
Multimed Tools Appl (2008) 40:41–60
DOI 10.1007/s11042-007-0184-x

An interactive facial expression generation system

Chuan-Kai Yang · Wei-Ting Chiang

Published online: 5 December 2007
© Springer Science + Business Media, LLC 2007

Abstract How to generate vivid facial expressions by computers has been an inter-
esting and challenging problem for a long time. Some research adopts an anatomical
approach by studying the relationships between the expressions and the underlying
bones and muscles. On the other hand, MPEG4’s SNHC (synthetic/natural hybrid
coding) provides mechanisms which allow detailed descriptions of facial expressions
and animations. Unlike most existing approaches that ask a user to provide 3D
head models, a set of reference images, detailed information of facial feature
markers, numerous associated parameters, and/or even non-trivial user assistance,
our proposed approach is simple, intuitive and interactive, and most importantly, it
is still capable of generating vivid 2D facial expressions. With our system, a user is
only required to give a single photo and spend a couple of seconds to roughly mark
the positions of eyes, eyebrows and mouth in the photo, and then our system could
trace more accurately the contours of these facial features through the technique
of active contour. Different expressions can then be generated and morphed via
the mesh warping algorithm. Another innovation of this paper is to propose a
simple music emotion analysis algorithm, which is coupled with our system to further
demonstrate the effectiveness of our facial expression generation. Through such an
integration, our system could identify the emotions of a music piece, and display the
corresponding emotions via aforementioned synthesized facial expressions. Experi-
mental results show that in general the end-to-end facial generation time, from the
time an input photo is given, to the time the final facial expressions are generated, is
about 1 min.

C.-K. Yang (B) · W.-T. Chiang
Department of Information Management,
National Taiwan University of Science and Technology,
No. 43, Sec. 4, Keelung Road, Taipei 106, Taiwan, ROC
e-mail: ckyang@cs.ntust.edu.tw

42 Multimed Tools Appl (2008) 40:41–60

Keywords Facial expression generation · Active contour · Image morphing ·
Music analysis

Categories and Subject Descriptors C.3 [Special-Purpose and Application-Based
Systems]: Signal Processing Systems

1 Introduction

As facial expressions are an important means for human beings to communicate
with others, how to generate facial expressions by computers have interested many
researchers. Due to the involved high complexity of the composition of expressions,
facial expression generation is still considered a challenging task nowadays. Thanks
to the invention of motion capture devices, human motion can now be realistically
simulated on a 3D computer model. Inspired by such a trend, Gleicher et al. [4]
proposed to re-target facial expression information captured from real persons to
3D virtual human models. However, to have a vivid look, the underlying anatomical
knowledge on how bones/muscles affect facial expressions seems to be indispensable,
thus increasing the difficulty of adopting such an approach. On the other hand,
some related standards have also been developed. MPEG4’s SNHC [7, 15] provides
mechanisms that allow a basic model of face or body to be described and animated.
Through such a compact description of related parameters, the desired high com-
pression ratios could be achieved.

Given the fact that the generation of facial expressions is still non-trivial, we
therefore set our goal to be the following. Given a photo of a person, our system
could allow users to easily and interactively guide the feature extraction process
with minimal manual effort, and the facial expressions of different emotions of
the person could then be automatically generated. To prove the effectiveness and
efficiency of our facial expression generation system, we further equip our system
with a MIDI (musical instrument digital interface) music analysis ability, so that
it could approximately determine the emotions presented by a music piece, and
then “respond” by displaying the corresponding facial expressions accordingly. To
have a smooth demonstration, the displayed expressions are morphed into ani-
mations by using the mesh warping technique. According to our experiments, the
overall end-to-end time, i.e., from the time a photo is given for feature extraction,
till the time the target facial expressions of different emotions are generated, is
about 1 min.

To sum up, the main contribution of this paper is twofold. First, compared with
most existing approaches, where 3D head models, a group of 2D reference images,
a set of specific facial feature markers, numerous related parameters, and/or even
non-negligible user assistance, are usually required from the users, our approach is
relatively simple and intuitive: only a single photo and a few strokes are needed. Here
the strokes are mainly used to mark three contours in the photo to approximately
enclose all necessary facial features for ensuing facial expression generation. In
comparison with previous approaches where user assistance is involved, ours is
relatively easier, thus leading to better interactivity and efficiency. Second, as far
as we know, we are the first to propose a framework on how facial expressions could
be used to interact with music. While using MIDI music as a particular example, we

Multimed Tools Appl (2008) 40:41–60 43

further develop a simple algorithm capable of analyzing music emotions, thus making
the interactions between facial expressions and music possible.

The rest of the paper is organized as the following. Section 2 reviews the literature
related to this work. Section 3 details how facial expression generation is done.
Section 4 briefs the basic knowledge of MIDI and describes how the emotions of
a MIDI music piece could be determined. Section 5 presents our synthesized results,
and compares them with real expressions when applicable. Section 6 concludes this
work and hints for potential future directions.

