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Abstract The problem of content based image retrieval (CBIR) has traditionally
been investigated within a framework that emphasises the explicit formulation of
a query: users initiate an automated search for relevant images by submitting an
image or draw a sketch that exemplifies their information need. Often, relevance
feedback is incorporated as a post-retrieval step for optimising the way evidence from
different visual features is combined. While this sustained methodological focus has
helped CBIR to mature, it has also brought out its limitations more clearly: There
is often little support for exploratory search and scaling to very large collections is
problematic. Moreover, the assumption that users are always able to formulate an
appropriate query is questionable. An effective, albeit much less studied, method of
accessing image collections based on visual content is that of browsing. The aim of
this survey paper is to provide a structured overview of the different models that
have been explored over the last one to two decades, to highlight the particular
challenges of the browsing approach and to focus attention on a few interesting issues
that warrant more intense research.

Keywords Image retrieval · CBIR · Human-computer interaction ·
Data visualization · Browsing · Networks · Clustering ·
Dimensionality reduction

1 Introduction

With the advent of the information age and the concomitant explosion of digital
data in the form of texts, music, images and videos, the question of how to retrieve
relevant information from potentially very large repositories has become of immense
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practical importance. The ability to retrieve stored items from memory based on
similarity has been recognised as a key property that underlies much of what we
associate with human intelligence including analogical reasoning, classification and
prediction [90]. Yet, what we humans solve effortlessly remains a formidably difficult
task for a machine. At the core of the problem lies the deceptively simple notion of
similarity. In essence, the difficulty arises from the fact that not all features by which
objects may be represented are equally useful for measuring similarity. The notion
of similarity predicates a distinction between essential and accidental features. For
example, an essential feature for something to be a bike is the possession of two free-
running wheels linked by a chain, while the colour is accidental. Essential features
are thus those that are shared by all individuals of a class. When comparing objects
within the same class, similarity is presumably based on accidental features, while
similarity between objects of different classes tends to be judged by differences in
their essential properties (e.g. a three-wheel cart is judged more similar to a bike
than a four-wheel car). Being able to discriminate between features that matter and
those that don’t is a major learning task and requires substantial training and possibly
causal theories of the domain [81] for a review on the relationship between similarity
and categorisation see [77].

The problem of estimating the relative significance of different features pertains
to information retrieval in general. It is however greatly compounded in the case of
image retrieval in two significant ways: First, while documents readily suggest a rep-
resentation in terms of their constituent words, images do not generally admit to such
a natural decomposition into semantic atoms. This renders image representations to
some extent arbitrary. Secondly, images typically admit to a multitude of different
meanings, each of which may have its own set of supporting visual features.

Content based image retrieval (CBIR) inherited its early methodological focus
from the by then already mature field of text retrieval. The primary role of the
user is that of formulating a query, while the system is given the task of finding
relevant matches. The spirit of the time is well captured in Gupta and Jain’s classic
review paper from 1997 [33] in which they remark that “an information retrieval
system is expected to [...] help a user specify an expressive query to locate relevant
information.” By far the most commonly adopted method for specifying a query is
to supply an example image (known as query by example or QBE), but other ways
have been explored. Recent progress in automated image annotation, for example,
reduces the problem of image retrieval to that of standard text retrieval with users
merely entering search terms. Whether this makes query formulation more intuitive
for the user remains to be seen. In other systems, users are able to draw rough
sketches possibly by selecting and combining visual primitives, e.g. [42, 79] and [25].
All these methods have in common that at some point users issue an explicit query,
be it textual or pictorial.

This division of roles between the human and the computer system as exemplified
by many early CBIR systems seems warranted on the grounds that search is not only
computationally expensive for large collections but also amenable to automation.
However, when one considers that humans are still far better at judging relevance,
and can do so rapidly, the role of the user seems unduly curtailed. The introduction of
relevance feedback into image retrieval has been an attempt to involve the user more
actively and has turned the problem of learning feature weights into a supervised
learning problem (for reviews see [21, 100] and [37]). Although the incorporation
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of relevance feedback techniques can result in substantial performance gains, such
methods fail to address a number of important issues. Users may, for example, not
have a well-defined information need in the first place and may simply wish to explore
the image collection. Should a concrete information need exist, users are unlikely
to have a query image at their disposal to express it. Moreover, nearest neighbour
search requires efficient indexing structures that do not degrade to linear complexity
with a large number of dimensions [88].

Several years after Gupta and Jain’s paper, voices from the computer vision
community began to urge for a broadening of the research programme. For example,
Forsyth [27] criticised that “[...] search has been overemphasized by the content
based image retrieval literature, and a number of other interesting activities—
browsing, organising and image data mining have not been sufficiently well studied.”

Browsing provides an interesting alternative to systems requiring explicit query
formulation, but it has, by comparison, received only scant attention. A number of
definitions of browsing have been suggested in the literature. Spence [80] uses the
term to imply a scanning activity that allows users to build a cognitive map of a
domain. A classic example of browsing according to him is the scanning of articles on
the front cover of a newspaper. In [10], the authors distinguish between three kinds
of browsing: “scan-browse”, “review-browse” and “search-browse”. Our use of the
term is most akin to the last one. We here define browsing as the exploration of
potentially very large spaces through a sequence of local decisions or navigational
choices. Note that there is a body of research that is concerned with browsing
individual images, mostly from remote sensing applications (e.g. [23] and [7]). This
line of research can be identified with the “scan-browse” activity which is not the
concern of our paper.

Most of the browsing models to be discussed cast the collection into a structure
that can be navigated interactively. Arguably one of the greatest difficulties of a
browsing approach is to identify structures that are conducive to effective search
in the sense that they support fast navigation, provide a meaningful neighbourhood
for choosing a browsing path and allow users to position themselves in an area of
interest [18].

