
SmartPeerCast: a Smart QoS driven P2P live
streaming framework

Wenyi Wang & Yaowu Chen

Published online: 5 June 2010
Springer Science+Business Media, LLC 2010

Abstract The P2P swarm technologies have been shown to be very efficient for medium
scale content distribution systems in the last few years, such as the file sharing and video-
on-demand (VOD) applications. However it is still an open topic about how to deploy the
P2P paradigm for the real time video broadcasting (RTVB) applications. The P2P RTVB
application is different from the cache based P2P system because it has more stringent
restrictions for startup time and packet loss ratio. In this paper, an adaptive media
broadcasting P2P framework named SmartPeerCast which employs the media transrating
service to control the quality of service (QoS), is proposed. SmartPeerCast achieves a network
awareness, codec awareness, and high performance RTVB service with four key designs: (1) It
groups the newly joined peers into different quality clusters by their uploading capability. This
clustering mechanism avoids the bandwidth bottleneck between the heterogeneous peers of the
overall P2P overlay by only forwarding the same quality stream over the peers in the same
cluster. (2) The streaming quality is adjusted adaptively between the sending and the receiving
peers by a Smart QoS algorithm to compensate for the network jitters to reduce the receiving
peer’s playback jitter. (3) The receiving peer monitors the data forwarding QoS of the sending
peer to select the best suitable parent node dynamically. The SmartPeerCast uses this Smart
QoS framework to implement an incentive mechanism to award the peers with high uploading
contributions by migrating them to a higher quality cluster. (4) A transrating engine is used at
the leaf nodes of the high quality cluster to forward the streamwith suitable bits rate to the nodes
of the low quality cluster; this transrating service not only can fully utilize the uploading
bandwidth of the peers in the higher quality cluster but also avoids the bandwidth bottleneck of
stream forwarding between the heterogeneous peers. Our experiment results and the real
deployment show that SmartPeerCast can eliminate the bandwidth bottleneck and content
bottleneck between the heterogeneous peers with a smaller startup time and packet loss and it is
a high performance and medium scale P2P RTVB framework.

Keywords P2P. Broadcasting . Live streaming . QoS . Transrating

Multimed Tools Appl (2011) 54:445–471
DOI 10.1007/s11042-010-0547-6

W. Wang (*) : Y. Chen
Advanced Digital Technology and Instruments Institute, Zhejiang University, Hangzhou 310027, China
e-mail: walker_wwy@hotmail.com

1 Introduction

Over the last decade, the Internet protocol (IP) based multimedia applications are growing
tremendously and becoming the killer applications. Most of them are implemented as the
client/server architecture with proprietary protocols; such as the VOD applications, User-
Generated-Content (UGC) web sites (ex, the YouTube [21]), Push VOD applications (ex,
the Netflix [18]), and the real time video broadcasting(RTVB) applications (ex, the IP video
surveillance system). These centralized systems always have the scale issue as the user base
continues to grow due to the bandwidth and storage space bottleneck of the servers. Taking
the RTVB applications as an example, the performance data of these systems; such as the
startup time, packet delay, and playback jitters, heavily depend on the transferring network
bandwidth, so the scale of RTVB application is limited by current Internet framework and its
transfer mode. For example, if a broadcasting server wants to support a flash crowd accessing of
10,000 users for a video stream encoded with 512 Kbps, A 5 Gbps (512 Kbps * 1,000)
uploading bandwidth must be provided at least for it. In the current Internet framework, a huge
investment for the bandwidth needs to be in place to have this service. Multicast can resolve the
scale issue by only replicating one copy of the packet over the same physical link, but it has not
being deployed successfully over the Internet [34] and works only in the Intranet scope.
Researchers thus have resorted to application-level solutions using P2P systems, which build
an overlay network out of unicast tunnels across cooperative participating users called overlay
nodes, and multicast is then achieved through data relaying among these nodes[45].

In P2P streaming systems, there are two main types of overlay architectures to organize
the peers for data forwarding [31, 33, 34, 36]: a) tree based and b) mesh based. The tree
based systems use push method to disseminate the data over the application level multicast
(ALM) tree, as the researches [5, 9, 11–13, 24, 41] have proposed. The ALM tree structure
uses the same idea as the multicast technology, so it is easy to implement and maintain.
There are two kinds of ALM tree overlay structure; one is single ALM tree, such as
DirectStream [13], OverCast [24], ESM [9] and ZIGZIG [41], and the other is the multiple
ALM trees as proposed by SplitStream [5], P2VOD [11], and P2CAST [12]. At the ALM
overlay network, every peer or node uploads the data to others while receiving the data to
reduce the server’s loading. It improves the scale of the media broadcasting system by
utilizing every peer’s uploading bandwidth. But the ALM overlay network is an application
layer protocol, so it has the performance penalty comparing with the multicast and it has
more transfer delay of the packet. The depth of an ALM tree node is deeper and the transfer
delay of the packets between the source and this node is longer. Unlike the multicast
topology, the nodes of the ALM trees are deployed over the Internet widely and
heterogeneously, so the extra transfer delay of the packets will be added due to the
bandwidth bottleneck between the heterogeneous nodes. For example, if a peer in the data
forwarding path has a smaller uploading bandwidth than the media stream’s bits rate, all the
descendent nodes of this peer will meet the bandwidth bottleneck when receiving this
stream and have very heavy playback jitters in their player. System’s maintaining effort is
another impact to the ALM tree’s performance. When a peer joins and leaves the ALM tree,
the system needs take some time to fix the data forwarding path and this process will
interrupt the data forwarding of the media stream. This interruption often will introduce the
playback jitters to the peers. As the SplitStream [5] presents, the multiple ALM tree overlay
combining the Multi-Description Coding (MDC) layer encoding technology can address
some key performance parameters of the P2P RTVB application, such as the startup time
delay and the packet loss. Although the MDC concept is a good way to improve the
playback performance between the heterogeneous peers, none of the available decoders

446 Multimed Tools Appl (2011) 54:445–471

nowadays has supported the MDC technology. Neither the single tree nor the multiple trees
of the ALM utilize the leaf node’s uploading bandwidth. Thus, the ALM tree framework
does not have the overall best performance as the mesh framework [34].

As the researches [1, 2, 6–8, 10, 22, 25, 26, 28, 29, 32, 35, 37, 38, 40, 42, 45] have
discussed, the peers of a mesh overlay network can get the data from multiple source peers
and forward the data to multiple children peers comparing with the tree based structure, so
the mesh structure can support larger scale systems and are more tolerant to peers churn.
The mesh framework uses the receiver driven framework to pull data from the parent nodes
and can utilize every peer’s uploading bandwidth. Unlike the receiving node in the ALM
tree framework which can only get the data from its parent nodes, the receiving node of the
mesh P2P network uses a scheduler to monitor and select the suitable parent node
periodically and globally. This global source node selection mechanism can utilize all
peers’ upload bandwidth and increase the topology resilience to the node failure or
departure due to the increased probability of available distinct network paths. However,
streaming applications over the mesh overlay face two important challenges [27]. First, due
to the inherent sequential media encoding and play-out, packet dissemination and data
requests must follow the temporal ordering of the content closely at the source. This
constraint may be slightly reduced by the implementation of play-back buffers when delays
permit it. Second, the limited look-ahead content availability; especially in the case of live
streaming scenarios, limits greatly the flexibility in terms of content download/upload
through such architecture.

From the application point of view, the P2P streaming applications can be divided into
two categories: (1) P2P VOD application. It is similar to the P2P file sharing application of
BitTorrent [16] and eMule [17] by using the peer’s cache to reduce the server’s loading. But
it is different from the P2P file sharing application. The peers in the P2P VOD system often
only cache the movie segments which they have played. If the movie data hasn’t been
played or cached yet, the peer will request it from the central server. Unlike the P2P file
sharing application, the chunks must arrive at the peers of the P2P VOD system in the
playback order, so the chunk replication algorithm of the P2P VOD application is more
complex and challenge. The P2P VOD system can use the large cache of the peer to
improve the VOD playback performance as presented by the PPLive [22] and the PPStream
[20]; they cache one or multiple files at the peer’s storage to improve the performance. (2)
P2P RTVB application. It is totally different from the P2P VOD application because it is
more stringent for startup time and packet delay; the cache algorithms of the P2P file
sharing and VOD system cannot be applied to the RTVB system. For the P2P VOD system,
it is still an efficient way to improve the overall performance of playback jitters and
streaming quality by increasing the peer’s cache buffer size. But the bigger cache buffer
also will increase the initial startup time delay [32]; it is not acceptable for the RTVB
application which needs as small an initial startup time as possible. Thus, the cache
mechanism used at the P2P VOD system cannot benefit the P2P RTVB system and needs
some improvement. At the same time, the P2P VOD system also uses the cache algorithm
to reduce the playback jitters caused by the network congestion between the heterogeneous
peers. The P2P VOD clients compensate the packet delay by increasing the peer’s cache
and its player buffer size [6]. This cache mechanism fails to work for the P2P RTVB system
either because the P2P RTVB application has little tolerance for the packet delay. The P2P
RTVB clients must drop any delayed packets at its player to have a continuous real time
stream playing and, the delayed packets would be taken as being lost. Consequently, it
generates the playback jitters at the player. From the above discussion, the traditional
framework and algorithms of the P2P content distribution systems cannot meet the

Multimed Tools Appl (2011) 54:445–471 447

requirements of the P2P RTVB application because it has more stringent requirements for
the startup time and the packet delay. A new P2P framework and algorithm need to be
created and designed for the RTVB application.

