
Efficient quantization algorithm for real-time
MP-3 encoders

Shingchern D. You & Woei-Kae Chen

Published online: 10 June 2008
Springer Science + Business Media, LLC 2008

Abstract This paper reports an efficient quantization algorithm for the implementation of a
real-time MP-3 encoder based on a low-cost digital signal processor. Unlike the well-
known nested-loop quantization algorithm, which requires a large and unpredictable
amount of iterations, the proposed algorithm uses a single loop with only three iterations to
reduce the computational complexity. Since most of the existing quantization algorithms
reported in the literature require peak number of iterations higher than three, our approach
can effectively reduce the peak computing demand for a real-time encoder. We conduct
several experiments (including the ODG rating) to validate the performance of the proposed
algorithm, and the results are acceptable. We implement the proposed algorithm on a 16-bit
fixed-point digital signal processor, and the encoder requires 35 MIPS of computation for
encoding stereo music at 128 kbps.

Keywords MP-3 . Real-time encoder . Quantization . Digital signal processor . ODG

1 Introduction

The audio coding standard of MPEG-1 part 3 [6] layer III, also known as the MP-3, has
been widely used in the past decade. Based on perceptual coding [11], it is almost the de
facto standard for music compression. Due to market demand, manufacturers are highly
interested in the implementation of MP-3 encoders and decoders. Relatively speaking, the
encoder is more difficult to implement than the decoder because the standard specifies the
decoding, not encoding, procedure. Since the encoding algorithm is not standardized,
manufacturers need to develop their own algorithms for their products.

Multimed Tools Appl (2008) 40:341–359
DOI 10.1007/s11042-008-0210-7

S. D. You (*) :W.-K. Chen
Department of Computer Science and Information Engineering,
National Taipei University of Technology, Taipei 106, Taiwan
e-mail: scyou@ntut.edu.tw

W.-K. Chen
e-mail: wkchen@ntut.edu.tw

A major advantage of using the MP-3 encoding scheme is that it dramatically reduces the
size of audio data while introducing almost imperceptible distortion. For example, a stereo
CD sound track has a data rate (or bitrate) of around 1.5Mbps.When a sound track is encoded
in MP-3 at 128 kbps, causal listeners are usually satisfied with the sound quality of the
compressed audio. In this case, the MP-3 encoding scheme offers more than ten-times
compression ratio. Although encoding a piece of music with a bitrate higher than 128 kbps
(e.g., 160 kbps) offers a better audio quality, the perceptual difference is hard to tell for a non-
professional, causal listener. Therefore, most audio coding techniques focus on reducing
bitrates, while maintaining satisfactory quality, for more versatile applications, such as digital
radio [4] or digital TV [3]. In fact, the quality of an encoder is typically judged by its
performance at lower bitrates, not higher ones. This is because encoding at a lower bitrate
usually introduces a higher distortion, and therefore, it is more challenging to make the
distortion imperceptible. For simplicity, we use the term encoding quality to mean the
quality of the compressed audio produced by an encoder.

Depending on the type of applications, both offline and online MP-3 encoding are
possible. Offline encoding is suitable for MP-3 bitstreams that are prepared in advance for
future use, e.g., internet downloads. In this case, there is no restriction on encoding time. It
is, then, reasonable to spend more time to encode audio so that the encoding quality is fully
optimized. An offline encoder is typically implemented in the form of a piece of program
running on a general-purpose computer.

Online encoding is suitable for an application that requires a real-time and non-stop
encoding service for a continuous music source (e.g., microphone). A portable MP-3 music
recorder usually contains a real-time encoder for online encoding. Such an encoder is
typically implemented as an IC chip based on a DSP (Digital Signal Processor) [14] plus
additional RAM, ROM, and peripheral circuits. This type of design is sometimes referred to
as a System-on-Chip (SoC) design. In this case, the computing capability of the processor
and the size of the memory greatly affect the cost. In addition, power consumption is a
major concern when the chip is used inside a portable device.

To perform the online encoding, a real-time encoder typically has two identical input
buffers, called buffer A and buffer B, as shown in Fig. 1. While buffer A is collecting
incoming PCM (pulse code modulation) samples, buffer B (holding previously collected
samples) supplies samples to the processor for encoding. When buffer A is filled up with
input samples, the roles of buffers A and B are exchanged. For a sampling rate of 44.1 ks/s,
the time interval to collect 1,152 PCM samples for one frame in buffer A is 26 ms;
therefore, the samples stored in buffer B must also be encoded within 26 ms.

Given a maximal time to encode one frame of audio samples, a more complicated
encoding algorithm requires a processor with relatively higher performance. Unfortunately,
a high-performance processor is not preferable for a portable device due to its higher cost
and/or power consumption. Therefore, the encoder of a portable device usually employs a

PCM sample

Input buffer A

Input buffer B

DSP
(MP-3 encode)

MP-3
bitstream

Fig. 1 A real-time MP-3 encoder

342 Multimed Tools Appl (2008) 40:341–359

low-complexity algorithm. In terms of encoding quality, a real-time encoder is generally
inferior to an offline PC-based encoder, especially at lower bit rates, e.g., 128 kbps. During
the encoding process, it is usually necessary to search from a large amount of candidates the
best representation for the frame to be encoded. For a real-time encoder, due to its time
constraint, the search space has to be confined. Consequently, a real-time encoding
algorithm must settle for sub-optimal representations, which, nevertheless, leads to inferior
encoding quality. As the bitrate increases, the quality difference between these two types of
encoders diminishes because, at very high bitrates, both eventually approach the quality of
the original signal.

Although MP-3 encoding programs are available from ISO and other parties, these
programs are mainly designed for offline applications and typically use sophisticated
algorithms to optimize the encoding quality. Unfortunately, the processor embedded inside
a real-time encoder chip usually has a very limited computing power. This limitation makes
it almost impossible to directly adapt existing programs and algorithms to a real-time
encoder chip. By carefully examining the MP-3 encoding flow, we conclude that a better
quantization strategy is the key to reducing the complexity of the encoding algorithm.

