptor is able to predict
the way the human being perceives and defines colors, so that it can be used as a soft
biometric signature towards human identification.

The first requirement to test the efficiency of the proposed descriptor is to select a
statically meaningful dataset, big enough to consider as many different clothes colors
as possible, analyzed in real illumination conditions. To the best of our knowledge,
the most challenging dataset is VIPeR (Viewpoint Invariant Pedestrian Recognition)
[21], introduced in the research field of pedestrian tracking which can be considered
as a subset of the people tracking topic. The authors have collected two views of 632
individuals seen from widely differing viewpoints. The presented method is evaluated
using their public dataset.7 Some examples of images belonging to this dataset can be
found in Fig. 10.

We applied the proposed framework on both the upper (torso) and lower (legs)
parts of the bodies, which were automatically extracted from the images, and the sets
of detected colors were compared to the manually annotated dataset (the ground
truth). For each segment, if one of the N colors {Hs1(X), Hs2(X), .., HsN(X)}
matches with the ground truth, the algorithm is successful in identifying the color
of the selected segment. We tested the proposed approach for different values of the
threshold k and the obtained results are shown in Fig. 11.

As expected, by increasing the value of the threshold, both the true positive and
false positive rate increase with almost the same velocity. We can observe that the
color descriptor of the torso is more efficient than the one associated to the legs of the
subjects. This result is due to the not accurate segmentation of the bounding boxes.
Both segments were indeed automatically extracted at a fixed position of images.
While the size of the bounding boxes is constant in the dataset, the position of torsos
and legs is not due to variations of the viewpoints in the images. That means that

7Available for download at http://vision.soe.ucsc.edu.

http://vision.soe.ucsc.edu
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Fig. 11 True positive a and false positive b rate of the proposed color descriptor

most of the segments will contain many pixels from the background that will add
undesirable variability to the evaluation of the PCHs. Moreover, the legs extraction
is more challenging due to subjects movement. This issue can be overcome in a real
application in which the segments will be directly extracted from human silhouettes
in people tracking algorithms with a consequent improvement of the accuracy.

If we use both the torso and the legs clothes colors to describe subjects, the tpr
drastically decreases (the green line in Fig. 11) with respect of using only one trait,
since both the predicted colors must match with the ground truth. In the same way,
the fpr decreases reaching the maximum value of around 0.35% in case of k = 1.

In Table 8 the true positive rate, the false positive rate and the average number
of color bins N are reported for different values of the threshold depicted from the
plot in Fig. 11. Other than the considerations already done, it is interesting to note
that the system is able to reach quite good tpr and fpr with a limited number of color
bins, e.g. the correct detection rate for the torso is around 85% with only 2.6 bins in
average. That also means that the proposed fuzzy classifier is able to quantize around
85% of the pixels of the image using only 2/3 bins.

The optimum choice of the threshold is strictly depending on the application
scenario. Generally speaking, for the proposed application, we can assume that it
is better to have a high tpr even if in this way we introduce many false alarms in
the system that hopefully will be rejected by the integration of several soft biometric
signatures.

Table 8 True positive rate, false positive rate and number of average color bins for different
thresholds

Threshold True positive rate False positive rate Number of

Torso Legs Full body Torso Legs Full Body bins N

0.7 0.6440 0.5585 0.3655 0.0524 0.0587 0.0082 1.16
0.85 0.8101 0.7484 0.6139 0.1823 0.1859 0.0520 2.6
0.95 0.9478 0.9082 0.8687 0.5413 0.5551 0.3377 6.3
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6 Bag of Soft Biometrics for human identification

In this section we describe the application for human identification introduced in
Section 3.3 with the help of an example. Specifically, we analyze the possibility of
using the set of facial soft biometrics presented in Section 4 and the new traits: weight
and color of clothes from Section 5 for human identification. Finally, we combine
those traits in a Bag of Soft Biometrics and give insight as of design aspects, pertinent
factors and related limitations. We finally provide results on the application of the
combined system for human identification. We note here, that estimation errors are
not considered in this section. Regarding accuracy and performance of the estimation
algorithms, please refer to the Sections 4.2, 5.2.2 and 5.1.1.