In this paper, a framework by combining the ALM tree and mesh framework of the P2P
overlay together is proposed. Our proposal not only keeps the simplicity and easy
maintaining features of the ALM tree framework, but also utilizes all peers’ uploading
bandwidth like the mesh framework to improve the startup time delay and playback jitters
performance of the RTVB application. As Fig. 1 shows, the framework we propose in this
paper is named SmartPeerCast. It is a revised multiple ALM tree architecture; the nodes at
the different ALM tree also can serve each other. The SmartPeerCast is composed of three
type of nodes; source, tracker, and peer. The original input video stream is replicated by the
transrating engine [3, 30] at the source node to three different quality output channels of
high, medium and low bits rate stream, which have the same resolution and scenes. The
peers are grouped into three ALM trees of high, medium and low quality stream by the
tracker node. The tracker assigns a newly joined peer to one of the above three ALM trees
by its uploading capability; the peer with higher uploading bandwidth joins the ALM tree
of the higher quality stream. Besides the tracker node, the peer node may also uses the
transrating engine to replicate the stream by reducing the quality, especially the leaf nodes
of the higher quality stream ALM tree. SmartPeerCast uses the transrating engine at these
leaf nodes to forward the lower quality streaming to the nodes of the lower quality stream
ALM trees. A Smart QoS framework is designed between the receiving and the sending
peers to monitor the forwarding service quality of the sending peer. The receiving peer will
trigger the sending peer to adjust the streaming quality dynamically by the transrating
engine to avoid the playback jitters when the Smart QoS data show that there is some
network link congestion. When the sending peer’s QoS cannot meet the minimum playback

High quality stream

Medium quality stream

Low quality stream

Smart QoS message

tracker source

H1

H2 H3

H4 H5

M1

M2

M3

M4

M5

L1

L2

L5

L3

L6 L4

High Quality Tree Medium Quality Tree Low Quality Tree

Fig. 1 SmartPeerCast overlay overview

448 Multimed Tools Appl (2011) 54:445–471

jitters requirement, the receiving peer will drop it and select a better one. The receiving peer
also reports the sending peer’s QoS to the tracker. The tracker implement an incentive
mechanism based on the QoS data to award or punish the sending peer; the peer with less
contributing uploading bandwidth will be punished by allowing only joining the low
quality stream ALM tree. SmartPeerCast contributes four improvements for the P2P RTVB
systems: 1) Eliminating the bandwidth bottleneck between the heterogeneous peers by
clustering them according to their uploading bandwidth contribution and only forwarding
the same quality stream at the given quality cluster. 2) Reducing the playback jitters of the
receiving peers by adjusting the streaming quality dynamically between the sending and the
receiving peers based on the transrating engine. 3) Guaranteeing the fairness of the peer’s
contribution and receiving by Smart QoS. 4) Utilizing the leaf node’s uploading bandwidth
of the higher quality stream ALM tree by reducing the video stream quality and forwarding
it to the nodes of the lower quality stream ALM tree.

The remaining of the paper is organized as follows: In Section 2, the related research
works on the P2P RTVB framework are reviewed, and then the proposed algorithm’s
advantages and disadvantages are analyzed. In the third section, the SmartPeerCast
framework, its major components, and the algorithms are presented; the Smart QoS
algorithm is also covered in this section. The performance evaluation and experiments’
result are discussed in the fourth section. Finally, the paper is concluded in Section 5 along
with the proposed future works.

2 Related works

Although lots of researches have been done for the P2P multimedia applications in the past
few years, most of them are focusing on the VOD applications as we have mentioned in the
first section, but it is still unclear about how to use the P2P paradigm to improve the scale
and the performance in many areas of the RTVB system. The P2P RTVB applications
normally face three challenges: (1) Sustained bandwidth from sending peers; the challenge
is that all sending peers must have the enough uploading bandwidth to meet the smooth
playback requirement. (2) Startup delay; the RTVB system has a more stringent startup time
than the VOD application, and most of RTVB applications can’t tolerate the startup time by
more than 2 s. (3) Playback media quality which depends on the completeness of the data
received before its playback deadline.

As the paper [44] has surveyed, a few live streaming application protocols have been
designed during the last few years to meet the challenges of both media quality and
timeliness of stream reception; different approaches have been proposed to strike a trade-off
between these two strongly-correlated factors in all cases. Table 1 presents a global
overview of our surveyed P2P RTVB applications by grouping them with the overlay
topology, data chunk exchange design, data encoding schema, heterogeneity, locality,
incentives mechanism, and performance measurement. The design comparison at the peer
choice, peer and content meta-data repository, and uploading source schemas [44] have
been omitted, because there are little design trade-offs for these metrics at most of the P2P
live streaming applications. In the next paragraph, the proposals listed in Table 1 will be
described, and the differentiation between them and the SmartPeerCast system will be
highlighted.

PRIME is a P2P RTVB system proposed in [35]. The peers are organized into both the
trees and a random mesh overlay. It uses two phases action of diffusion and swarm to
replicate the data. Peers receive media content from multiple sources by using the MDC
data encoding schema. Likes our proposal, PRIME can fully utilize the resource of the leaf

Multimed Tools Appl (2011) 54:445–471 449

T
ab

le
1

S
um

m
ar
y
of

th
e
su
rv
ey
ed

P
2P

R
T
V
B
sy
st
em

s

O
ve
rl
ay

to
po

lo
gy

D
at
a
ch
un

k
ex
ch
an
ge

de
si
gn

D
at
a
en
co
di
ng

sc
he
m
a

he
te
ro
ge
ne
ity

lo
ca
lit
y

In
ce
nt
iv
es

m
ec
ha
ni
sm

P
er
fo
rm

an
ce

m
ea
su
re
m
en
t

P
R
IM

E
T
re
e+
M
es
h

P
ul
l

M
D
C

ba
nd
w
id
th

N
ot

U
se
d

N
ot

U
se
d

S
im

ul
at
io
n

S
IM

T
re
e

P
ul
l

M
D
C

B
an
dw

id
th

+
la
te
nc
y

P
ro
xi
m
ity

in
fo
rm

at
io
n
+

M
ul
tic
as
t
Is
la
nd

N
ot

U
se
d

S
im

ul
at
io
n

R
2

M
es
h

P
us
h

R
an
do
m

ne
tw
or
k
co
di
ng

N
ot

U
se
d

N
ot

U
se
d

N
ot

U
se
d

P
ro
to
ty
pe

im
pl
em

en
ta
tio

n

P
U
L
S
E

M
es
h

P
ul
l

M
ul
tip

le
so
ur
ce
s

B
an
dw

id
th

ta
ke

in
to

ac
co
un
t

T
it-
fo
r-
Ta
t
+
ad
di
tio

na
l

ex
ce
ss

S
im

ul
at
io
n
+
P
ro
to
ty
pe

P
O
E
M
S

T
re
e

P
ul
l

M
P
E
G
4
la
ye
r
co
di
ng

L
at
en
cy

+
A
V
O

P
ro
xi
m
ity

in
fo
rm

at
io
n

N
ot

U
se
d

S
im

ul
at
io
n

O
S
N

T
re
e

N
/A

S
in
gl
e
st
re
am

H
om

og
en
eo
us

pe
er
s

G
eo
gr
ap
hi
ca
l
di
st
an
ce

E
m
pl
oy
in
g
th
e
id
le

no
de

S
im

ul
at
io
n

D
ag
-s
tr
ea
m

T
re
e

N
/A

M
P
E
G
-2
1
gB

S
D

co
di
ng

A
da
pt
at
io
n
ca
pa
bi
lit
y
+

ba
nd

w
id
th

+
C
P
U

P
ro
xi
m
ity

in
fo
rm

at
io
n

N
ot

U
se
d

S
im

ul
at
io
n

S
m
ar
tP
ee
rC
as
t

T
re
e+
M
es
h

P
us
h

A
da
pt
iv
e
si
ng
le

st
re
am

,
bu

t
co
de
c
aw

ar
en
es
s

B
an
dw

id
th

+
C
P
U

po
w
er

P
ro
xi
m
ity

in
fo
rm

at
io
n

T
it-
fo
r-
Ta
t

S
im

ul
at
io
n
+
P
ro
to
ty
pe

450 Multimed Tools Appl (2011) 54:445–471

nodes at the trees. However, PRIME system doesn’t use any incentive mechanism and
quality control to adapt the network transfer jitters such as employed in our system.

SIM [26] is a hybrid overlay topology of P2P and IP Multicast. Peers in SIM first form
an overlay tree using a scalable protocol. They then detect IP multicast islands and employ
IP multicast whenever possible. At SIM proposal, the receiving peer’s media quality is
limited by the minimum upload bandwidth of the intermediate peers in the branch, since
each client is connected to the source through a single tree branch. A peer clustering
mechanism is deployed at our proposal to address above issue of SIM.

R2 is a P2P RTVB system proposed in [43]. Peers are organized in a mesh based overlay.
The system is based on Random Push with Random Network coding. Unlike the other live
streaming systems, the playback at R2 is synchronized for all peers. However, the R2

system doesn’t consider the peer’s heterogeneity and take advantage of the incentive
mechanism.

PULSE is a P2P live streaming system proposed in [39]. Peers are organized in a mesh-
based overlay and data distribution follows a pull-based scheme. The system uses a primary
optimistic tit-for-tat peer selection policy, and an additional excess-based altruistic
incentive. Its major contribution is to design and use an incentive mechanism for the
sending peer’s selection.