2 Related work

Facial expression generation has attracted many researchers since the early
1970s [11], and to have a more compact presentation, in this study we only review
those papers that are more related to this work. Readers who are interested in
learning more knowledge regarding this topic are referred to the excellent book
written by Parke et al. [12]. As far as the output is concerned, it could be a 2D
image [10, 15, 22, 29] or a 3D surface model [11, 13, 28]. And while some of the papers
resort to physics-based or anatomy-based approaches [21, 24, 28], others choose to
adopt geometry-based or image-based strategies [15, 22, 27, 29].

Parke [11] made the first attempt on facial expression synthesis by approximating
a human face with roughly 250 polygons and 400 vertices, and how these polygons
should be adjusted to convey different expressions was determined photogrammet-
rically with pairs of photographs. The transition between frames corresponding to
different expressions is obtained with a cosine interpolation scheme to achieve an
animation effect. Ekman et al. [2] proposed the first method to link facial muscles
with facial expressions. By carefully examining videotapes of facial expressions, they
defined the Facial Action Coding System, or FACS for short, to specify how each
expression links with corresponding muscular contractions. For efficiency reasons,
action units are used instead of muscles, as some action unit could be formed from
more than one muscle, while sometimes the change caused by one muscle could
lead to changes of more than one action unit. As differences exist among different
individuals, the relationships between action units and expressions may also vary
significantly, and as a result, manual assistance is usually required. Although the
number of involved action units is just around fifty, the possible combinations could
be more than a thousand. Based on FACS, Waters [24] identified the common
parameters among different faces and applied them on a 3D surface model that
allows a more general and flexible control of facial expression generation. Based
on the work by Waters [24], Terzopoulos et al. [21] further improved the facial
expression generation process so that real-time simulation could be achieved by
early graphics workstations. The simulation realism is also enhanced with the help
of geometric and photometric information provided by active sensors. Transient
expressions presented in a video could also be captured and analyzed through the
technique of deformable contours (snakes). Different from the traditional physics-
based or anatomy-based schemes, Zhang et al. [28] employed their own hierarchical
structures consisting of four components: a mass-spring mesh for the facial skin,
a layer of muscle actuators to control facial movement, a skull mesh, and other
additional meshes to represent eyes and teeth. As a result, such a framework could

44 Multimed Tools Appl (2008) 40:41–60

offer efficient and realistic simulation results. Pighin et al. [13] proposed to map a
2D face image onto a 3D surface model. In their approach, uncalibrated cameras are
deployed to take photos of a person’s face with a specific facial expression through
different viewing angles. User’s assistance may be required to calibrate the cameras’
positions and orientations through the control points on the subject’s face. A general
3D human head model is then deformed to match the observed control point
information through interpolations. Such a process is repeated for different facial
expressions. Once the correspondence is built, a morphing of 3D surface models
is straightforward, allowing facial expressions to vary smoothly from interpolating
facial textures. Liu et al. [10] improved the facial expressions by considering some
subtle changes in facial expressions such as the illumination and appearance (e.g.,
creases and wrinkles) through a mechanism called expression ratio image (ERI).
Together with a geometric warping, the generated results are more convincing. As
sometimes it is difficult to obtain the ERI from the performer, Zhang et al. [27]
proposed methods to improve the traditional expression mapping approach, where a
subject’s faces of neutral and a particular expressions, together with the positions of
facial features, are first given, and then the same specific expression for a new person
could be generated through a geometry-controlled image warping. An example-
based approach is used to infer the necessary but possibly missing feature points from
the given data, and details on expressions such as wrinkles could be simulated via
this approach. Instead of using expert-coded facial parameters such as FACS, Wang
et al. [22] proposed a HOSVD (higher-order singular value decomposition) scheme
to learn the mapping between a particular person and his/her expressions from a
given set of images consisting of different expressions, and then the corresponding
expressions for a new or unknown person could be synthesized. Zhou et al. [29]
proposed a kernel-based factorization model to parameterize facial expressions as
well as facial identities. In particular, hybrid facial expressions could be synthesized
by proper settings of related parameters.

Aiming for efficiently representing facial expressions and animations, MPEG4-
SNHC (synthetic/natural hybrid coding), a sub-protocol of the MPEG4 standard for
video compression, contains two components: synthetic objects and natural objects.
One of the standards within the first component, when combined with a 3D human
model, is to provide an efficient description for transferring the related parameter
information regarding body motions and facial expressions in a real-time manner,
thus increasing the associated compression ratio. These parameters can be divided
into two categories: facial expression-related and body motion-related. The first
category, pertaining to this work, consists of two parts: FDPs (facial definition
parameters), which defines the normal and basic outlook of a face, and FAPs (facial
animation parameters), which describes the dynamics of expressions. Raouzaiou
et al. [15] made use of this scheme for modeling facial expression animations, and
Fig. 1 shows their corresponding locations of the control points on a standard face
(cited from [15]).