6.1 General setting and design aspects

The setting of interest corresponds to the general scenario where, out of a large
population, an authentication group is randomly extracted as a random set of N
people, out of which one person is picked for identification (and differentiation from
all the other members of the authentication group). A general soft-biometric system
employs detection that relates to λ soft-biometric traits (hair color, skin color, etc),
where each trait i (i = 1, 2, . . . , λ) is subdivided into μi trait-instances, i.e., each trait
i can take one of μi values. We henceforth denote as category to be any λ-tuple of
different trait-instances, and we let � = {φi}ρi=1 define a set of all ρ categories, i.e., the
set of all ρ combinations of soft-biometric trait-instances. The number of categories
ρ, that the system is endowed with, is given by

ρ = �λ
i=1μi. (5)

We slightly abuse notation and henceforth say that a subject belongs in category φ

if his or her trait-instances are the λ-tuple corresponding to category φ. We here note
that to have conclusive authentication of a subject, and subsequent differentiation
from the other subjects of the authentication group, it must be the case that the
subject does not belong in the same category as other members of the authentica-
tion group. Given a specific authentication group, the maximum-likelihood (ML)
optimizing rule for detecting the most probable category in which a chosen subject
belongs, is given by:

φ̂ = argmaxφ∈� P(φ) · P(y/φ), (6)

where y is the observation vector, P(φ) is the pdf of the set of categories over
the given population (note

∑ρ

ı=1 P(φi) = 1), and P(y/φ) the probability that y is
observed, given that the subject belongs in category φ.

In designing a soft biometric system, the overall choice of the traits and trait-
instances, must take into consideration aspects as traditional limitations on estima-
tion reliability, which is commonly a function of the sensor resolution, and of the
capabilities of the image-processing part of detection. In addition to this traditional
aspect, new concerns come into the picture when designing a soft biometric system as
of the size and statistics of the authentication group (such as the possible similarities
that might exist between different subjects), as well as the statistical relationship be-
tween the authentication group and �. The interrelated nature of the above aspects
brings to the fore different tradeoffs. Such tradeoffs include for example the fact that
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an increasing μi, and thus also an increasing ρ, generally introduce a reduction in
the reliability of detection, but can potentially result in a welcomed increase in the
maximum authentication group size (N) that the system can accommodate for.

In the proposed BoSB we allocate 9 traits:

1. Skin color 4. Beard presence 7. Weight
2. Hair color 5. Moustache presence 8. Torso clothes color
3. Eye color 6. Glasses presence 9. Legs clothes color

In this setting we clearly assign μ4 = μ5 = μ6 = 2, corresponding to the binary
nature of traits i = 4, 5, 6. On the other hand, the other traits are of continuous
character (see Table 1) and had to be categorized in consideration to the tradeoff
between reliability of detection and trait importance.

Towards this we chose to subdivide trait 1 (skin color) into μ1 = 3 instances
and label them (following a recommendation provided by the ethical partner of an
ongoing EU project, ActiBio8 to avoid any assumptions about race or ethnicity based
on skin color) as skin color 1, 2 and 3. Trait 2 (hair color) was subdivided into μ2 = 8
instances, trait 3 (eye color) into μ3 = 6 instances (see Table 6.1), trait 7 into μ7 = 8
instances and finally the traits 8 and 9 into equal trait instances μ8 = μ9 = 11.