POEMS [1] group the peers into different ALM trees based on the MPEG-4 multiple
layers’ encoding feature. Peers with high uploading bandwidth are selected to receive and
forward the base layer of the MPEG-4 stream and peers with low uploading bandwidth can
only receive and forward the enhancement layers of the MPEG-4 stream. In POEMS, peers
containing audio video objects (AVO) are assigned higher priority than peers offering less
important AVOs. Once a peer is selected for a high quality object, then it is marked as
unavailable in all other overlay networks to avoid its being selected for low quality object.
It is helpful to avoid congestion over certain network links, but it can’t fully utilize the
resources of the peers with high uploading bandwidth even though when they still have the
capability to serve more sub-streams.

OSN [4] is a framework designed for P2P RTVB applications. The appropriate idling
peers in the ALM tree overlay can be found and incorporated into the multicasting tree to
reduce the network traffic and improve the overall system performance. Our proposal uses
the similar incentive concept as OSN where the server will record and store every peer’s
contribution in bandwidth and uploading time. However, OSN didn’t explain how the
incentive mechanism is in place to motivate the peers to contribute their resources for video
forwarding. It remains to be a trusted overlay network in the sense that all peers and the
source server are stable. It also assumes that all peers are homogeneous.

Likes the POEMS system, Dag-stream [23] is another P2P RTVB application using
content adaption technology. Dag-stream proposes a solution to distributed adaptation and
streaming using MPEG-21 generic Bitstream Syntax Description (gBSD). The peers are
organized by tree based overlay and served based on a hierarchy of adaptation and
streaming requirements. The peer’s heterogeneity is handled in terms of its processing
power and bandwidth. The tree overlay is constructing based on the video adaption
requirements of the clients. Comparing with our proposal, Dag-stream proposal didn’t
discuss the incentive mechanism about how to encourage the peers to contribute their CPU
cycles and uploading bandwidth. Different from the Smart QoS algorithm of our
SmartPeerCast proposal, Dag-stream system only considers the video adaption among
heterogonous peers when incorporating them into the overlay tree, but can’t adjust the
video adaption dynamically during the streaming phase according to the variations of its
parent CPU loading and the network jitters.

Multimed Tools Appl (2011) 54:445–471 451

From all the above researches, POEMS and Dag-stream are the most similar to ours
because they both use the video adaption technology. But differences are: (1) The
SmartPeerCast is a codec awareness video adaption framework by using the transcode and
transrating engine of ffmpeg [14], while the POEMS uses MPEG-4 layer encoding and the
Dag-stream uses the MPEG-21 standard. (2) In our proposal, the video stream quality is
adapted dynamically along with the transferring link condition and the peer’s CPU loading.
The video adaption is not only used to eliminate the heterogeneity between the peers, but
also used to smooth the streaming playback caused by the network jitters. (3) Instead of
using the trees overlay, the tree and mesh overlay together are combined to organize the
peers in our proposal. This tree and mesh hybrid overlay improves the overall system
stability and resource utilization. (4) None of the POEMS and Dag-stream proposal
implements the incentive mechanism, but a tit-for-tat like incentive mechanism to award
and punish the peer’s contribution based on the Smart QoS framework is designed into our
proposal. By eliminating the free riders with this incentive framework, the overall system
performance is enhanced also.

3 The SmartPeerCast framework and algorithms

Figure 2 shows the SmartPeerCast implementation overview. The SmartPeerCast overlay
network is composed by three type nodes; tracker, source, and peers. SmartPeerCast defines
the three nodes’ function and role as the description below.

The tracker node; it is demonstrated in the Fig. 2. SmartPeerCast uses the tracker node to
manage the registration of the peers and the source node; such as the leaving and the
joining events. The tracker node is the super node of the SmartPeerCast and its main
function are defined and implemented as below: a) To manage and assign the newly joined
peer to different quality ALM tree. Every ALM tree takes one of the tree output channels in

Tracker

P2

P1

Source

encoder input

transrate proxy

receiver scheduler

transrate Engine

receiver scheduler

transrate engine

High quality stream

Medium quality stream

QoS feedback message

Peer control message

Fig. 2 SmartPeerCast implementation overview

452 Multimed Tools Appl (2011) 54:445–471

the source node as the root node. The peer with the higher uploading bandwidth is assigned
to the ALM tree rooted at the higher quality output channel. The peer registers to the tracker
with the following node information; <peer id, upload bandwidth, the maximum acceptable
input connections, stream id>. Please refer to the Table 2 for the definition of the notation
used here. b) To handle the peer’s leaving event and the peers churn of the ALM trees. At
the ALM tree overlay network, the peers churn must be fixed as soon as possible so that the
corrupted streaming forwarding path can be recovered quickly to avoid the playback jitters.
There are two possible ways for a peer to quit an ALM tree in the SmartPeerCast; one is the
graceful way and the other is the forced way. If the peer quits the ALM tree gracefully, it is
unregistered by the tracker with the following message; <peer id, stream id>. After the
tracker receives this message, it removes the peer from the stream ALM tree indicated by
the stream id. For the other cases that the peer quits the ALM tree in a forced way, such as
an accident of the system crashing, the peer’s children will detect this event by the “keep-
alive” message between them and reports the leaving event to the tracker node. Once a peer
leaves the SmartPeerCast ALM trees either in the graceful or the forced way, all the
descendant nodes of the peer must run the Algorithms 1 to find a new parent to fix the peer
churn in the ALM tree. c) To award and punish the peers based on its uploading bandwidth
contribution. The Algorithm 2 presents the details. The tracker node collects the sending
peer’s QoS data during the stream forwarding and acts as the central server of the incentive
mechanism. If the sending peer’s QoS could not meet the stream quality of the ALM tree, it
would be migrated to another ALM tree which conveys a different quality stream.

The source node; its overview is shown in the Fig. 3. The source node’s function is to
provide the real time video encoding data to the whole broadcasting service and acts as the
root node of the ALM trees. In current applications and researches, the developers and the
researchers often use a TV capture card or an IP camera at the source node to provide one
MPEG-4 or H.264 encoding stream as the output channel. But SmartPeerCast uses a
different source node implementation. The source node of SmartPeerCast is designed as a
logic unit by combining one channel MPEG-4 or H.264 encoder and the transrating proxy

Multimed Tools Appl (2011) 54:445–471 453

Table 2 Notations

Term Definition

T The tracker

S The streaming source server

Pi Peer i

sid The real time live streaming id. It indicates the encoder’s output live streaming. All the
three output streaming channels in the source node have the same sid.

Qi The quality level of Pi. SmartPeerCast defines three quality levels as HIGH_QUALITY,
MEDIUM_QUALITY and LOW_QUALITY.

peers_clusters[i] It is the array of the peer clusters. SmartPeerCast groups all the peers into three clusters
with the different quality level of HIGH_QUALITY, MEDIUM_QUALITY and
LOW_QUALITY. All peers at the same cluster receive the same quality streaming
data indicated by the cluster’s quality level.

ubi The total uploading bandwidth of Pi.

fbi The total consumed uploading bandwidth of Pi when forwarding the streams to its
children.

sbsid The bandwidth requirement of the HIGH_QUALITY output streaming channel in the
source node for the stream sid.

together to provide three output channels of real time encoding stream simultaneously. The
source node uses the transrating proxy to replicate the original one input stream channel to
three output channels with different quality (or profile) streams. These three output
channels output three different levels of quality with real time streams in the SmartPeerCast
source node; the high quality stream with 2 Mbps bits rate, the medium quality stream with
1 Mbps bits rate, and the low quality stream with 500 Kbps bits rate respectively. An ALM
tree is created for every output channel to broadcast different quality real time stream.
Every ALM tree only allows the peers with the enough uploading capability to forward the
stream which it receives to join. Thus, the peers are grouped into three clusters based on
their uploading bandwidth. This three different quality clusters’ definitions in the
SmartPeerCast are similar to the three layers’ definitions for the MPEG-4 audio and video
objects in the research [1]. But the SmartPeerCast is different from the research [1] because
the SmartPeerCast source node is codec awareness and can use any encoding format at the
input encoder. If the output connections of a lower quality output channel were saturated,
the higher quality output channels still could serve the peers with the lower uploading
bandwidth by using the transrating engine service in the source node. The transrating
engine usage is described in the section of “The New Peer Joining Algorithm”.

The Peers; they are the majority nodes in the SmartPeerCast. The peers are assumed to
be heterogeneous with different uploading bandwidth because the SmartPeerCast is targeted
to be the framework of an Internet widely RTVB application. The transrating engine and
the receiver scheduler are the two important modules of the peer. The sending peer uses the
transrating engine to achieve two functions; (1) adjusting its uploading stream quality
dynamically based on its receiving peers’ QoS events to smooth the playback jitters of the
receiving peers when there occurs the network link congestion. The Algorithm 2 presents
the detail description for this QoS framework and, (2) reducing the stream’s quality
between the heterogeneous peers to avoid the bandwidth bottleneck when the sending peer
with the high quality stream forwards the stream to one of its intermediate descendant node
which has the low uploading bandwidth. With the transrating engine, the peers in the high
quality stream ALM tree can serve as the parent node of the peers in the medium and the

the low quality output channel
the medium quality output channel the high quality output channel

encoder

transrate proxy

transrater transrater transrater

high quality stream

medium quality stream

low quality stream

Fig. 3 The source node overview

454 Multimed Tools Appl (2011) 54:445–471

low quality stream ALM tree. Thus the SmartPeerCast improves the overall system’s
performance by fully utilizing the ALM trees’ leaf nodes. The receiver scheduler is the
second important module running in the receiving peer in a periodical interval.
SmartPeerCast configures this interval value to ten seconds. Similar to the unchoking
algorithm used in the BitTorrent, this receiver scheduler is used in the SmartPeerCast
receiving peers to monitor the forwarding QoS of their parent nodes. Whenever the sending
peer cannot meet the receiving peer’s QoS requirement, the receiving peer runs the
Algorithm 1 again to select a new parent.

