
SMIL State: an architecture and implementation
for adaptive time-based web applications

Jack Jansen & Dick C. A. Bulterman

Published online: 8 April 2009
Springer Science + Business Media, LLC 2009

Abstract In this paper we examine adaptive time-based web applications (or presenta-
tions). These are interactive presentations where time dictates which parts of the application
are presented (providing the major structuring paradigm), and that require interactivity and
other dynamic adaptation. We investigate the current technologies available to create such
presentations and their shortcomings, and suggest a mechanism for addressing these
shortcomings. This mechanism, SMIL State, can be used to add user-defined state to
declarative time-based languages such as SMIL or SVG animation, thereby enabling the
author to create control flows that are difficult to realize within the temporal containment
model of the host languages. In addition, SMIL State can be used as a bridging mechanism
between languages, enabling easy integration of external components into the web
application. Finally, SMIL State enables richer expressions for content control. This paper
defines SMIL State in terms of an introductory example, followed by a detailed
specification of the State model. Next, the implementation of this model is discussed. We
conclude with a set of potential use cases, including dynamic content adaptation and
delayed insertion of custom content such as advertisements.

Keywords Declarative languages . SMIL . Multimedia web applications .

Delayed ad viewing

1 Introduction

This paper examines technology to create adaptive time-based web applications. These are
applications that use time as a major structuring paradigm, and need to adapt to changes at
runtime. Such adaptation can be in the form of user interaction, but also other environmental
changes such as location-based information or a change in available bandwidth. In addition to

Multimed Tools Appl (2009) 43:203–224
DOI 10.1007/s11042-009-0270-3

J. Jansen (*) :D. C. A. Bulterman
Centrum Wiskunde & Informatica (CWI), Science Park 123, 1098 XG, Amsterdam, The Netherlands
e-mail: Jack.Jansen@cwi.nl

D. C. A. Bulterman
e-mail: Dick.Bulterman@cwi.nl

D. C. A. Bulterman
VU University, De Boelelaan 1081,
1081 HV, Amsterdam, The Netherlands

being adaptive (or responsive), these applications should also be good web citizens: they (and
the adaptation strategy) should be searchable, accessible, structured, reusable, etc.

Traditionally, the web has preferred structured declarative solutions over imperative ones:
HTML [25], CSS [2], SMIL [4, 5], SVG [9] and many other web standards are all mainly
declarative languages. The advantage of declarative languages in a web setting is that they
facilitate reuse, accessibility and device independence [21]. However, at a lower level,
imperative languages (mainly JavaScript [10]) are often required to enable time-dependent
rendering, interactivity or binding of specific components. This presents a problem if we want
to create adaptive time-based web applications, as these applications indeed require timing
and interactivity and often the help of external components. The introduction of scripting into
a webpage is a powerful tool, but therefore also a dangerous one: maintaining the advantages
of the structured declarative model is not automatic, and may sometimes be impossible.

The alternative to structured declarative solutions is to use an imperative technology such as
Flash [16]. Flash is an example of a proprietary binary format, which uses a content encoding
that is—in its distribution format—difficult to parse at activation time. This forestalls search
and (third-party) reuse. Moreover, any presentation and document adaptation and conditional
accessibility need to be planned and explicitly catered for by the document author.

This is not to imply that declarative language already solve all interaction problems. If
we examine the structured declarative languages that have an execution model (SMIL, SVG
Animation), one piece of missing functionality is a user defined data model. A data model
defines a document-specific collection of variables and settable parameters. Adding such a
data model, while not completely eliminating the need for scripting, would allow a larger
problem domain to be addressed without the need for a scripting language. This can make
declarative documents more useful, especially in situations when document need to be
generated automatically.

This paper introduces SMIL State, a technology that combines temporal web languages
like SMIL or SVG with an external data model. SMIL State enables the use of free
variables in declarative presentations, allowing the author to escape the temporal
containment model in a controlled fashion. The data model is externalized, allowing it to
be shared with other components and effectively enabling its use as an API between
components of a web application.

This paper is an extended version of [18], which was presented at ACM Document
Engineering 2008. It widens the scope of the former paper by examining how SMIL State is
applicable to enriching existing SMIL content control mechanisms and by providing more
detail on the implementation and the lessons learned from that implementation.

The paper is structured as follows. In section 2 we sketch the types of applications that are
relevant for SMIL State, and describe an example of such an application in detail. We then
outline the requirements of these applications. In section 3, we look at existing technologies for
data model support, and investigate how well these match our requirements. Section 4 describes
our SMIL State solution, as well as the motivations for our design. In section 5, we report on our
initial implementation of SMIL State in the CWI Ambulant open source SMIL player. In section
6 we describe two example presentations and their architecture. We conclude with determining
how well our solution matches our requirements, and some ideas about future work.

2 Scenario

In this paper we will concentrate on presentations which have time as their major
structuring mechanism and that require user interaction/selection as the secondary

204 Multimed Tools Appl (2009) 43:203–224

mechanism. To set the stage, let us start with an example of the type of presentations we
want to enable.

The application shown in Fig. 1 is a web-based guided tour through Amsterdam.1 The
backbone of the application is a video, with the tour guide showing some highlights of the
city, with additional information provided from a variety of external sources on hotels,
shopping opportunities, entertainment and nightlife. The application allows viewers to
select the topics in which they are interested dynamically: for example, if a viewer is
staying with friends and prefers to be in bed right after dinner he can choose to skip the
hotel and nightlife entertainment information. Of course, such choices are not static: the
user should be able to change the content selection while viewing the presentation. If, in
doing so, it turns out the cultural information is too detailed for his taste, he also should
have the option to disable it on the fly.

The video presentation itself is rather fast-paced: the presenter races through the streets
on his bicycle (as only a local can) and gives only terse information on the various subjects
he encounters along the way. However, for each item he describes, the viewer is given the
option of getting more information from external resources: when a museum is described,
the link to the museum website is also given; the end user can temporarily pause the video
to visit the museum website to find out about opening hours, etc. The presentation also
includes a standard map, such as from Google Maps, orienting the viewing within the city.
This has the benefit that the user may bookmark a place of interest, or again pause the
presentation to search for related interesting places in the vicinity. The application also
allows for the dynamic insertion of adwords, which bring up sponsored links relevant to the
material currently presented. An interesting feature is that while sponsored links are
triggered by location information, they are also temporally shifted so that their presentation

1 A version of this example is available on the CWI Ambulant player website: http://ambulantplayer.org/
smilStateExample.shtml.

