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Abstract This paper focuses on the integration of multimodal features for sport video
structure analysis. The method relies on a statistical model which takes into account both
the shot content and the interleaving of shots. This stochastic modelling is performed in the
global framework of Hidden Markov Models (HMMs) that can be efficiently applied to
merge audio and visual cues. Our approach is validated in the particular domain of tennis
videos. The model integrates prior information about tennis content and editing rules. The
basic temporal unit is the video shot. Visual features are used to characterize the type of
shot view. Audio features describe the audio events within a video shot. Two sets of audio
features are used in this study: the first one is extracted from a manual segmentation of the
soundtrack and is more reliable. The second one is provided by an automatic segmentation
and classification process. As a result of the overall HMM process, typical tennis scenes are
simultaneously segmented and identified. The experiments illustrate the improvement of
HMM-based fusion over indexing using only the best single media, when both media are of
similar quality.

Keywords Video structure analysis . Macro-segmentation . Cross-modality .

HiddenMarkov models

1 Introduction

Video content-based analysis is an active research domain that aims at automatically
extracting high-level semantic events from video. The extracted semantic information can
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be used to produce indexes or table of contents that enable efficient search and browsing of
the video content. Indexing tasks usually attempt to identify a predetermined set of events
within a video. Producing a table of contents implies to perform a temporal segmentation of
the video into shots. Such a task has been widely studied and generally relies on the detection
of discontinuities into low-level visual features such as color or motion [11]. The critical step
is to automatically group shots into “scenes”. Scenes are referred in the literature as story
units. They are defined as a coherent group of shots that is meaningful for the end-user. The
main problem relies on the definition of the “coherence” of the shots within a scene. We are
able to group shots with similar low-level features, but defining a “scene” depends more on
a subjective semantic correlation. A way to extract high-level information is then to focus
on particular types of videos, like news or sports, and introduce a priori information about
content and structure. In sports analysis, a common approach consists in combining low-
level features with heuristic rules to infer specific highlights [15, 18, 22]. Statistical models
like Hidden Markov Models (HMMs) have also been used for this task [3, 17]. However,
most of these approaches use one single media.

In this paper, we address the problem of recovering sport video structure, through the
example of tennis which presents a strong structure. Our aim is to exploit multimodal
information and temporal relations between shots in order to identify the global structure.
The proposed method simultaneously performs a scene classification and segmentation
using HMMs. HMMs provide an efficient way to integrate features from different media
[7], and to represent the hierarchical structure of a tennis match. As a result each shot/group
of shots is classified within one of the following four categories: missed first serve, rally,
replay, and break.

Recent efforts have been made on fusing information provided by different streams. It
seems reasonable to think that integrating several media improve the performance of the
analysis. This is confirmed by some existing works reported in [14, 16]. Multimodal
approaches have been investigated for different areas of content-based analysis, such as
scene boundary detection [8], structure analysis of news [12], and genre classification [7].
However, fusing multimodal features is not a trivial task. We can highlight two problems
among many others.

– a synchronization and time scale problem: sampling rate to compute and analyze low-
level features is not the same for the different medias;

– a decision problem: what should be the final decision when the different medias
provide opposite information?

Multimodal fusion can be performed at two levels: feature and decision levels. At the
feature level, low-level audio and visual features are combined into a single audiovisual
feature vector before the classification. The multimodal features have to be synchronized
[12]. This early integration strategy is computationally costly due to the size of typical
feature spaces. At the decision level, a common approach consists in classifying separately
according to each modality before integrating the classification results. However, some
dependencies among features from different modalities are not taken into account in this
late integration scheme. For example, applying to the detection of rally shots in a tennis
video, [4] define independently a visual likelihood of a frame to be a court view, and an
audio likelihood of a segment (synchronized on frame sampling rate) to represent a racket
hit. The final decision is taken by multiplying these two likelihoods.

But usually theses approaches rely on a successive use of visual and audio classification
[10, 19]. For example in [19], visual features are first used to identify the court views of a
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tennis video. Then ball hits, silence, applause, and speech are detected in these shots. The
analysis of the sound transition pattern finally allows to refine the model, and identify
specific events like scores, reserves, aces, serves and returns.