Join Broadcasting Tree (T, sid) {

/* (1) register itself (Pi) to the tracker T */

register_to_tracker(Pi, sid, ubi);

/* (2) to get the quality level of Pi */

Qi = receive_quality_level(T);

/* (3) to get the list of potential candidate peers which can serve as the Pi’s parent node

and assign the peers at the candidate_peers to the different clusters according to his

quality level value

*/

candidate_peers = receive_candidate_peers(T)

peers_clusters candidate_peers

/* (4) To find the best suitable node from the peers_clusters arrary with the same or above

quality levels

 */

level = Qi;

while (level <= HIGH_QUALITY){

 Pj = find_best_hit(peers_clusters[level]);

 if (Pj is found)

 break;

 else

 level = level + 1;

}

/* (5) To stream the data from the selected parent peer */

transrate = false;

if (Qi < Qj)

transrated = true;

handshake_and_streaming(Pj, transrated)

}

←

Algorithm 1 the new peer joining

3.1 The new peer joining algorithm

The Algorithm 1 shows the procedure as to how the new peer Pi joins the SID stream ALM
trees (refer to the Table 2 for the notation of Pi and SID). There are five steps for the new

Multimed Tools Appl (2011) 54:445–471 455

SmartPeerCast peer to join the video broadcasting service and play the real time streaming:
(1) Registration. The new peer Pi connects to the tracker T with the message <peer id,
uploading bandwidth, the maximum acceptable input connections, stream id>. The Pi’s
uploading bandwidth value included in this initial registration message is very important
because the tracker node decides which stream quality ALM tree Pi can join based on its
uploading bandwidth value. The quality level value is calculated in the following step; the
SmartPeerCast client runs the wizard to help user configure its uploading bandwidth when
it is running for the first time. If a false uploading capability were provided by Pi, the Smart
QoS algorithm could detect this false uploading bandwidth declaration and would then
punish the peer by migrating it to a low quality stream ALM tree. Besides the punishment,
the Smart QoS algorithm can also award the peer with the large uploading contribution by
migrating it to a high quality stream ALM tree even though the user configures the
uploading bandwidth to be smaller than its real contribution. (2) Calculating the stream
quality level that Pi can receive. In the SmartPeerCast framework, Pi can only receive the
stream with the bits rate less than its uploading bandwidth. For example, if Pi ’s available
uploading bandwidth is 700 Kbps, it can only receive the low quality stream with less than
700 Kbps bits rate broadcasting from the low quality output channel of the source node.
The tracker node assigns the Pi’s quality level based on its initially configured uploading
bandwidth value. (3) Grouping the peers to three different quality clusters. After Pi

connects to the tracker node, it receives all the candidate peers which can serve as the
parent node. Pi traverses the candidate list to divide them into three different quality
clusters according to the candidate’s uploading bandwidth. The candidates list includes all
the peers with a higher quality level than Pi because these higher quality peers can
provide the media stream forwarding service to Pi in SmartPeerCast by the transrating
engine. (4) Finding the parent node. Pi traverses the three clusters to select the best
suitable peer as the parent. First, it searches in the cluster with the same quality level as
itself. If all peers in this cluster are saturated and cannot serve as the Pi’s parent, it then
continues to search the peers in the clusters with higher quality level until the best suitable
node is selected or this process quits as a failure. The peers in the same cluster as Pi will
have the higher priority than the peers in the higher level quality clusters when Pi is
selecting the parent node. If a peer in the same cluster can be selected as the parent node,
the parent node needs not to waste its computing cycles to run the transrating engine. The
above policy makes the SmartPeerCast overall performance better. (5) Receiving and
playing the stream. Pi does the hand shake with its parent node; if the handshake were
OK, Pi would start to receive the streaming data and play it, and if the nodes in the higher
quality cluster were selected as the parent node, this parent node would have the higher
quality than Pi. The transrating engine is used the at the parent node to reduce the stream
bits rate when forwarding to avoid the transferring bottleneck occurring at the Pi’s
descendant nodes in the ALM tree.

3.2 The Smart QoS algorithm

Figure 4 shows the Smart QoS framework between the receiving and the sending peer. The
player buffer in the receiving peer is divided into three segments by the high and low water
mark position. The current playback position in the player buffer is used to compare with
the low and the high water mark to trigger the QoS events. The receiving peer Pi’s QoS
events are used to indicate the receiving quality from the sending peer Pj. When Pj receives
these QoS events, it adjusts its forwarding stream’s bits rate dynamically by the transrating
engine to smooth the Pi’s playback jitters. Two types of QoS events are defined in the

456 Multimed Tools Appl (2011) 54:445–471

Smart QoS algorithm and they are triggered by the low and the high water mark boundary
checking respectively. The Smart QoS uses the above two QoS events and the transrating
engine to eliminate the Pi’s playback jitters when there is network link congestion between
Pi and Pj. The jumping of ②➔③ in the Fig. 4 illustrates the first type QoS event. It is
triggered when the current playback position is going down from the high water buffer area
to the normal buffer area. This QoS event indicates that there is a bandwidth bottleneck
when Pj is forwarding the stream to Pi because the Pj’s data forwarding speed is far slower
than the Pi’s playing speed and, the streaming data cached at the Pi’s player buffer is
dropping quickly. When the sending peer Pj receives this QoS event, it must kick off the
transrating engine to reduce the forwarding stream’s bits rate to avoid the packet loss and
the playback jitters occurring in Pi. The transrating engine is used here to reduce the stream’s
bits rate to compensate for the dropping of the throughput. The second type QoS event is
triggered when the current playback position is growing from the normal buffer area to the
high water buffer area as the jump ①➔② showed in the Fig. 4. This second type QoS event
indicates that the receiving peer Pi’s playback speed has caught up with the Pj’s data

Normal buffer area

 The Pj’s uploading bandwidth become poor

High water buffer area

 The Pj’s uploading bandwidth is good

 current playing position is between the low and the high water mark

Pi(Receiving Peer) Pj(Sending Peer)

Low water buffer area

Low water buffer mark High water buffer mark Current playback position

Fig. 4 Smart QoS overview

Multimed Tools Appl (2011) 54:445–471 457

forwarding speed. It shows that the network throughput between Pj and Pi becomes
larger than the stream’s bits rate Pj forwarding. Pj increases the stream quality by the
transrating engine to improve the Pi’s playback quality when this QoS event is received.
The transrating engine is used here to fully utilize the network bandwidth to have a better
stream quality. The Algorithm 2 shows the Smart QoS algorithm detail implementation.

L : the Pi’s player buffer size in bytes

LWM: the low water mark of buffer L, it’s defined as L * 20%

HWM: the high water mark of buffer L, it’s defined as L * 80%

p: the current playback position in buffer L

Tlwm: The total time that Pi is staying with condition “p <=LWM”

Thwm: The total time that Pi is staying with condition “p >= HWM”

do_play() {

//(1) Do the initial buffering until the high water mark is reached. The startup time is decided by this initial buffering

 // process.

while(p <= HWM)

 receive_packet_from(Pj);

//(2) kick off the playback

while (bQuit) {

 player_play_packet();

 receive_packet_from(Pj);

//First type QoS Event: Triggering the first type of QoS event as the jump shows in the Fig. 4

//to reduce the stream quality

 if(p <= LWM) {

 if (p is jumped from the normal buffer area to the low water mark buffer area)

 trigger_qos_event(Pj, reduce_quality);

 increase Tlwm;

 }

 //Second type QoS Event: Triggering the second type of QoS event as the jump shows in

//the Fig. 4 to increase the stream quality

 if(p >= HWM) {

 if (p is jumped from the normal buffer area to the high water mark buffer area)

 trigger_qos_event(Pj, increase_quality);

 increase Thwm;

 }

}

}

1

Algorithm 2 Smart QoS

There are total two steps in the Smart QoS implementation as demonstrating in the
Algorithm 2. The first step is to prepare the receiving peer Pi’s initial playback buffer. The
initial buffering can reduce the playback jitters and improve the playback experience of
the RTVB clients and, an increase of the initial buffer can have better performance
improvement in the playback jitters. But, it also increases the startup time delay when
buffering the data. The startup time is always the most critical performance requirement for