Fig. 1 Screen shot of guided tour webapp

Multimed Tools Appl (2009) 43:203–224 205

http://ambulantplayer.org/smilStateExample.shtml
http://ambulantplayer.org/smilStateExample.shtml

is delayed until after a main content stream has completed. (This delayed scheduling can
obviously be used for a host of applications beyond ad insertion.)

All these are examples of the use of timed metadata (annotations) in the presentation.
The time logic of the presentation need only know which metadata pertains to which
(timed) sections of the presentation. The actual presentation of the metadata is handed off to
other components for rendering.

Our application example is similar in scope to the personalized multimedia tourist guide
described by Scherp and Boll in [28], but where they generate personalized applications on
the server, our solution allows client-side personalization. This not only distributes
workload from the server to the clients, but has the added advantage that viewers can adapt
their preferences during playback. Another form of adaptability that we aim for is device
independence: depending on characteristics of the device on which the presentation is
viewed (bandwidth, screen size), some content may be replaced by items more applicable to
the current viewing context. If this could be done dynamically, so session transfer becomes
possible, that would be an advantage: transferring the presentation to another device would
then only require moving the presentation over to that other device as-is, the presentation
itself would adapt to the new hardware characteristics.

Another important feature for presentation authors is reusability: if a general structure
can be set up that handles multiple related presentations (such as bicycle tours for other
cities, in our example), a significant authoring saving could be realized. It also eases the
process of serving such presentations from a content management system. A related form of
reuse is third party enrichment, which requires that it is possible to refer to portions of the
presentation, either in-context or out-of-context. Such reuse is increasingly important on the
web, and handled well for non-temporal media through wikis and blog syndication. We
want to enable this form of reuse for multimedia presentations as well.

Finally, we feel accessibility is important. Not only does this enable the use of assistive
technology, but it also allows search engines to index the content inside the presentation.
This is another step in enabling third party reuse: to enable someone to refer to our content
they must be able to find it first.

2.1 Requirements

To enable the type of applications sketched in the previous section we have a number of
requirements on the technology we use. Let us outline our major requirements, so we can
then determine how applicable various technologies are to our problem space.

The following requirements are important:

& The solution should be structured. Declarative structured languages have proven
themselves to be facilitate reuse, accessibility, device independence and transformability.

& Time based structuring is required, because time is a major structuring paradigm for the
types of applications we envision. Having time as a first class citizen allows easier
presentation creation and deep-linking. Time based structuring also enables close
coupling of annotations with the media fragments they refer to, ensuring they stay
together in the face of edits or deep linking.

& Fragment support on original media items is required. If there are multiple possible
timelines through the presentation, lack of fragmenting original media would require the
author to statically create multiple edits for each of the different timelines, or a large
collection of small media snippets. Fragmenting support on the final presentation is also
needed, again to enable third-party annotation.

206 Multimed Tools Appl (2009) 43:203–224

& Variables are required to enable presentations to adapt to user input, especially if this
adaptation is to happen at a different point in time than the input itself. Variables also
enable interaction patterns not foreseen by the designers of the language.

& Language bridging is related to variables, but with a different scope. It is needed to
enable integration of multiple components. Enabling multiple components allows the
use of the best tool available for the sub-problem at hand. Language bridging and
variables should also enable two-way communication between components, which
increases the richness of the presentations possible.

& Adaptability is needed to enable platform independence, among other things. Built-in
adaptability eases the burden on the author.

& Accessibility enables the use of assistive devices. Accessibility together with structuring
enables search engines to index the content of the presentation.

& Reusability also eases the burden on authors, by allowing parts common to multiple
presentations to be implemented only once. Content management systems and other
dynamic methods of creating presentations benefit from it too, as only a single instance
of common items needs to be stored. Third party modification and enrichment of
existing presentation also requires reusability to be feasible without copying.

As will been seen, our SMIL State approach meets all of these requirements.

3 A Review of existing technology

Given the requirements of the previous section, this section will examine and evaluate the
facilities available in existing Web technology. We will start with languages that aim at
solving the whole problem space, or at least a large subset of it. Then we will look at
emerging partial solutions that may be used to augment those solutions and other related
work. We will then see how well all of these match our requirements.

3.1 Multimedia on the web

For interactive multimedia on the web there are currently two solutions in widespread use:
Flash, and JavaScript combined with a plug-in to handle media playback (such as
RealPlayer or, again, Flash). SMIL, which we will examine in greater depth in the
following section, is not currently a serious contender in this market because it defines an
execution model that is separated from the procedural control favored in web design.

The Flash solution is by far the most common, and used by websites like YouTube and
Asterpix. All interaction is programmed explicitly in ActionScript [15], requiring
specialized skills and tools. Moreover, due to the binary nature of the Flash distribution,
the content is no longer easily accessible from outside. This is a problem for screen readers
and other assistive technology, but also for web crawlers (content inside Flash does not
show up in a search engine) and deep linking (no syndication or mash-ups).

Interactive multimedia presentations can also be created using standard technology:
HTML, JavaScript and CSS. For audio or video playback this requires either the proposed
HTML5 video extensions [13], or a plug-in to render the continuous media. While it is
usually possible to control the media playback engine from JavaScript, for example starting
and stopping video playback in response to user interaction, the reverse is usually not true:
having the JavaScript react to events in the video (such as specific time codes) is not easy.
In practice this means that using JavaScript is currently usually limited to presentations

Multimed Tools Appl (2009) 43:203–224 207

using predominantly static media: if time is the primary structuring paradigm of the
presentation Flash is a better solution. A prime example of doing multimedia presentations
with only standard technology is the W3C Slidy tool [27], which can be used to create
interactive accessible slideshows.

3.2 Declarative alternatives to scripting

Both technologies sketched so far share the property that the logic is expressed in a
procedural language (JavaScript or ActionScript). If it were possible to express the logic
in a declarative way that would be more suited to the trend in web languages towards
declarative structuring to enable transformability, reuse and accessibility. An example of
this trend is XForms [3], which uses a wholly declarative logic to specify not only the
forms themselves but also the way these forms are connected to the underlying data store.
In the context of this paper we are not so much interested in the model-view-controller
paradigm of XForms or the high-level definition of the controls themselves (which allows
an XForm form designed for a desktop web browser to be reused on a mobile browser, or
even a voice browser [14]). We are, however, interested in the declarative nature in which
constraints on input values can be specified, such as “weekday must be an integer
between 0 and 6 inclusive”. This feature means that old-style HTML forms that used
procedural logic in JavaScript to check value constraints can be replaced by a declarative
XForm.

