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Abstract We propose a PDE-based image inpainting method using anisotropic heat
transfer model, which can simultaneously propagate the structure and texture information.
In structure inpainting, the propagating direction and intensity are related to image contents,
and the strength of propagation along gradient direction is made inversely proportional to
the magnitude of gradient. In texture inpainting, the added texture term reflects periodicity
along the texture and its perpendicular direction. For numerical implementation, the step
size of finite difference is adaptively chosen according to the curvature, leading to fewer
iteration steps and satisfactory inpainting quality. Compared with other high order PDE
methods and layered methods, the proposed approach is more concise and doesn’t need
image decomposition. Experiments are carried out to show effectiveness of the method.

Keywords Image inpainting . Structure . Texture . PDE . Heat transfer . Anisotropic .

Finite difference

1 Introduction

Since the late 1990s image inpainting has attracted much research attention with the aim of
repairing damaged images in an indiscernible way [2, 3, 5, 6]. Traditional image restoration
attempts to reduce noise or restore image degradation such as motion effects or blurring in
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order to obtain an optimal (in some sense) estimate of the original. Image inpainting, on the
other hand, is to imitate human professionals in repairing pictures using some mathematical
models and computer algorithms to recreate the missing content in the image. The objective
is to produce visually satisfactory or acceptable results, rather than a good estimate of the
original since there is simply no original. Inpainting of digital images has found
applications in such areas as restoration of historical photographs, filling in or removing
chosen areas in images, and wiping out visible watermarks. Recently some researchers have
applied inpainting techniques in de-interlacing [1], image compression [10] and repairing
missing blocks of JPEG images due to transmission over poor channels [13]. Evaluation of
the quality of repaired images is generally done with subjective assessment because no
original undamaged version is available in reality, while in research we can always generate
damaged images from some known originals, and compare the repaired version with the
original ones.

Some typical techniques use partial differential equations (PDE) such as the approaches
proposed by Bertalmio et al. [2, 3]. They established a mathematical model of image
inpainting by borrowing ideas from classic fluid dynamics to treat image problems. By
iteratively solving the numerical representation of a PDE, they managed to smoothly
propagate information of gray values from surrounding areas into the region Ω to be
inpainted along isophotes. Isophotes are traces on which gray values are equal. The
inpainting process is terminated until the gray values in the computation domain reach a
steady state. Guided by the connectivity principle of human visual perception, Chan et al.
[5] proposed a non-texture inpainting method using the third-order PDE based on a total
variation model [6]. This method in fact represents an anisotropic diffusion process. To
satisfy the human visual requirements, intensity of diffusion is related to the curvature.
When the disconnected remaining object parts are separated far apart by the inpainting
domain, this method can still give satisfactory results.

Interpolation techniques can also be used in image inpainting. Shi et al. proposed an
adaptive inpainting algorithm which is equivalent to nonlinear interpolation [15]. The
repairing procedure checks the surrounding information of a damaged pixel and determines
the size of the reference window that can be used to compute an interpolated color. This
method cannot produce satisfactory results when the repaired pixels are close to edges.
Mairal et al. [11] established dictionaries for color images by learning, and then used sparse
representation and generalized K-means clustering, termed K-SVD, to handle noise and
restore low quality images. An inpainting method for recovering an original scene from
degraded images was proposed in [19]. It consists of a new inter-pixel relationship function
and the respective refinement to synthesize missing pixels from existing spatially co-related
pixels.

There are some inpainting methods using patch-based way. Criminisi et al. proposed an
inpainting method for region filling and object removal [7]. The method performs the
synthesis task through a best-first filling strategy that depends entirely on the priority values
assigned to each patch. After finding the patch with the maximum priority, the most similar
patch is chosen from the intact region to replace it, and then the priority values are updated
to continue the above steps repeatedly. An image inpainting method using patch sparsity
was introduced in [18]. This method investigates the sparsity of image patches, and
measures the confidence of the patch located at structure region by the sparseness of its
nonzero similarities to the neighboring patches. The patch with larger structure sparsity will
be assigned higher priority for further inpainting. The patch-based methods can deal with
relatively larger region than PDE-based methods, but will lead to some artificial seams
between patches.
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Indeed, most of the efficient structure inpainting methods to date are based on PDE. But
the major problem of current PDE models is that they lack the ability of reconstructing
textures in the damaged regions. Therefore textures have to be generated in a separate
process. The method proposed in [4] decomposes image into structure and texture layers,
and reconstructs each layer respectively with a PDE-based algorithm [3] and a texture
synthesis algorithm [8]. The retouched image is obtained by combining these two sub-
images. Hsu et al. proposed a hybrid algorithm for region filling with an artifact detection
mechanism [9]. In the inpainting procedure, color texture distribution analysis is used to
choose whether the subpatch texture synthesis technique or the weighted interpolation
method should be applied. All these methods use non-PDE methods to treat textures, and
the image decomposition for obtaining texture layer may be rather complicated therefore
time-consuming.