458 Multimed Tools Appl (2011) 54:445–471

the RTVB application. Most of the RTVB applications, such as the IPTV and IP Video
surveillance system, require the startup time to be less than two seconds. SmartPeerCast
uses the high water mark of the receiving peer’s player buffer as the initial buffer size which
is defined as the 80% of the whole player buffer length in the Fig. 4. After the initial
buffering step, the receiving peer Pi kicks off the stream play by keeping receiving the data
from the sending peer Pj as the Algorithm 2 shows in the second step. There are two
possible types of QoS events during the second step running process: (1) Bad QoS Event; it
is shown by the first type QoS event case in the Algorithm 2. The receiving peer Pi finds
that its current playback position is dropping below the low water mark and reports the QoS
event to the sending peer Pj. Pj then reduces the forwarding stream quality immediately
after receiving this QoS event. The receiving peer Pi’s continuous playback is not
interrupted and kept smooth by the transrating action in Pj. (2) Good QoS Event; it is
shown by the second QoS event case in the Algorithm 2. This time Pi finds that its current
playback position is increasing from the low water mark to the high water mark and reports
the event to Pj. Pj tunes the stream quality up to meet the bandwidth changing. Pj forwards
the better quality stream to Pi so that it can have a better playback experience when the
network condition becomes better. The two types of QoS events used in the Smart QoS
algorithm make the sending peer change the stream’s bits rates adaptively according to
the condition of the network link congestion, so the receiving peers can always have
the smooth playback experience by receiving the best suitable quality stream over the
current network condition. Besides monitoring the stream forwarding QoS between the
sending and the receiving peers, Smart QoS algorithm also counts the sending peers’
uploading contribution. Algorithm 2 defines the parameter Tlwm to count the total time
that the current playback position is below the low water mark during the playing in Pi.
The Tlwm value varies during the playback QoS switching between Pj and Pi. After the
second type QoS event occurs, the Tlwm value continues to increase until Pi’s current
playback position returns back to the normal buffer area. Thus, if the overall QoS
between Pi and Pj is worse, a larger Tlwm value will be gotten at this step. The receiver
scheduler algorithm discussed in the next section uses the Tlwm value to kick off the new
parent selection when it reaches the threshold. The Tlwm value is also used in the tracker
node to award and punish the peers’ bandwidth contribution in the next section’s
algorithm.

3.3 The receiver scheduler algorithm

Algorithm 3 shows the receiver scheduler implementation. It is running periodically as the

the sending peers. In the Algorithm 3, the receiving peer Pi monitors the sending peer Pj’s
uploading QoS to select the new parent node when the old one cannot provide a good QoS.
The Bandwidth Sharing Index (BSI) in SmartPeerCast is defined to demonstrate the
forwarding quality difference between the sending and the receiving peer. Equation 1
defines the BSI below:

BSI ¼ Tlwm
Ttotal

ð1Þ

In Eq. 1, Tlwm presents the total time that the current playback position is below the low
water mark during the playing in Pi as it is defined in the Algorithm 2. Ttotal presents the
total streaming time between Pj and Pi. BSI is defined as the time when Pi plays the low
quality stream versus its total playback time. According to its definition, BSI value indicates

Multimed Tools Appl (2011) 54:445–471 459

interval Δt at the receiving peer. The receiving peer uses the scheduler to choke or unchoke

Pi’s playback jitters probability when streaming from Pj. When the link’s BSI value between
Pi and Pj becomes bigger, it shows that this link transferring quality becomes worse. The
worse forwarding quality in this link may be caused by the network congestion or the
resources’ competing in Pj. Algorithm 3 uses a constant BSI threshold value to judge if
the sending peer could or could not provide the required streaming quality. The fourth step
shows the detail: If the link’s BSI value between Pi, and Pj goes beyond the BSI threshold, it
means that Pj is no longer a good parent node. Pi needs contact the tracker node again to
select a new parent and, the new parent finding process shall repeat the Algorithm 1 run. In
the third step, the tracker checks the sending peer’s BSI value to decide if the peer has
configured the fake uploading bandwidth and acts as a leech node. SmartPeerCast
configures the BSI threshold value to be 5%, 10%, and 20% respectively in our
experiments. If Pj’s BSI value goes beyond the threshold value when it is forwarding the
stream data to Pi, the tracker thinks Pj is facing a forwarding bottleneck and it cannot stay at
the same ALM tree as Pi. Pj is then migrated to the lower quality stream ALM tree by the
tracker. The above guideline is the incentive mechanism used at the SmartPeerCast; it is
used to reward or punish the peers’ bandwidth contribution.

t : the scheduling interval (t = 10s)

Ttotal : the total streaming time from the parent node (ex, Pj)

BSI: the uplink bandwidth sharing index between Pi and Pj

jitter_theshold: a const threshold value to indicate if the sending peer can provide enough forwarding quality or not

Scheduler(T, Pj) {

//(1) calculate the uplink bandwidth sharing index between Pi and Pj.

BSI = Tlwm / Ttotal;

//(2) Pj meets a forwarding bottleneck

if(BSI >= jitter_theshold) {

//(3) reports the BSI value of Pj to the tracker so that the tracker can award or punish Pj

// according to its bandwidth contribution or cheats

update_peer_uplink_capability(T, Pj);

drop the connection between Pi and Pj;

//(4) run the algorithm 1 again to rejoin the video broadcast tree and select a new parent

Pj = Join Broadcasting Tree(T, SID);

}

}

Δ Δ

Algorithm 3 the scheduler

4 Performance evaluation

The startup time and packet loss ratio are the two key performance parameters of the P2P
RTVB application. To prove and verify the SmartPeerCast performance, the NTCUns [15]
simulator is used to run and check the prototype implementation. The experiment’s target is
to show that the SmartPeerCast is a stable solution with good performance for a medium
scale IP surveillance system. For example, it can at least support 500 live streaming
playback PC clients simultaneously from one IP camera output channel.

460 Multimed Tools Appl (2011) 54:445–471

4.1 Experimental setup

The NCTUns is a Linux kernel based network simulator and it can run the real application
inside the simulated network node directly. It can provide the same P2P network running
environment as the real Internet based P2P applications. The SmartPeerCast prototype
implementation is based on the PeerCast [19] open source project by adding our new
algorithms. Because the NCTUns can run the prototype binary code as a normal Linux
application from the simulated network node inside, it is very easy for us to design and
implement our experiments. Since the SmartPeerCast applications can be run directly in
both the NCTUns simulator and the real Linux environment without any modifications, it is
believed that the experiments results gotten from the NCTUns should be same as the case
running over the real Internet.

In our experiments, the NCTUns simulator is running at the high performance PC with
Intel Duo Core CPU, and 2 GB DDR memory. Because the NCTUns can only support
maximum 64 network nodes at one Linux PC, total 10 cascaded connecting PCs in an
intranet network are used to simulate the total 390 peers in our experiments. Every
emulation station is configured as a sub network with 39 nodes as shown in Fig. 5. Two
peers at the 10th emulation station are picked up and configured as the tracker and the
source node respectively. The peers are divided into three groups and then organized by the
SmartPeerCast application to the ALM trees which can play and forward the high,
the medium, and the low quality stream respectively. The uploading bandwidth of the nodes
at high, medium, and low quality clusters are configured as 400 Kbps, 200 Kbps, and
100 Kbps respectively. The simulated network is an Autonomy Network (AS) with 1Gbps
throughput in the backbone. As shown in Fig. 5, the overlay network is divided into ten sub
network areas by the virtual routers at the simulation stations. The nodes with different
quality uploading bandwidth are placed over the ten sub networks. For simulation station

Fig. 5 The network topology of NCTUns simulation experiment. Ten connected PCs are running at an
Intranet to simulate 10 connected sub networks. Every PC runs a NCTUns simulator as a simulation station
to simulate 39 SmartPeerCast nodes, so there are total 390 peers running at our experiments. At simulation
station 1–9, same account peers (total 13) of high, medium, and low quality are placed at one station (or one
sub network). At station 10, two of the low quality nodes are replaced with the source node and the tracker
node respectively

Multimed Tools Appl (2011) 54:445–471 461

1–9, there are 13 high, medium, and low quality peers placed in the simulated sub networks
respectively, and two of the low quality peers at the 10th simulation station are replaced
onto the tracker and the source node. To make the experiments simple to implement and
easy to analyze, a packet generator in the source node is used to simulate the three output
channels of the real time stream with 200 Kbps, 100 Kbps, and 50 Kbps Const Bits Rate
(CBR) encoding. For the real RTVB application implementation, this packet generator can
be replaced with the HTTP based real time encoder directly; such as an H.264 IP Camera.
In our experiments, every peer’s initial buffering time is configured as ten seconds and the
peers join the video broadcasting tree in the flash crowd mode. All peers connect to the
source node simultaneously to request the stream for every experiment run. Every
experiment lasted for ten minutes and every 20 experiments were run for three different BSI
threshold values (%5, %10, and %20) respectively to collect the data.

To show the performance improvement of the SmartPeerCast, comparisons are made
with the other two systems in our experiments: (1) PeerCast; it is the original PeerCast
implementation with a minor modification. PeerCast is a single ALM tree structure. When a
new peer joins the overlay network, a parent node will be selected randomly by the tracker
and sent back to the new peer. After receiving the candidate parent, the newly joined peer
does the hand shake with it. If the handshake were successful, the new peer would join the
ALM tree to receive and play the stream data from the parent. Otherwise, the newly joined
peer will repeat the above steps continuously until finding the parent node. Because the
original PeerCast can only support one output channel of the real time stream at the source
node, its source node is modified to support three real time output stream channels and,
every channel is a CBR stream with 200 Kbps bits rate. With this modification, the
PeerCast experiments can be run in the same condition as the SmartPeerCast. (2)
MultiPeerCast; it is the simple version of the SmartPeerCast. It does not implement the
Smart QoS algorithms, transrating engine, and the incentive mechanism. MultiPeerCast
uses the same implementation of the tracker and the source node as the SmartPeerCast, so
MultiPeerCast still provides three different quality real time stream output channels in the
source code. Likes the SmartPeerCast, MultiPeerCast also groups the peers into three
different quality forwarding stream clusters.