Based on the aforementioned classifications, our approach, to be discussed de-
tailedly in Section 3, generates a 2D output image, and takes an image-based
approach. This approach alters a facial expression through the relocations of control
points around specific facial features, i.e., eyes, eyebrows, and mouth. Compared
with existing approaches, where 3D head models (or together with other associated
models) [11, 13, 28], a bunch of 2D reference images [10, 22, 27, 29], a group of facial

Multimed Tools Appl (2008) 40:41–60 45

Fig. 1 The deployment of
control points for facial
expression animations in
Raouzaiou et al.’s work

feature markers [13, 21, 27], a set of related parameters [2, 15, 24], and/or even non-
trivial manual assistance [2, 13] are needed from the users, our approach requires
nothing but a photo and few strokes. In addition, in terms of user assistance, ours, i.e.,
the drawing of three rough contours, is also comparatively easier than that of others’
approaches where user involvement is deemed necessary. This simplicity, which we
value most in this work, not only facilitates its usefulness to the general public,
but also greatly reduces the involved complexity of generating desired expressions.
However, we admit that such an approach achieves its efficiency at the expense of
sacrificing some accuracy and expressiveness, as will be discussed in the last Section.
Nevertheless, as a photo is the most common and oftentimes the only information
that we could obtain, the functionality provided by our system could already be
satisfactory to many users.

Moreover, as mentioned in Section 1, part of our contribution in this paper
is to demonstrate how facial expressions could be used to interact with other
multimedia elements. Along this line of research, Shugrina et al. [19] showed how
facial expressions could affect the “mood” of an image by changing its colors
accordingly. There is another interesting paper which is by far, the most similar paper
to ours. Schubert [17] displayed the emotions of music by an artificial 2D cartoon-like
face, called Emotionface, where the emotion analysis of the input music was done
beforehand. Instead of using an artificial face for displaying music emotions, we show
the emotions through a face with a more realistic look; and rather than analyzing the
music manually and beforehand, we perform the analysis almost on-the-fly as the
music plays.

3 Feature expression generation

The generation process of facial expression consists of six steps: thresholding,
feature selection, feature refinement, micro-tuning, expression generation and image
morphing. We further elaborate each of these steps in the ensuing sub-sections.

3.1 Thresholding

To facilitate feature identifications, as in a normal edge detection process, an input
color image is usually quantized into a binary image through a thresholding proce-

46 Multimed Tools Appl (2008) 40:41–60

dure. Such a thresholding process normally converts an input RGB image into a
grayscale image first, where each pixel is only associated with an intensity value, and
then each such intensity value is checked against a given threshold. A pixel with an
intensity value greater than or equal to the threshold will be set to white, or black
otherwise. Currently the intensity value of a RGB pixel is the sum of the values from
the R, G, and B channels. Figure 2b is the result of running a thresholding process
on Fig. 2a, the original input image, where the threshold is set to be 570. Note that as
it is usually not possible to have a universal threshold which could always produce a
satisfactory result for every image, we therefore allow users to dynamically adjust the
setting of thresholds should he/she is not happy with the thresholded results. We have
also tried to use other color systems such as YCb Cr without noticing any significant
improvement.

3.2 Feature selection

Given the fact that arbitrary images may come as inputs, and through numerous
experiments, we have found that it is difficult to automatically detect the expression-

Fig. 2 a Original input photo.
b, c and d are the results after
thresholding, drawing
contours, and applying the
active contour algorithm,
respectively

a b

c d

Multimed Tools Appl (2008) 40:41–60 47

related facial features. For the sake of simplicity and convenience, we therefore
require a user to draw three contours by marking control points around the following
three facial features: left eye and eyebrow, right eye and eyebrow, and mouth, as
shown in Fig. 2c. Alternatively we may apply the technique of circle detection to first
identify the positions of eyeballs, and from where we could try to locate the exact
contours of eyes, eyebrows, bridge of the nose, as well as the mouth. However, as the
lighting on a subject’s face may vary significantly, even a more intelligent approach
as such still cannot always guarantee a success.

After the contour points are drawn, we apply the popular approach of active
contour, or snake to shrink the initial contour to match more closely with our
target facial features, as shown in Fig. 2d. Our current implementation of the snake
algorithm follows from Williams et al.’s approach [25], which simplifies and speeds
up the original version given by Kass et al. [8].

3.3 Feature refinement

Recall that it is for the reason of convenience that we require a user to mark
only three feature regions. For having a more precise and detailed control of facial
expression generation, after applying the aforementioned snake algorithm to closely
locate the three feature regions, we need to further split an eye-eyebrow region
into two separate regions, namely the eye region and eyebrow region, automatically.
One way to do this is to track the eye-eyebrow regions with the technology of level
sets [5, 18], which could support merging or splitting of contours, thus leading to the
separation of the eye regions and eyebrow regions. However, as such an approach is
more time consuming and still cannot always guarantee a perfect result, we resort
to a simpler method by finding a route that could split the original region into
two, as shown in Fig. 3a. Such a route apparently should intersect with neither
the eye nor the eyebrow, and thus could be served as a splitting path. After such
a route is located, we uniformly insert sample points along the route and each of
the added sample points is duplicated for being used as a contour point for both
the upper eyebrow region and the lower eye region, as shown in Fig. 3b, where
points to be duplicated are marked in blue. Finally we apply the active contour
algorithm again so that the contour points of both the eyebrow and eye regions
could converge to two separate and tight feature contours, which are demonstrated
in Fig. 3c.