In this work, an intermediate strategy is used which consists in extracting separately
shot-based “high level” audio and visual cues. The classification is then made using the
audio and visual cues simultaneously (figure 3). In other words, we choose a transitional
level between decision and feature levels. Before analyzing shots from raw image intensity
and audio data, some preliminary decisions can be made using the features of the data (e.g.,
representation of audio features in terms of classes like music, ball hits, silence, speech, and
applause). In this way, after making some basic decisions, the feature space size is reduced
and each modality can be combined more easily.

This paper is organized as follows. Section 2 provides elements on tennis video syntax.
Section 3 gives an overview of the system and describes the visual and audio features
exploited. Section 4 introduces the structure analysis mechanism. Experimental results are
presented and discussed in Section 5.

2 Tennis syntax

Sport video production is characterized by the use of a limited number of cameras at almost
fixed positions. Considering a given instant, the point of view giving the most relevant
information is selected by the broadcaster. Therefore sports are composed of a restricted
number of typical scenes producing a repetitive pattern. For example, during a rally in a
tennis video, the content provided by the camera filming the whole court is selected (we
name it global view in the following). After the end of the rally, the player who has just
carried out an action of interest is captured with a close-up. As close-up views never appear
during a rally but right after or before it, global views are generally significant of a rally.
Another example consists in replays that are notified to the viewers by inserting special
transitions. Because of the presence of typical scenes, production rules, and the finite
number of views, the tennis video has a predictable temporal syntax.

The different types of views present in a tennis video can be divided into four principal
classes: global, medium, close-up, and audience (see figure 1). In a tennis video production,
global views contain much of the pertinent information. The remaining information relies
on the presence or the absence of non-global views, but is independent of the type of these
views. One specificity of our system is to identify global views from non-global view shots,
and then to analyze the temporal interleaving of these shots.

We identify here four typical patterns in tennis videos that are: missed first serve, rally,
replay, and break. The break class includes the scenes unrelated to games, such as

Fig. 1 Four main types of view in tennis video
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commercials. A break is characterized by an important succession of such scenes. It appears
when players change ends, generally every two games. We also take advantage of the well-
defined and strong structure of tennis broadcast. As opposed to time-constrained sports that
have a relatively loose structure, tennis is a score-constrained sport that can be broken down
into sets, games and points (figure 2).

3 System overview

In this section, we give an overview of the system (figure 3) and describe the extraction of
audio and visual cues. First, the video stream is automatically segmented into shots by
detecting cuts and dissolve transitions. Straight cut detection is performed by detecting
rapid changes of the standard bin-wise difference between luminance histograms of DC
pictures. Gradual shot transitions detection is performed by the twin-comparison method
[20], using a dual threshold that accumulates significant differences to detect gradual
transitions. The content of a detected shot is represented by a single keyframe (as only one
keyframe is sufficient to illustrate the whole content of a view).

For each shot t, we compute the following visual and audio features:

– the duration dt of the shot
– a visual similarity vt representing a visual distance between the keyframe extracted

from the shot, and a global view model

Fig. 2 Structure of tennis game
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– a binary audio vector at describing which audio classes, among speech, applause, ball
hits, silence and music, are present in the shot

The extraction of these higher-level features is described in Sections 3.1 and 3.2. The
sequence of shot features results in a sequence of observations, which is then parsed by a
HMM process. Final classification of each shot in typical tennis scenes is given by the
resulting sequence of states.

Similar approaches are used in [1] and [6]. In [1] dialog scenes are identified using a
HMM shot-based classification. Each shot is characterized by three labels which indicate
respectively if the shot contains speech or silence or music, if a face is detected or not, and
if the scene location has significantly changed or not. In our scheme, preliminary decisions
on audio and visual features are less deterministic, since no classifications into “global
views” or “short/long” duration are performed before the HMM classification. Uncertainties
are deliberately let at feature level to allow the system to take a decision at a higher level
and based on audio–visual cues simultaneously.

In [6], a multimodal classification method of baseball shots based on the maximum
entropy method is proposed. Eight typical scenes are identified. To catch the temporal
transition within a shot, each shot is divided into three equal segments. However, inter-shot
temporal transitions are not taken into account. In our approach, we perform a simpler shot
categorization into global or non-global views, but we aim to analyze temporal interleaving
of shots in order to identify higher-level segments. As a result, each shot is labelled with
one of these four types: missed first serve, rally, replay, and break.