XForms uses an XML document as its data model, and addresses the data items in this
model through XPath expressions [7]. XForms 1.0 does not have an execution model, but it
does not really need one for its application area. It does include a spreadsheet-like
functional programming construct that allows variables to be computed on the basis of
other variables, and that is good enough for its domain.

While it would probably be possible to create a complete interactive multimedia
presentation using the technologies outlined in this section it would suffer from the fact that
none of these languages have an inherent concept of time. Hence, all temporal relations
would have to be explicitly coded in a language for which this was not the primary design
goal.

3.3 SMIL

SMIL, the Synchronous Multimedia Integration Language is the W3C standard for
presenting multimedia on the web. It is primarily an integration language: it contains
references to media items, not the media data itself, and instructions on how those media
items should be combined spatially and temporally.

SMIL is a declarative language: relations between media objects (and substructures) are
described, and the computation of the timeline follows from this. The main temporal
composition operators available are parallel composition, sequential composition and
selection of optional content. Composition is hierarchical: nodes cannot become active
unless all of their ancestors are active. The declarative containment model has one large
advantage: SMIL presentations can adapt automatically to varying bandwidth conditions
and alternate content with different durations because of the adaptive nature of hierarchical
timing. The hierarchical temporal composition model is also a nice container for timed
metadata, and allows structure-based deep linking into the content.

There are a number of mechanisms in SMIL that allow the presentation to react to user input
(events) and to modify the behavior of other sections of the presentation (SMIL Animation) but

208 Multimed Tools Appl (2009) 43:203–224

none of these break the basic containment model, they only modify behavior within those
constraints.

The containment model has one serious drawback, though: there is no way in which the
path taken through the presentation can be used to influence future behavior within that
presentation. Or, more directly: there are no variables. In addition, with events being the
only dynamic communication channel, a SMIL presentation can not exchange structured
data with the outside world. This is a problem SMIL shares with many declarative
languages. For example, functional languages have had to add constructs like effect classes
[11] or monads [22, 30] to enable side-effects and input/output. Without these, their
application domain would have been severely limited.

3.4 Other related work

The technologies described in sections 3.1 and 3.3 aim at addressing a large subsection of
our problem space, but all have some shortcomings. In this section we will examine some
ways to address those shortcomings and some solutions that address related problem areas,
from which we may learn something.

XBL [12] is a language that allows an author to declaratively add behavior to an
otherwise static HTML or XHTML document. It can modify the target document in-place,
for example setting attributes on one element based on values obtained from another
element. These actions can occur statically, somewhat similar to how XSLT [6] would
operate on a document during load time, or dynamically, reacting to DOM events [26].
XBL has no notion of time or control flow, so using it to create self-paced multimedia
presentations would be difficult.

XConnector [23] is an extension to XLink that has some overlap with XBL in
application area. It also allows the specification of relations between different elements
and attributes within an XML document. Some of these relations allow similar constructs
as in XBL, such as changing an attribute value to match an attribute value elsewhere in
the document. XConnector does have a notion of time, allowing the author to specify that
something should start when something else stops, for example. The accompanying
language XTemplate [24] allows an author to declare templates for such relationships,
thereby enabling, among other things, the definition of temporal and spatial constraints on
items in an HTML page in a way that facilitates reuse. XConnector and XTemplate
together with HTML should enable creation of rich multimedia applications for the web
fairly easily.

XHTML + SMIL [4] is similar to XConnector plus XTemplate, but more limited in
scope: it allows the application of SMIL timing constructs to static HTML (or other XML)
documents, thereby adding timing to an otherwise static format.

Another approach is taken by King, Schmitz and Thompson in [19] (unfortunately for
reference purposes, no name is given for their work, so we will call it “KST” in this paper):
adding rich transformations and expressions to a language that already has an execution
model, such as SMIL or SVG animation. Where SMIL and SVG animation allow only a
predefined number of operations on attribute values, determined by the language designers,
this paper adds spreadsheet-like expressions and conditions through a functional “little
language”. The temporal constraints of SMIL animation are still in place, however.

Those temporal constraints are lifted by the same authors in [29], which adds a
<value> element that can be used to store free variables. (It also adds a template
mechanism, but that is outside the scope of this paper). This leads to a solution that has
comparable application area and power as SMIL State within a single document, but the

Multimed Tools Appl (2009) 43:203–224 209

externalized data model of SMIL State allows communication with the outside world, as
well.

3.5 Comparison

Table 1 summarizes how existing technology matches the requirements from section 2.1.
The first two columns show the main problems with the most popular current solutions: a
finished presentation is a monolithic unstructured blob. This results in problems for deep-
linking into a presentation, but also for accessibility, which also requires access to the
internals of a presentation.

As we can see in the table, SMIL 2.1 does fairly well on the structuring front, but falls
short in practical issues like rich interactivity and integration with other components
(ignoring SMIL State, for the moment). Embedding XForms islands into a SMIL
presentation does not help: it enables the end user to fill in forms that can be transmitted
back to a server, but no extra interactivity is added. SMIL + XBL provides more options,
but here the generality of what XBL allows would break some of the basic assumptions of
SMIL, such as timegraph consistency. Incidentally, SMIL + JavaScript, which is not in the
comparison table, would have the same problem.

KST is aimed at a different problem, but it still fits our requirements pretty well, with the
exception of enabling communication with other components, which is outside its scope.

Interestingly enough, KST use different solutions in a number of areas where they were
facing the same design decisions that our work considered:

& both solutions allow for rich data structures in the data model, but where we opted for
XML for easy sharing, they felt a richer and more compact representation is needed;

& we think static strong typing is generally not needed for most applications, and can
easily be added when needed through XSchema (following the model of XForms), their
solution has static strong typing;

& their solution uses an expression language based on JavaScript expressions, ours uses
XPath expressions, for standards compliance.