In our experiments for SmartPeerCast, we don’t discuss experiment cases of peer
departure because we think it is easy for a peer to find the new parent node and fix the
streaming overlay with the help of the tracker node. Whenever the receiving peer detects
that its parent node is unreachable, it will invoke Algorithm 1 to rejoin the overlay just like
what it does when the forwarding QoS of its parent node degrades as presented at the
Algorithm 3. At the same time, because almost all the P2P RTVB systems are based on the
ALM tree or its variant, they have covered the peer churns and tree fixing issues already,
the more details about this topic can be referred at the researches [1, 4, 23, 26, 35]. Our
simulation experiments don’t take the transrating CPU loading of the peers into account of
peer heterogeneity either because a ffmpeg based on-the-fly transrating of H2.64 video only
takes on average 20% of the CPU load of an Intel Duo Core CPU with 2 GB RAM PC. The
PCs with this kind of configuration are very common today and can have three
simultaneous instances of this on-the-fly transrating. When the SmartPeerCast is targeted
as a PC based surveillance system, all the receiving peers are assumed as PC based which
are capable enough to transrating and forward the stream on-the-fly, so all peers in our
experiments are assumed to be powerful enough to run two transrating instances
simultaneously. But the simulation stations (PCs) are not powerful enough for every
simulated node to run the real ffmpeg transrating engine due to the large number of
simulated nodes at one PC, so the nodes in the experiments only modify the packet

462 Multimed Tools Appl (2011) 54:445–471

attributes to mark that the packet has been “transrated” when a transrating process is kicked
off.

4.2 The startup time performance results

Experiment results for the startup time of the PeerCast, MultiPeerCast and SmartPeerCast
systems are compared and shown in the Fig. 6. The results show that the SmartPeerCast can
improve the peer’s startup time efficiently because most of the peers in the experiments
begin the playback within 15 s. Considering that the peer’s initial buffering time was
configured to be fixed at 10 s and, all peers are requesting the real time video stream in the
flash crowd mode, SmartPeerCast has achieved a quite good startup time performance. This
is because that the SmartPeerCast system groups the peers into clusters to forward different
quality stream according to its uploading throughput. The peers in every cluster can only
play and forward the stream in the quality it can adapt. The peer with the high uploading
bandwidth can only join the ALM tree rooted at the source node’s high quality stream
output channel. The peer with the low uploading bandwidth can get the stream from the
nodes of the higher quality clusters, but the stream quality will be decreased by the
transrating engine when it is forwarded to the receiving node. This design avoids the bandwidth
bottleneck between the heterogeneous peers because a peer never has the chance to forward a
real time stream whose bits rate is larger than its uploading bandwidth. The SmartPeerCast
peers can get the stream faster by eliminating the transfer congestion and utilizing more leaf
nodes at the ALM trees. Thus, the SmartPeerCast have the better startup time performance.
Comparing to SmartPeerCast, PeerCast peers have the longest startup time in our experimental
results. In the PeerCast experiments, the receiving peer with the low uploading bandwidth often
selects the peer with the high uploading bandwidth as the parent node. When stream is
forwarded to the receiving peer in high quality, the receiving peer cannot forward the stream to
its child nodes with the original bit rate anymore due to its limited uploading bandwidth. Thus,
it causes the content bottleneck, and all the descendant nodes of the above receiving peer suffer
a long startup delay to buffer the data. The experiment gets the worse startup time result when
the above receiving peer is the first degree node in the ALM tree to receive the real time stream

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0
 SmartPeerCast
 MultiPeerCast
 PeerCast

C
um

ul
at

iv
e

 F
ra

ct
io

n
of

 P
ee

rs

Start time (All Runs)

Fig. 6 Cumulative distribution function of the startup time, the data is collected over the total 60 runs (20
runs per BSI threshold value). The vertical line represents the earliest possible startup time that a peer could
start the stream playback

Multimed Tools Appl (2011) 54:445–471 463

from the source node’s output channel directly. MultiPeerCast has the better startup time
performance than the PeerCast because it uses the same clustering mechanism as the
SmartPeerCast. It avoids the bandwidth bottleneck occurring between the heterogeneous peers.
MultiPeerCast has the worse startup time performance in our experiments results. Comparing to
the SmartPeerCast, the leaf nodes of the higher quality ALM trees in MultiPeerCast cannot
provide the forwarding service to the nodes in the lower quality ALM trees because
MultiPeerCast do not have the transrating engine. Thus, the uploading resources of the leaf
nodes in medium and high quality ALM trees are not utilized. In the MultiPeerCast
experiments, the peers with the low and the medium uploading bandwidth have longer startup
time than the same type of peers in the SmartPeerCast experiment because these peers have
more candidate parent nodes in the SmartPeerCast.

4.3 The packet loss ratio performance results

The packet loss ratio is another key performance metric besides the startup time in the
RTVB application. The packet loss will cause the receiving peer to have playback jitters.
The playback jitter becomes worse with more packets lost in the receiving peer because the
decoder will experience the playback jitters when the necessary audio and video frames are
dropped. In our experiment, Eq. 2 as defined below is used to measure the packet loss at the
receiving peer. In Eq. 2, Tsend is the sending timestamp of the stream packet and it is
assigned by the source node when it is streaming out. Tinitial is Pi’s initial buffering time and
Tdeadline is defined as the packet’s playback deadline in Pi. The Eq. 2 shows the condition
when the packet will be considered as lost in Pi. When Tsend, Tinital, and Tdeadline all meet the
condition set by Eq. 2, this packet will be dropped in Pi.

Tsend � Tinitial > Tdeadline ð2Þ
To evaluate the packet loss ratio performance, the total lost packets and the total packets

Pi expects to receive need to be counted. In our experiments, Pi begins to count the dropped
packets after the stream starts playing, and stop the counting until Pi quits the
SmartPeerCast system. The total dropped packets are defined as number N. M is defined
as the total packets that Pi expects to receive in the duration when Pi is counting the
dropped packets number N. Equation 3 calculates the Pi’s packet loss ratio by dividing N
with M:

packet loss ratio ¼ N
M ð3Þ

Equation 4 gives the value of M:

M ¼ Tduration
Tpacket

ð4Þ

In Eq. 4, Tduration presents the total time that Pi is watching and staying with the stream,
and Tpacket is the playback duration for a packet. In our experiments, Tduration is a fixed
number in Pi and it always equals to ten minutes in every experiment. Tpacket is also a
constant value in our experiments because it is assumed that the stream is encoded in CBR
and, the stream is divided to packets with the fixed playback duration in the source node.
The packets have variable data size in different quality stream, but they always have the
same playback duration. According to the definition of Tduration and Tpacket, it is concluded
that M is also a constant value. Thus, the packet loss ratio defined in Eq. 3 depends on the
value of N.

464 Multimed Tools Appl (2011) 54:445–471

Figure 7 shows the packet loss experiment results for PeerCast, MultiPeerCast, and
SmartPeerCast systems. SmartPeerCast has the smallest packet loss ratio of the three
systems. The receiving peers in a real deployed SmartPeerCast still have the chance to get
better packet loss ratio performance than the results shown in the Fig. 7 by increasing the
initial buffer size. PeerCast’s packet loss results in our experiments are too poor to be
compensated by increasing the peer’s initial buffer size. Our experiments results for
PeerCast show that PeerCast cannot work at all in a heterogeneous P2P system, especially
when a peer with the low uploading bandwidth is selected as the parent node of the peer
with the high uploading bandwidth. All the descendant nodes of this low uploading
bandwidth peer will suffer the heavy packets loss due to the uploading bandwidth
bottleneck. The results also explain why there is so many complaints for PeerCast’s bad
video broadcasting services over the Internet at the PeerCast forum [19]. As we have
discussed at the above section for the startup time performance results, the peers clustering
mechanism used in SmartPeerCast prevents the bandwidth bottleneck occurring in the
stream forwarding path efficiently. The results in the Fig. 7 show that this mechanism
improves the packet loss performance too. MultiPeerCast has the smaller lost packets than
PeerCast because it uses the same clustering mechanism as SmartPeerCast, but it has the
larger lost packets than SmartPeerCast. Although MultiPeerCast eliminates the bandwidth
bottleneck between the heterogeneous peers by grouping them based on the uploading
bandwidth, the leaf nodes in the higher quality MultiPeerCast ALM trees cannot provide
the stream forwarding service to the nodes in the lower quality ALM trees due to the lack of
transrating engine. This will produce more playback jitters in the MultiPeerCast receiving
peers because of the content bottleneck [35], especially when all the receiving peers send
the requests in the flash crowd mode. Different from MultiPeerCast, SmartPeerCast uses the
Smart QoS framework between the receiving and the sending peers to adjust the stream bits
rate adaptively based on the network condition. The Smart QoS can have a better control
for the packet loss ratio by eliminating the impacts of the network congestion.