In this work, we propose a compact and fast PDE-based inpainting method using
anisotropic heat transfer model, which can propagate both the structure and texture
information from surrounding region into damaged region simultaneously. There are two
terms in proposed PDE, which are represented for structure and texture inpainting
respectively. In the numerical implementation for the structure term, we adaptively choose
an appropriate form of the finite difference according to the curvature value. In this
way, precision and efficiency of the process are significantly improved. Compared
with other PDE-based techniques, the proposed method can effectively repair damaged
images containing both structure and texture by only one PDE. Unlike the layer-based
inpainting methods, our method eliminates image decomposition process, so it is more
efficient.

The rest of the paper is arranged as follows. We first express the analogy between image
inpainting and heat transfer model in Section 2. The simultaneous structure and texture
inpainting method using anisotropic model is described in Section 3, and its numerical
implementation is given in Section 4. In Section 5, experimental results and discussion are
presented. Finally, conclusions are drawn in Section 6.

2 Analogy for image inpainting and heat transfer

We analogize image inpainting with a heat transfer process, let u be a damaged image, Ω
the region to be inpainted in u, and ∂Ω the boundary of Ω. We treat image inpainting as
propagating the information of valid pixels from the exterior to the interior of Ω. Since no
elasticity is involved, analogy to wave and vibration phenomena is generally inappropriate.
As a simple solution, we use a heat transfer model for homogenous medium, and consider
the image being equivalent to a temperature field with the pixel value u(x, y) corresponding
to temperature. So, change of pixel values in the damaged region is modeled as variation of
temperature caused by heat conduction due to the external heat sources.

We start with the simplest one-dimensional heat transfer problem as shown in Fig. 1.
The physical foundation is the Fourier’s heat transfer law expressed in the following

v 

x

u u+ Δu

x+Δxx 

Fig. 1 One dimensional heat transfer problem
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equation where v(x, t) is the heat flow through a unit length per unit time, which is
proportional to the changing rate of temperature.

vðx; tÞ ¼ lim
$x!0

s
u� ðuþ $uÞ

$x

� �
¼ �s

@uðx; tÞ
@x

ð1Þ

It is easy to extend Eq. 1 to the two-dimensional situation. Let the gradient ∇u(x, y; t) =
G(x, y; t), whose two components are:

Gxðx; y; tÞ ¼ @uðx; y; tÞ @x=
Gyðx; y; tÞ ¼ @uðx; y; tÞ @y=

�
ð2Þ

So the heat flow vector is:

vðx; y; tÞ ¼ �sruðx; y; tÞ ¼ �sGðx; y; tÞ ¼ �s½Gxðx; y; tÞ iþ Gyðx; y; tÞ j� ð3Þ
where i and j are unit directional vectors.

The heat transfer process also satisfies the law of energy conservation. If no heat source
exists in a region, the difference of inflowing and outflowing heat leads to the change of
temperature. Therefore we can obtain the changing rate of temperature [14]:

@uðx; y; tÞ
@t

¼ s
r s

r �Gðx; y; tÞ ¼ k
@Gxðx; y; tÞ

@x
þ @Gyðx; y; tÞ

@y

� �
ð4Þ

where the constant κ consists of three physical constants: thermal conductivity coefficient
σ, density of the medium ρ and specific heat s. Equation 4 specifies the field of gray values
changing with time in the inpainting process. Because the physical quantity under
consideration is the pixel value, and the result of propagation leads to the change of pixels
in the target region, κ may be set to 1. This assumption is to be validated in experiments. To
solve the PDE of Eq. 4, we use a finite difference method in a computation domain
enclosing the damaged regions, and force the undamaged pixels intact after each iteration
step so that the Dirichlet boundary condition can be satisfied.

The heat transfer analogy has a concise mathematical form and low computation
complexity. Compared with other methods such as fluid dynamic model using the Navier-
Stokes equations, this model needs fewer iteration steps in image inpainting and has faster
processing speed. However, the direction of information propagation is not taken into
account in the treatment. This isotropic nature may cause unsatisfactory inpainting results
since images usually contain non-uniformity and some directional properties. In next
section, we propose a new image inpainting method based on anisotropic heat transfer
model for better performance.