These different choices are partially dictated by different application areas, but
probably partially by personal taste as well. We agree that XPath is not a very nice

Table 1 Technology comparison

F JS S2 S + X XBL KST XCXT XS S3

Structured - - ✓ ✓ n/a ✓ +/− +/− ✓

Time based ✓ - ✓ ✓ - ✓ +/− ✓ ✓

Fragment support - - ✓ ✓ n/a ✓ ✓ ✓ ✓

Variables ✓ ✓ - - ✓ ✓ ✓ - ✓

Language bridging - ✓ - - ✓ - unknown - ✓

Adaptability +/− - ✓ ✓ ✓ ✓ ✓ ✓ ✓

Accessibility - +/− ✓ ✓ n/a ✓ unknown ✓ ✓

Reusability - - +/− +/− +/− +/− ✓ +/− ✓

F: Flash; JS: JavaScript plus DOM access; S2: SMIL 2.1 (not including SMIL State); S + X: SMIL combined
with XForms; XCXT: XConnector and XTemplate; XS: XHTML + SMIL; S3: SMIL 3.0 including SMIL
State.

210 Multimed Tools Appl (2009) 43:203–224

language to express complex expressions in, the corresponding expression in KST is
definitely more readable. XPath expressions, however, are richer in the handling of
complex data structures. In the case of static typing or not this is probably more a matter
of personal preference.

XConnector and XTemplate are the best fit of the existing technologies, but it shares the
XBL problem that they provide so much freedom that an author has to be careful not to lose
the structuring advantages of the declarative model. The same is true for temporal
structuring: this can be done by an author, but the language does not enforce it. We are also
not sure whether XConnector provides any help with language bridging, the literature does
not mention this.

XHTML + SMIL has similar advantages and shortcomings as SMIL 2.1, which is to be
expected given their common heritage.

We will explain how SMIL plus SMIL State matches the requirements below.

4 Design and architecture

The main thrust of the research leading up to this article is that the addition of variables and
communication would enable SMIL to be used in a number of application areas that are
currently beyond its reach. These application areas include:

& Courseware is an important application area for multimedia software. One of the main
advantages of using computers for instructional material is that the path through the
material can adapt itself to the student. This takes the form of providing more in-depth
material based on user interaction, either a “tell me more” button or the answer to a
question being correct or not. Courseware also benefits from the ability to interact with
problem domain specific components, to enable hands-on interaction or non-standard
rendering capabilities. SMIL has no standard way to interact with external components,
and no way to base decisions on user input that occurred earlier during the presentation.

& Quizzes are somewhat related, but here we also want to tally results, requiring
computation. Moreover, quizzes are much more fun if your personal results can be
compared to those of others, requiring communication of such dynamically computed
scores to some central agent.

& Games are even more interactive, and require things like a ball to move in a direction
determined by the mouse position when the ball hit a paddle, some time in the past.
And a game needs more author-defined state, to determine when the aliens have all
been destroyed. As with quizzes, destroying aliens becomes much more fun if your high
score is transmitted to a server.

In addition, variables would allow an author to have more control over selectively
rendered content. Prior to SMIL 3.0, SMIL provided custom tests, which allow end-user
control over whether optional content is rendered or not, but the mechanism for presenting
these options to the user is determined by the rendering user agent, not the author.

A separate, but related, issue with older SMIL releases is that it is impossible to
communicate presentation state to the outside world. This problem becomes more acute
once variables are added: if the SMIL presentation represents an interactive multiple-choice
exam it is probably important to communicate the results to a server after the whole exam
has been taken. If it represents a game we may want to keep high-scores at a central
location.

Multimed Tools Appl (2009) 43:203–224 211

A final design guideline was that the solution should be as simple as possible but be
easily extensible if required for certain application areas.

4.1 SMIL State elements

SMIL State was designed using a two-tiered approach: first we architected hooks in the
SMIL language to enable inclusion of a data model and expression language; we next
focused on the selection of a default language for the data model and expression language.
This layered approach has the advantage that if the default expression language is not the
best choice for a given application it is possible to use another expression language that is
more suitable without modifying the semantics on the SMIL level. The ability to use an
expression language other than the default choice of XML and XPath, however, is not
relevant to this paper, with the exception of the fact that it allows for extending the data
model to the richer model supported by XForms.

The hooks in SMIL are:

& a <state> element in the head section of the document, used to declare the data
model;

& an expr attribute that can be used on any timed element to conditionally skip the
element;

& new timed elements <setvalue>, <newvalue > and <delvalue> which allow
changing the data model;

& a head element <submission> and a timed element <send> that allow sending and
receiving parts of the data model;

& an attribute value template construct, {expression}, that can be used in selected
attributes to interpolate data model values into attribute values;

& an event stateChanged(ref) that occurs when the specified item in the data model
changes.

All of these hooks are modeled after existing SMIL constructs: expr behaves in a
manner similar to system tests and custom tests, the timed elements behave like normal
media items or SMIL animation elements. The attribute value template, which was modeled
after the same construct in XSLT, fits in nicely with the existing mechanism in which SMIL
animation and DOM access are allowed to modify attribute values in a running SMIL
presentation (the so-called “sandwich model”). In this model, attribute value templates are
only allowed in attributes where they cannot modify the time graph of a running
presentation, similar to what is defined for SMIL animation.

For the default data model and expression language we have selected XML and XPath,
respectively. We specifically allow XPath nodeset expressions: the data model is the XML
document on which XPath operates, not the XPath variable bindings. XPath variables are
used as the data model in some other standards such as DISelect [20], but this data model
allows only simple unstructured scalar variables. Using the XML document as the data
model allows structured values such as lists and associative arrays. To allow maintaining
data model consistency, updates (by a single element) are atomic, and <setvalue>
allows copying of subtrees.

The data model XML document may be embedded inside the SMIL document, but it is
logically a separate document: the XPath expressions cannot refer to random items in the
SMIL document.

212 Multimed Tools Appl (2009) 43:203–224

Listing 1—Sample SMIL document with SMIL State constructs highlighted

Listing 1 shows an example of the use of SMIL State. The data model XML document is
declared in the <state> element in the head section, it consists of a data root element
with one child, wantAd, initially empty. The data and wantAd elements are not part of the
SMIL language, this is really a separate XML document included inline for convenience
only, hence the use of the xmlns attribute.

When the presentation starts, the match.mp4 video starts playing. After 10 s, the
banner.png image is displayed for 5 s. If the user clicks on this image while it is active
the value of the wantAd element in the data model is changed to the string
commercial.mp4. The match.mp4 video continues playing until its end, whether or
not the user clicks the image. After the video has finished the second video element get
scheduled. Whether it plays or not depends on the wantAd data model item: if it is true (or
non-empty and non-zero) it does play. Which video it plays depends on the value of the
wantAd data model element, interpreted as a URL string.