In our current implementation, the way we locate the route is to first identify
the extremum points of the involved eye-eyebrow region, as shown in Fig. 4, where
K, KL, and KR denote the topmost, leftmost and rightmost points of the eyebrow
region, respectively, while J, JL and J R the bottommost, leftmost and rightmost
points of the eye region, respectively. The next step is to try to find a path that

Fig. 3 The process of
automatically splitting an
eye-eyebrow region into two
separate regions

a b c

48 Multimed Tools Appl (2008) 40:41–60

connects the midpoint of KL and JL, and a point lying between KR and J R,
without touching the eye and eyebrow regions. Figure 5 demonstrates such a process,
where essentially we try to go rightwards as much as possible and at the same time
avoid contacting facial features by going upwards or downwards until we reach the
boundary delimited by KR and J R. Note that the images shown in this figure are
just for demonstration purpose, and in our implementation, the path-finding process
is in fact applied on top of the thresholded, black-and-white image shown in Fig. 2b.
In other words, a path, starting from a white pixel, and moving rightwards, should
go upwards or downwards without touching any black pixels until reaching the right
delimitation.

Figure 6 demonstrates the final five-region configuration after the two groups of
contour points of both eye-eyebrow regions converge with the proposed algorithm.

3.4 Micro-tuning

As input photos could vary significantly, the proposed algorithm may not always
work well. As a final remedy, a user could inspect the previous five-region config-
uration and decide if he/she wants to fine tune the five resulting converged contours.
If so, with one click, an editing window will pop up, in which each contour has
already been converted into a cardinal spline loop, that is, a collection of smoothly
joined spline curves which altogether form a loop. All the control points on the
loop is adjustable, thus allowing the user to micro-tune the target contour. The
corresponding tension coefficients are all set to zero, so that the defined curves are
the smoothest. Figure 7 shows the facial features that are defined by five cardinal
spline loops, which allow the user to fine tune the resulting facial feature contours
generated from the previous phases.

3.5 Expression generation

After the boundaries of all desired facial features are properly represented by
contour points, the next step is to generate target expressions.

3.5.1 JAFFE facial expression database

It should raise no objection that a facial expression could be represented by a
collection of facial features while each of these features having a particular status.
One could adopt the approach by Raouzaiou et al. [15], which in turn comes from
Karpouzis et al.’s idea [7]. However, here we resort to a simpler model by making
observations on the JAFFE (Japanese Female Facial Expression) database [6],
shown in Fig. 8 (cited from [6]), and develop our own rules for facial expressions
as follows. Figure 9 shows the facial model of this work. Basically we distinguish four
emotions and make feature adjustments with respect to the basic neutral expression
(no emotion). Note that each number in a parenthesis here represents a particular

Multimed Tools Appl (2008) 40:41–60 49

Fig. 4 The extremum points
of an eye

Fig. 5 The process of
automatically finding a path
within an eye-eyebrow region

a b c

Fig. 6 The final five-region
configuration after the
refinement stage

Fig. 7 The cardinal spline
loops of facial features

50 Multimed Tools Appl (2008) 40:41–60

Fig. 8 The JAFFE databases

control point. To have a unified framework, each input photo is scaled or normalized
to the resolution of 300 × 350.

• Happy

1. (3)∼ (7), (11)∼(15): move upwards by 9 pixels.
2. (1), (2), (8), (9), (10), (16): move upwards by 6 pixels.
3. (22)∼(24), (30)∼(32): move upwards by 1 pixel.
4. (34)∼(36): move upwards by 4 pixels.
5. (33), (37): move upwards by 8 pixels.

Fig. 9 The face model used in
this work

Multimed Tools Appl (2008) 40:41–60 51

• Sad

1. (3)∼(7), (11)∼(15): the upward shift of a control point is proportional to
the distance from this point to (3) (for the left eyebrow) and (11) (for the
right eyebrow). Here the maximum shift is set to be 12 pixels.

2. (17)∼(18): move leftwards and downwards by 2 pixels.
3. (25)∼(26): move rightwards and downwards by 2 pixels.
4. (33)∼(34), (40), (36)∼(38): the downward shift of a control point is propor-

tional to the distance from this point to (35), and the maximum shift is set
to be 6 pixels.

• Angry

1. (1)∼(8): move rightwards by 5 pixels.
2. (9)∼(13): move leftwards by 5 pixels.
3. (4)∼(7): move rightwards by 3 pixels and the downward shift of a control

point is proportional to the distance from this point to (3). The maximum
shift is set to be 6 pixels.

4. (12)∼(15): move leftwards by 3 pixels and the downward shift of a control
point is proportional to the distance from this point to (11). The maximum
shift is set to be 6 pixels.

5. (18)∼(20), (26)∼(28): move downwards by 2 pixels.
6. (22)∼(24), (30)∼(32): move upwards by 2 pixels.
7. (33)∼(34), (40), (36)∼(38): the downward shift of a control point is propor-

tional to the distance from this point to (35), and the maximum shift is set
to be 5 pixels.