Overview papers on content based image search tend to cover the QBE method-
ology well but have little to say about browsing, including the otherwise exemplary
work by [78] and the more recent follow-up study [31]. The epically sized and even
more recent survey paper by [22] purports to have wide coverage but has a clear focus
on techniques for automated image annotation. The principal objective of this paper
is to fill the gap by providing an extensive survey and analysis of current browsing
methods, and to stimulate further, and more concerted research in this area.

The paper has the following structure: Section 2 puts forth four reasons why
browsing should be considered as an interesting access method. Section 3 introduces
the principal challenges of browsing models and subsequently investigates three
different classes of browsing structures: the first two consist of static structures that
have been precomputed prior to user interaction and we shall distinguish between
hierarchies (Section 3.1) and networks (Section 3.2). In Section 3.3, we shall look
at more dynamic models that incorporate some form of user feedback and tend to
employ a mixture of the techniques described in the previous two sections. Finally in
Section 4, we shall discuss the merits of different approaches and motivate directions
for future research. Section 5 ends the paper with a short conclusion.
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2 In defense of browsing

Mental query The query in CBIR often takes the form of an example image. This
query mode is inadequate when query images are not readily at hand. Indeed,
users would perhaps need to access a collection first by some other means to
identify suitable query images (for example through browsing as advocated in [76]).
Early systems have attempted to overcome this limitation by allowing users to
draw sketches. This approach has limited expressive power and, with traditional
input devices, is operationally cumbersome. Another solution is automated image
annotation [26, 49, 94, 99] which promises to reduce visual search methodologically
to traditional text retrieval. However, images, whether in our mind or not, can
be inordinately more expressive than words and to find what lies beyond verbal
description, a visually guided search is likely to remain the more effective strategy.
Browsing, meanwhile, can be accomplished with only a mental representation of the
query as a guide, and that query may be as simple or as complex as we wish.

Fluid information needs Retrieving images based on an explicit query requires users
to have a concrete information need in the first place. This may often not be the
case. Instead, the information need may initially be very vague and develop in the
course of and as a result of the interaction with the database. Gaining an overview of
a collection and being able to navigate quickly between different kinds of images
then becomes crucial. Depending on how the collection is structured, browsing
can provide much greater support for undirected search and help users develop
information needs.

Exploiting the cognitive abilities of users The ability of the human visual system to
recognise patterns reliably and quickly is a marvel yet to be fully comprehended.
Endowing systems with similar capabilities has proven an exceedingly ambitious
task. Early approaches towards content based retrieval left to a large extent un-
exploited the cognitive prowess of the user. The problem was understood as one
of computation and representation, not one of human-computer interaction. Given
our present limitations in understanding and emulating cognitive vision, however,
the most promising way to leverage the potential of computers is to combine their
strengths with those of users and to achieve a synergy through interaction.

Such synergy can be achieved through browsing as users are continuously required
to make decisions based on the relevance of items in relation to their current
information need. Since humans are much better at recognising whether something
is relevant than to describe what an item has to look like to be considered relevant, a
substantial amount of time is spent by engaging users in what they are best at, while
exploiting computational resources to render interaction fast.

Responsiveness Much research in content based retrieval is aimed at improving
retrieval performance. Comparatively little effort has been directed towards improv-
ing the scalability properties of retrieval methods. In the case of a visual query,
image retrieval entails a nearest neighbour search amongst a database of images, or
the feature representations thereof. For low-dimensional feature spaces, tree-based
indexing structures that partition the data space hierarchically such as KD-trees [4],
R-trees [34], R*-trees [3] or SR-trees [43] improve considerably over a sequential
scan of the database. However, for the high-dimensional spaces that are typical of
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multimedia applications, the advantage of these structures breaks down as has been
shown both theoretically and empirically [6, 86, 88]. Vector approximation files [87]
have been proposed as an alternative to these hierarchical structures. They consist
of a low-dimensional approximation of the original feature vector and can be used
to efficiently discard the majority of dissimilar objects in a first run. While alleviating
the curse of dimensionality that affects partitioning approaches, supporting efficient
database searches of millions of multimedia objects continues to be a challenge
even with these more recent proposals. Consider now the task of browsing the
World Wide Web (WWW). The speed with which the hyperlinked network of sites
can be browsed is clearly independent of the size of the WWW, and more or less
independent of the sites that are linked together. The neighbours are already there
before users hit a particular page. In the case of the WWW, the structure has
evolved over many years and links have been established manually. Yet, the example
illustrates the fact that, once built, browsing structures can be navigated very quickly.

3 Structuring data

The advantages of browsing outlined in the previous section come at a price.
Arguably the greatest challenge is to identify good organisation principles for
structuring a collection. Intuitively, we should wish objects to be near each other
and easily accessible from one another if they are similar. As argued earlier, the
notion of similarity is fraught with difficulties. Images admit to a number of different
representations in terms of visual features and not all features are equally useful to
find, for a particular image, those that are similar. The question of how to weigh
different features when constructing structures for browsing is far from trivial. In
addition, we have a choice between different topologies and some are better suited
than others depending on the application. Hierarchical organisations may be well
suited when there is an obvious dimension along which to arrange and split the
collection of objects. When there are multiple ways in which objects can be related to
each other (e.g. sites on the WWW, where links can carry very different semantics),
networks might prove more useful.

We shall distinguish between three classes: (i) static hierarchical structures, (ii)
static networks and (iii) dynamic structures. We end each of the three sections with
a summary and discussion.

3.1 Static hierarchies

Hierarchies have a universal presence in our daily lives: examples include the organ-
isation of files on a computer, the arrangement of books in a physical library, the
presentation of information on the web, organisational structures, postal addresses
and many more.