In this paper, we propose an efficient quantization algorithm for real-time MP-3
encoding using low-cost DSP. The number of iterations for quantization in the proposed
approach is fixed to 3. In contrast, the number of iterations in the nested-loop quantization
algorithm, suggested in the standard [6], varies dramatically from less than ten to more than
fifty. We also show that the encoding quality of the proposed quantization algorithm is
acceptable and we present the influence of lower arithmetic accuracy on the encoding
quality with some experimental results.

2 The MP-3 encoder

This section covers how an MP-3 encoder produces the bitstream from PCM samples. An
overview of the MP-3 encoding flow is given in Section 2.1. The window operation is
discussed in Section 2.2. The quantization algorithm suggested by the MPEG-1 audio
standard is described in Section 2.3.

2.1 The MP-3 encoding flow

An MP-3 encoder encodes 1152 PCM samples into one frame of bitstream at a time. A
frame is divided into two granules, each containing information for 576 PCM samples.
Figure 2 shows the process of encoding one granule of samples. The first step is subband
analysis. A 32-band filterbank is used to convert 576 PCM samples into subband samples.
After that, subband samples are multiplied by a window function (to be explained in
Section 2.2). To obtain higher frequency resolution for subband samples, the second step
performs the MDCT (modified discrete cosine transformation) [12] computation on the
windowed subband samples. After the MDCT computation, 576 spectral values are
available. However, the spectral values contain some aliasing. Thus, an aliasing reduction
operation is performed. Then, the third step, joint stereo coding is carried out if desired.

Quantization of the spectral values is the fourth step. The quantized spectrum is encoded
using the Huffman codes. This step requires a loop to adjust the quantization parameters so
that the total bits of the Huffman code words do not exceed the available bits for the
granule. In order to efficiently use the available bits, the MP-3 standard suggests a nested-
loop quantization algorithm (to be explained in Section 2.3). In addition, the MP-3 standard

Multimed Tools Appl (2008) 40:341–359 343

employs a technique called bit reservoir to achieve a short-term bitrate variation. As the
name reservoir suggests, if the quantization step does not exhaust all of the available bits in
a frame, the unused bits can be reserved for a future frame. Therefore, the number of
available bits varies from one frame to another. Finally, the last step, the Huffman code
words along with the necessary side information are packed to form bitstream.

2.2 Window operations

There are four different types of windows given in the standard, namely long, short, start,
and stop. After the MDCT computation, subband samples multiplied by a long window are
converted into 18 spectral values, and into six values with a short window. Therefore, three

MP-3

PCM

Psycho-
acoustic model

Subband
analysis filter

MDCT

Joint-stereo

Quantization

Huffman
coding

Bitstream
formatting

Fig. 2 The encoding flow for a
generic MP-3 encoder. The solid
line indicates the signal flow and
the dashed line indicates the
control flow

344 Multimed Tools Appl (2008) 40:341–359

consecutive short windows are used in a subband to produce three sets of spectral values,
with each set representing one time-instance, to make a total number of 18 spectral values.
Generally speaking, a long window provides a higher frequency resolution, while a short
window offers a higher time resolution. In order to smoothly switch from a long window to
a short window, a start window is used. For the same reason, a stop window follows a short
window before switching to a long window. The psychoacoustic model [6] in the encoder
determines whether long or short windows should be used.

A long window is selected to encode a stationary signal for its higher frequency
resolution. On the other hand, for a signal with strong attacks (transient signal), short
windows are selected for better time resolution. A stationary signal usually exhibits some
frequency localization; therefore, higher frequency resolution can better localize the strong
spectral components in the spectrum. Higher coding efficiency (gain) can then be achieved
by encoding the strong spectral components only. On the contrary, a transient signal
exhibits temporally a strong-energy portion and a weak-energy portion. To encode such a
transient signal, it is better to individually perform the MDCT on the weak portion and the
strong portion of the signal. In this way, both portions of the signal are independently
quantized with suitable quantization parameters to better represent the signal. However,
encoding with short windows has a higher overhead and lower coding efficiency. Therefore,
the encoding quality degrades if short windows are used unnecessarily.

After MDCT computation, spectral values are to be quantized. The spectral values
having similar sensitivities to human ears are grouped into a band, known as scalefactor
band, to share the same quantization parameter scalefactor. When long windows are used
for all subbands, the spectral values are divided into 21 scalefactor bands. On the other
hand, if short windows are selected for all subbands, due to fewer spectral values after
MDCT computation, they are divided into 12 scalefactor bands. The information in a short-
window granule, therefore, contains three sets of values with each set having 12
scalefactors. The standard also supports to mix varies types of windows in a granule,
known as mixed-block mode, where the two lowest-frequency subbands use long windows
and the rest of the subbands use short windows.

2.3 The nested-loop quantization algorithm

The quantization step employs a non-linear quantizer with some adjustable parameters.
Taking the long window as an example, a simplified version of the quantization equation is
as follows:

ixi ¼ NINT
xrij j

20:25 global gain�210ð Þ�scalefac l sfb½ �

� �0:75

�0:0946

" #
ð1Þ

where ixi is the magnitude of the i-th quantized spectral value, global_gain and scalefac_l
[sfb] are quantization parameters, and NINT() is a function to find the nearest integer value.
The parameters “global_gain” and “scalefac_l[sfb]” (standing for scalefactor with long
window) control the step size of the quantizer. The difference is that the global_gain is
shared by all spectral values, whereas the scalefac_l[sfb] affects only the spectral values
within the “sfb” scalefactor band. A larger global gain increases the value of the
denominator in Eq. 1, or, equivalently, increases the quantizer step size. Therefore, for the
same xri, a larger global gain gives a smaller ixi, and requires fewer bits to encode. Since
global gain is applied to all spectral values, it is used as a “rate control” parameter to ensure
that the coded bitstream meets the bitrate constraint. The parameter “scalefac_l[sfb]”

Multimed Tools Appl (2008) 40:341–359 345

controls the quantization noise (also called distortion in the literature) of the indicated
scalefactor band. The psychoacoustic model determines the maximum (allowed) distortion
that is not perceivable in each scalefactor band. Based on this information, the scalefac_l
[sfb] is adjusted accordingly for distortion control.