3.1 Visual features

We use visual features to identify the global views within all the extracted keyframes.
Identifying the different types of view is a necessary step in any sports content analysis.
Many works deal with shot classification in the context of sport videos [5, 9, 15, 17, 21]. In
most of the methods that use color information, the game field color has to be first

Fig. 3 Structure analysis system overview
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evaluated, because it can largely vary from one video to another. Our approach tries to
avoid the use of predefined field color to be able to automatically take into account a large
type of videos.

The process can be divided into two steps. First, a keyframeKref representative of a global
view is automatically selected without making any assumption about the tennis court color.
Once Kref has been found, each keyframe is characterized by a similarity distance to Kref .
In the following, we first motivate the choice of the visual features we extract, and then we
define the visual similarity measure we use, before describing the Kref selection process.

Global views are characterized by a rather homogeneous color content (the colors of the
court and its surrounding), although medium and audience views are characterized by
scattered color content. In addition, a global view must capture at each time the main part of
the court, whereas in close-up views, the camera is generally tracking the player.
Commercials are also taken into account. Dominant colors of commercial keyframes are
unpredictable. However, due to the cost of air time, commercials are usually characterized
by more actions, corresponding to more shots and faster motion within each shot. Global
views can thus be characterized by a dominant color content and a small camera motion,
while the other views imply unpredictable color content and important camera translations.
Based on these observations, we choose three features to identify global views:

– a vector F of N dominant colors,
– its spatial coherency C,
– the activity A that reflects the average camera motion during a shot.

Rather than color histogram, we use a global descriptor of dominant colors that is more
compact. In addition, dominant colors vectors capture the most significant color
information of a frame and are less noise sensitive.

3.1.1 Dominant color vector

Let F be a vector of N dominant colors and pi the percentage of each color ci;1�i�N with
respect to the whole associated frame. The colors of the original images are quantized into
N values using a k-means clustering algorithm. Neighboring dominant colors are merged
when their distance are less than a predefined threshold Td . The goal is to ensure that the N
dominant colors are perceptually different. According to MPEG-7, the similarity between
two dominant colors features F1 and F2 can be then measured by the following simplified
quadratic distance function dðF1;F2Þ:

d2ðF1;F2Þ ¼
XN1

i¼1

p21i þ
XN2

j¼1

p22j �
XN1

i¼1

XN2

j¼1

2a1i;2jp1ip2j ð1Þ

where ak;l is the similarity coefficient between two colors ck and cl,

ak;l ¼
1� dk;l

dmax
if dk;l � Td

0 if dk;l > Td

8<: ð2Þ

Td is the maximum distance for two similar colors, dmax ¼ α Td , and dk;l is the Euclidean
distance between two colors ck and cl.

To take into account the spatial configuration of similar color pixels, a confidence
measure C is associated to each dominant color feature. A pixel of color ck is considered to
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be coherent if all the pixels in its neighborhood have the same color. As a result, the
confidence measure C for the dominant color feature F is defined as:

C ¼
XN
k¼1

number of coherent pixels ck
total number of pixels

ð3Þ

In our implementation, we use 4 dominant colors ðN ¼ 4Þ to characterize the most
significant color information in the game field (see figure 4).

3.1.2 Activity

The activity A is defined as the average camera motion during a shot and is based on MPEG
motion vectors. These vectors are used to estimate the camera dominant motion within the
sequence by deriving a parametric model of the 2D dominant apparent motion represented
by each motion field. A simple three-parameter model covers the most common categories
of global dominant motion (translation, zoom and no motion):

u ¼ kxþ tx
v ¼ kyþ ty :

(
ð4Þ

In these equations, ðu; vÞ represent the horizontal and vertical components of the motion
vector of the pixel located at ðx; yÞ in the image; k; tx and ty are the motion model
parameters. As the MPEG motion vectors don’t necessarily represent the “real/physical”
motion, an outlier rejection step is used to discard vectors that don’t match the estimated
motion. The rejection process is performed by a robust linear regression.

Let Ω be the set of inliers vectors. The activity A is defined by:

A2 ¼
X

ðu;vÞ2Ω

u2 þ v 2

jΩj ð5Þ

3.1.3 Visual similarity

Each keyframe Kt is then described by a dominant color vector Ft, its spatial coherency Ct,
and the activity At of the corresponding shot. The visual similarity measure between two
keyframes K1 and K2 is defined as a weighted function of the spatial coherency, the
distance function between the dominant color vectors, and the activity:

vðK1;K2Þ ¼ w1 jC1 � C2j þ w1 dðF1;F2Þ þ w3 jA1 � A2j ð6Þ

Fig. 4 Dominant colors extraction
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where w1, w2, and w3 are weighting coefficients, set as follows: w1 ¼ 0; 2; w2 ¼ 0; 5, and
w3 ¼ 0; 3.