Hierarchical structures have been studied for many years as a possible remedy
against the linear time complexity of exhaustive nearest neighbour searches [29] with
recent applications to image search [47, 53, 60, 66, 89]. The general idea here is to find
nearest neighbours by descending a tree of hierarchically organised cluster centroids.
At every step, a comparison is performed between the representation of the query
and the representation stored at the given node.
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In an interactive setting, it is the users who at every step compare their internal
query image with the cluster centroids at a particular level of the hierarchy and
decide along which path to continue. To use hierarchical structures for browsing,
users need to be able to reliably predict in which of the multiple subtrees the target
image resides. When it is obvious along which dimension to hierarchically split the
database, the navigational choice becomes relatively simple. However, such cannot
be said for the low-level, high-dimensional feature representations commonly used
for image data, so choosing the ‘right’ hierarchy is a challenge.

The most common methods for constructing hierarchies is by way of clustering
(see [24] for a general text and [5] for a comprehensive recent survey). Note that
this paper does not aim to provide an overview of clustering techniques in general.
Instead the presentation is restricted to those that have been employed in the context
of CBIR.

A useful distinction is between hard clustering and fuzzy or overlapping clustering
models (e.g. [97]). In the former, an item is unambiguously assigned to only one
cluster, while in the latter an item may belong to several clusters. We treat each of
these two in turn.

3.1.1 Hard clustering

Agglomerative methods Hard clusters can be obtained either by iteratively merging
clusters (agglomerative clustering) or by recursively partitioning clusters (divisive
clustering). Early applications of agglomerative clustering to image browsing are
described in [95, 96, 98] and [46]. The first two papers are concerned with video
browsing. Clustering here involves automated detection of topics and for each topic
the detection of constituent stories. Stories are represented as video posters, a set of
images from the sequences that act as pictorial summaries. In [96], the authors cluster
video shots and build “scene transition graphs” that visualise story development in
videos with particular application to story-based movies (rather than topic-based
news videos).

In [98] and [91] the self-organising map (SOM) algorithm [45] is applied to map
images onto a two-dimensional grid. The resulting grid is subsequently clustered
agglomeratively. More recent applications of the algorithms are by [48] where
images are mapped to a hierarchically organised SOM for each of a set of three
visual features. Based on relevance feedback, the images of the different SOMs are
merged. One of the major drawbacks of the SOM algorithm (and neural network
architectures in general) is its computational complexity. Training instances often
need to be presented multiple times and convergence has to be slow in order to
achieve good performance, in particular for dense features (see [65] for a scalable
map applied to sparse document representations).

In [14] and [15], Chen et al. propose the similarity pyramid to represent image
collections. Each level is organised such that similar images are in close proximity
on a two-dimensional grid. Images are first organised into a binary tree through ag-
glomerative clustering based on pairwise similarities. The binary tree is subsequently
transformed into a tree in which each node has four instead of only two children, a
datastructure that is technically known as a quadtree (from quadrant). A quadtree
not only provides users with a greater choice at each level of the hierarchy, it also
makes better use of the two-dimensional display space. Cluster representatives are
arranged such that some measure of overall visual coherence is maximised. Since
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the quadtree structure is precomputed, the computational cost incurred at browsing
time is slight. Figure 1 illustrates the process of conversion from a binary tree (left)
into a quadtree (right). Considering only the root level of the binary tree, the goal is
to choose four nodes from the fourteen such that their subtrees contain all the leaf
nodes {8..15}. While this may always be achieved by selecting the nodes two levels
deeper, i.e. {4, 5, 6, 7}, it is observed in [15] that a mixture of nodes from different
levels can provide visually more balanced representations.

Essential to most clustering methods is the notion of a distance between objects.
In many applications it is not obvious which distance function should be used or
whether this function should even possess metric properties. Even if one may intuit
an appropriate functional form, the instantiation of parameters, such as the weights
associated with different visual features, remains a problem. Goldberger et al. [32]
propose one solution to this problem of choice. The distance measure is obtained
from the information bottleneck (IB) method of Tishby et al. [83]: given a set of
objects X and their properties Y, the IB method formulates the problem of clustering
as one of finding a mapping from X to a smaller set X̂ of fixed size such that the
predictions of Y from X through X̂ are as close as possible to the direct prediction
of Y from X. This can be measured in terms of the difference in mutual information,
d(x1, x2) = I(X, Y) − I(X̂, Y) where x1 and x2 are the two clusters being merged
to get from X to X̂. At each step of the agglomerative clustering procedure, the
two clusters to be merged are chosen such that the decrease in mutual information
is minimised. The results reported in [32] compare favourably with a metric based
merging criterion on the same data set used in [46].

Although agglomerative clustering is quadratic in the number of images, approx-
imation methods can reduce the computation time considerably. An example is the
approach by [15] which combines inexact but fast nearest neighbour search with
sparse distance matrices.

Divisive methods A computationally more attractive alternative is divisive cluster-
ing whereby clusters are recursively split into smaller clusters. One popular clustering
algorithm for this purpose is k-means. In [61], this algorithm is applied to 6,000
images with cluster centroids being displayed according to their position on a global
Sammon map (see Section 3.3). Compared to agglomerative clustering, the divisive
approach has been found to generate less intuitive groupings (e.g. [15, 96]) and the
former has remained the method of choice in spite of its computational complexity.