Since both the global gain and the scalefactors control the quantization step size, the
quantization algorithm needs to simultaneously adjust both to meet the bitrate requirement
and to achieve the best audio quality. The MPEG-1 audio standard suggests a nested-loop
algorithm. The algorithm, shown in Fig. 3, has an outer loop for distortion control and an
inner loop for rate control. The outer loop calculates the distortion of each scalefactor band
and adjusts the corresponding scalefactor if necessary. The inner loop counts the required
bits to encode the quantized spectral values and then uses the global gain to control the
encoding bits. The tricky part is that once the global gain is changed, the distortion of each
scalefactor band is also changed. Therefore, the outer loop must be re-executed for
distortion control. Similarly, adjusting the scalefactor of a scalefactor band affects the
overall encoding bits. Thus, the inner loop must be re-executed. Therefore, unlike the other
steps in the encoding flow, the overall iterations (outer and inner loops) and subsequently
the execution time of the quantization step is not a constant. Note that both of the two steps

Begin

quantization

Counting required bits r

r > part23length

Calculate the distortin
for each sfb

Return

All sfb
satisfied?

Preemphasis

Amplify the sfb with more
than the allowed distortion

No

No

Yes

Yes

Increase
global gain

In
ne

r
lo

op

O
ut

er
 lo

op

Fig. 3 The nested-loop quantiza-
tion algorithm [6]. The sfb
denotes scalefactor band

346 Multimed Tools Appl (2008) 40:341–359

in the inner loop (quantization and counting) are computationally expensive, because there
are many spectral values to be processed. It is possible to reduce the complexity of the inner
loop by using advanced searching algorithms [16]. However, the total number of iterations
remains high and unpredictable.

3 The proposed quantization algorithm

The computational demand of the nested-loop quantization algorithm varies dramatically
from one piece of music to another. Therefore, even if the average computational demand is
low, the peak demand may still be extremely heavy. Since a real-time encoder must encode
one frame of music in a constant time, a high performance processor is required to satisfy
the peak computational demand. Unfortunately, for cost considerations, the processor
embedded in an encoder chip is usually a low-power, low-speed one with little room for the
fluctuation of computational demand. Therefore, instead of using the nested-loop algorithm,
we need to develop an alternative quantization algorithm for the real-time encoder chip. We
will discuss how the proposed algorithm handles window switching, distortion control, and
rate control in the following subsections.

3.1 Window switching

The psychoacoustic model suggested in the standard is very complicated, and requires lots
of computation. It is estimated to consume 90 MIPS (million instructions per second) [10].
Since a real-time encoder is usually operated with a computing demand of around 40 MIPS,
we decide not to implement the psychoacoustic model in our encoder (see also Section 3.2).
Without the psychoacoustic model, it is very difficult to determine whether long or short
windows should be used for the incoming signal. Therefore, we use only long windows in
encoding.

The main disadvantage of using only long windows is that a transient signal (strong
attack), which is present in any kinds of music, may not be encoded with enough time
resolution. Thus, a strong attack, when encoded with long windows, becomes relatively
softer. Fortunately a causal listener cannot easily perceive the difference between a strong
and a softer attack. In fact, the idea of using only long windows has been studied for both
MP-3 [10, 17] and AAC [18, 1] coding schemes, and acceptable encoding quality, not in
favor of any particular kind of music, were reported. Our experimental results, reported in
Section 4, also indicate that the quality degredation is acceptable in comparison to a highly
optimized encoder that employs the window-switching mechanism.

3.2 Distortion control

Due to the use of the outer loop for distortion control, the total number of iterations required
for the nested loop quantization algorithm is unpredictable. In order to reduce and
regularize the amount of computation to a manageable degree, we omit the distortion loop
and use fixed scalefactors for all scalefactor bands. Recall that the psychoacoustic model is
used to estimate the allowed distortion for each scalefactor band. In our case, therefore, the
psychoacoustic model is no longer necessary. Without distortion control, the encoding
quality of our real-time quantization algorithm is, of course, inferior to that of a regular one.
Through experiments described in Section 4, we have quantitative assessment of the quality
difference between these two.

Multimed Tools Appl (2008) 40:341–359 347

3.3 Rate control

Without using the outer loop, the quantization step contains only the inner loop to
determine the value of the global gain. For each granule, there exists a best global gain
(BGG) such that the quantized spectral values, after Huffman coding, consume as many
available bits as possible. The number of available bits in a granule, called part23length in
the standard [6], is mainly determined by the bitrate. If a 16-bit mathematical precision is
desired, it is possible to determine the BGG of a granule in six iterations by using a binary
search. To further reduce the computational complexity of the inner loop, we present a
heuristic algorithm that can find a good approximation for the BGG in three iterations.

Our search algorithm starts with the determination of an initial global gain (IGG). The
IGG has to be close to the BGG to localize the search to a small range. Usually the BGG is
strongly related to the spectral values to be quantized, because a signal with larger spectral
values should be quantized with a larger global gain (i.e., larger quantization step size) to
keep the number of encoded spectral bits less than part23length. Therefore, the IGG may be
obtained through a lookup table based on the spectral values. Specifically, we develop the
following equation to find the energy (effective bits) eb of all spectral values for this
purpose:

eb ¼
X575
i¼0

Bits xrij jð Þ; ð2Þ

where xri is the un-quantized spectral value with spectral index i and Bits(x) is the number
of effective bits of the binary number x. For example, 102 is a two-bit number; therefore,
Bits(102)=2. By the same argument, 101112 is a five-bit number, so Bits(101112)=5.