The visual similarity is used to characterize the shot content. This measure is computed
between each keyframe Kt and a keyframe Kref representative of a global view, and denoted
by vt in the following:

vt ¼ vðKt;Kref Þ ð7Þ
As a result, a keyframe Kt is more similar to a global view as vt is smaller. On the

contrary, a close-up keyframe Kt will present a high visual distance vt.
The given weighting coefficients were tuned to separate as good as possible the visual

similarity distributions of the global view class and the non-global view class. However,
these coefficients have not a significant influence on the following.

On the next section, the Kref selection process is described.

3.1.4 Selection of a global view keyframe Kref

Our goal is here to identify a global view from all extracted keyframes without making any
assumption about the playing area color. Our method can thus get rid of the different types
of tennis court (carpet, clay, hard or grass). Analyzing several hours of tennis video reveals
that in a video, global views keyframes represent only 20 to 30% of all extracted keyframes
including commercials.

To find a keyframe Kref representative of a global view, we consider dominant colors
ratios. As it was previously noted, color contents in medium and audience views are more
scattered than in global views. Considering that a global view is mainly composed of the
playing area, we assume that the percentage of the main dominant color is greater than
50%. We reduce the set of candidate keyframes by discarding keyframes whose highest
percentage of dominant color is less than 50%. In the resulting subset of images, global
views represent more than 50% of the data (most of medium and audience views have been
discarded).

The main problem thus remains the distinction of global views. In other words, the prob-
lem is now reduced to an identification of inlier datapoints i.e., global views, in the presence
of data outliers. We apply the least median square method (LMS), to minimize the median
distance of all the remaining keyframes to a randomly selected keyframe. The number p of
samples is chosen in a way that the probability P of finding a representative global view
keyframe is greater than 99%. The expression for p is given by [13]:

p ¼ logð1� PÞ
logð1� ð1� τÞqÞ ð8Þ

where τ is the fraction of outlier data, and q the number of features in each sample. Here
q ¼ 1, as each sample Kt has one associated feature vt.

The set of candidate keyframes is reduced again by keeping keyframes whose distance is
lower than the median distance previously found. The LMS is re-iterated on this new subset
to select a better reference keyframe Kref . This last step ensure the selected keyframe Kref to
be independent from the random process. In other words, different random pulling lead to
the same Kref . Figure 14 shows, for different videos, the dominant color repartition of
keyframes in YCbCr space, according to their type of view, and the associated selected
Kref .
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3.2 Audio features

As mentioned previously, the video stream is segmented into a sequence of shots. Since
shot boundaries are more suitable for a structure analysis based on production rules than
boundaries extracted from the soundtrack, the shot is considered as the base entity, and
features describing the audio content for each shot are used to provide additional
information. For each shot, a binary vector at describing which audio events, among
speech, applause, ball hits, silence and music, are present in the shot is extracted from an
automatic segmentation of the audio stream (figure 5).

To achieve this goal, the audio signal is demultiplexed from the video and converted into
features representative of the audio content. Classically, the features considered in this work
are 16 cepstral coefficients extracted on 20 ms consecutive windows with a 50% overlap.
The soundtrack is first segmented into spectrally homogeneous chunks. For each chunk,
tests are performed independently for each of the audio events considered in order to
determine which events are present. In this step, delta coefficients are considered in
addition to cepstral coefficients. The segmentation and classification steps are recalled
below. More details can be found in [2].

3.2.1 Soundtrack segmentation

Segmenting the soundtrack into spectrally homogeneous segments is carried out with the
Bayesian information criterion (BIC) using a cepstral representation of the input signal. The
BIC is defined as the log-likelihood of a segment y given a model, penalized by the model
complexity and the segment length. Formally, for a segment of length T with an associated
model Λ, the Bayesian information criterion is defined as

IðΛÞ ¼ ln f ðy; ΛÞ � γ
#ðΛÞ
2

ln T ;

Fig. 5 Architecture of the audio segmentation system
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where f ð y; ΛÞ is the likelihood of a segment y given a model Λ, #ðΛÞ is the number of free
parameters in the model, and γ a tunable parameter theoretically equal to one (but not in
practice).