4.2 Shared data model

The data model of SMIL State is external to the SMIL document itself. As stated in the
previous section, this forestalls random changes to the SMIL document, thereby
maintaining its time graph and its structural consistency. This has the effect that we do
not lose the ability to do transformation and adaptation on the document, one of the key
advantages of a declarative model.

The external data model has another advantage, however: it can be shared. In its simplest
form this sharing can be between runs of the same presentation: an author can create a long-

Multimed Tools Appl (2009) 43:203–224 213

running presentation that stores data when a section has been finished. A later run of the
presentation can pick this up, and start the presentation at the given spot, in stead of at the
beginning.

Sharing of the data model can also be applied to multiple components running at the
same time. Using a shared data model as the communication paradigm between
components decouples dependencies between these components: they only depend on a
common understanding of the data model. This decoupling facilitates reuse, adaptability
and retargeting: if a multimedia presentation wants to show locations on a map it only
needs to define that it will store the location in /location/latitude and /
location/longitude. The map applet can now listen for changes to these variables
and modify the map view. Reuse is facilitated because another multimedia presentation
only needs to be aware of this “data model API” to use mapping services. Same for
adaptability and retargeting: if the map applet is replaced by a different one this does
not affect the multimedia presentation. And even if the map applet is completely
missing, for example because the presentation is viewed on a mobile device with not
enough screen space to show both the presentation and the map, the multimedia
presentation need not be aware of this.

4.3 Content control

SMIL has always supported optional content, the ability to render or skip content based on
environmental conditions. System tests allow the presentation author to trigger on
predefined conditions, such as available bandwidth and screen size, and custom tests allow
extension of these with author-defined binary conditions. These constructs suffer from a
number of drawbacks, however:

& there is no way to set the value of a custom test attribute from the presentation, and the
user interface for defining these values is unspecified in the SMIL standard and left to
individual implementations;

& the standard specifically allows system and custom tests to be evaluated once, at document
load time, which limits their usefulness for interactivity and dynamic adaptation;

& the lack of an expression language means presentation authors can only test for attributes
being true, not for them being false, and not for combinations of attribute values.

SMIL State integrates system tests and custom tests into its general expression
framework. For example, the SMIL 2.1 construct

<audio src=“background.ogg” systemBitrate=“128000”/>
plays an audio fragment only if enough bandwidth is available. The corresponding SMIL

State construct
<audio src=“background.ogg” expr=”smil-bitrate() > 128000”/>
ensures dynamic evaluation, which means the presentation can adapt to varying

bandwidth conditions (for example in mobile situations). Another example of the advantage
of rich expressions is the ability to specify

<audio src=“background.ogg” expr=“smil-bitrate() > 128000
and not(smil-audioDesc())”/>

This plays the background music track only if enough bandwidth is available, and if it
does not interfere with audio descriptions.

214 Multimed Tools Appl (2009) 43:203–224

5 Implementation

We have implemented SMIL State in our open source Ambulant SMIL player, this
implementation was used to experiment with our sample applications. The implementation
follows the two-tiered approach of the SMIL state design:

& architectural hooks into the SMIL language have been implemented in the core SMIL
engine;

& data model and expression language are implemented in optional plug-in modules.

In this section we will look at three example expression language implementations: the
XPath-WebKit-state module which was used for the guided tour, the XPath-standalone-
state module used for the delayed advertisement presentation and a Python-state module.

Listing 2 — State component API

The basics of the interface between the core interpreter and the expression language
plug-in are shown in listing 2. Each plug-in provides a state_component_factory
interface. The core iterates over these, passing the expression language specified by the
document author as a parameter. A plug-in that implements this language will return its
implementation, and the iterating stops.

Now the core calls declare_state passing the <state> element to initialize the
data model. During runtime, methods such as set_value and bool_expression are
called to implement the corresponding SMIL State elements and attributes. State-
Changed events are implemented by the core calling want_state_change to signal its
interest in changes to a specific data model item. The plug-in will now call
on_state_change whenever the item is modified.

The advantage of using plug-in modules and a factory class for implementing the data
model and expression language is that it enables multiple implementations. One use for

Multimed Tools Appl (2009) 43:203–224 215

multiple implementations is the selection of the SMIL State expression language: the
Python-state factory will return its implementation only if the SMIL author has specified
that Python is to be used as the expression language. Another use of the factory class is that
it allows plug-ins to dynamically determine whether they are applicable: both XPath-
WebKit-state and XPath-standalone-state implement XPath as the expression language, but
XPath-WebKit-state will only return its implementation after determining that the SMIL
interpreter is currently hosted in a WebKit plug-in [1].

The XPath-standalone-state implementation is rather mundane: 700 lines of C++ that
use the DOM and XPath facilities of the Gnome libxml2 [17] to implement SMIL State for
standalone documents.

The XPath-WebKit-state implementation is more interesting: the application requires that
it interfaces with a browser DOM and Javascript implementation as well as with an XForms
implementation. Programming this directly in C or C++ using the NSAPI browser plug-in
API would be painful: NSAPI is rather old, and its model is low level and verbose. As an
example of how verbose it is, the following JavaScript statement obtains the base URL of
the currently displayed HTML page:

base = document.location.href;
The equivalent C++ code is 50 lines long. Exporting functions from C++ to JavaScript

also requires similarly verbose hand-written code.
Safari on MacOSX not only supports NSAPI-based plug-ins but also native WebKit

plug-ins. These plug-ins are written in Objective-C, and tie in well with the AppKit and
Foundation toolkits that are commonly used on OSX to create applications. Because
Objective-C is a modern high-level language, it supports fairly rich introspection features,
and the WebKit plug-in API exploits this to transparently bridge Objective-C to JavaScript
and vice-versa: the plug-in can access JavaScript objects (and, hence, DOM objects)
relatively easily, and exporting objects from Objective-C to JavaScript is similarly easy.
Objective-C, in turn, is transparently bridged to Python through PyObjC, which is a
standard component of MacOSX. And as the full Ambulant API is also transparently
bridged to Python, through a modified version of the standard (but little known) Python
tool bgen, the XPath-WebKit-state implementation is now a mere 200 lines of Python.

Figure 2 shows the cascade of bridges mentioned in the previous paragraph, and despite
their rickety appearance we have not experienced stability issues. The use of dynamic
languages and the availability of the language bridges has enabled us to use rapid
prototyping methods to perform these experiments. The SMIL State design matched the
platform nicely, and clean separation of components was almost automatic. The only link
between the WebKit world and the Ambulant world is DOM access and XML Events,
between the WebKit DOM and the Ambulant SMIL State plug-in. The relevant components
in this implementation are shown in Fig. 3.