Bag of soft biometrics: traits and traits instances
SB trait Instances Traits instances

number
Skin color 3 Skin color type 1, skin color type 2, skin color 3
Hair color 8 Light-blond, dark-blond, brown, black, red,

grey, white, bald
Eye color 6 Blue, green, brown, grey, black, mixed
Weight 4 Underweight, normoweight, overweight,

severe overweight
Torso clothes color 11 Black, white, red, yellow, green, blue, brown,

purple, pink, orange, grey
Legs clothes color 11 Black, white, red, yellow, green, blue, brown,

purple, pink, orange, grey

As a result, the proposed system is endowed with the ability to detect

ρ = �9
i=1μi = 557568 (7)

distinct categories. For the sake of clarification, we note two simple examples of such
categories in �:

– “skin type 1, brown hair, blue eyes, no beard, no moustache, no glasses, nor-
moweight, red clothes torso, black clothes legs” ∈ �

– “skin type 3, black hair, black eyes, beard present, moustache present, glasses
present, overweight, black clothes torso, white clothes legs” ∈ �

We here note that an increase in the set of traits λ, yields an impressive number of
categories ρ beyond 1012, which may be suitable for several applications.

8ActiBio homepage http://www.actibio.eu:8080/actibio.

http://www.actibio.eu:8080/actibio
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We already analyzed, in the previous sections, the efficiency of the proposed
algorithms in estimating the introduced signatures from the visual appearance of
humans. To fairly assess the performance of a Bag of Soft Biometrics for human
identification it is necessary to analyze some statistical characteristics of the proposed
framework which reflect on the distinctiveness capability of the described traits.

Relevant parameters, in addition to λ, μ, and ρ, also include the size and statistics
of the authentication group (revealing possible similarities between different sub-
jects), as well as the statistical relationship between the authentication group and �.
In what follows we aim to gain insight on the behavior of the above, in the specific
setting of the proposed soft-biometric design. The following analysis, which is by no
means conclusive, focuses on providing insight on parameters such as:

– The spread of the effective categories for a given authentication group, where
this spread is used as a measure of the suitability of � in authenticating subjects
from a certain authentication group.

– The relationship between N, and the corresponding probability of interference
as a function of � (the probability that two users share the same category and
will thus be indistinguishable).

6.2 Spread of the category set �

We here consider the case where a soft-biometric system is designed to distinguish
among ρ distinct categories, but where the randomly introduced authentication
group only occupies a smaller fraction of such categories, and where these categories
are themselves substantially correlated. Leaving correlation issues aside for now,
we first define the set of ef fective categories �e to be the set of categories that are
present (are non empty) in the specific authentication group. A pertinent measure of
system diversity and performance then becomes the cardinality ρe = |�e|. We note
that clearly both �e and ρe are random variables, whose realizations may change with
each realization of the authentication group.

To analyze the spread of the category set in the case of facial soft biometrics, we
consider the case where the authentication groups are each time drawn from general
population that is a fixed set of K = 646 subjects taken from the Feret database, with
ρ = 1152 categories, corresponding to a pdf as shown in Fig. 12a, where this pdf itself
corresponds to the traits and trait-instances of the proposed system.

The same analysis can be performed for weight (Fig. 12b) and clothes color
(Fig. 12c) based on the already introduced dataset (NHANES and VIPeR
respectively).

We can observe from the figures that the number of effective categories is
much lower than we were expecting, decreasing the distinctiveness of the system.
It becomes apparent that a natural remedy for increasing the cardinality of effective
categories E[ρe] is to increase the overall ρ, which brings to the fore the natural
question as to whether this increase in ρ should be more a result of an increase
in the number of traits, or rather more a result of an increase in the number of
trait-instances. We address this resource allocation problem, under the simplifying
assumption of symmetry, where μi = μ, for all i = 1, ..., λ. In this symmetric setting,
where clearly

ρ = μλ (8)
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Fig. 12 P(φ) corresponding to facial traits distribution in the Feret dataset a, BMI distribution in the
NHANES dataset b, clothes color distribution in the VIPeR dataset c

and where ρ increases polynomially with μ and exponentially with λ, a simple
comparison of the two derivatives dρ

dμ
, dρ

dλ
identifies the trait-limited region of a soft-

biometric system to be the region:

λ < μ · lnμ (9)

in which ρ increases faster with λ than with μ, and where emphasis should be placed
on increasing λ rather than μ.

This approach in turn, brings to the fore the issue that increasing ρ, may indeed
result in an increased E[ρe], but might affect the correlation between the different
categories. This would subsequently result in a reduced spread of �, which would
imply a reduced distinctiveness in authentication.