The principle of the segmentation algorithm is to move two adjacent windows on the
soundtrack signal. For each position of the two windows, one can compare whether it is
best, in terms of BIC, to model the two windows separately with two different Gaussian
distributions, say Λ1 and Λ2, or with a single one, say Λ0. If IðΛ0Þ � IðΛ1Þ � IðΛ2Þ is
negative, then the two-segment model is more appropriate and a segment boundary is
detected at the frontier of the two windows. In this study, 3 s windows are used.

3.2.2 Audio classification

A training step is performed on manually labelled data to estimate the parameters of a 64
component Gaussian mixture model (GMM) for each of the five audio events considered.

In the audio classification step, the presence or absence of each label has to be detected
in every previously extracted segments. This detection problem can be classically solved
using a two-hypothesis test, where H0 (resp. H1) is the hypothesis that the event considered
is (resp. is not) present in the segment. Assuming a model for the distribution of y is
available under both hypotheses, the decision on the presence of an event is taken by
comparing the log-likelihood ratio:

Rð yÞ ¼ ln f ð y; H0Þ � ln f ð y; H1Þ
to a threshold δ, where Rð yÞ > δ means that the event is detected in segment y.

In practice, f ð y; H0Þ ¼ f ð y; MÞ where M is a Gaussian mixture model whose parameters
were estimated from training data containing the event of interest (whether alone or
superimposed with other events). Similarly, f ð y; H1Þ is approximated using a “non-event”
model M whose parameters were estimated on training data where the event considered is not
represented. The decision threshold δ was determined experimentally on training data.

Using this approach, the frame correct classification rate obtained is 77.83% while the
total frame classification error rate is 34.41% due to insertions. The corresponding
confusion matrix is given in Table 1 and shows that ball hits, speech and applause are well
classified while silence is often misclassified as ball hits, probably due to the fact that ball
hits is a mix of ball hits and court silences. The last row also shows that ball hits class is
often inserted, and music class is often deleted.

Finally, the shot audio vectors at are created by looking out the audio events that occur
within the shot boundary according to the audio segmentation. The resulting vector has then
five components, set to 1 if the corresponding audio event has been detected in the shot,
and to 0 otherwise.

Table 1 Confusion matrix for the audio segmentation system

Music Speech Ball hits Appl. Silence Del.

Music 16.49 14.35 17.13 13.33 1.59 37.11
Speech 0.11 87.15 2.21 0.67 1.63 8.23
Ball hits 0 5.67 77.16 2.54 4.90 9.73
Appl. 0.02 0.30 2.33 88.47 0.58 8.29
Silence 0.93 12.08 30.60 15.52 40.87 0.00
Ins. 3.3 2.96 65.93 14.11 0.00 –
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4 Structure analysis

Prior information is integrated by deriving syntactical basic elements from the tennis video
syntax. We define four basic structural units: two of them are related to game phases (first
missed serves and rallies), the two others deal with video segments where no play occur
(breaks and replays). Each of these units is modelled by a HMM. These HMMs rely on the
temporal relationships between shots (figure 6), according to the common editing rules
explained in Section 2 that are:

– a rallye is displayed by a global view;
– a missed first serve is a global view of short duration followed by close-up views of

short duration too (as the players do not have to change their positions) and followed
by an other global view corresponding to the second serve;

– in a broadcast video, the producers notify the viewers that a replay is being displayed
by inserting special transitions;

– a break is characterized by an important succession of close-up, public views and
advertisements. This set of consecutive shots has a particular long duration. It appears
when players change ends, generally every two games.

In a tennis match, only global views are generally of interest and the structural units aim
to identify the global views as being a first missed serve or the point that ended a set.
Nevertheless, non-global views convey important information about structure of the video
according to production style, and help in the parsing process.

Each HMM state models either a single shot or a dissolve transition between shots.
Three observation streams are associated with each state: the shot duration, the visual
similarity between the shot keyframe and Kref , and the audio vector which characterizes the
presence or absence of the predetermined audio events. More formally, for a shot t, the

Fig. 6 Hidden Markov Models of the four basic structural units: (a) missed first serve and rally, (b) rally,
(c) replay, (d) break. GV stands for Global View, N for Non-global view, and D for Dissolve transition
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observation ot consists of the shot duration dt, the similarity vt, and the audio description
vector at.