3 Simultaneous structure and texture image inpainting

3.1 Anisotropic heat transfer model for inpainting

We observe that, in the isotropic inpainting model, the two directions of information
propagating are always kept horizontally and vertically, and propagating strength of these
two directions also maintains constant. This is irrelevant in many cases, especially near
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edges where blurring effects may occur to degrade the quality of inpainting. To solve this
problem, we let the way of gray value propagation adaptively change with image content,
leading to the anisotropic heat transfer model for inpainting.

In the new PDE model, we decompose the gray-level propagation into two
orthogonal directions which are changed with the image contents. For good inpainting
results of the structure information, one of the propagation directions is made consistent
with the isophotes, which is always normal to gradient direction. Let the propagation
strength of this direction be fixed. Along the gradient direction, on the other hand, the
strength is changeable based on the image contents. Since gray values change drastically
in the edge region, the magnitude of gradient is large. To avoid edge blurring,
propagation strength along the gradient direction should be small near edges. On the
contrary, gradient is small in smooth regions, and therefore the propagation strength
along the gradient direction can be large. In summary, the strength of propagation along
gradient directions should be made inversely proportional to the magnitude of gradient.
This way, we can improve efficiency of structure inpainting and obtain satisfactory
results near edges.

3.2 Structure image inpainting using anisotropic heat transfer model

Based on the above consideration, we introduce a spatially variable and content-dependent
coordinate system O-ξη to replace the fixed Cartesian system O-xy. Let the unit coordinate
vectors in the O-xy system be i and j, thus any point in the space may be expressed by a
vector r = x i + y j. This becomes r = ξ p + η q in the O-ξη system where ξ and η are the
two components in the isophote and gradient directions respectively, and p and q are the
two orthogonal unit vectors:

p ¼ 1

ruj j
@u

@y
i� @u

@x
j

� �
; q ¼ 1

ruj j
@u

@x
iþ @u

@y
j

� �
ð5Þ

Thus we obtain the anisotropic heat transfer model for structure image inpainting as
expressed by the following PDE:

@u x; y; tð Þ
@t

¼ @2u x; y; tð Þ
@x2

þ c2
@2u x; y; tð Þ

@h2
; x; yð Þ 2 4 ð6Þ

where x and y are related to ξ and η through ∇u:

x
y

� �
¼ cos q � sin q

sin q cos q

� �
x
h

� �
; q ¼ arctan

@u

@y

@u

@x

�� �
ð7Þ

and the weight c in Eq. 6 is

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp � 1

K
ru x; y; tð Þj j

� �s
ð8Þ

From Eq. 8, we see that c goes to zero when the magnitude of gradient |∇u(x, y; t)| tends to
infinite, and when |∇u(x, y; t)| = 0, c is equal to 1. Following the definition given in [12], we
let K be a predetermined threshold to differentiate smooth and fluctuating regions. The
propagation strength c2 along q varies spatially, and it is different with the strength along p
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when the magnitude of gradient is not zero, so Eq. 6 represents an anisotropic propagation
model.

3.3 Incorporate texture inpainting

In case there are rich textures in the damaged image region, however, only using Eq. 6 for
inpainting will not produce satisfactory results because it has not taken the periodicity of
texture into account. In order to improve the inpainting effect, the texture feature must be
included in the model so that the method can generate coherent texture in the inpainted
region while repairing the structure. Consider the situation of Fig. 2. We can make use of
the periodicity to propagate the texture information along the directions of texture and its
perpendicular direction respectively while propagating the structure information using
Eq. 6.

Let a ∈ [0, π ] be the angle between the texture direction and the horizontal line, and d
the scale of texture periodicity. We incorporate the texture ingredient into Eq. 6, resulting in
the new PDE in Eq. 9 for simultaneous structure and texture inpainting.

@u x; y; tð Þ
@t

¼ AΔsu x; y; tð Þ þ BΔtu x; y;a; d; tð Þ ; x; yð Þ 2 4 ð9Þ

where A and B are weights for structure and texture respectively, A, B ∈ [0, 1], and A + B ≡ 1.
The structure term Δsu(x, y; t) denotes the right part of equal sign in Eq. 6. If B=0, Eq. 9 is
reduced to Eq. 6, meaning that only the structure is inpainted. The texture termΔtu(x, y; a, d, t)
can be expressed as:

Δtu x; y;a; d; tð Þ ¼ @2u x; y; d; tð Þ
@xa

2 þ @2u x; y; d; tð Þ
@ha2

ð10Þ

x
y

� �
¼ cosa � sin a

sina cosa

� �
xa
ha

� �
ð11Þ

where ξa and ηa correspond to the texture direction and its perpendicular direction
respectively.