To further explore the relationship between the BGG and eb in Eq. 2, we develop a
program to encode audio with the best global gain. The program, called the BGG encoder,
records the eb and its associated BGG for each granule during encoding. The BGG encoder
is used to encode a training set of audio, which contains over 1,000 pieces of stereo music.
The training audio is carefully selected to include all sorts of music genres so that the
derived lookup table is genre independent. The results are shown in Fig. 4 for 128k bitrate.
Apparently, the BGG of a granule is almost proportional to its corresponding eb. Thus, by
using eb as an index, a simple table lookup offers a good IGG that is very close to the
BGG.

0

500

1000

1500

2000

2500

3000

3500

4000

150 154 158 162 166 170 174 178 182 186

BGG (128k bitrate; stereo)

E
ne

rg
y

Fig. 4 The energy eb and its
associated BGG. The average
energy is marked by the filled
squares notation, and the stan-
dard deviation is marked by open
triangles and open diamonds
notations

348 Multimed Tools Appl (2008) 40:341–359

The energy-to-global-gain lookup table is a two-dimensional table with 14×38 entries,
one dimension for bitrate (14 rows) and the other for global gain (38 columns). Each entry
of the table stores the average energy associated with a particular bitrate and global gain.
Therefore, given an energy value and the desired bitrate, a simple linear search suffices to
find out the initial global gain efficiently. Note that building a lookup table from the
training set is very time-consuming: it takes several days for each bitrate. Fortunately, this is
done only once. At run time, the real-time quantization algorithm simply uses the lookup
table to obtain the IGG.

To further explore the correlation between the IGG and the BGG, the relative difference
between them is calculated for each granule. The results, given in Fig. 5, reveal that the
IGG has a very high possibility of coinciding with the BGG. Furthermore, the IGG falls
within ±4 of the BGG for over 99.98% of the granules.

The flowchart of the proposed three-iteration algorithm is shown in Fig. 6. The first
iteration of the algorithm assigns global gain gg as IGG, obtained from the lookup table.
Then, quantization and counting (counts the number of Huffman code bits for quantized
spectral values) are performed. Depending on whether the space is enough (part23length ≥
the number of Huffman code bits), the second iteration either increases or decreases gg by 4.
After that, the quantization and counting are re-executed to see if the bits are enough for the
new gg. The algorithm once again adjusts gg based on the results of the second iteration.
Then, the quantization and counting are performed the third time to determine the final
global gain. Once the search algorithm is completed, the bitstream formatting procedure
proceeds to complete the encoding of the current granule.

In the proposed algorithm, the search results are categorized into eight different
placements, namely P1, P2,…, and P8 (see Fig. 6). Table 1 summarizes the maximum
possible deviation between the obtained global gain and the BGG for each placement in our
algorithm. The placements P3, P4, P5, and P6 guarantee a deviation of no more than one
due to the arrangement of the algorithm, whereas the deviation in placements P2 and P7 is
no more than three. The placements P1 and P8 have unknown deviations. By applying our
algorithm with the training set, we have a plot for the histogram of the number of granules
fall in each placement (see Fig. 7). The figure indicates that most of the granules fall within
placements P3 to P6. Therefore, the vast majority of granules (99.98%) are encoded either
with the BGG or the one next (larger) to the best.

Although virtually no granules in any sound tracks we have ever encountered fall in the
placement P1 and P8, we still include them in the algorithm to handle the exceptional cases.

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

18000000

20000000

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8

IGG-BGG (128k bitrate; stereo)

G
ra

nu
le

Fig. 5 The histogram of the
differences between the IGGs
obtained from a lookup table and
the BGGs

Multimed Tools Appl (2008) 40:341–359 349

For the placement P1, the available bits are not enough to encode all quantized spectral
values. Thus, P1 requires a special treatment to discard excessive bits so that the iteration
count of the algorithm remains the same.

Note that, theoretically, it requires at least two iterations for any algorithm to find the
BGG. The reason is simple: even if the IGG is the BGG, performing a second iteration is
necessary to make sure that encoding with a global gain of IGG-1 requires more bits than
available. This is the only way for an algorithm to confirm that the IGG is indeed the BGG.
Since the proposed algorithm uses only three iterations, its iteration number is already close
to the lower bound.

Fig. 6 The proposed quantization algorithm

350 Multimed Tools Appl (2008) 40:341–359

4 Performance evaluation

We implement a few reference encoders using the proposed quantization algorithm, and
evaluate their encoding quality with several experiments. Based on the results of the
experiments, we then port the final real-time encoder into a DSP platform. The reference
encoders are described in Section 4.1, the test bed for quality assessment is discussed in
Section 4.2, and the experimental results are reported in Section 4.3. In Section 4.4, we
compare the proposed quantization algorithm with the approaches given in the literature.

4.1 Reference encoders

In order to assess the encoding quality of the proposed quantization algorithm, we need to
compare it with a standard nested-loop quantization algorithm. After carefully studying
existing encoder programs, we decide to use the LAME [8] encoder as the reference. The
LAME encoder is publicly known as a high quality MP-3 encoder optimized for both
encoding speed and quality. Thus, the encoding quality of the LAME encoder provides a
good measure on the quality achievable by an MP-3 encoder.

We implement two encoders, BGG and GGG, using C language for quality assessment.
Both encoders discard window switching and distortion loop. The BGG encoder always
encodes each granule with its best global gain. The GGG (guess global gain) encoder, on
the other hand, uses the proposed quantization algorithm to encode each granule. The
energy-to-global-gain lookup table for the GGG encoder is obtained from the training set

0

5000000

10000000

15000000

20000000

25000000

30000000

P1 P2 P3 P4 P5 P6 P7 P8

Final placement (128k bitrate; stereo)

G
ra

nu
le

Fig. 7 The histogram of the final
placement

Table 1 Maximum possible global gain error for each placement

Placement Final global gain Global gain error

P1 IGG +8 Unknown
P2 IGG +8 0…3
P3 IGG +4 0…1
P4 IGG +2 0…1
P5 IGG 0…1
P6 IGG −2 0…1
P7 IGG −4 0…3
P8 IGG −8 Unknown

Multimed Tools Appl (2008) 40:341–359 351

mentioned in Section 3.2. We have carefully maintained the consistency between the BGG
and the GGG encoder so that they are exactly the same, except for the quantization
algorithm.