• Surprised

1. (18)∼(20), (26)∼(28): move upwards by 2 pixels.
2. (22)∼(24), (30)∼(32): move downwards by 2 pixels.
3. (33)∼(34), (40), (36)∼(38): the downward shift of a control point is propor-

tional to the distance from this point to (35), and the maximum shift is set
to be 6 pixels.

4. (2)∼(8), (10)∼(16): move upwards by 9 pixels.

3.5.2 Triangulation

As the change of an expression involves not only the contour, but also the interior, we
therefore have to triangulate the five polygons defined by the five groups of contour
points before and after the change of expressions. It can be shown that each of
these five polygons is an x-monotone polygon, i.e., a polygon with the property that
each vertical line could intersects with this polygon at most two points, as shown

Fig. 10 a An x-monotone
triangle. b A non-x-monotone
triangle

a b

52 Multimed Tools Appl (2008) 40:41–60

Fig. 11 a Triangulation
between facial features.
b Triangulation outside of
facial features

a b

in Fig. 10a, therefore a simple triangulation algorithm such as the one proposed by
Fournier et al. [3], could be applied.

However, as sometimes it is not always possible to identify the exact contours of
facial features, care must taken during the triangulation process for the regions close
to the facial features, so that undesired distortions will not occur. For this purpose,
we triangulate not only the area between facial features, as shown in Fig. 11a, but
also the area slightly outside of the target region, as shown in Fig. 11b.

Figure 12 shows the final triangulations where areas between and outside facial
features are included.

Once the triangulation of these polygons is done, the interior of each deformed
region could then be determined using the bilinear interpolation [14] through the
barycentric coordinates defined on all the triangles included in these polygons. This
would always be feasible, as long as the change of feature contours does not lead to
degeneracy, i.e., two control points clash into one, and it is indeed the case in our
current implementation.

3.6 Image morphing

To have smooth transitions between different facial expressions, the images cor-
responding to different emotions are morphed through the techniques of image
morphing [1, 20, 26], where we adopt particularly the mesh warping approach by
Wolberg [26], as demonstrated by Fig. 13 (cited from [9]). In this Figure, the
upper-left and lower-right images denote the source and target images, Is, and It,
respectively, while both of them have also been superimposed with meshes, Ms and

Fig. 12 The final
triangulations

Multimed Tools Appl (2008) 40:41–60 53

Fig. 13 A mesh warping
morphing process

Mt, of the same topology, i.e., a 8 × 8 grid, respectively. Both meshes are deformed
to fit facial features of the source and target images as much as possible. The
procedure of mesh warping linearly interpolates the frames between Is and It. For
each intermediate frame, shown as the central image of a column (containing three
rows of images) in Fig. 13, we perform the following four steps. First, the mesh,
denoted by M, between Ms and Mt, is linearly interpolated. Second, Is is warped
into I1, the top image of a column, using meshes Ms and M. Third, similarly, It is
warped into I2, the bottom image of a column, using meshes Mt and M. Finally,
the resulting image (frame) is again linearly interpolated from I1 and I2. Rather
than using quadrilateral meshes, our algorithm makes use of triangular meshes, as
shown in Fig. 11, to represent facial features. However, the underlying interpolation
principles are still the same.

Mesh warping is chosen for its capability of providing a better local control than
other techniques, such as field morphing [1], and thus is more suitable for dealing
with the subtle variation of expressions. Note that as long as the control points on the
feature contours do not degenerate, there exists a natural correspondence between
the control points on different expressions, and thus the success of mesh warping is
guaranteed.

4 MIDI music analysis

As mentioned previously, in addition to generating facial expressions, another inno-
vation of this paper is to show the possibility of using facial expressions to interact
with other media. One exemplary application of such, though currently beyond the
scope of this paper, is to integrate facial expressions with speech emotion recognition
(in addition to general speech recognition) applied on top of the voice communication
over modern MSN or Skype, where photos or avatars are used instead of real videos
due to privacy concerns or bandwidth constraints. For instance, once an angry tone
has been sensed from the vocal communication, a face with an angry look could then
be synthesized at the other communication side, thus making a more vivid chatting
experience.

54 Multimed Tools Appl (2008) 40:41–60

Bearing a similar idea, and without plunging too deeply into the details of speech
processing, we opt for music as the media to interact with facial expressions. Also as
the processing of MP3 or WAVE files is more complicated, we further assume the
input music to be in the format of MIDI, which is a music file format mainly used to
communicate with specific instruments by representing a song via the description of
pitch, length, strength (or velocity), type of instrument, and so on, for the constituent
notes. To have music interact with the facial expressions, we first developed a tool
for approximate music emotion analysis, and the algorithm of which will be detailed
later. With this tool added in, our system could now interactively display the analyzed
music emotions through the facial expressions generated by the aforementioned
procedures. This integration could help to further prove the feasibility and efficiency
of our facial expression generation system.