Fig. 1 A binary tree (left) and the first step towards converting it into a quadtree (right), in which
each node will have four children
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The pairwise similarities between images can be construed as edge weights of a
complete graph in which vertices correspond to images. It is then possible to segment
the graph by removing those edges the weights of which lie below a certain threshold.
Cheung and Zakhor [16] uses such a method to identify near-identical sequences
in video databases. The distance relationships between sequences are represented
as an undirected graph in which two sequences are connected if their distance is
below some threshold. For a suitable threshold, the graph partitions into a number
of connected components. Of these only those with an edge density above a user-set
threshold are recognised as clusters and are removed from the graph. By successively
removing the remaining edges in decreasing order of length, new clusters satisfying
the density criterion may subsequently be found. Note that a thresholded graph is
distinct from the notion of a threshold graph, which has a very different meaning in
graph theory.

3.1.2 Fuzzy clustering

Common to the methods discussed so far is their inability to model membership to
multiple clusters or to provide a measure of confidence of a particular cluster assign-
ment. These limitations can be overcome by fuzzy methods, of which probabilistic
methods form a subset. An innovative approach with applications to image search
and image annotation is due to Barnard and Forsyth [2]. They propose to learn a
generative hierarchical model with a fixed structure, i.e. the number of levels (l in
Fig. 2) and the branching pattern are given. Each node of the hierarchy is associated
with a probability distribution, P(i|l, c), over terms and image features.

Each node specified by c and l generates images according to its distribution
P(i|l, c), and so therefore does every path that descends from the root to a leaf node.
The parameters of the probability distributions for each node are learned from a
training set, along with the probabilities of an image being generated by a particular
path, and of an image feature being generated at a particular level of the path. This
dual estimation is achieved using the expectation-maximisation algorithm on a set of
training images. The fitted model admits to an interpretation in terms of a clustering
by assigning each image to the path under which it has highest probability. It is
these clusters that can subsequently be used for browsing. Although the clustering
is hierarchical, the paper does not explore the possibility of hierarchical browsing,
presumably because the number of clusters can be kept small enough to be displayed
all at once. Nevertheless, the model stands out for its probabilistic integration of text
and image data. The authors observe that images tend to improve the quality of the

Fig. 2 Generative hierarchical
model according to [2]. Given
a path from root to a leaf
node, each intermediate node
generates terms and blobs
depending on the level in the
tree and the chosen path
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Fig. 3 A hidden markov
model for organising photos
into albums. Ai are hidden
states (albums), X are image
features and M represents
model parameters

clustering (compared to clustering based on text only) as they provide information
that is often complementary to textual descriptions.

A different probabilistic model had previously been proposed by [62] for the
purpose of organising digital photographs into a set of clusters (or albums). Images
are assumed to form an ordered set according to the time they were taken, so their
generation can be modelled by a Hidden Markov Model (Fig. 3). The chain moves
unidirectionally between states that represent individual albums Ai. Associated with
each album is a probability density over image features X. The model only allows
a flat clustering: Images are clustered into albums, but albums are not aggregated
any further.

3.1.3 Summary

Hierarchies have the advantage that there is an abundance of relatively simple
construction algorithms. Divisive, top-down k-means clustering runs in O(n) but
appears to give less coherent clusters than agglomerative clustering methods that
typically run in O(n2).

If we consider the use of hierarchical structures not for representation but for
interactive navigation, the labeling of intermediate clusters by cluster representatives
becomes an important issue. If images are annotated either manually or through
automated image annotation, there is a possibility of distinguishing cluster centroids
on a textual basis (even though the selection of terms for intermediate clusters is far
from trivial and an active research area, see for example [17]). If such annotation
is not available, however, we have to resort to images as representations of cluster
content. Although this is seldom acknowledged, cluster centroids rarely provide a
meaningful summary of the content. In particular, it is difficult to represent the
degree of generality of a cluster by virtue of an image as this typically admits to
an interpretation at different semantic levels.

Psychologically, the process of navigating hierarchies is a double-edged sword: on
the one hand browsing from the more general to the more specific can afford the
impression of progressive refinement, on the other hand it may create a sense of lost
opportunities if navigation is only along the vertical direction.

3.2 Static networks

The way knowledge is organised in the human brain is still poorly understood.
The connectionist view holds that storage is not hierarchical but takes the form of
associative structures in which concepts are linked together on the basis of semantic
relationships [58, 64]. The ultimate physical realisation of nodes is in the form of
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neurons or clusters of interconnected neurons. In these distributed structures the
hierarchical nature of many data is implicit in the weights associated with pairs of
connected nodes.

A popular computational model for retrieving information from these associative
structures is that of automatic spreading activation [1]. The retrieval process starts
by activating an initial set of nodes from which activation spreads towards connected
nodes. Memory items that are directly or indirectly referred to from activated nodes
will pass on activation to other associated nodes and so on. The retrieval process
concludes when certain items accumulate enough activation to be retrieved.

Buckley and Salton [70] provide an overview of methods of spreading activation
for information retrieval. Two broad approaches are discussed. In the first, activation
is spread across networks of terms (obtained from term thesauruses) to achieve query
expansion. In the second, the associative structures are the documents themselves
linked by similarity. In both scenarioes, activation spreads automatically. The notion
of interactive browsing of such networks is more recent and in image retrieval finds
its earliest articulation in [19] (see below). The parallel spread of activation is here
replaced by a serial user-driven search. As with hierarchical structures, the question
how to establish links between objects is not obvious, whether the networks are used
in an automated fashion or interactively.

Typically, networks are built on the basis of similarity data between objects. We
discuss four different approaches that differ in the way edges are established between
vertices.

3.2.1 Nearest neighbour networks

A significant work on interlinked information structures dates back to the mid-1980s
[20]. The authors propose to structure a collection of documents as a network of
nodes representing documents and terms with links between each type of node. Only
links between a document and its most similar neighbour are considered, and simi-
larly for terms. Although the structure is intended for automated search, the authors
are aware that “as well as the probabilistic and cluster based searches, the network
organisation could allow the user to follow any links in the network while searching
for relevant documents. A special retrieval strategy, called browsing, could be based
on this ability.” (p. 380). However, the number of document-document edges does
not exceed by much the number of documents, and the networks are disconnected
rendering browsing along document-document nodes alone impractical.