To improve encoding quality, we also realize the bit-reservoir and the M/S (middle/side)
stereo coding for both the BGG and GGG encoder. For the bit reservoir, the standard
provides the flexibility that several future frames can use the residual bits of the current one.
However, without distortion control, we adopt a simpler algorithm: a frame can use only the
bits left from the preceding one. With this restriction, the bit reservoir can be realized easily.

The proposed quantization algorithm also implements the M/S stereo coding. In the M/S
coding, the middle and side channels are encoded, instead of the left and right channels.
The middle and side channels are obtained by adding and subtracting the left and right
channels. Correspondingly, the IGG should be obtained from the energy of the middle and
side channels. The energy values in Eq. 2 can be used to determine whether to switch to the
M/S mode at run-time. Specifically, our program computes the energy levels of ebi, ebr, ebs,
and ebd for left, right, middle, and side channels, respectively, and then selects M/S mode if
ebs þ ebdð Þ � ebr þ eb1ð Þ.
We implement each encoder with three different arithmetic accuracies: (1) a 32-bit

version, (2) a 16-bit version, and (3) a mixed 32- and 16-bit version. The mixed version has
a 32-bit accuracy for subband analysis and MDCT operations, and the resultant spectral
values are cast into 16-bit representations before quantization. For simplicity, we call the
BGG encoder with 32-bit, 16-bit, and mixed accuracies as BGG32, BGG16, and BGG3216
encoders, respectively. The same naming convention also applies to the GGG encoders. In
order to study the benefit of using M/S coding, we can turn off the M/S coding during
experiments. We use “-MS” to denote an encoder without M/S coding. For example, the
BGG3216-MS encoder is the BGG encoder with mixed accuracy and without M/S coding.
Similarly, we can also turn off bit-reservoir. We use “-MSR” to denote an encoder without
both M/S coding and bit reservoir.

The proposed three-iteration algorithm can be extended to four iterations with the price
of higher computational complexity. The extra iteration can be used to make sure that
almost all granules (placements P3–P6) are coded with their BGGs. However, our
experimental results show that the encoding quality of the three-iteration algorithm is
practically as good as that of the BGG encoder. Thus, no extension is necessary. The four-
iteration algorithm in our implementation is used only for the MPEG-2 LSF (low sampling
frequency) format [7]. With lower sampling rates, the LSF format has longer frame
durations. Thus, the processor has sufficient time to execute the fourth iteration.

4.2 Test bed

Since the MP-3 is one of the perceptual audio coding schemes, it is inappropriate to use
the S/N ratio for quality assessment. Instead, subjective (listening) experiments are
usually conducted. However, subjective experiments rely heavily on experienced
audiences, and are both time-consuming and difficult to implement. As a substitute, we
use EAQUAL [2] (evaluation of audio quality), a PEAQ (perceptual evaluation of audio
quality) [5] compliant program, for quality evaluation. The EAQUAL program returns the
ODG (objective difference grade) after evaluating the difference between the reference and
the test audio signals. The ODG has a high correlation with SDG (subjective difference
grade), the ratings given by expert listeners. Therefore, the ODG may serve as an indication
to the perceptible impairment by using the ITU-R five-grade impairment scale, as shown in
Table 2.

352 Multimed Tools Appl (2008) 40:341–359

Thirty sound tracks taken from thirty different stereo CD titles (not from the training set
mentioned in Section 3.2) are used as the test items for the experiments. These test items are
carefully chosen to contain diverse types of music, including classical music, pop music,
soft music, solo, and chorus. Each item is at least 100 s in length so that the EAQUAL
program can provide reliable ODG. For the GGG encoder, the energy-to-global-gain lookup
table used to obtain the IGGs is pre-determined; it is not derived from the test items used
for quality evaluation.

To represent the encoding quality of an encoder, we use the average ODG of the test items.
We use an encoder to encode one test item t with a specified bitrate, and then decode it into t′
(we use the LAME decoder, a derivative of mpg123 [9], as the reference decoder). The
inputs to EAQUAL are the reference item t and the test item t′. After evaluation, EAQUAL
returns an ODG rating for t′. Then, the average ODG over the thirty test items is used as an
indication of the performance of the encoder. Since there are 14 different bitrates in MPEG-
1, we use a curve to represent the encoding quality of the encoder over all bitrates.

We use a PC (personal computer) to conduct the experiments. The purpose of the
experiments is to assess the encoding quality of different quantization algorithms, not the
speed. Therefore, a PC is suitable and convenient for the job. We will report the complexity
and the speed of the proposed algorithm in Section 5, and show that the encoding quality of
the DSP version is exactly the same as the PC version. The most important reason that a PC
is used is that it is computationally much more powerful than the DSP core that we choose.
Therefore, the experiments can be conducted much more efficiently.

4.3 Experiments and results

We conduct four experiments to assess the encoding quality of the proposed quantization
algorithm. The first experiment evaluates the encoding quality of the BGG encoder to study
the influence due to the lack of the psychoacoustic model. The second experiment
compares the encoding quality between the proposed quantization algorithm (GGG
encoder) and the best global gain algorithm (BGG encoder). The third experiment studies
whether the bit reservoir actually improves the encoding quality, and, if so, to what extent.
The last experiment investigates the influence of signal level on the encoding quality.
During the experiments, we use only MPEG-1 format to simplify the comparison although
our encoders also support MPEG-2 LSF format.