Since the gray values show repetition along the texture and its perpendicular direction,
Eq. 10 reflects gray value difference between the damaged pixels with intervals related to
the texture periodicity. Therefore the model represented by Eq. 9 can simultaneously
propagate structure and texture information into the damaged region.

Texture direction

Texture perpendicular 

direction 

d 

α 

Ω

Fig. 2 Propagating direction of
texture information
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4 Numerical implementation

In this section, we give the detailed numerical implementation for the proposed PDE. We
know that the parabolic PDE can be formulated as the discrete iterated form. So the
recursion formula of Eq. 9 is:

u nþ1ð Þ x; yð Þ ¼ uðnÞ x; yð Þ þ luðnÞ1 x; yð Þ n ¼ 1; 2; � � � ; T x; yð Þ 2 4 ð12Þ

uðnÞ1 ðx; yÞ ¼ A$su
ðnÞðx; yÞ þ B$tu

ðnÞðx; y;a; dÞ ð13Þ
where the superscript (n) is a time index, viz., number of iteration steps, T is the total
iteration steps, u(n)(x, y) represents the pixel value after n iteration steps, u1

(n)(x, y) is the
updating increment of each iteration step, and l denotes the updating speed. The increment
u1

(n)(x, y) is composed of structure term Δsu
(n)(x, y) and texture term Δtu

(n)(x, y; a, d). The
numerical calculations for these two terms are given respectively in the following.

4.1 Structure term

For the anisotropic model in Section 3.2, the two orthogonal propagation directions p and q
are rotated by an angle θ with respect to the horizontal and vertical directions. Because of
the anisotropic property, propagation strengths along the two orthogonal directions are
different. Denote the rotation matrix in Eq. 7 as R and write the weight c in a diagonal
matrix form C:

R ¼ cos q � sin q
sin q cos q

� �
; C ¼ 1 0

0 c

� �
ð14Þ

For simplicity, we can express the structure term Δsu(x, y) in the form of 3×3
convolution mask:

Δsuðx; yÞ ¼ k
h2

�a12=2 a22 a12=2

a11 �2 a11 þ a22ð Þ a11
a12=2 a22 �a12=2

2
64

3
75»

u x� h; y� hð Þ u x� h; yð Þ u x� h; yþ hð Þ
u x; y� hð Þ u x; yð Þ u x; yþ hð Þ

u xþ h; y� hð Þ u xþ h; yð Þ u xþ h; yþ hð Þ

2
64

3
75

ð15Þ
where a11, a12 and a22 are the three distinct elements of the symmetric matrix A = {ai,j}
[16, 17]:

A ¼ RTCTCR ¼ cos2q þ c2sin2q c2 � 1ð Þ cos q sin q
c2 � 1ð Þ cos q sin q c2cos2q þ sin2q

� �
ð16Þ

The step size h of the finite difference operation in Eq. 15 may either be set to 2,
corresponding to the one-point central difference. The constant κ is equal to 1 as stated in
Section 2. Or, h may be set to 1, corresponding to the half-point central difference. In this
case κ should be chosen to be one quarter of the above value, that is, κ=0.25, since in the
partial differential equations, second order derivatives of u with respect to the spatial
coordinates are involved. The latter discrete implementation gives better precision but
slower convergence.

We use the geometric information of current pixel to adaptively choose one-point or
half-point central difference when evaluating Eq. 15. The curvature values of isophote
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indicate the shape information of the image and complexity of the edge structure. When the
shape of isophote is complicated and curvature is large, the finer half-point difference
format is used, i.e., h=1. This way, the inpainted quality of image structure will be finer.
Contrarily, using the one-point difference, i.e., h=2, the processing speed is faster.
Therefore, we obtain the relation between κ and h with the curvature ω of every pixel (i, j)
in the damaged region:

w ¼ r � ru

ruj j
� �

¼ uxxu2y � 2uxuyuxy þ uyyu2x

u2x þ u2y

	 
3 2=
ð17Þ

h ¼ 1 k ¼ 0:25 if w x; yð Þj j � W
2 k ¼ 1 if w x; yð Þj j < W

�
ð18Þ

Details of numerical computation of the curvature in Eq. 17 can be referred to [5]. W in
Eq. 18 is a positive constant, which can be set as the medium value of the curvature’s
magnitude for all pixels in the image.