The probability of an observation ot conditionally to state j is then given by:

bjðotÞ ¼ pðdtj jÞα pðvtj jÞα P½atj j�β ð9Þ
with α;β 2�0; 1½, 2αþ β ¼ 1, and the probability distributions pðvtj jÞ, pðdtj jÞ and P½atj j�
are estimated by a learning step. pðvtj jÞ and pðdtj jÞ are modelled by smoothed histograms,
and P½atj j� is the product over each sound class k of the discrete probability P½atðkÞj j�.
Examples of the resulting probability distributions are given in figure 8 and Table 2 for
missed first serve, rally and break states. As P½atj j� is a product of discrete probabilities, its
value is generally smaller than pðvtj jÞ and pðdtj jÞ. The weighting coefficients are used to
re-enforce the audio influence and are set to : α ¼ 0:375 and β ¼ 0:25 (as pðvtj jÞ; pðdtj jÞ
and P½atj j� 2 ½O; 1�).

Segmentation and classification of the whole observed sequence into the different
structural elements are performed simultaneously using a Viterbi algorithm. The most likely
sequence state is given by:

bs ¼ arg max
s

ln pðsÞ þ
X
t

ln bst ðotÞ ð10Þ

To take into account the long-term structure of a tennis game, the four HMMs are
connected through a higher level HMM, as illustrated in figure 7. This higher level
represents the tennis syntax and the hierarchical structure of a tennis match, described in
terms of points, games and sets. Transition probabilities between states of the higher level
HMM result entirely from prior information about tennis rules, while transition probabilities
for the sub-HMMs result from a learning process.

Several comments about the higher level HMM are in order. The point is the basic
scoring unit. It corresponds to a winner rally, that is to say almost all rallies except first
missed serves. A break happen at the end of at least ten consecutive points. Considering
these rules in the model ensures a long-time correlation between shots, and avoids, for
example, the apparition of an interleaving of points and breaks. It prevents also two breaks
from being too much consecutive. The detection of breaks provides high level information
about the video structure like “two games happen between two breaks.” However,
boundaries between games, and consequently game composition in terms of points, are not
available at this stage. The observation streams used and the transition probabilities are not
sufficient to determine if a game ended or not. To provide a segmentation in point, game
and set, extra-information about the game status (like which player is the server) is needed.
Such a feature is specific to tennis, and this issue is not addressed in this paper.

Table 2 Probability of each audio event conditionally to a given state, estimated respectively from manually
and automatically segmented audio features

Man. audio vectors Segm. audio vectors

States Appl. Speech Tennis Music Silence Appl. Speech Tennis Music Silence

First serve 0.06 0.9 0.84 0 0.74 0.09 0.8 0.55 0.02 0.62
Rallies 0.78 0.95 0.98 0 0.52 0.71 0.88 0.82 0.02 0.58
Break 0.21 0.82 0 0.52 0.3 0.32 0.82 0.15 0.37 0.35
Other 0.42 0.74 0.06 0 0.5 0.46 0.73 0.33 0.02 0.5
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5 Experimental results

In this section, we describe the experimental results of the audiovisual tennis video
segmentation by HMMs. Experimental data are composed of eight videos, representing
about 5 h of manually labelled tennis video. The videos are distributed among three
different tournaments, implying different production styles and playing fields. Three
sequences are used to train the HMM while the remaining part is reserved for the tests. One
tournament is completely exluded from the training set.

Several experiments are conducted using visual features only, audio features only and
the combined audiovisual approach. The segmentation results are compared with the
manually annotated ground truth.

5.1 Using visual features only

For each observation, only the visual similarity that includes dissolve transition detection,
and the shot duration are taken into account. That means the decoding process relies on the
type of shot (or more specifically its similarity to a global view) and its duration. Precision
and recall rates, as well as F-measure,1 are given in Table 3 for the video of the testing set
that gives the worst results. Precision is defined as the ratio of the number of shots correctly

Fig. 7 Content hierarchy of broadcast tennis video

1 defined by: F ¼ 2�precision�recall
precision þ recall
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classified to the total number of shots retrieved. Recall is defined as the ratio of the number
of shots correctly classified to the total number of relevant shots.