The first experiment compares the encoding quality of the LAME encoder with that of the
BGG encoder possessing different arithmetic accuracies. To obtain the highest possible
encoding quality, both the M/S mode and bit reservoir are in use for the BGG encoder. The
results are given in Fig. 8, where each curve indicates the average ODG received by each
encoder over different bitrates. For example, the average ODG of the BGG32 encoder at 160k
bitrate is around −0.7, which means that on average the encoding quality of the BGG32
encoder at 160k bitrate is a little better than “Perceptible but not annoying.” From Fig. 8,

Table 2 The ITU-R 5-grade impairment scale

SDG Meaning

0 Imperceptible
−1 Perceptible but not annoying
−2 Slightly annoying
−3 Annoying
−4 Very annoying

Multimed Tools Appl (2008) 40:341–359 353

the ODG degradation due to the lack of psychoacoustic model is apparent, but acceptable.
The BGG32 encoder with a bitrate of 128 kbps has the encoding quality comparable to that
of the LAME encoder with 112 kbps. The results also confirm that the arithmetic accuracy
greatly affects the ODG, because the BGG32 encoder has a better encoding quality than the
BGG16 encoder. The reason, justified in the fourth experiment, will be given later.

In the second experiment, we compare the encoding quality between the GGG and BGG
encoder. The results, shown in Fig. 9, show that the encoding quality of GGG3216 is slightly
inferior to that of BGG3216, either with or without M/S coding. However, the ODG difference
is less than 0.1 for all bitrates. Thus, the encoding quality of the GGG encoder is practically as
good as that of the BGG encoder. As expected, when M/S coding is used, the encoding quality
is better than that of normal stereo coding. This is because the two channels of all test items are
highly correlated. Note that, though we use the mixed version of the encoders to present the
results, the same observations also hold for the other arithmetic accuracies.

In the third experiment, we investigate the quality improvement due to the use of bit
reservoir (see Fig. 10). Without bit reservoir, the ODG difference between the BGG3216-
MSR and GGG3216-MSR encoder becomes quite obvious. This phenomenon is not
difficult to explain. Recall that the global gain obtained by the proposed algorithm may not
be exactly the best. Therefore, a granule encoded by the GGG encoder may have more
unused bits in comparison to the BGG encoder. Let x and y be the number of unused bits of

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
32k 40k 48k 56k 64k 80k 96k 112k 128k 160k 192k 224k 256k 320k

Bitrate

A
ve

ra
ge

 O
D

G

BGG3216

GGG3216

BGG3216-MS

GGG3216-MS

Fig. 9 The comparison of
BGG3216 and GGG3216. The
“-MS” denotes an encoder with-
out using M/S coding. The curves
of the GGG3216 and BGG3216-
MS encoders almost coincide
with those of the BGG3216 and
BGG3216-MS encoders,
respectively

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
32k 40k 48k 56k 64k 80k 96k 112k 128k 160k 192k 224k 256k 320k

Bitrate

A
ve

ra
ge

 O
D

G

LAME

BGG32

BGG3216

BGG16

Fig. 8 The average ODG of the
LAME and the BGG encoders
with different bitrates. The
BGG32, BGG3216, and BGG16
are the BGG encoders with 32-
bit, mixed, and 16-bit arithmetic
accuracies, respectively

354 Multimed Tools Appl (2008) 40:341–359

the GGG and BGG encoder, respectively. Then, x≥y. When bit-reservoir is disabled, the
unused bits are wasted and the GGG encoder wastes x–y bits more than the BGG encoder.
Thus, the quality difference becomes obvious. On the other hand, when bit-reservoir is enabled,
the x–y bits will be retained in the next granule for the GGG encoder. The additional x–y bits
provide the GGG encoder the possibility of encoding the next granule with less distortion. So,
on average, the performance difference between these two encoders becomes very minor.
Therefore, the bit reservoir must be used for the proposed algorithm to work best.

As we noted in the first experiment, arithmetic accuracy greatly affects the encoding
quality. To investigate the reasons, we divide the thirty test items into two groups, namely
high-level group and low-level group. The high-level group contains 15 test items with
higher signal levels among the thirty test items, whereas the low-level group contains the
rest of the items. The average ODG of the BGG32 and BGG16 encoders for both the high-
level and low-level groups are shown in Fig. 11. The results clearly show that the signal
level strongly affects the encoding quality of the 16-bit encoder. The high-level group has a
much higher average ODG than the low-level group. On the other hand, the signal level
only slightly affects the encoding quality of the BGG32 encoder. This is because, with
extremely low input signal levels, mathematical errors of one or two bits lead to a
significant degradation of S/N ratio. Thus, the weakness of 16-bit fixed-point processors
becomes evident when the signal level is low. Since our 16-bit encoder already has an
average accuracy of around 14.5 bits, there is little room for any further improvement. This

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
32k 40k 48k 56k 64k 80k 96k 112k 128k 160k 192k 224k 256k 320k

Bitrate

A
ve

ra
ge

 O
D

G

BGG32:Hi

BGG32:Lo

BGG16:Hi

BGG16:Lo

Fig. 11 The encoding quality of
high-level group versus that of
low-level group. The “:Hi” and
“:Lo” denote the average ODG of
the high-level group and low-
level group performed by an
encoder, respectively

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
32k 40k 48k 56k 64k 80k 96k 112k 128k 160k 192k 224k 256k 320k

Bitrate

A
ve

ra
ge

 O
D

G

BGG3216

BGG3216-MS

BGG3216-MSR

GGG3216-MSR

Fig. 10 The effect of using bit-
reservoir. The “-MSR” denotes an
encoder without using M/S cod-
ing nor bit reservoir

Multimed Tools Appl (2008) 40:341–359 355

experiment suggests that using automatic gain control (AGC) is beneficial for a 16-bit
encoder to encode music with low signal-level.

From the previous experiments, we obtain the following conclusions. Firstly, the encoding
quality of the BGG encoder is acceptable. Secondly, the encoding quality of the GGG
encoder is practically as good as that of the BGG encoder. And finally, when the signal level is
high, the encoding quality of GGG16 is as good as that of GGG32. Therefore, it is feasible to
implement GGG16 in a DSP.