We have also started thinking about implementing browser integration through the
standard NSAPI plug-in API, to facilitate using SMIL State in Firefox or Internet Explorer.
Experience with the WebKit plug-in suggests that providing a general bridge to a high-level

JavaScript Objective-C Python Ambulant C++

WebKit PyObjC bgen

Fig. 2 Implementation language bridging

216 Multimed Tools Appl (2009) 43:203–224

language may be a good solution that allows easy experimentation, so we are looking at
implementing a generalized JavaScript-Python bridge based on NSAPI.

6 Applications

In this section we examine two applications that address the two different aspects of using
SMIL state. We start with a full-blown web app as outlined in section 2 and continue with a
much more lightweight presentation that enables ad insertion into video presentation
without the end-user annoyance that it currently often evokes.

These applications were created using our Ambulant SMIL playback engine, with
support for SMIL State added. In case of the first application Ambulant was hosted in the
Safari web browser, together with the FormFaces XForms implementation and the Google
map applet. The second presentation runs in a standalone Ambulant player.

6.1 Guided tour webapp

We now revisit the example presentation sketched in section 2, and show how it was designed.
The general control flow of the application is driven by SMIL, and consists of a linear

sequence of video clips, with optional subtitles. Some clips, such as the introduction, are
played unconditionally, others are played or skipped depending on user preferences set
through the XForms controls. For each clip, the lattitude and longitude information are
stored in the data model. The location is picked up by glue on the webpage and
communicated to the map applet. Additionally, references to relevant external websites,
adwords and search terms are put in the data model. This information is picked up by glue
code in the webpage and displayed.

Because multiple components are involved (SMIL for media playback and timing control,
XForms for interaction, map applet) HTML is used as the outermost container format, as well
as for displaying additional content such as background links, etc. The global structure of the
presentation is shown in Fig. 4: the HTML document embeds the XForms form and the
applet, and it has a reference to the SMIL presentation. SMIL (through SMIL State) and
XForms both refer to the shared data model, and can both read and modify it. The map applet
and HTML page itself only read values from the data model, through a bit of glue. How this
architecture matches to the visual representation on the web page is shown in Fig. 5.

Rendering JavaScript

HTML
DOM and

XML events

Google
Maps

FormFaces
XForms
engine

Glue

WebKit
Plugins

Scheduler
SMIL
DOM

Rendering

Safari Ambulant WebKit Plugin

SMIL State XPath-WebKit

XPath-
standalone

Ambulant Plugins

Fig. 3 Browser plug-in implementation

Multimed Tools Appl (2009) 43:203–224 217

The glue needs a bit more explanation: as only XForms and SMIL have direct access to
the data model, in the prototype the glue is implemented with a bit of Javascript, triggered
by DOM events when the data model changes. This glue could be implemented using XBL,
XConnector or another declarative form, but unfortunately none of these were available in a
browser that could also host our SMIL plug-in.

Listings 3 and 4 show the relevant parts of the HTML and SMIL documents, respectively.
The HTML document has the embedded data model (in the XForms namespace). It consists
of sections optionalContent, for content selection, subtitles, for subtitle selection,
and gps, backgroundLinks, backgroundSearch and adWords, for communicating
timed metadata. The XForms form enables the viewer to select, for example, whether to
display the hotel information or not.

XForms formSMIL plugin

Mapping appletCustomized content

Fig. 5 Mapping of components to screen rendition

HTML SMIL

XForms

data model

map applet

Glue

Fig. 4 Guided tour document
model

218 Multimed Tools Appl (2009) 43:203–224

In the SMIL code, the whole section is played only if optionalContent/hotels is
true. The multimedia data for that section consists of a subsection of the video clip and
some subtitles. The metadata is stored in the data model at the time the media start. Some of
this metadata is scalar (such as longitude, latitude and adWords), some is structured
(background search items). In the latter case a new sub-item named hotel is added to the
backgroundSearch container.

Listing 3—HTML and XForms code

Note that, despite the similarity to SMIL Animation constructs like <set> , these
<setvalue> and <newvalue> elements are not automatically reverted when their
timeline ends. In that way, they form the procedural escape hatch for the temporal
containment model, while still keeping that containment model intact in the general case.

Multimed Tools Appl (2009) 43:203–224 219

Listing 4—SMIL code

6.2 Delayed ad selection

The standard way to do advertisements in video streams, whether over the internet or
through traditional channels, is ad insertion. This can be static or dynamic, but the
dynamism is generally server-based: depending on data the server knows it selects specific
ads to insert. This selection process may be based on a user profile the server keeps, but
there is no direct user interaction. Ad insertion done dynamically at client side, based on
user interaction, such as discussed in [8], has a different problem: it hinges on the fact that
the viewer is so interested in the product that she actually clicks the link, disrupting her
viewing experience. We feel this may be an unlikely general model.

For static media on the internet the situation is wholly different. Inserted advertisements,
which require the user to first read the ad before being able to get at the target content, are
generally frowned upon, and recently most major browsers contain features that actively try
to forestall pop-ups and other disruptive advertisements. Instead of the forced consumption
of ads, web pages tend to work with the voluntary model: the user has the option of clicking
a banner ad. While even this may go too far for some people, the model probably will have
a much larger acceptance than forced ads.

We feel that it would be good to transport the voluntary banner ad method to the realm
of multimedia. However, if the user is in the mindset of watching a video it may be unlikely
that this user clicks the advertisement instead.

To address this issue, we have come up with a technique we call delayed ad viewing. A
video program has pre-determined advertisement slots, and during such a slot an
advertisement always plays. However, through interaction with the presentation before
the advertisement slot the user can influence which ads will be played.

The sample presentation consists of a (non-live) football program. Included in the
presentation are a number of commercial videos, with a default playout order. At various
times, usually when a billboard is in plain view in the video footage, a banner for a specific
brand will show up in the lower-right corner of the screen for a couple of seconds. Figure 6
shows how this looks during playback. If the user clicks during this period the

220 Multimed Tools Appl (2009) 43:203–224

corresponding ad will be moved to the front of the playout list. When it is time for a
commercial break, the main video is paused and the head of the advertisement playout list
is shown. After an advertisement has been viewed its banner will no longer show.

Figure 7 shows the timelines of three different playbacks of the same document. User 1
did nothing and got the default ad playout order of a soap advertisement and a beer
advertisement. User 2 clicked the “Ford” banner, and got that advertisement first followed
by the default soap ad. User 3 requested the Amstel and Ford banners, and was spared the
Lux ad. (At least, during the first commercial break!)