4.2 Texture term

The numerical implementation for the texture term Δtu(x, y; a, d) can be realized by the
following Eqs. 19–22, where a denotes the angle of texture direction, and d is the scale of
texture periodicity.

Δtuðx; y;a; dÞ ¼ 0:25� @2u x; y; dð Þ
@xa

2 þ @2u x; y; dð Þ
@ha2

� �
ð19Þ

@2uðx; y; dÞ
@xa

2 ¼ uðxþ dy; y� dxÞ þ uðx� dy; yþ dxÞ � 2 � uðx; yÞ ð20Þ

@2uðx; y; dÞ
@ha2

¼ uðxþ dx; yþ dyÞ þ uðx� dx; y� dyÞ � 2 � uðx; yÞ ð21Þ

dx ¼ roundðd cos aÞ ; dy ¼ roundðd sin aÞ ð22Þ
It is clear that the larger the damaged region is, the more iteration steps T in Eq. 12 for

inpainting are needed. T may be pre-determined on a trial-and-error basis, or the iteration
may terminate when | u1

(n)(i, j)−0| is less than a given small positive number.

5 Experimental results and discussion

Experiments were carried out on a group of structure and texture images with different
resolution. Damages in the test images include random scratches, block impairment,
scattered spots, and superimposed watermark. For color images, inpainting is done on the
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R, G, and B channels. The obtained channels are then combined to give the final results.
The updating speed l in Eq. 12 is set to 1 for numerical implementation.

5.1 Comparison with typical structure inpainting

We first use the proposed method for structure image inpainting, i.e., B=0 in Eq. 9, and
compare with some typical structure inpainting methods. The comparison results of the
present method using anisotropic heat transfer model with the isotropic method are given in
Fig. 3. We can see that the anisotropic model does effectively avoid edge blurring.

We then compare our method with several typical PDE-based methods as listed in
Table 1. Some images are given in Figs. 4 and 5. By subjective observation, we can find
that the proposed anisotropic method gives satisfactory output. The PSNR values of
inpainting results are also given in Table 2. Compared with other PDE-based methods, our
method produces better structure repairing quality and better performance in terms of
PSNR.

We also compare performance of the fixed finite difference implementation for structure
term and the implementation in which the step size h is chosen adaptively according to the
curvature. The result is given in Table 3. The value of T in Table 3 is the minimum of all N
values satisfying the following equation, which is the smallest iteration numbers by which
PSNR reaches stability.

PSNR uðnÞ
	 


� PSNR uðNÞ
	 
��� ��� � e; 8 n > N ð23Þ

where u(n) is the inpainting result after n iteration steps, and e is a small positive constant.
We can see from Table 3 that, when using the half-point scheme (h=1), the average PSNR

Fig. 3 Comparison between the isotropic and anisotropic models. From left to right: damaged image,
inpainting result obtained using the isotropic model with PSNR=44.1 dB, where blurring at edges are visible,
and result obtained using the present method with PSNR=50.2 dB and improved visual quality

Table 1 Comparison of structure inpainting methods

Method Mathematic expression Order of PDE

BSCB [2, 3] @u
@t ¼ r$u � r?u 3

Total variation (TV) [6] @u
@t ¼ r � ru

ruj j
h i

2

Curvature driven diffusion (CDD) [5] @u
@t ¼ r � g wj jð Þ

ruj j ru
h i

3

Proposed structure inpainting @u
@t ¼ $su

a 2

a The equation is used for structure inpainting, which is the special form of Eq. 9 when the weight B of
texture term is zero
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values are the highest, but with more iteration steps. The structure inpainting quality
obtained by adaptively choosing h is very close to that using a fixed h=1. The difference in
PSNR is below 1 dB. It should be noted that, the adaptive scheme not only can reduce
iteration steps for saving processing, but also can give higher PSNR compared with one-
point finite difference, i.e., h=2.

5.2 Results of simultaneous structure and texture inpainting

The present method introduces the texture term into the anisotropic inpainting model, so the
method can simultaneously propagate structure and texture information. We carry out some
experiments on lots of images containing texture component. An example is the test image
Barbara with rich texture as shown in Fig. 6. Suppose the region to be inpainted is located
in a texture-rich area marked with white blocks in the figure. The parameters used in the
experiment are: weight of texture information B=0.5, texture direction a=4π/9, texture
periodicity d=4, which are measured from the test image.