4.4 The ALM tree depth and delay discussion

The cumulative delay between the relay peers and the source node can be presented by the
tree depth of the ALM tree. For the RTVB application, the tree depth presents the total

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

 SmartPeerCast
 MultiPeerCast
 PeerCast

C
um

ul
at

iv
e

 F
ra

ct
io

n
of

 P
ee

rs

Packet Loss Ratio(%)

Fig. 7 Cumulative distribution function of the packet loss ratio and the data is collected over the total 60
runs (20 runs per BSI threshold value)

Multimed Tools Appl (2011) 54:445–471 465

forwarding hops between the source node and the leaf nodes of the tree. Because every relay
node on the forwarding path will cache the live streaming data at its playback buffer, the higher
depth value means the larger cumulative scene delay between the source node and the playback
client. Some of the RTVB applications aren’t very sensitive to this parameter; such as the TV
broadcasting program; but some RTVB applications are very sensitive to the cumulative delay;
such as the surveillance system where a playback client always wants to get the real time scene
at the source node as soon as possible. Thus, a well designed tree based RTVB system should
limit the tree’s depth by putting the capable peers as near as possible to the source node of the
ALM tree as the Dag-stream [23] has studied at its performance evaluation experiments.
Figure 8 shows the tree depth of the total 20 experiments run for PeerCast, MultiPeerCast and
SmartPeerCast respectively. From the results, it can be concluded that the PeerCast has the
deepest tree depth because it is a single ALM tree overlay structure, but the MultiPeerCast
and the SmartPeerCast have shorter cumulative delay (or depth) than the PeerCast by
adapting a multiple ALM tree overlay structure. The SmartPeerCast performs the best at the
tree depth metric with the help of two designs: (1) The peers are grouped into three clusters
due to their uploading bandwidth, thus the single ALM tree overlay at the PeerCast is
reorganized into three ALM trees rooted at the source node of the SmartPeerCast system. (2)
There are more chances that the high quality peers of the SmartPeerCast to serve more
children by the transrating service than the same quality peers at the MultiPeerCast system.

4.5 The incentive scheme effectiveness discussion

In SmartPeerCast, the tracker node maintains a central database storing all information
about peers including ID and IP addresses, incentives, and so on as described in the
Section 3. When a peer is forwarding the stream to a receiving peer, the receiving peer
keeps reporting this parent node’s uploading contribution information to the tracker node by
using the BSI value. Equation 1 in Section 3.3 defines the BSI which plays the key role in
the SmartPeerCast incentive framework. Whenever a sending peer’s BSI value is lower
than the configured threshold value, the child-nodes of this peer will drop it and find a new
parent node; the tracker also will punish it by migrating it to the lower quality ALM trees,
and even kick the sending peer out from the service if its BSI value still cannot meet the

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

20
 PeerCast
 MultiPeerCast
 SmartPeerCast

T
he

 tr
ee

 d
ep

th

total sixty runs (twenty runs per BSI threshold value)

Fig. 8 The tree depth of PeerCast, MultiPeerCast and SmartPeerCast at the total 60 runs (20 runs per BSI
threshold value)

466 Multimed Tools Appl (2011) 54:445–471

threshold value requirement of the lowest quality ALM tree. The tracker node eliminates
the leech peers of SmartPeerCast system by keeping collecting every peer’s BSI
information. In SmartPeerCast, the peer’s contribution information (indicated by the BSI
value) is only effective within the streaming session and not stored in the database
persistently, so the leech peers still have the chance to rejoin the streaming session again by
reconfiguring its uploading bandwidth and reconnecting the stream again.

Results of Fig. 9 demonstrate how the SmartPeerCast’s startup and packet loss ratio
performance are improved by the BSI value based incentive scheme. As state in Section 3.3,
the BSI threshold values are configured to be 5%, 10%, and 20% respectively in our
SmartPeerCast experiments. Twenty experiments are run per BSI threshold configuration
case to calculate the average performance values of the startup time delay and the packet
loss ratio. The left side columns of Fig. 9 show the average packet loss ration for the
SmartPeerCast receiving peers, and the right side columns of Fig. 9 provide the average
startup time of the SmartPeerCast receiving peers for three different BSI threshold value
configurations. Results show that a smaller BSI threshold configuration has a better system
performance on both the startup time and the packet loss. According to the BSI definition
and the design of SmartPeerCast incentive framework, a reasonable smaller system BSI
threshold value can help the tracker to detect and deny the leech peers earlier, and to group
the peers in different quality clusters more precisely and quickly. But it is not always true
that a smaller BSI threshold value is better. If the BSI threshold value is too small, the
receiving peers will be too sensitive to tolerate the network jitters between the sending peer
and the receiving peer, or the computing resource jitters of the sending peer. It will result in
making the peers to reconnect and rejoin the stream broadcasting tree too frequently. The
sending peers also must leave and rejoin the stream session frequently to clear its bad
incentive records caused by the too sensitive BSI threshold. Thus, the system’s overall
usability will be reduced substantially due to the frequent nodes’ leaving and joining
events. It’s still an open issue about how to select a BSI threshold value by a theoretical
method in the SmartPeerCast system. This issue will remain to be studied in future works.

0

6

12

18

24

30

0

20

40

60

80

100

The average startup time for
different BSI threshold value

BSI threshold = 5%
 BSI threshold = 10%
 BSI threshold = 20%

A
ve

ra
ge

 P
ac

ke
t L

os
s

R
at

io
(%

)

The average packet loss ration for
different BSI threshold value

A
ve

ra
ge

 S
ta

rt
up

 T
im

e(
se

co
nd

s)

Fig. 9 The BSI threshold value based incentive scheme effectiveness results for the packet loss ratio and
startup time performance of the SmartPeerCast system. The data is collected by 20 runs per BSI threshold
value

Multimed Tools Appl (2011) 54:445–471 467

5 Conclusions and future works

In this paper, SmartPeerCast as the smart P2P real time video broadcasting framework is
presented with the large scale supporting and QoS enhancement. SmartPeerCast achieves a
shorter startup time delay and a smaller packet loss ratio by the new P2P overlay design and
the Smart QoS algorithm. SmartPeerCast groups the peers to the different clusters according
to their uploading bandwidth. Three different ALM trees are generated based on the clusters
to broadcast different quality streams to eliminate the bandwidth bottleneck between the
heterogeneous peers. The peers at the same ALM tree use the transrating engine to adjust the
stream quality automatically by the QoS framework between the sending and the receiving
node. This Smart QoS algorithm also reduces the packet loss efficiently by compensating for
the network link congestion. The transrating engine is used between the peers in different
ALM trees to fully utilize the leaf nodes’ resources which are in the high quality ALM trees.
The clustering policy and the transrating engine using across the heterogeneous peers
improve the performance by avoiding the bandwidth bottleneck. SmartPeerCast uses the
receiving peer to collect the sending peer forwarding QoS and reports it to the tracker which
would then awards and punishes the peers based on their uploading QoS records. This
incentive mechanism is used to award the peers who contribute more uploading bandwidth
with the higher playback quality. The experiment results show that SmartPeerCast is a very
scalable P2P and high performance RTVB framework. SmartPeerCast is also deployed into
the video surveillance system which is under development.1

In the planned future works, the peers will be grouped into the clusters based on the
round trip time (RTT) values between the peers. The tracker node creates the ALM trees by
linking the peers with the shortest physical network path together to check and study if the
Smart QoS algorithm can have a better performance than the proposed ALM tree generating
method in this paper. According to the research [1], the RTT based method can reduce the
data packet replications in the physical link, so we want to perform experiments to verify if
the RTT based method can have a better startup time delay and a packet loss ratio
performance. We also want to investigate if we can have a better P2P RTVB framework by
combining the above metrics together.

Acknowledgement The Authors would like to thank Dr. Albert. S. Wang for his contribution to this
manuscript. Dr. Wang was previously with Agilent Technologies and is now a Visiting Fellow at the
Advanced Digital Technology and Instrument Institute of Zhejiang University, Hangzhou, 310027, China

References

1. Ahmed T, Mushtaq M (2007) P2P Object-based adaptivE Multimedia Streaming (POEMS). J Netw Syst
Manage 15(3):289–310

2. Annapureddy S, Guha S, Gkantsidis C, Gunawardena D, Rodriguez PR (2007) Is high-quality vod
feasible using P2P swarming?. Proceedings of the 16th international conference on World Wide Web.
ACM New York, NY, USA, pp 903–912

3. Assuncao PAA, Ghanbari M (1977) Transcoding of single layer MPEG Video into lower rates. IEE Proc
Vis Image Signal Process 144:377–383

1 Project (No. 2005C11001-02) supported by the Key Science and Technology Projects Foundation of
Zhejiang Province

468 Multimed Tools Appl (2011) 54:445–471

(e-mail: al-bert_s_wang@yahoo.com).