The paper inspired subsequent work by Cox [18, 19]. Cox motivates associative
structures for browsing by observing that “people remember objects by associating
them with many other objects and events. A browsing system on a static database
structure requires a rich vocabulary of interaction and associations.” His idea is
to establish a nearest neighbour network for each of a set of different object
descriptors. As different features may be important to different users, Cox proposes
to interconnect nearest neighbour networks to allow multi-modal browsing.

Unfortunately, Cox’s work has not become very widely known. What may partly
account for this is that, in the mid-1990s, CBIR had just found with QBE its
first major research programme (as reflected in the review article of [33]). The
methodological emphasis was on explicit query formulation and alternative ap-
proaches found themselves at the periphery of the research agenda.
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3.2.2 Thresholded graphs

We encountered thresholded graphs in the previous section on hierarchical struc-
tures. Like nearest neighbour networks, thresholded graphs can be viewed as another
attempt to present a salient subset of all the possible pair-wise relationships between
images. Interestingly, they do not appear to have been used on their own either
for visualisation or navigation purpose. The reason for this may be that the graphs
resulting from thresholding are rather fragmented (hence their use in conjunction
with clustering). This is illustrated in Fig. 4.

3.2.3 Pathfinder networks

The pathfinder algorithm [74, 75] was originally conceived for the analysis of simi-
larity or proximity data obtained from psychological studies. An interesting property
of such subjective similarity judgements is that they do not generally obey the
triangle inequality, i.e. it is not generally true that d(A, B) ≤ d(A, C) + d(B, C) for
all database items A, B, and C, where d is the dissimilarity between items. The
motivation of the pathfinder algorithm is that links between items for which the
triangle inequality does not hold are redundant and may be excluded from the graph.
Formally, given the similarity between each of N items, the pathfinder algorithm
removes an edge between vertices p and q if there exists a shorter path involving
intermediate vertices. The length of the path, denoted D, is not the number of edges
but a simple function of the weights associated with the set of edges E that constitute
the path between p and q:

D(E) =
(∑

e∈E

wr
e

) l
r

, (1)

where r is a parameter that controls how individual edge weights contribute to the
total weight. For high values, the total distance is largely determined by the edge with
greatest weight. To ease the computational burden, paths that comprise more than a
certain number of edges may be ignored. The minimum cost network thus obtained
differs from minimum spanning trees and thresholded graphs to the extent that it
takes into account the wider context of a link.

An early application of pathfinder networks is the work by Fowler et al. [28]
which is concerned with representing co-citation relationships. Applications to image
retrieval are more recent [13, 56]. In both works, pathfinder networks are constructed

Thresholded graphNearest neighbour graph NNk network

Fig. 4 Comparison of three different types of networks: a nearest neighbour graph, a thresholded
graph and an NNk network
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from complete graphs in which any two images are connected by an edge that
is weighed by their similarity. In [13], separate pathfinder networks are built for
three different features (colour, layout and texture) to visually inspect the relative
performance of these different features. In spite of the title of the paper, the networks
are not used for browsing but for providing a global overview of the image collection.

Indeed, it appears that the principal application domain of pathfinder networks
has so far been visual data mining ([11, 12]) not interactive browsing. The reason
is quite likely to be found in the complexity, which is O(n2) (where n is the
number of images) and thus prohibitive for collection sizes of practical significance.
Moreover, visualisation and navigation place somewhat different structural demands
on the networks. While visualisation requires the extraction of only the most salient
structure, the objectives of browsing are better served by retaining some degree of
redundancy.

3.2.4 NNk Networks

NNk networks were introduced as a novel browsing structure in [36] and were
analysed more fully in [35]. They are based on a simple idea: instead of ranking
images with respect to another image q according to their similarity under a fixed
metric, the metric is parametrised in terms of feature-specific weights. For each
parameter setting the image is recorded that is closest to q under that particular
instantiation of the metric. This set of top-ranked images are referred to as the NNk.
NN stands for nearest neighbours and k denotes the number of features. The NNk

can be thought of as representing all the possible semantic facets of the focal image
that lie within the representational scope of the feature set. Formally, p is the NNk

of q iff

arg min
i

⎡
⎣ k∑

f=1

wf df (i, q)

⎤
⎦ = p (2)

for some parameter set w = (w1, w2, . . . , wk) with wf ≥ 0,
∑

wf = 1 and feature-
specific distance functions df (·, ·). w can be thought of as weights that determine
the relative importance of individual features. Given a collection of images, the NNk

idea can be used to build image networks by placing an edge between image q and p
if p is the NNk of q.

The advantage of NNk networks lies in their unbiased treatment of different visual
features since each image is connected to all those images it is closest to under
different feature weightings. This helps to alleviate the semantic bias that would
result from imposing a fixed set of feature weights.

Structurally, NNk networks resemble the hyperlinked network of the WWW, but
they tend to exhibit a much better connectedness with only a negligible fraction of
vertices not being reachable from the giant component. In collections comprising
more than 100,000 images, the average number of links separating two images lies
just above four [35].

Much like the WWW, NNk networks can be navigated by following directed edges
from one object to any of its neighbours. Since the exact position of a target is
not known in advance, users must try to reach it based on local cues, that is the
neighbours of the current node. Such local information supports a greedy search
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process whereby users decide on the most favourable direction by selecting the
image that comes closest to their target. That this method seems to work remarkably
well in NNk networks [38] might lie in the fact that at each step users can select
from a varied set of neighbours. The process is similar to that of genetic algorithms.
In the latter, a well-defined objective function exists which allows automating the
selection step, meanwhile search in NNk networks relies on user interaction. In both
systems, variation at each step is crucial to be able to explore the space of possibilities
effectively.