Rallies detection presents low recall and precision rate compared to missed first serve. In
fact the similarity measure works well to discriminate global views from non-global views.
Regarding only the shot classification into global views, the correct classification rate is
95%. The main source of mismatch is when a rally is identified as a missed first serve. In
this case the similarity measure is well computed but the analysis of the interleaving of
shots based on the shot duration failed.

Replay detection relies essentially on dissolve transition detection. Detecting dissolve
transitions is a hard task, critical for replay detection. Our dissolve detection algorithm
gives a lot of false detections, that leads to a small precision rate (48%). We check that
correcting the temporal segmentation improve the replay detection rates up to 100%.

5.2 Using audio features only

For each observation, only the audio vector and the shot duration are taken into account.
Dissolve transitions are then not considered. The audio vectors represent the presence or
absence of predetermined audio events in a shot without any measure of the event
importance. This means that audio events, such as applause, may be detected in a shot,
although it appears only a few seconds and is not representative of the shot audio content.
We introduce a threshold b which represents a percentage of the shot duration. If the
duration of an audio event within a shot is less than b, the audio event is discarded.

We use two types of audio features. The first one results from a manual segmentation
and is used to validate the approach. In this case, audio features are generated from the
ground truth audio segmentation. The last one results from the automatic segmentation
process described in Section 3.2 (figure 8).

In a first experiment, audio probabilities are estimated from the manually segmented
features. Figure 9 represents the average classification rate over the testing set when b
varies from 0 to 60%, and where the audio segmentation is either manual (man) or decoded
(deco). The classification rate from visual decoding is given as reference.

The results show that the errors from the automatic audio segmentation spread over the
structuration process, and drag down the performance. When b increases, the performance
goes down as audio events become less representative of the audio shot content.

The increase in precision and recall rates for rallies and first missed serve (Table 3)
suggests that audio features are effective to describe rally scenes. Indeed, a rally is
essentially characterized by the presence of ball hits sounds and applause which happen at
the end of the exchange, although a missed first serve is only characterized by the presence

Table 3 Precision (P), recall (R) and F-measure (F) for segmentation and classification with visual features
only, manually segmented audio features only, and both manually segmented audio and visual features

Visual features Audio features Audio visual features

Classification P R F P R F P R F

First serve 0.61 0.74 0.67 0.72 0.70 0.71 0.85 0.93 0.89
Rallies 0.57 0.48 0.52 0.80 0.64 0.71 0.89 0.80 0.84
Replay 0.48 0.70 0.57 0.36 0.35 0.35 0.56 0.65 0.60
Break 0.90 0.65 0.75 0.88 0.64 0.74 0.91 0.66 0.76
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of ball hits (see Table 2). Therefore, there are less confusion between missed first serves
and rallies, and less missed detections.

On the contrary, replays are not characterized by a representative audio content, and
almost all replays are missed. The correct detections are more due to the characteristic shot
durations of dissolve transitions that are very short. For the same reasons, replay shots can
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Fig. 9 Classification rate using manually (man) and automatically (deco) segmented audio features, when b
varies from 0 to 60%
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Fig. 8 Estimated probability distributions for (from left to right): missed first serve, rally, and break states.
Top to bottom: visual similarity and shot length
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also be confused with commercials that are non-global views of short duration, and then
classified as break, especially if the replay happens just before a break.

Break is the only state characterized by the presence of music. That means music is a
relevant event for break detection and particularly for commercials. In fact, the break state
works in this case like a commercial detector, and avoids false detections. However it
increases the probability to miss a short break without commercials.

Concerning the poor performances given by automatically decoded audio features, there
is a mismatch between the manually segmented audio features on which the HMM
parameters were estimated, and the automatically generated audio features. In the first one,
presence of ball hits or music are respectively synonymous of rally and break. In the last
one, ball hits are present in other states than rallies, due to insertions of ball hits class
(Table 1), and music is present in other states than break, as illustrated in Table 2.

To tackle this problem, another experiment was conducted where audio probabilities
were estimated from the automatically segmented audio features, in order to take into
account the audio segmentation errors in the training process. Figure 10 shows the
improvement of the decoding performance on automatically segmented vectors. However,
the results are still less accurate than using visual features only.