4. Cai Y, Zhou J (2006) An overlay subscription network for live Internet TV broadcast. TKDE 18
(12):1711–1720

5. Castro M, Druschel P, Kermarrec A-M, Nandi A, Rowstron A, Singh A (2003) SplitStream: high-
bandwidth multicast in cooperative environments. Proceedings of the nineteenth ACM symposium on
Operating systems principles, ACM New York, NY, USA, pp 298–313

6. Cheng B, Stein L, Jin H, Liao X, Zhang Z (2008) GridCast: improving peer sharing for P2P VoD,
ACM Transactions on Multimedia Computing, Communications, and Applications (TOMCCAP),
vol. 4, Issue 4

7. Cheng B, Stein L, Jin H, Zhang Z (2008) Towards cinematic internet video-on-demand. Proceedings of
the 3rd ACM SI-GOPS/EuroSys European Conference on Computer Systems 2008. ACM New York,
NY, USA, pp 109–122

8. Cheng B, Stein L, Jin H, Zhang Z (2008) A framework for lazy replication in P2P VoD. Proceedings of
the 18th International Workshop on Network and Operating Systems Support for Digital Audio and
Video. ACM New York, NY, USA, pp 93–98

9. Chu YH, Rao SG, Seshan S, Zhang H (2002) A case for end system multicast. IEEE J Sel Areas
Commun 20(8):1456–1471

10. Dana C, Li D, Harrison D, Chuah C (2005) Bass: Bittorrent assisted streaming system for video-on-
demand. Processing of 2005 IEEE 7th Workshop on Multimedia Signal. IEEE, Piscataway, USA, pp 1–4

11. Do TT, Hua KA, Tantaoui MA (2008) Robust video-on-demand streaming in peer-to-peer environments.
Comput Commun 31(3):506–519

12. Guo Y, Suh K, Kurose J, Towsley D (2003) P2Cast: peer to peer patching scheme for VOD services.
Proceedings of the 12th international conference on World Wide Web, ACM New York, NY, USA,
pp 301–309

13. Guo Y, Suh K, Kurose J, Towsley D (2008) DirectStream: a directory-based peer-to-peer video streaming
service. Comput Commun 31(3):520–536

14. http://ffmpeg.org/, May 2009
15. http://nsl.csie.nctu.edu.tw/nctuns.html, May 2009
16. http://www.bittorrent.com/, May 2009
17. http://www.emule.org/, May 2009
18. http://www.netflix.com/Default/, May 2009
19. http://www.peercast.org/, May 2009
20. http://www.ppstream.com/, May 2009
21. http://www.youtube.com/, May 2009
22. Huang Y, Fu TZJ, Chiu DM, Lui JCS, Huang C (2008) Challenges, design and analysis of a large-scale

p2p-vod system. ACM SIGCOMM Computer Communication Review 38(4):375–388
23. IIqbal R, Shirmohammadi S (2009) Dag-stream: distributed video adaptation for overlay streaming to

heterogeneous devices. Peer-to-Peer Networking and Applications. URL http://dx.doi.org/10.1007/
s12083-009-0031-0

24. Jannotti J, Gifford DK, Johnson KL, Kaashoek MF, O’Toole Jr JW (2000) Overcast: reliable
multicasting with an overlay network. Proceedings of the 4th conference on Symposium on Operating
System Design & Implementation - Vol. 4. USENIX Association Berkeley, CA, USA, pp 14–14

25. Jiang X, Dong Y, Xu D, Bhargava B (2003) GnuStream: a P2P media streaming system prototype. ICME
apos:03. Proceedings 2003 International Conference on Multimedia and Expo. IEEE, Piscataway, USA,
vol. 2, Issue 6–9, pp II - 325–8

26. Jin X, Cheng K-L, Gary Chan S-H (2007) Scalable island multicast for peer-to-peer streaming. Advances
in Multimedia 2007(1):10

27. Jurca D, Chakareski J, Wagner J-P, Frossard P (2007) Enabling adaptive video streaming in P2P systems.
IEEE Commun Mag 45(6):108–114

28. Kim H, Yeom HY (2008) P-chaining: a practical VoD service scheme autonomically handling interactive
operations. Multimedia Tools and Applications 39(1):117–142

29. Kostic D, Rodriguez A, Albrecht J, Vahdat A (2003) Bullet: high bandwidth data dissemination using an
overlay mesh. ACM SIGOPS Operating Systems Review, ACM New York, NY, USA, vol. 37, Issue 5,
pp 282–297

31. Liao X, Jin H, Liu Y, Ni LM (2007) Scalable live streaming service based on interoverlay optimization.
IEEE Trans Parallel Distrib Syst 18(12):1663–1674

32. Liao X, Jin H, Liu Y, Ni LM (2007) Scalable live streaming service based on interoverlay optimization.
IEEE Trans Parallel Distrib Syst 18(12):1663–1674

Multimed Tools Appl (2011) 54:445–471 469

30. Lavrentiev M (2009) Transrating of coded video signals via optimized requantization. Master Thesis,
http://sipl.technion.ac.il/new/Research/Publications/Graduates/Michael_Lavrentiev/Michael_Lavrentiev_
Thesis_final.pdf

http://ffmpeg.org/
http://nsl.csie.nctu.edu.tw/nctuns.html
http://www.bittorrent.com/
http://www.emule.org/
http://www.netflix.com/Default/
http://www.peercast.org/
http://www.ppstream.com/
http://www.youtube.com/
http://dx.doi.org/10.1007/s12083-009-0031-0
http://dx.doi.org/10.1007/s12083-009-0031-0
http://sipl.technion.ac.il/new/Research/Publications/Graduates/Michael_Lavrentiev/Michael_Lavrentiev_Thesis_final.pdf
http://sipl.technion.ac.il/new/Research/Publications/Graduates/Michael_Lavrentiev/Michael_Lavrentiev_Thesis_final.pdf

33. Liu Y, Guo Y, Liang C (2008) A survey on peer-to-peer video streaming systems. Peer-to-Peer
Networking and Applications. Springer, New York, vol. 1, no. 1, pp 18–28

34. Liu JC, Rao SG, Li B, Zhang H (2008) Opportunities and challenges of peer-to-peer Internet video
broadcast. Proceedings of the IEEE. IEEE, Piscataway, USA, vol. 96, no. 1, pp 11–24

35. Magharei N, Rejaie R (2007) PRIME: Peer-to-Peer Receiver-drIven Mesh-based streaming. INFOCOM
2007, 26th IEEE International Conference on Computer Communic1415–1423. IEEE, Piscataway, USA,
pp 1415–1423

36. Magharei N, Rejaie R, Guo Y (2007) Mesh or multiple-tree: a comparative study of live P2P streaming
approaches. IN-FOCOM 2007, 26th IEEE International Conference on Computer Communications.
IEEE, Piscataway, USA, pp 1424–1432

37. Mol JJD, Pouwelse JA, Meulpolder M, Epema DHJ, Sips HJ (2008) Give-to-Get: free-riding resilient
video-on-demand in P2P systems. Multimedia Computing and Networking 2008, Proceedings of the
SPIE. Bellingham WA USA, vol. 6818, pp 681804 (2008)

38. Pai V, Kumar K, Tamilmani K, Sambamurthy V, Mohr A (2005) Chainsaw: eliminating trees from overlay
multicast. In: Peer-to-Peer Systems IV. Springer Berlin / Heidelberg, vol. 3640/2005, pp 124–140

39. Pianese F, Perino D, Keller J, Biersack EW (2007) PULSE: an adaptive, incentive-based, unstructured
P2P live streaming system. IEEE Trans Multimedia 9(8):1645–1660

40. Tian Y, Wu D, Ng K-W (2008) A novel caching mechanism for peer-to-peer based media-on-demand
streaming. Journal of Systems Architecture: the EUROMICRO Journal 54(1–2):55–69

41. Tran DA, Hua KA, Do T (2003) ZIGZAG: an efficient peer-to-peer scheme for media streaming.
INFOCOM 2003, Twenty-Second Annual Joint Conference of the IEEE Computer and Communications
Societies. IEEE, Piscataway, USA, Vol. 2, pp 1283–1292

42. Vlavianos A, Iliofotou M, Faloutsos M (2006) Bitos: enhancing bittorrent for supporting streaming
applications. INFOCOM 2006, 25th IEEE International Conference on Computer Communications,
Proceedings IEEE. IEEE, Piscataway, USA, pp 1–6

43. Wang M, Li B (2007) R2: random push with random network coding in live peer-to-peer streaming.
IEEE J Sel Areas Commun 25(9):1655–1666

45. Zhang X, Liu J, Li B, Yum T-SP (2005) DONet/CoolStreaming: a data-driven overlay network for live
media streaming. IN-FOCOM 2005, 24th Annual Joint Conference of the IEEE Computer and
Communications Societies, Proceedings IEEE. IEEE, Piscataway, USA, vol. 3, pp 2102–2111

Wang Wenyi received the B.S degree in electrical engineering in 1999 and M.S degree in electrical
engineering in 2002, both from Zhejiang University, Hangzhou, China. He is currently a Ph. D. candidate in
the Advanced Digital Technology and Instruments Institute of the same university. Since 2002, he is working
as a R&D manager for Alpha Networks Inc. digital home product center. His current interests include
multimedia broadcasting and distribution over large scale network and embedded system design for
multimedia devices.

470 Multimed Tools Appl (2011) 54:445–471

44. Yves DONY (2008) Video-on-Demand over Internet: a survey of existing systems and solutions. Student
Thesis, http://www.fundp.ac.be/recherche/publications/page_view/66101/

http://www.fundp.ac.be/recherche/publications/page_view/66101/

Chen Yaowu was born in Liaoning Province, in China, in 1963. He received the Ph.D. degree from Zhejiang
University, Hangzhou, China, in 1998. He is currently a professor and the director of the Institute of
Advanced Digital Technologies and Instrumentation, Zhejiang University. His major research fields are
embedded system, networking multimedia system, and electronic instrumentation system.

Multimed Tools Appl (2011) 54:445–471 471

	SmartPeerCast: a Smart QoS driven P2P live streaming framework
	Abstract
	Introduction
	Related works
	The SmartPeerCast framework and algorithms
	The new peer joining algorithm
	The Smart QoS algorithm
	The receiver scheduler algorithm

	Performance evaluation
	Experimental setup
	The startup time performance results
	The packet loss ratio performance results
	The ALM tree depth and delay discussion
	The incentive scheme effectiveness discussion

	Conclusions and future works
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