In regards to this, we give some intuition on the distinctiveness of some non-
empty categories of the proposed system, by computing the correlation between
these categories using Pearson’s product-moment coefficient

rX,Y = cov(X, Y)

σXσY
= E[(X − μX)(Y − μY)]

σXσY
. (10)
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In the case of facial traits, the resulting correlation parameters evaluated on the
Feret dataset and shown below revealed, as expected, the highest correlation to
be that between moustache and beard mirroring the fact that among the studied
population the presence of moustache, given the presence of beard, is at 97.8%.

rEye color, Hair color = −0.1964

rHair color, Skin color = −0.1375

rEye color, Skin color = 0.3700

rMoustache, Beard = 0.6359 (11)

In the same way we could investigate the correlation among the body traits. As
example we here propose the correlation measures among the common traits when
talking about body: weight, height, and BMI (the numerical data where taken from
the NHANES dataset):

rHeight, Weight = 0.5485

rWeight, BMI = 0.8676

rHeight, BMI = 0.0742 (12)

As expected, height and weight are correlated as body weight increases typically
with body height. Even if the relation between BMI, weight and height is clearly
shown in the formula (BMI = W

H2 ), for the sake of completeness, the correlations
coefficients of the couples Weight–BMI and Height–BMI are also provided. We
can notice the high and low value of correlation of weight and height w.r.t. BMI,
respectively. The main contribution to BMI comes indeed from weight as, in the
analyzed dataset, its variance is higher compared to the height one.

Regarding clothes color, one may argue a possible correlation between the torso
and the legs clothes colors. However, the correlation coefficient obtained using the
VIPeR dataset and shown below

rTorso clothes color,Legs clothes color = 0.0075 (13)

reveals that there is no correlation between the two traits. This result is affected by
the use of a color quantization step for which all the possible colors are described by
the limited set of colors corresponding to the eleven culture colors.

6.3 Bounding N for a given interference probability

We are here interested in describing the relationship between N, and the correspond-
ing probability of interference, as a function of �. We proceed to properly define the
event of collision or interference.

The event of collision, or equivalently of interference, describes the event where
any two or more subjects belong in the same category φ. Focusing on a specific
subject, we say that this subject experiences interference if he/she belongs in a
category which also includes other subjects from the authentication group. In regards
to this, we are interested in gaining insight on two probability measures. The first
measure is the probability that the authentication group of size N, chosen randomly
from a large population of subjects, is such that there exist any two subjects within
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the group that collide. We briefly note the relationship of to the famous birthday
paradox. For the other measure of system reliability, we consider the case where
an authentication group of size N is chosen randomly from a large population of
subjects, and where a randomly chosen subject from within this authentication group,
collides with another member of the same group. We denote this probability as q(N),
and note that clearly q(N) < p(N). To clarify, p(N) describes the probability that
interference exists, even though it might not cause error, whereas q(N) describes the
probability of an interference induced error.

In the following we provide a simulation of the probability of identification error,
in the setting of interest, under the assumption that the errors are due to interference,
i.e., under the assumptions that errors only happen if and only if the chosen subject
shares the same category with another person from the randomly chosen authentica-
tion group. This corresponds to the setting where the soft-biometric approach cannot
provide conclusive authentication.

In the first simulation, regarding facial soft biometrics, the larger population
consisted of 646 people from the Feret database, and the simulation was run for
different sizes N of the authentication group. The probability of authentication error
is described in the following figure.

As a measure of the importance of each trait, Fig. 13a describes the collision
probability when different traits are removed. The presence of glasses seem to has a
lower influence on the detection results, whereas hair and eye color have the highest
impact on distinctiveness.

Figure 13b depicts the analysis conducted over the 4 categories of BMI (un-
derweight, normoweight, overweight, and sever overweight). As the number of
categories is much smaller than in the previous facial case, the collision probability is
already important for small number of persons considered; precisely the probability
of having two or more subjects that collide, is 50% already with 3 persons.