In [39], an NNk networks was constructed for more than 1 million images from
the WWW. Although network construction is quadratic in the number of images and
for such large collections may take several days on one processor, interaction during
search is in real time. The currently selected image is displayed in the centre, its NNk

are positioned according to the number of different feature combinations for which
they are ranked closest to the central image.

To help appreciate the structural differences between NNk networks, threshold
graphs and nearest neighbour networks, we have applied each of the three different
methods to a synthetic two-dimensional dataset (Fig. 4). To make the comparison
more meaningful, we kept the average number of neighbours per node the same
across all networks. This can be achieved by simply fixing the number of neigh-
bours for the NNk network and the nearest network (here three), and choosing a
suitable cutoff weight for thresholding the graph to yield the same average across
all nodes. Because the thresholded graph takes into account distances, not ranks,
the connections are more localised than for the other two networks (resulting in
remote nodes being isolated from the rest). The NNk network lacks some of the
short range connections of the nearest neighbour network but offers a number of
long-range connections instead. These account for the small-world properties and
the good overall connectedness of the structure.

3.2.5 Navigable hypercubes

Similarly inspired but different in detail from NNk networks is the idea of navigable
hypercubes proposed in [51]. The paper is concerned with objects that can be repre-
sented as binary vectors [0, 1]k where a 1 indicates that the corresponding feature is
present. Each of the 2k possible vectors forms a node in the graph and two nodes are
connected if they differ in exactly one component. The objects are uniquely assigned
to nodes according to their feature representations and users browse the hypercube
by selecting and deselecting features. While NNk networks link individual objects
according to the similarity with respect to different features, the hypercube model
links groups of objects (united by the same feature representation) if they differ
only with respect to one feature. The hypercube structure is useful when features
are meaningful to the user such as “published in 2002” or “conference article” but
much less so for the kind of visual, continuous features typically employed for image
retrieval.

3.2.6 Summary

Networks have the advantage over hierarchies that they allow navigation to be less
constrained. At the same time, it is more difficult to provide a global overview of
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the content. It becomes increasingly important to organise objects in the network
such that the local neighbourhood of the currently selected object contains sufficient
information for users to decide where to go next.

It is instructive to consider the question why humans rarely employ networks
for organising objects in the real world. Partly this is because hierarchies can be
indexed and therefore accessed easily. Ultimately, it may have to do with the fact that
hierarchies form planar graphs (graphs that can be drawn in the plane such that no
two edges intersect) while all but the simplest networks do not. Hierarchies thus have
a practical advantage: children of a node can always be arranged such that they are
adjacent (e.g. books in a library organised according to a conceptual hierarchy). This
is not generally possible for networks in the real world because objects would have
to be present in multiple copies and space would need to be abundant. Importantly,
both limitations disappear in virtual environments where the networks are therefore
of much greater practical interest.

A crucial question pertaining to precomputed structures is how to weigh differ-
ent features when precomputing similarities. NNk networks attempt to solve this
problem by establishing nearest neighbour links under all possible instantiations of a
parametrised metric. Although the structure is rigid, the networks can be viewed as
representing the set of all the similarity relations different users may see within an
image set.

3.3 Dynamic structures

In this section, we turn to hybrid models that have grown out of the QBE tradition.
Many seek to display a much larger set of search results than conventional query
based systems thus catering for users with only poorly defined information needs.
Some form of feedback is typically allowed to let users home in on subsets of the
search results and queries are often formulated much less explicitly.

3.3.1 Ostensive browsing

The ostensive model proposed by [9] is iterated QBE in disguise but the query only
emerges through the interaction of the user with the collection. The impression for
the user is that of navigating along a dynamically unfolding tree structure. While
originally developed for textual retrieval of annotated images, the ostensive model is
equally applicable to visual features ([8, 84]).

Relevance feedback takes the form of selecting an image from those displayed.
A new query is formed as the weighted sum of the features of this and previously
selected images. For example, in [84] image content is described in the form of a
colour histogram c. Given a sequence of selected images, the colour representation
of the new query is given by

∑
wici with wi = 2−i, where images are indexed starting

with the most recently selected image.
The display model is that of a dynamically growing tree structure: images closest

under the current query are displayed in a fan-like pattern to one side of the currently
selected image. Users can select an image from the retrieved set which is placed in the
centre and a new set of images are retrieved in response. Since previous images are
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kept on the display the visual impression for the user is that of establishing a browsing
path through the collection. In [84] the browsing path is displayed in a Fisheye view
as pioneered in [30].

The ostensive model attempts to track changing information needs by continu-
ously updating the query. Which set of images are retrieved depends on which path
the user has travelled to arrive at the current image. Because the number of such
different paths grows quickly with the size of the image collection, it is impractical
to compute a global structure beforehand. Nonetheless, for the user the impression
is one of navigating in a relatively unconstrained manner through the image space.
Unlike many other relevance feedback systems, users do not have to rank or label
images, or change their relative location. The interaction is thus light and effective.

3.3.2 Dimensionality reduction

The model of [9] is not concerned with the question how to optimally display the
set of retrieved images. In fact, given that much of the space is taken up by the
browsing path, the size of the retrieved set is kept relatively small (six in [84])
and correspondingly small is the scope and the need for layout optimisation. For
larger solution sets, users would benefit from a more structured view of the images.
Dimensionality reduction methods try to achieve this.

A popular way of organising small collections is multidimensional scaling or
MDS (e.g. [63, 68] and more recently [50] and [92]). MDS is a family of techniques
that solve a nonlinear optimisation problem by determining a mapping into two or
three dimensions that best approximates all the high-dimensional pairwise distances
between data points.