At the end of the presentation the state variables contain information on which ads have
been watched. This information could be transmitted back to a central server for
monetization, along the lines of pay-per-click ads on static web pages. Alternatively, this
data could be gathered by the media server when the request to serve the ad stream comes in.

Note that the use of delayed ad selection does not preclude other current standard ad-
insertion methods. The SMIL presentation can be generated on demand by the server for a
specific user. Whether the user has complete freedom to select advertisements or only
limited options is a choice at the discretion of the content provider. Different advertisement
selections, choices and commercial break frequencies can be served to different users by
serving only different SMIL documents: the underlying media items can all be static.

Fig. 6 Video with banner
for delayed advertisement show-
ing in bottom right corner

User 1 (default) timeline

10 min Football match
Lux
ad

Amstel
ad

More football

User 2 timeline

10 min Football match
Ford
ad

Lux
ad

More football

User 3 timeline

10 min Football match
Ford
ad

Amstel
ad

More football

Fig. 7 Different playout orders

Multimed Tools Appl (2009) 43:203–224 221

The structure of the presentation is rather simple, and listing 1 gives the general idea. A
problem that was encountered is that the XPath expression language is primarily meant for
manipulating general XML documents and not for the more spreadsheet-like operations we
are using it for. Hence, functions like max(), which would have made the ad reordering a
lot simpler, are missing and the logic needs to be written out.

7 Conclusions and future work

Based on the example applications we have created we can match our solution to the
requirements (see Table 1). SMIL State does not interfere with any of the advantages of
SMIL, so we only need to look at the three requirements where SMIL is lacking:

& Variable support works nicely in SMIL State, and simple use cases have simple
solutions. XPath as the expression language could have used a little boost, though, as
XForms did by introducing a number of convenience functions into the XPath function
namespace. Even so: XPath may be a rich language to encode expressions, it is not a
very user-friendly one. We plan to investigate whether it is possible to come up with an
alternative for XPath that is as easy to use as KST or JavaScript while still allowing the
use of a full XML document as the underlying data store.

& Language bridging works fine. Here the problem is on the other side of the bridge: as
only SMIL State and XForms currently share this data model, the integration into other
languages requires some glue code.

& Reusability works fine. Whether you want to replace components or refer to fragments
inside the presentation, we have not encountered any problems.

SMIL State has been proposed to the SYMMworking group, and has been accepted as a part
of the standard for SMIL 3.0, which became a W3C Recommendation in December 2008.

The model is fairly easy to support, as is demonstrated by our multiple implementations,
as well as by an independent third-party implementation which was required for inclusion
in the SMIL 3.0 Recommendation .

We intend to pursue and extend this model in the context of the W3C Rich Web
Application Backplane Incubator Group. There we will also try and address the some of the
shortcomings sketched in this section: Current web application toolkits are (naturally)
oriented towards procedural languages, specifically JavaScript. A more declarative
interface, possibly based on using XBL to connect widget-like components would not
only benefit our model, but also help accessibility and general reuse.

We also plan to experiment with more rich interaction with the environment, through the
Python-state implementation. This implementation should allow things like controlling and
interrogating external applications, which could be put to good use for “hands-on” style
courseware and such.

Distributed shared state is another area that has our interest: with the ubiquitous
availability of handheld devices that have decent connectivity, compute power and
rendering capabilities it is interesting to look at the possibility to create presentations that
are shared among devices in a loosely coupled manner.

Acknowledgements The work reported in this paper has benefited from suggestions offered by members of
the W3C backplane activity and members of the W3C Synchronized Multimedia working group. Sjoerd
Mullender, Julien Quint and Daniel Weck have provided comments on earlier versions of this research. We
are grateful to Steven Pemberton for introducing us to the philosophy behind XForms, which seeded the

222 Multimed Tools Appl (2009) 43:203–224

design of our solution. This work has been funded by the NWO BRICKS PDC3 project, and by the FP7 IST
project TA2. Development of the open source Ambulant Player and CWI’s participation in the SMIL
standardization effort have been funded by the NLnet foundation. We gratefully acknowledge this support.

References

1. Apple Inc (2008) WebKit Plug-In Programming Topics. Available at: http://developer.apple.com/
documentation/InternetWeb/Conceptual/WebKit_PluginProgTopic/WebKit_PluginProgTopic.pdf

2. Bos B, Lie H, Lilley C, Jacobs I (1998) Cascading Style Sheets, level 2. Available at: http://www.w3.org/
TR/CSS2/

3. Boyer J (2007) XForms 1.0 (Third Edition). W3C. Available on: http://www.w3.org/TR/xforms/
4. Bulterman D, Rutledge L (2008) SMIL 3.0: Interactive multimedia for the web, mobile devices and

daisy talking books. Springer-Verlag, Heidelberg, Germany. ISBN 978-3-540-78546-0
5. Bulterman D et al (2008) Synchronized Multimedia Integration Language (SMIL 3.0). W3C. Available

on: http://www.w3.org/TR/SMIL/
6. Clark J (1999) XSL Transformations (XSLT) Version 1.0. Available at: http://www.w3.org/TR/xslt
7. Clark J, DeRose S (1999) XML Path Language (XPath) Version 1.0. Available at: http://www.w3.org/

TR/xpath
8. Costa R, Moreno MF, Rodrigues RF et al (2006) Live editing of hypermedia documents. DocEng '06:

Proceedings of the 2006 ACM symposium on document engineering. ACM, New York, NY, pp. 165–
172. doi: 10.1145/1166160.1166202

9. Ferraiolo J, Fujisawa J, Jackson D et al (2003) Scalable Vector Graphics (SVG) 1.1 Specification.
Available at: http://www.w3.org/TR/SVG11/

10. Flanagan D (2006) Javascript: the definitive guide. O'Reilly & Associates, Sebastopol, CA, USA. ISBN
0-596-10199-6

11. Gifford D, Lucassen J (1986) Integrating functional and imperative programming. ACM conference on
LISP and functional programming. doi: 10.1145/319838.319848

12. Hickson I (2007) XML Binding Language (XBL) 2.0. W3C. Available on: http://www.w3.org/TR/xbl/
13. Hickson I et al (2009) HTML 5 Draft Recommendation. Available at: http://www.whatwg.org/specs/

web-apps/current-work/. Retrieved on February 2, 2009.
14. Honkala M, Pohja M (2006) Multimodal interaction with xforms. ICWE '06: Proceedings of the 6th

international conference on Web engineering. ACM, New York, NY, pp. 201–208. doi: 10.1145/
1145581.1145624