Figure 13c and d describes the same results evaluated for the clothes color
considering torso and legs together or as distinctive approaches respectively. The
probability of collision has almost the same trend for both torso and legs. This is
a consequence of the similar distributions of the corresponding effective categories.
As expected, considering torso and legs together drastically decreases the probability
of collision since the number of category increases from 11 to 121. Specifically, in a
group of at least 7 randomly chosen people, there is more than 50% probability that
some pair of them will have the same color for both torso and legs.

6.4 Virtual multimodal database

We are finally interested in assessing the reliability of the proposed BoSB framework
exploiting all the previously analyzed signatures.

As mentioned in Section 3, a system using more than one biometric characteristic
to verify whether a person is who he/she claims to be is called a multimodal biometric
authentication system. Many papers in the multimodal fusion literature test system
performance on limited dataset (e.g. 100 subjects), obtaining very biased results.

Due to lack of large multimodal biometric datasets, a popular approach is to
create virtual databases in which the biometric trait of a user from a database is
combined with another biometric trait of yet another database, thus creating a so-
called chimeric user.
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Fig. 13 Collision probability of clothes color in an N sized authentication group: a facial traits; b
BMI; c torso clothes color; d legs clothes color

Few works have studied the validity of using virtual subjects for multimodal
system evaluation. In [30, 55] the authors motivate the possibility of using databases
of virtual subjects under the conditions that the underlying biometric traits to be
combined are a priori mutually independent. Following their approach, based on
the assumption that the proposed bag of facial traits, the weight and the color of
clothes, are temporally uncorrelated, we designed a virtual database to evaluate the
collision probability in an N sized authentication group. The traits of each subject
are obtained taking randomly the facial traits from the Feret dataset and the weight
and the clothes color from the NHANES and VIPeR databases respectively. The
obtained results are shown in Fig. 14.

As expected the collision probability drastically decreases with respect to the
unimodal cases analyzed above. We need a group of at least 49 randomly chosen
subjects for a 50% probability of collision. Moreover the probability q(n) that a
particular person drawn from a group of N subjects has the same soft biometric
characteristics as further subject(s) from the same group, is extremely low, even for
a high value of N.
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Fig. 14 Collision probability of the proposed BoSB in an N sized authentication group with N
ranging from 0 to 1,000 (a), and a magnified version in [0 100].

7 Concluding remarks

In this paper we proposed the use of soft biometrics for person identification. The
limitations of single soft biometric traits, namely distinctiveness and permanence are
overcome by the use of multiple traits. The main contributions of the paper are:

– The introduction of a new def inition of soft biometrics. We proposed a definition,
which emphasizes the aspect of human compliance and broadens the concept of
soft biometrics introduced in scientific literature. We identified and classified soft
biometric traits, which accept the introduced definition, and further elaborated
the related advantages, limitations, scientific work and applications.

– The def inition of two novel traits: weight and clothes color. Although weight,
estimated by a scale, has already been introduced as a soft biometric trait, the
attempt for an automatic body weight detector at a distance is novel and was
provided in this work. Clothes color, on the other hand, has never been analyzed
in biometric literature, since it is not a human feature itself. However, with
the new definition it belongs to the human compliant soft biometric traits. For
both new traits, we provided efficient estimation methods and a corresponding
empirical analysis on the accuracy and performance.

– The description of a new application, namely human identif ication based solely on
soft biometric traits. In this context we created a framework for this specific appli-
cation by constructing a Bag of Soft Biometrics, including facial and novel body
and accessory traits. We have also provided insight on statistical properties of
parameters concerning soft biometrics systems, as well as on design and resource
allocation aspects. The performed experiments show very promising results and
confirm the efficiency of the proposed BoSB for human identification.

The above contributions suggest a substantial potential for soft biometric systems,
which incur a plethora of advantages over a large range of applications, like monitor-
ing or video surveillance. The utility and range of soft biometric systems are expected
to increase, as the number of traits increases, and as the underlying image capture
and processing technology improves.
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