4.4 Comparison with existing methods

Many efficient algorithms for quantization (also referred to as bit allocation in the literature)
have been reported [16, 10, 17, 15]. It is computationally expensive to perform a single
iteration of quantization and counting. Therefore, all of these algorithms attempt to reduce
the overall number of iterations. Most algorithms use the global gain obtained in the
previous granule as the IGG of the current granule. Furthermore, adaptive step sizes are
used to speedup the search of global gain.

Table 3 summarizes the number of iterations required for different approaches. Note that
the average number of iterations is not suitable to indicate the efficiency of an algorithm
when it is implemented inside a real-time encoder with the architecture similar to Fig. 1.
The efficiency of an algorithm should be evaluated by the maximum number of iterations.
That is because the maximum number of iterations affects the peak computational demand,
which in turn determines the clock rate and power consumption of the processor. One might
imagine that the average number of iterations may be close to the maximum. However, this
is not true. For example, the LAME encoder has a large fluctuation on the number of
iterations: the average is 8.7 iterations and the peak is 66 iterations in the inner loop for
encoding the test items (sound tracks) discussed in Section 4.2.

Yen et al. [17] report an algorithm that performs quantization with an average of 1.8
iterations and a maximum of eight iterations. In addition, advanced acceleration techniques
such as bandwidth control are also reported. The algorithm is implemented in a DSP with
an impressive speed. However, it is possible to further improve the speed of quantization
based on the three-iteration algorithm proposed in this paper. Wang et al. [15] also report
the implementation of a real-time encoder based on a DSP. With the use of a modified
psychoacoustic model, they describe an algorithm to adjust the scalefactors for each
scalefactor band. The average and maximum iterations for the outer loop are two and six,
respectively. However, the number of iterations in the inner loop is not reported. In contrast,
the proposed algorithm offers an obvious speed advantage.

Table 3 The number of iterations (per granule) for various quantization algorithms

Method Proposed
algorithm

LAME [8] Oh et al. [10] Yen et al. [17] Wang et al. [15] Yang and
Chen [16]

Inner loop 3 (fixed) 8.7 (avg) 2.1 (avg) 1.8 (avg) Not reported 2.52~4.18 (avg)
66 (max) 3 (max) 8 (max)

Outer loop 1 1.98 (avg) 1 1 <2 (avg) Not reporteda

2 (max) 5×6 (max, per
scalefactor band)

Overall 3 17.4 (avg) 2.1 (avg) 1.8 (avg) Unknown Unknowna

66 (max) 3 (max) 8 (max)

a Yang and Chen use the standard nested-loop algorithm

356 Multimed Tools Appl (2008) 40:341–359

Yang and Chen [16] report a dynamic search algorithm for the inner loop. The algorithm
always obtains BGGs. It outperforms binary search and reduces the average number of
iterations to 2.52~4.18. However, the algorithm is not designed for real-time encoders and
the maximum number of iterations is unreported (at least 4:18d e ¼ 5). Therefore, the
proposed algorithm with a maximum of three-iterations is preferred when real-time
encoding is desired. Oh et al. [10] report an algorithm with a maximum of three iterations.
The algorithm is also implemented in a DSP. However, the algorithm is not clearly
explained and the encoding quality is vaguely described. It is unknown whether the
obtained global gain is close to the BGG or not. In this regard, the proposed algorithm, with
the same number of iterations, gives an encoding quality that is practically as good as BGG.

Since all real-time quantization algorithms attempt to discover or approximate the BGG
efficiently, the encoding quality of the BGG encoder is a standard benchmark for real-time
encoders. The strength of the proposed algorithm is that it uses only three-iterations to
achieve the encoding quality of the BGG encoder. Furthermore, the proposed algorithm
works well in conjunction with the M/S coding and bit reservoir mechanisms. Our
experimental results show that these two mechanisms have great influences on the overall
encoding quality. In contrast, the encoding quality of the algorithms proposed by Yen et al.
[17] and Oh et al. [10] are unknown in comparison to that of the BGG encoder.

There is a tradeoff between encoding quality and speed. To compare real-time quantization
algorithms impartially, in addition to justifying the maximum number of iterations, the
encoding quality must also be considered. Unfortunately, we found that it is difficult to
compare the encoding quality of real-time encoders based on the experimental results reported
in the literature. For example, Yen et al. [17] and Oh et al. [10] evaluate the quality of their
encoders by human listeners. It is then difficult to reproduce exactly the same results.
Moreover, they do not offer a complete picture of how the algorithm performs over different
bitrates. In addressing these issues, we use EAQUAL [2] instead of human listeners. We hope
that the ODG reported hereinbefore gives a clear indication of the experimental results so that
other researchers can easily compare our results with theirs in the future.

5 Implementation for DSP

There are two classes of DSPs available in the market: fixed-point processors and floating-
point processors [14]. A fixed-point processor contains hardware to perform only integer
multiplication operations, whereas a floating-point counterpart has hardware for floating-
point arithmetic operations. In terms of cost, a floating-point processor is usually more
expensive because it requires much more complicated hardware. Thus, low-cost MP-3
encoders and decoders are mostly implemented using fixed-point processors.

To verify our algorithm, we implement the real-time MP-3 encoder with the TI’s C5x
16-bit DSP [13]. The GGG16 encoder is ported to the DSP platform. To speedup the
encoder, time-critical procedures are rewritten in assembly language. Overall, about 20% of
code are hand-written assembly code, including subband analysis, MDCT, energy
calculation, and inner quantization loop. In terms of performance, when stereo CD music
is encoded at 128 kbps, the real-time encoding is achieved with 35 MIPS of computation
with M/S coding and bit reservoir. No more than 42 MIPS of computation is required when
the bitrate is at 192 kbps. Since 35 MIPS has reached the commercial standard for the C5x
DSP (see [17] for a list of MIPS required by various encoders), we did not push the speed
of the encoder further, as we are mainly trying to show that the proposed quantization
algorithm is suitable for real-time encoding with DSPs.