Before describing our music analysis algorithm, we begin by briefing what a MIDI
file is composed of. A MIDI file, represented in a binary form, is composed of two
kinds of chunks: a leading header chunk, labeled as MThd, and one or more track
chunks, labeled as MTrk, that follow the header chunk. A header chunk describes
the general information of a MIDI file, such as the type of MIDI, the number of
track chunks, and the size of delta-time, which basically represents the smallest timing
unit that could be specified for the ensuing events in this MIDI file. Here the type of
MIDI refers to three possible types: one single track, multiple synchronized tracks,
where all tracks must be played simultaneously, and multiple independent tracks,
where all tracks could be played independently with each other. A track chunk is
usually associated with a particular instrument, and consists of one or more pairs
of delta-time and event. When the delta-time is set to 0, it means the current event
is to be played simultaneously with the previous event. There are three kinds of
MIDI events: MIDI channel event, system exclusive event and meta event. A MIDI
channel event could be further classified as note on, note off, controller, program
change events, and so on, to represent the cases where a note is initiated, a note is
terminated, a control (pan, balance, soft pedal, a particular effect, etc.) is applied,
and a change of instrument, respectively, together with the necessary parameter
information, such as notes and velocity. A system exclusive event is normally used to
provide the information regarding the software or hardware manufacturers. A meta
event is mainly for annotation purpose. For example, the name of the instrument,
copyright notice, lyrics, cue point, etc., could be recorded in this kind of events. Thus
it is evident that we could collect all necessary information for music analysis from
the MIDI channel events. To simplify, we assume the input MIDI to be composed
of either a single track or synchronized tracks, so that we only need to deal with a
single melody. As the detailed description of the MIDI specification should not be
the focus of this paper, we refer interested readers to http://www.midi.org/ for further
MIDI information.

In our system, we perform the MIDI analysis on a per measure basis, where a
measure is a segment of time formed by a given number of beats. Currently our
algorithm for distinguishing the emotion of a measure is shown in Fig. 14. Basically
we first compare the number of notes within a measure against a threshold, which
is set to be 7 in our current implementation after testing dozens of music pieces, to
determine if the input measure enjoys a fast rhythm or not. If so, it will be classified
as being happy. Otherwise, the average pitch of this measure is checked against the
average pitch of the whole music. A measure with a lower averaged pitch is thought

http://www.midi.org/

Multimed Tools Appl (2008) 40:41–60 55

Fig. 14 The algorithm for
classifying the emotion of a
given measure

Measure_Classifier(measure)
{

Let N_notes = the number of notes in this measure
Let Avg_measure = the average pitch of this measure
Let Avg_whole = the average pitch of the whole music
Let Avg_front_half = the average pitch of

the front 50% highest pitches of the whole music

if N_notes > Threshold then
emotion = "happy"

else if Avg_measure < Avg_whole then
emotion = "sad"

else if Avg_measure > Avg_front_half then
emotion = "angry"

else
emotion = "happy"

return emotion
}

to have a sad emotion, while a measure with a higher averaged pitch is further
tested against the average pitch of the front 50% highest pitches of the whole music.
A measure with a higher averaged pitch is considered angry, or happy otherwise.
Note that according to this algorithm, a measure could be classified as being happy in
two cases.

As far as the classification is concerned, there are at least two shortcomings with
this algorithm. First, it is evident that the emotions of surprised and neutral are
missing from this classification scheme. The missing of the surprised emotion is a very
unfortunate decision, as so far we still cannot find a satisfactory rule to distinguish it
from the angry emotion through numerous experiments. The missing of the neutral
emotion, on the other hand, is relatively less serious, and in fact, a little bit deliberate,
as the neutral expression will appear anyway during the interaction process. This is
mainly due to our current implementation for morphing between expressions; that
is, to have a smoother look of the transition, the neutral expression will always be
inserted between two different expressions before the morphing process is applied to
interpolate the intermediate frames. Second, the use of pitch average may not always

Fig. 15 The system interface
for interactively generating
facial expressions

56 Multimed Tools Appl (2008) 40:41–60

neutral happy sad angry surprised

Fig. 16 The facial expression results of four persons. The synthetic results are shown in the first four
rows while the real expressions of the fourth person are shown in the last row for comparisons

be precise. For example, consider that case where a very high pitch may coexist
with several low pitches within one measure, thus resulting a happy classification,
which might not be correct. However, in practice, such ambiguity does not happen
very often.

As a further remark, the reasons that we resort to such a heuristic classification
scheme are the following. First, a comprehensive and accurate music emotion
analysis scheme is still an ongoing research area [16, 23]. Second, as mentioned in
Section 1, we want our system to be simple and fast, and thus it could demonstrate a
more responsive interaction between MIDI music and facial expressions. Note that
the preprocessing work for these rules involves only one linear scan of all the notes,

Multimed Tools Appl (2008) 40:41–60 57

and then the average pitch of the whole music and of the 50% highest pitches could
be easily and quickly computed. Also note that the involved sorting process could be
done by a linear-time algorithm, such as counting sort, as all the pitches could only
come from a finite set of values, and thus could be treated as integers. At the run
time, each measure could thus be classified on the fly in a nearly real-time fashion.
It should also be self-evident that our music analysis scheme does not only apply to
MIDI, but also to other formats of music as well, such as WAVE and MP3, as long as
the same necessary music information could be extracted and processed beforehand.

5 Results

We have conducted our experiments on a Pentium IV 3.0GHz machine with
512MBytes memory, running on the Windows XP operating system. Figure 15 shows
the interface that we use to perform facial expression generation, where various
parameters could be tuned to achieve the best results.