The quadratic complexity of MDS makes it less attractive as a means of organising
large image sets at run time. Indeed, scaling is most often applied to a smaller set
of search results ([52, 69, 72, 73]). In [69], the computation time is given with four
seconds for 100 images in 1998, which seems quite acceptable.

The work of Rubner et al. [69] is important on several accounts. In addition to
motivating the use of signatures over histograms and describing the Earth mover’s
distance as an appropriate metric for signatures, it applies MDS to the problem of it-
erated image search. The paper advances beyond its otherwise very similar precursor
[68] by emphasising the use of MDS for iterative organisation of query results (rather
than for visualising the entire collection). The search process is one of continuous
refinement from an initially large pool of images to an increasingly narrow set. This
is accomplished by users selecting images from the MDS display as their query
in addition to specifying the number m of images to be displayed in return. Each
query entails the computation of

(m
2

)
distances. Santini and Jain [72] and [73] differ

from [69] in that users are allowed to provide relevance feedback by forming image
groupings and enabling the system to learn from the new configuration.

A number of works (e.g. [41, 44, 57] and [55]) achieve dimensionality reduction of
the retrieved set through conventional principal component analysis (PCA), which
is a linear projection technique. The advantage of PCA is computational efficiency
but, unlike general MDS, it requires images to be representable in a vector space and
only allows linear transformations.

The authors of [55] propose a relevance feedback mechanism similar to [72] and
[73] whereby feature weights are estimated based on image groups composed by the
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user. PCA is then applied again to the newly scaled feature space. However, none of
the above works consider imposing additional structure upon the retrieved set.

The authors of [61] recognise the limitations of dimensionality reduction for
displaying large image sets. In their work a Sammon mapping [71] is applied to the
entire image set after first achieving dimensionality reduction by PCA, thus speeding
up the final mapping. The Sammon mapping is a particular multi-dimensional
scaling method that aims to preserve the local topology of the dataset by placing
greater emphasis on the preservation of small inter-point distances. In addition to
the Sammon projection, images are clustered in the original feature space. The
positions of the cluster centroids are determined by the Sammon projection. The
two organising principles of dimensionality reduction and hierarchical clustering thus
coexist independently. As in [69] users have the impression of homing in on a small
set of images. Unlike in [69], however, the layout is not recomputed at each step,
but relies on the initial, global mapping. This arguably comes at the price of reduced
visual coherence but allows navigation to be fast. The direction is from top to bottom
and arguably less suited for exploring a database than [69] where users can navigate
into different areas of the image by keeping m large.

In [59], a number of non-linear projection methods are explored, most notably
isometric mapping (ISOMAP) [82], stochastic neighbour embedding (SNE) [40],
local linear embedding (LLE) [67] and combinations between the first and the
last two (ISOSNE and ISOLLE). Each of these methods aim to preserve more of
the local structure than general MDS techniques. ISOMAP, for example, involves
building a neighbourhood graph using the k closest points in the original high-
dimensional space. The distance between any two points is the length of the shortest
path on the resulting graph. MDS is subsequently applied to these distances to
achieve dimensionality reduction. The interaction model of [59] is an iterative
process that begins by displaying an overview of the collection in terms of a few
representative images obtained by clustering the images in the projected space (using
k-means). Choosing one of the cluster centroids retrieves the images closest to it. The
authors conclude that for a number of different tasks including search, the SNE and
ISOSNE methods seem to capture the structure of the collection best but also take
substantially longer to run than LLE and ISOLLE.

3.3.3 Clustering search results

A dynamic method that allows users to home in on a small target set of images
by combining clustering with QBE is developed in [85] under the term filter image
browsing. Users choose from the displayed images, which are meant to be represen-
tative of the “active set” that initially comprises all images. The system then ranks all
images from the current active set according to their similarities to the chosen images.
A fixed percentage is kept and forms the active set for the next step. The ambition
of filter image browsing is to combine the adaptivity of QBE with the structural
richness of hierarchical browsing. It is noteworthy, however, that the method is less
suited for freely roaming an image collection for once an image has been excluded
from the active image set, it will remain unreachable in all subsequent iterations. The
possibility of altering the distance metric under relevance feedback is mentioned but
not investigated in practice.
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Fig. 5 First row: a query consisting of a Boolean composition of regions. Second row: matching
images. (Courtesy of J Fauqueur)

3.3.4 Region composition

The recent study of [25] is motivated by the observation that users may often
not have the right image to query a system with, and that submitting hand-drawn
sketches has limited expressivity and may not appeal to many users. The proposed
solution lets users express their mental search image by composing elementary
regions, that by themselves may carry little semantics but do in combination. The
regions are obtained through unsupervised clustering of the color descriptors of
image segments from a training set, and together they form what the authors call
a “region photometric thesaurus”. Regions can be combined in Boolean expressions
such as shown in Fig. 5. Images are retrieved if their regions satisfy the compositional
query.

3.3.5 Summary

The potential disadvantage of static networks or hierarchies is the limited scope for
learning from the user during the interaction. The models discussed in the previous
section require a variable amount of computation during the interaction (e.g. by
performing a nearest neighbour search or clustering the search results) but have
the ability to adapt to feedback from the user as can be seen most strikingly in
Campbell’s ostensive browsing model and the filter image browsing model. The
question how these systems scale to several millions of images has not yet been
investigated experimentally but it is likely that much algorithmic optimisation and
hardware support is needed in order to apply the techniques successfully to real-
world, large-scale applications.