The inpainted regions in Fig. 6 are magnified to make the repaired details clear. The
images in the first row of Fig. 6 are the original, the damaged and the repaired result using
the proposed method with PSNR=54.0 dB. The first three images in the second row of
Fig. 6 are the inpainted results by some typical PDE-based methods: BSCB method with

Fig. 4 Image inpainting results of proposed method

Fig. 5 Comparison with other PDE-based methods. The leftmost is input damaged images, the 2nd through
the 4th are the repaired results with BSCB method, total variation inpainting and CDD-based method
respectively. The rightmost is the result of the present method
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PSNR=42.5 dB, TV method with PSNR=46.3 dB and CDD method with PSNR=37.6 dB
respectively. We can clearly see that our PDE-based method repairs the structure and
texture information successfully, while the other methods listed in Table 1 can’t inpaint the
texture. The last image in the second row of Fig. 6 is the inpainting result of the layered
method in [4] with PSNR=49.1 dB, which can restore the texture information by a separate
synthesizing process. It is observed that the method proposed in the present work produces
better visual appearance.

In addition, since our method is based on the heat transfer model, it is basically a
second-order PDE approach, therefore more concise than the other higher order methods
[2, 3, 5, 6] mathematically. The proposed method has lower computation complexity as
experiments shows that less iteration steps are required to reach stability in the numerical
implementation, as illustrated in Fig. 7.

The proposed method is also more efficient than the layered method in [4]. We executed
our Matlab codes on a computer with 2.94 GHz processor and 4 G memory under Windows
Vista, for Fig. 6 took less than 230 s, while for the method of [4], it took more than 364 s
because of the image decomposition process and exhaustive searching for texture synthesis.

6 Conclusions

We analogize image inpainting with heat transfer process and establish an anisotropic
inpainting model based on PDE for structure inpainting. But most of reported PDE-based
methods can’t produce texture information in the inpainted region. In order to solve this
problem, we introduce a texture term in the anisotropic model, which can simultaneously
propagate structure and texture information. In structure inpainting, the two components of
propagation are the isophote direction and its orthogonal direction, and the propagation

Table 2 Comparison of PSNR values between the proposed method and the methods in Table 1

Method PSNR(dB)

Airplane Cameraman Bird House

BSCB 49.4 47.1 42.7 37.2

Total Variation 49.3 49.2 43.0 37.3

CDD 44.7 44.6 40.6 37.0

Proposed 50.2 50.0 43.2 37.2

Table 3 Comparison of adaptive and fixed finite difference

Image Percentage of damage PSNR Iteration steps T

Adaptive h=1 h=2 Adaptive h=1 h=2

Airplane 3.4% 50.2 50.8 47.6 227 409 155

Cameraman 0.6% 50.0 50.7 48.9 424 663 378

Bird 7.2% 43.2 44.0 41.5 103 259 76

House 13.1% 37.2 37.9 35.8 114 175 83
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intensity along the isophote direction is unchanged while intensity along the orthogonal
direction of isophote is inversely proportional to the magnitude of gradient. In texture
inpainting, the added texture term reflects periodicity along the texture and its perpendicular
direction, which can successfully propagate regular texture information.

Compared with other high order PDE-based methods, our method is more concise
mathematically. In numerical implementation for structure term, we adaptively choose the
step size of the finite difference according to the curvature. In places where curvature is
large, the refined half-point finite difference is used, while the one-point finite difference
suffices elsewhere. In this way, the proposed method can produce satisfactory image quality
and reduce computational complexity.

Fig. 6 Simultaneous structure and texture inpainting results. The images in the first row are the original, the
damaged and the repaired result using the proposed method with PSNR=54.0 dB. The images in the second
row are the inpainted results by BSCB method with PSNR=42.5 dB, total variation method PSNR=46.3 dB,
CDD method with PSNR=37.6 dB, and the layered method in [4] with PSNR=49.1 dB respectively
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35

40
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Fig. 7 Performance comparisons
between the proposed
method and the reported methods
in Table 1
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In current stage, parameters such as the texture direction, periodicity and weights need to
be pre-determined. Further investigation is needed to find ways for automatic, or semi-
automatic, determination of these parameters. One limitation of the present method is that
the texture must have a dominant direction. Future improvement to be made is therefore to
make the model more general so that irregular textures can effectively be treated.

We also assume that, as in other works reported thus far, the locations of damaged region
are known. But for real applications, detecting and locating the damaged region is
important, therefore deserving in-depth investigations.
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