15. http://www.adobe.com/devnet/actionscript/
16. http://www.macromedia.com/software/flash/about/
17. http://xmlsoft.org/
18. Jansen J, Bulterman D (2008) Enabling adaptive time-based web applications with SMIL state. DocEng

’08: Proceedings of the 2008 ACM symposium on Document Engineering (2008). ACM, New York,
NY, USA. doi: 10.1145/1410140.1410146

19. King P, Schmitz P, Thompson S (2004) Behavioral reactivity and real time programming in XML:
functional programming meets SMIL animation. DocEng '04: Proceedings of the 2004 ACM symposium
on Document engineering (2004). doi: 10.1145/1030397.1030411

20. Lewis R et al (2007) Content Selection for Device Independence (DISelect) 1.0. W3C. Available on:
http://www.w3.org/TR/cselection/

21. Lie H, Saarela J (1999) Multipurpose Web publishing using HTML, XML, and CSS. Communications of
the ACM, Vol. 42, Issue 10. ACM, New York, NY, pp. 95–101. doi: 10.1145/317665.317681

22. Moggi E (1988) Computational Lambda-calculus and monads. In proceedings 4th Annual Symposium
on Logic in Computer Science. IEEE Computer Society Press, Washington, DC

23. Muchaluat-Saade D, Rodrigues R, Soares L (2002) XConnector: extending XLink to provide multimedia
synchronization. Proceedings of the 2002 ACM symposium on Document Engineering. ACM, New
York, NY, USA. doi: 10.1145/585058.585069

24. Muchaluat-Saade D, Soares L (2003) XConnector and XTemplate: improving the expressiveness and
reuse in web authoring languages. The new review of hypermedia and multimedia. Taylor&Francis,
Bristol, PA, USA. doi: 10.1080/13614560208914739

25. Pemberton S et al (2002) XHTML™ 1.0 The Extensible HyperText Markup Language (Second Edition).
Available at: http://www.w3.org/TR/xhtml1

26. Pixley T (2000) Document Object Model (DOM) Level 2 Events Specification Version 1.0. Available at:
http://www.w3.org/TR/DOM-Level-2-Events/

Multimed Tools Appl (2009) 43:203–224 223

http://developer.apple.com/documentation/InternetWeb/Conceptual/WebKit_PluginProgTopic/WebKit_PluginProgTopic.pdf
http://developer.apple.com/documentation/InternetWeb/Conceptual/WebKit_PluginProgTopic/WebKit_PluginProgTopic.pdf
http://www.w3.org/TR/CSS2/
http://www.w3.org/TR/CSS2/
http://www.w3.org/TR/xforms/
http://www.w3.org/TR/SMIL/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://dx.doi.org/10.1145/1166160.1166202
http://www.w3.org/TR/SVG11/
http://dx.doi.org/10.1145/319838.319848
http://www.w3.org/TR/xbl/
http://www.whatwg.org/specs/web-apps/current-work/
http://www.whatwg.org/specs/web-apps/current-work/
http://dx.doi.org/10.1145/1145581.1145624
http://dx.doi.org/10.1145/1145581.1145624
http://www.adobe.com/devnet/actionscript/
http://www.macromedia.com/software/flash/about/
http://xmlsoft.org/
http://dx.doi.org/10.1145/1410140.1410146
http://dx.doi.org/10.1145/1030397.1030411
http://www.w3.org/TR/cselection/
http://dx.doi.org/10.1145/317665.317681
http://dx.doi.org/10.1145/585058.585069
http://dx.doi.org/10.1080/13614560208914739
http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/DOM-Level-2-Events/

27. Raggett D (2006) Slidy-a web based alternative to Microsoft PowerPoint. XTech (Amsterdam, May 16–
19 2006). Available on: http://www.w3.org/2006/05/Slidy-XTech/slidy-xtech06-dsr.pdf

28. Scherp A, Boll S (2004) Generic support for personalized mobile multimedia tourist applications.
MULTIMEDIA '04: Proceedings of the 12th annual ACM international conference on Multimedia
(2004). doi: 10.1145/1027527.1027566

29. Thompson S, King P, Schmitz P (2007) Declarative extensions of XML languages. DocEng '07: Proceedings
of the 2007 ACM symposium on Document engineering (2007). doi: 10.1145/1284420.1284442

30. Wadler P (1990) Comprehending Monads. In Proceedings of the 1990 ACM conference on lisp and
functional programming, pages 61–77, Nice, France, 1990

Jack Jansen Is a researcher at Centrum Wiskunde en Informatica (CWI), with over 25 years of experience in
multimedia and distributed systems. Empowering people to put available technology to a use they themselves
envision is his driving principle. This results in activities ranging from languages, such as Python, via web
standardization work (SMIL, Rich Web Application Backplane) to implementing systems for accessible and
reusable multimedia (Ambulant). Recently, he has finally started to pursue a PhD.

Dick Bulterman Is head of distributed multimedia systems research at CWI, the Dutch national center for
mathematics and computer science in Amsterdam. He is also a professor of computer science at the VU
University in Amsterdam. Dr. Bulterman received his Ph.D. in computer science from Brown University in
Providence RI (USA) in 1981. He has been co-chair of the W3C working group on synchronized multimedia
since 2007; this group released the SMIL 3.0 Recommendation in late 2008.

Bulterman has been active in the Document Engineering community since 2005. He is past program
chair and past general chair of the ACM DocEng Symposium. He is also past chair of ACM Multimedia of
and IEEE ISM.

Dick Bulterman lives in Amsterdam with his wife and two children.

224 Multimed Tools Appl (2009) 43:203–224

http://www.w3.org/2006/05/Slidy-XTech/slidy-xtech06-dsr.pdf
http://dx.doi.org/10.1145/1027527.1027566
http://dx.doi.org/10.1145/1284420.1284442

	SMIL State: an architecture and implementation for adaptive time-based web applications
	Abstract
	Introduction
	Scenario
	Requirements

	A Review of existing technology
	Multimedia on the web
	Declarative alternatives to scripting
	SMIL
	Other related work
	Comparison

	Design and architecture
	SMIL State elements
	Shared data model
	Content control

	Implementation
	Applications
	Guided tour webapp
	Delayed ad selection

	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