5.3 Using both audio–visual features

Finally, both the visual similarity and the audio vector are taken into account.
Figure 11 represents the classification rate when audio probabilities are estimated from

the manually segmented features, and b varies from 0 to 60%. The observation sequence is
decoded using manually segmented audio features. The classification rate from visual and
audio (manually segmented) decoding are given as references.
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Fig. 10 Classification rate using automatically segmented audio features, when the learning is performed on
manually or automatically segmented features
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Fig. 12 Classification rate using both automatically segmented audio features and visual similarity, when b
varies from 0 to 60%
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Fig. 11 Classification rate using both manually segmented audio features and visual similarity, when b
varies from 0 to 60%
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Figure 12 represents the classification rate when audio probabilities are estimated from
the automatic audio segmentation. In this case, audio performance is enhanced by fusing
audio and visual features, but it is not sufficient to improve the performance given by visual
features only. Finally, the poor results given by automatic audio segmentation tend to
degrade the decoding performance of visual features.

Nevertheless, figure 11 shows that fusing the audio and visual cues enhanced the
performance, when audio features are good. Detailed classification rates are given in
Table 3.

Comparing with results using visual features only, there are two significant improve-
ments: the recall and precision rates for rallies, and missed first serve. Introducing audio
cues increases the correct detection rate thanks to ball hit sounds.

 50

 55

 60

 65

 70

 75

 0  10  20  30  40  50  60

cl
as

si
fic

at
io

n 
ra

te

audio event rejection threshold

applause
speech
tennis
music

silence
tennis + applause

tennis + applause + music

Fig. 13 Classification rate using both manually segmented audio features and visual similarity, when b
varies from 0 to 60%, considering only some audio classes

Table 4 Precision (P), recall (R) and F-measure (F) for segmentation and classification with visual features
only, manually segmented audio features only, and both manually segmented audio and visual features, in a
reduced subset of videos belonging to the same tournament

Visual features Audio features Audio visual features

Segmentation accuracy 0.65 0.65 0.86

Classification P R F P R F P R F
First serve 0.67 0.63 0.65 0.61 0.65 0.63 0.86 0.88 0.87
Rallies 0.78 0.47 0.58 0.91 0.55 0.68 0.94 0.86 0.90
Replay 0.63 0.81 0.71 0.49 0.47 0.48 0.57 0.66 0.61
Break 0.93 0.87 0.90 0.92 0.81 0.86 0.92 0.87 0.89
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Fig. 14 (a) Dominant color repartition of keyframes according to their type of view, for different
videos. (b) selected Kref for each video
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It should be noticed here that the results are presented for bad conditions: a small
learning set, and videos in the testing set belonging to tournaments excluded from the
learning set. The performance and the audio influence significantly increase when learning
and testing sets are reduced to the same tournament (Table 4).

5.4 In the search of the relevant audio information

From the previous analysis about audio features, applause, ball hits and music seems to be
the most relevant events for the structure analysis process. In the following experiment, we
use manually segmented audio features and successively consider only one class for the
audio features at. Figure 13 confirms that applause, ball hits and music are the most
relevant events. As a commentator speaks during almost all the broadcast, the speech event
is present in all states with quite the same probability, and is therefore not informative.
Finally, the best performance is obtained by discarding speech and silence from audio
vectors (figure 14).

6 Conclusion

In this paper, we presented a system based on HMMs that uses simultaneously visual and
audio cues for tennis video structure parsing. The tennis video is simultaneously segmented
and classified into typical scenes of higher level than a tennis court view classification.

The multimodal integration strategy proposed is intermediate between a coarse low-level
fusion and a late decision fusion. The audio features describe which classes, among speech,
applause, ball hits, silence and music, are present in the shot. The video features correspond
to visual similarity between the shot keyframe and a global view model, and the shot
duration. There are no further decision made on these features before the HMM
classification, like a global view classification, or major audio event detection. Such late
decisions are taken at a higher level, considering the context, and based on audio–visual
cues simultaneously.

The results have been validated on a large and various database. They show an
encouraging improvement in classification when both audio and visual cues are combined.
However, the automatic audio segmentation has to be improved since the errors from the
classification spread over the further structuration process. Another solution to avoid this
problem is to extend this fusion scheme so that no partial decisions (such as presence or
absence of an audio class) is taken before the fusion stage. We are currently working on
such approaches where a combined model is defined on low level features. We are also
testing this approach on another sport, baseball, which is well-structured like tennis.

Another approach could be to integrate higher-level features, like score or players
detection for the visual part, and keywords from automatic speech transcription for the
audio part. Such more specific features would give very relevant information, but could
tend to make the system even more application dependent.
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