Figure 16 demonstrates the results generated by our system. Based on the input
photos of four persons, shown in the leftmost column, we have synthesized four
expressions: happy, sad, angry and surprised.

As shown in this figure, when compared with the real expressions, our generated
results do exhibit noticeable difference, especially for the third and fourth persons.
For example, the third person’s double-eyelid eyes may complicate the eye tracking
process, thus leading to less precise results. Another example is the difference
between having wrinkles or not, as shown in the sad expression for the fourth
person. It should be apparent that the effect of wrinkles is not addressed so far
by our proposed deformation and interpolation scheme. One more non-negligible
difference is the enlarged eye-size, as shown in the surprised expression for the fourth
person. This is due to a more exaggerated expression made by the fourth person
during the experiments. Nevertheless, here we would like to make the following
two remarks. First, all the results are generated solely from the formulas presented
in Section 3.5.1. Second, there should be nearly no doubt that, when the synthesized
images are displayed alone, the desired expressions could be observed. These are the
reasons why our proposed simple and fast algorithm could claim its contribution.

Based on these synthesized images, we could “pre-generate” animations of image
morphing between expressions, so that at the run time, specific animations could
be applied when corresponding music emotions are detected. Figure 17 shows the

Fig. 17 The interface
displaying analyzed music
emotions through facial
expressions

58 Multimed Tools Appl (2008) 40:41–60

Table 1 The information of
the 5 MIDI files MIDI MIDI leng. (s) Proc. time (s) Emotions

a.mid 68 10 Happy, sad
b.mid 71 11 Happy, sad, angry
c.mid 132 13 Happy, sad
d.mid 152 15 Happy, sad
e.mid 154 15 Happy, sad, angry

interface where our synthesized expressions interact on the fly with the analyzed
music emotions.

To interact with music, five MIDI files are chosen from a wide variety of pop music
from Taiwan and Hongkong, based on the assumption that the selected music should
be able to arouse different kinds of feelings when listened, and the corresponding
information is shown in the first three columns of Table 1. As shown in the table,
the lengths of the MIDI music pieces range from 68 to 154 seconds, and for all the
input MIDI music, the system processing time is never more than 15 seconds, which
is mainly spent on interpolating the intermediate frames (15 frames per second)
for morphing between different expressions. The last column of this table lists the
detected emotions from these MIDI files, using the algorithm shown in Fig. 14.
Note that, as mentioned in the previous section , we do not distinguish the surprised
emotion from the MIDI files. Also as said earlier, the image size is normalized to
be 300 × 350, therefore larger images would require proportionally larger amount of
processing time. The total end-to-end time, that is, from the time an input photo is
given, till the time different expressions are generated, is about 1 min.

6 Conclusions and future work

We have proposed and implemented a facial expression generation system that
provides a user-friendly interface for users to input desired photos. Together with
few simple strokes to roughly identify facial features, our system could then quickly
generate different vivid facial expressions using the designated face, while the whole
interactive process normally requires only about 1 min. To prove the effectiveness
of our facial expression generation system, we further integrate it with a primitive
capability for music emotion analysis; that is, we hope the emotions detected
from a MIDI music piece could be reflected by our generated facial expressions.
Experimental results show that our system, with negligible amount of preprocessing
time, could interact with a given MIDI music piece in a real-time fashion. We believe
that such a simple and efficient approach could find its use in the modern world. For
example, it could be used as a companion tool in MSN or Skype, or on some hand-held
devices such as PDAs or smart phones for efficiently and vividly displaying personal
facial expressions, when the underlying bandwidth is constrained.

In the future, we plan to automate the whole process completely even though the
involved manual effort in our current implementation is already acceptable. This
would definitely pose more challenges as personal photos may present huge varieties
or imperfection. For example, a man’s hair may block his eye/eyebrow partially
or completely, thus leading to the difficulty of properly distinguishing the facial
features. One more interesting extension is to generate corresponding expressions

Multimed Tools Appl (2008) 40:41–60 59

when a subject’s mouth is opened (e.g. for the expressions of wild laughing or
astonishing). Another possibility is to add wrinkles, as shown in Liu et al.’s work [10].
Additionally, expressions may have personal styles. For instance, person A’s angry
face could be quite different from that of person B, therefore we could also take
personalization into account for generating more realistic results. Furthermore,
we would like to generalize this scheme to a 3D model so that more general
facial expression changes or movements could be represented. Most importantly,
the above generalization should be simple, fast and efficient. Finally, the music
analysis part, mainly serving for a demonstration purpose now, could definitely be
improved as it is admittedly very primitive at this present. For example, in addition
to pitches and tempos, the involved instruments may also play an important role on
distinguishing the associated emotions.