4 Discussion

A comparison of most of the methods discussed in Section 3 is given in Table 1. We
have organised the methods according to seven criteria which identify the columns
of the table: ‘Dynamic’ associates the model with either Sections 3.1 and 3.2 on
static structures or Section 3.3 on dynamic models. ‘Topology’ refers to whether
the structure is a network or a hierarchy. If the model displays images following
dimensionality reduction, we refer to the resulting topology as a map (M in the
table). ‘Generative method’ refers to the technique used to build the structure (C =
clustering, DR = dimensionality reduction). ‘Open ended’ assesses whether users
can continue searching and possibly change their information need without having
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Table 1 Different browsing models and their properties. See text for explanation of criteria

Author Dynamic Topology Generative Open O(offline) O(online) Collection
method ended size

[95] – H AC – n2 1 4,000
[14, 15] – H AC � n2 1 10,000
[46] – H AC � n2 1 3,856
[61] – H AC � n2 1 6,100
[91] – H SOM � n2 1 2,000
[2] – H PR – n2 1 3,000
[62] – H PR – n2 1 1,298
[32] – H IB – n2 1 ?
[16] – H DC – n2 m 46,331
[61] – H DC � n2 1 6,100
[13] – N PF � n4 1 279
[18, 19] – N NN � n2 1 < 100
[13] – N PF � n4 1 279
[56] – N PF � n4 1 75
[51] – N O � n2 1 7,541
[35] – N NNk � n2 1 32,318
[68] – M MDS � n2 1 500
[69] – M MDS � 1 nm2 1,000
[44] – M PCA – 1 m2 3,500
[41] – M PCA – n2 m2 10,000
[57] – M PCA � 1 m2 9,807
[59] – M ISOLLE – n2 1 10,000
[85] � H O – 1 n 10,000
[84] � H NN � 1 n 800
[61] � M Sammon � n2 1 6,100
[72, 73] � M MDS – 1 nm2 3,000
[55] � M PCA – 1 m2 142

H = hierarchies, N = networks, M = maps, AC = agglomerative clustering, DC = divisive clustering,
SOM = self-organising map, PR = probabilistic model, PCA = principal component analysis, MDS =
multi-dimensional scaling, PF = pathfinder algorithm, NN = nearest neighbour, IB = information
bottleneck principle, O = other

to start from the beginning. ‘O(offline)’ and ‘O(online)’ gives the complexity of
building the structure and for interacting with it at runtime (we use n for the size
of the collection and m for the size of the retrieved set).

As has been emphasised throughout the paper, a key challenge pertaining to
precomputed structures as discussed in Sections 3.1 and 3.2 is that by being precom-
puted users are not generally in a position to remould the structure according to
their own preferences. This seems necessary, however, as the structures are almost
always constructed by fixing the distance metric and applying that same metric across
the entire collection. The advantage of fast navigation comes at the price of users
being no longer able to impose their own perception of similarity. Precomputed
structures seem therefore to deride the principal tenet that motivates relevance
feedback techniques. As observed in [100] in the context of hierarchical structures,
“the rationale of relevance feedback contradicts that of pre-clustering.” However,
relevance feedback techniques tend to scale badly to very large collections and often
result in relatively fast convergence to a small set of images. As seen in some of the
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dynamic systems of Section 3.3, the scope for free exploration is often more limited
than in precomputed structures. It remains a challenge to strike the right balance
between the two opposing demands of real-time interaction and the ability to support
the search through feedback loops.

Given the range of different approaches and the fact that some solve certain
problems better than others, it is clearly conceivable to merge different models and
offer users a selection of topologies and interaction methods for the same collection.

In addition to those already mentioned, there are a number of other exciting and
important issues, a solution to which should lead to a new generation of smarter,
more versatile browsing models. Some of these are sketched below.

Scalable update Shaping large collections into a browsable structure can be com-
putationally costly as one typically has to compute all pairwise distances between
images. This seems acceptable if the effort needs to be expended only once but
many collections are dynamic with new images regularly being added and others
removed. An update should not involve a complete recomputation of the structure.
The extent to which the above models lend themselves to an efficient update is
seldom investigated (see [16] for an exception).

Fluid structures The systems we have discussed either involve a precomputed
structure or initiate a new query at every step. Systems of the first kind are often too
rigid, systems of the second too slow for large collections. What may hold promise
are hybrid structures that are partially precomputed but flexible enough to remain
responsive to relevance feedback. In the early work of Minka and Picard [54] it is
suggested to precompute a large number of image groupings by applying a variety
of different similarity criteria, or ‘society of models’. Their method seeks to capture
as many of the potentially relevant groupings beforehand. Given a set of positive
images, groupings are retrieved that exhibit the greatest overlap with the selected
images. Though less suited for exploration, this approach gives an idea of the kind of
semi-fluid interaction that one may wish to achieve in future browsing models.

Long-term learning By searching interactively for images users continuously pro-
vide implicit relevance feedback. In addition to exploiting this information for the
current search session, it would be desirable to equip systems with some form of
long-term memory that aggregates the entire history of their interactions with users
and provide means to utilise this information. Considering the proliferation of large-
scale systems on the WWW (e.g. Flickr) and a growing community of active users,
this might no longer be a significant practical problem. A related challenge that
has not yet been explored is to build into browsing structures knowledge about
the perceptual similarities of real users that might have been obtained from other
sources. The system in [93] is a recent example of an initiative that attempts to
gather such data, and subsequently use it to guide the construction of more relevant
browsing structures.

5 Conclusions

Throughout the last decade, the dominant paradigm in the field of CBIR revolved
around the idea that users supplied an explicit query to a retrieval system. This paper
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is motivated by our view that some of the problems associated with this tradition may
be better addressed within a more interactive browsing framework. It is noteworthy
that the different models we discussed are not only numerous but also very diverse.
This testifies to the fact that browsing also has its challenges and trade-offs and that
while a model may solve one problem, none solves them all. By having brought into
clearer focus the virtues and challenges of browsing methods, we hope to inspire
more concerted future research in the area.
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