Multimed Tools Appl (2008) 40:341–359 357

During the porting process, whenever a procedure in C code is re-written as assembly
code, we have been very careful to make sure that the assembly code produces exactly the
same results as its original C code. To fully explore the hardware capability offered by the
DSP (e.g., multiply and add in one instruction), there are also cases that we have to rewrite
the C code so that it correctly emulates the hardware behavior. The final result is that the
DSP encoder produces exactly the same MP-3 output stream as the GGG16 encoder.
Therefore, the encoding quality of the DSP encoder is exactly the same as that of the
GGG16 encoder reported in Section 4.3.

The last issue remains to be addressed is that “is it possible to implement the LAME
encoder in a low-cost DSP?” After all, the LAME encoder is significantly better than the
BGG encoder for bitrates ranging from 80 to 128 kbps (Fig. 8). The LAME encoder is
equipped with a sophisticated psychoacoustic model, which requires 90 MIPS [10] of
computation. In addition, up to 66 quantization iterations (Table 3) are required, which may
cost another 330 MIPS of computation. The estimation is based on the measurement that
our DSP implementation of the quantization routine consumes 5 MIPS per iteration (per
second). Therefore, if the LAME encoder is ported to a 16-bit DSP platform, at least 420
MIPS of peak computation will be required to perform real-time encoding. This is far
beyond the current commercial standard, which is around 40 MIPS [17]. Thus, most real-
time encoders employ dramatically simplified quantization algorithms.

6 Conclusion

In this paper, we give an overview of the MP-3 encoding flow, and explain that the nested-
loop quantization algorithm suggested by the ISO’s standard is not suitable for a real-time
encoder based on a low-cost DSP. We then present an efficient (three-iteration) quantization
algorithm for such an application. The experimental results show that our encoder with the
proposed quantization algorithm has acceptable quality degradation in comparison with a
highly optimized encoder. The advantage of our quantization algorithm, when compared
with other algorithms in the literature, is that its iteration number is fixed to three without
variation. Based on the experimental results and cost concerns, we implement our algorithm
on a 16-bit DSP, and it is able to encode stereo music at 128 kbps with 35 MIPS.

References

1. Chang F-M, You SD (2004) Using only long windows in MPEG-2/4 AAC encoding. Lecture Notes in
Computer Science LNCS 3333, pp. 151–158

2. EAQUAL (1999) http://www.mp3-tech.org/programmer/sources/eaqual.tgz
3. EBU (2005) Digital Video Broadcasting (DVB); Implementation guidelines for the use of MPEG-2

systems, video and audio in satellite, cable and terrestrial broadcasting applications, ETSI TR 101–154
4. EBU (2006) Radio broadcasting systems; digital audio broadcasting (DAB) to mobile, portable, and

fixed receivers, ETSI EN 300 401 v1.4.1
5. International Telecommunication Union, ITU-R Rec. BS-1387, Method for objective measurements of

perceived audio quality
6. ISO/IEC (1993) Information technology—coding of moving pictures and associated audio for digital

storage media at up to about 1.5 Mbit/s—part 3: audio, IS 11172–3
7. ISO/IEC (1998) Information technology—generic coding of moving pictures and associated audio

information—part 3: audio, IS 13818-3, 2nd Ed
8. LAME, Version 3.97b2, http://lame.sourceforge.net/
9. MPG123, http://www.mpg123.org/

358 Multimed Tools Appl (2008) 40:341–359

http://www.mp3-tech.org/programmer/sources/eaqual.tgz
http://lame.sourceforge.net/
http://www.mpg123.org/

10. Oh HO, Kim JS, Song CJ, Park YC, Youn DH (2001) Low power MPEG/Audio encoders using
simplified psychoacoustics model and fast bit allocation. IEEE Trans Consum Electron 47(3):613–621

11. Painter T, Spanias A (2000) Perceptual coding of digital audio. Proc IEEE 88(4):451–513
12. Princen JP, Johnson AW, Bradley AB (1987) Subband transform coding using filter bank designs based

on time domain aliasing cancellation. Proc IEEE ICASSP, Dallas, TX, USA, 12:2161–2164
13. Texas Instruments (1993) TMS320C5x user’s guide, 2547301-9721 revision D
14. Venkataramani B, Bhaskar M (2002) Digital signal processors: architectures, programming and

applications. McGraw-Hill, Englewood Cliff, NJ
15. WangX,DouW,HouZ (2002) An improved audio encoding architecture based on 16-bit fixed-point DSP. IEEE

2002 International Conference on Communications, Circuits and Systems andWest Sino Expositions 2:918–921
16. Yang CK, Chen SG (2003) New static and dynamic search algorithms for fast MP3 bit allocations. Proc

Int Conf Multimedia Expo 1:I-77–I-80
17. Yen C-H, Lin Y-S, Wu B-F (2007) An efficient implementation of a low-complexity MP3 algorithm with

stream cipher. Multimedia Tools and Applications, online published, 25(3):335–355 (June)
18. Yu C-H, You SD (2002) On the possibility of only using long windows in MPEG-2 AAC Coding.

Lecture Notes in Computer Science LNCS 2532:663–670

Shingchern D. You received the Ph.D. degree in Electrical Engineering from the University of California,
Davis, CA, USA in 1993. Dr. You’s research interests include audio signal processing and recognition,
applied digital signal processing to communication systems, and circuit design.

Woei-Kae Chen received the diploma in Electronic Engineering from National Taipei Institute of
Technology, Republic of China, in 1984, the M.S. and Ph.D. degrees in Computer Engineering from North
Carolina State University, NC, USA in 1988 and 1991. Dr. Chen’s research interests include software
engineering, distributed computing, and graph algorithms.

Multimed Tools Appl (2008) 40:341–359 359

	Efficient quantization algorithm for real-time MP-3 encoders
	Abstract
	Introduction
	The MP-3 encoder
	The MP-3 encoding flow
	Window operations
	The nested-loop quantization algorithm

	The proposed quantization algorithm
	Window switching
	Distortion control
	Rate control

	Performance evaluation
	Reference encoders
	Test bed
	Experiments and results
	Comparison with existing methods

	Implementation for DSP
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