References

1. Beier T (1992) Feature-based image metamorphosis. In: SIGGRAPH ’92, pp 35–42
2. Ekman P, Friesen W (1978) Facial action coding system: a technique for the measurement of

facial movement. Consulting Psychologists Press, Palo Alto, CA
3. Fournier A, Montuno DY (1984) Triangulating simple polygons and equivalent problems. ACM

Trans Graphics 3:153–174
4. Gleicher M (1998) Retargetting motion to new characters. In: SIGGRAPH ’98, pp 33–42
5. Han X, Xu C, Prince JL (2003) A topology preserving level set method for geometric deformable

models. IEEE Trans Pattern Anal Mach Intell 25(6):755–768
6. Lyons M, Akamatsu S, Kamachi M, Gyoba J (1998) Coding facial expressions with Gabor

wavelets. In: Proceedings of Third IEEE International Conference on Automatic Face and
Gesture Recognition. Nara Japan, IEEE Computer Society, pp 200–205

7. Karpouzis K, Tsapatsoulis N, Kollias S (2000) Moving to continuous facial expression space using
the MPEG-4 facial definition parameter(FDP) set. In: SPIE Electronic Imaging 2000, pp 443–450

8. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision
1:321–332

9. Lischinski D (2006) Selected topics in computer graphics course slides. http://www.cs.huji.ac.il/∼
danix/

10. Liu Z, Shan Y, Zhang Z (2001) Expressive expression mapping with ratio images.
In: SIGGRAPH ’01, pp 271–276

11. Parke FI (1972) Computer generated animation of faces. In: Proceedings of Annual ACM
Conference

12. Parke FI, Waters K (1996) Computer facial animation. AK Peters, Wellesley, MA
13. Pighin F, Hecker J, Lischinski D, Szeliski R, Salesin DH (1998) Synthesizing realistic facial

expressions from photographs. In: SIGGRAPH ’98, pp 75–84
14. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1997) Numerical recipes in C, 2nd edn.

Cambridge Univ. Press
15. Raouzaiou A, Tsapatsoulis N, Karpouzis K, Kollias S (2002) Parameterized facial expression

synthesis based on MPEG-4. In: EURASIP ’02, pp 1021–1038
16. Schubert E (1999) Measurement and time series analysis of emotion in music. PhD thesis,

University of New South Wales
17. Schubert E (2004) Emotionface: prototype facial expression display of emotion in music.

In: Proceedings of ICAD-04
18. Sethian A (1999) Level set methods and fast marching methods, 2nd edn. Cambridge Univ. Press,

Cambridge, UK
19. Shugrina M, Betke M, Collomosse J (2006) Empathic painting: interactive stylization through

observed emotional state. In: NPAR ’2006, pp 87–96
20. Smythe DB (1990) A two-pass mesh warping algorithm for object transformation and image in-

terpolation. Technical Report ILM Technical Memo No. 1030, Computer Graphics Department,
Lucasfilm Ltd

21. Terzopoulos D, Waters K (1993) Analysis and synthesis of facial image sequences using physical
and anatomical models. IEEE Trans Pattern Anal Mach Intell 15(6):569–579

http://www.cs.huji.ac.il/~danix/
http://www.cs.huji.ac.il/~danix/

60 Multimed Tools Appl (2008) 40:41–60

22. Wang H, Ahuja N (2003) Facial expression decomposition. In: Proceedings of Nineth IEEE Int
Conference on Comput Vision, pp 958–965

23. Wang M, Zhang N, Zhu H (2004) User-adaptive music emotion reconition. In: Proceedings of
the ICSP’04, pp 1352–1355

24. Waters K (1987) A muscle model for animating three-dimensional facial expression.
In: SIGGRAPH ’87, pp 17–24

25. Williams D, Shah M (1990) A fast algorithm for active contours. In: The 3rd IEEE Int Confer-
ence on Comput Vision, pp 592–595

26. Wolberg G (1990) Digital image warping. IEEE Society Press, Los Alamitos
27. Zhang Q, Liu Z, Guo B, Terzopoulos D, Shum H (2006) Geometry-driven photorealistic facial

expression synthesis. IEEE Trans Vis Comput Graph 12(1):48–60
28. Zhang Q, Prakash EC, Sung E (2003) Efficient modeling of an anatomy-based face and fast 3D

facial expression synthesis. Comput Graph Forum 22(2):159–169
29. Zhou C, Lin X (2005) Facial expressional image synthesis controlled by emotional parameters.

Pattern Recogn Letters 26(16):2611–2627

Chuan-Kai Yang received his Ph.D. degree in computer science from Stony Brook University, USA,
in 2002, and his M.S. and B.S. degree in Computer Science and in Mathematics from National
Taiwan University in 1993 and 1991, respectively. He has been an Assistant Processor of the
Information Management Department, National Taiwan University of Science and Technology since
2002. His research interests include computer graphics, scientific visualization, multimedia systems,
and computational geometry.

Wei-Ting Chiang received his Bachelor’s degree in information Management at National Cheng
Kung University in Taiwan in 2004, and his Master degree in Information Management at National
Taiwan University of Science and Technology in 2006, respectively. His research interest is on
multimedia processing. He is now working in the industry.

	An interactive facial expression generation system
	Abstract
	Introduction
	Related work
	Feature expression generation
	Thresholding
	Feature selection
	Feature refinement
	Micro-tuning
	Expression generation
	JAFFE facial expression database
	Triangulation

	Image morphing

	MIDI music analysis
	Results
	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

