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Abstract Given its readily deployable nature and broad applications for digital
entertainment, video streaming through overlay networks has received much
attention recently. While a tree topology is often advocated due to its scalability,
it suffers from discontinuous playback under highly dynamic network environments.
For on-demand streaming, the asynchronicity among client requests further
aggravates the problem. On the other hand, gossip protocols using random message
dissemination, though robust, fail to meet the real-time constraints for streaming
applications. In this paper, we propose TAG, a Tree-Assisted Gossip protocol that
addresses the above issues. TAG adopts a tree structure with time indexing to
accommodate asynchronous requests, and an efficient pull-based gossip algorithm to
mitigate the impact of network dynamicity. It seamlessly integrates these two
approaches and realizes their best features, namely, low delay with a regular tree
topology, and robust delivery with smart switching among multiple paths, thus
making effective use of the available bandwidth in the network. We evaluate the
performance of TAG under various settings, and the results demonstrate that it is
quite robust in the presence of local and global bandwidth fluctuations. As
compared to pure tree-based overlay VOD system, it achieves much lower and
stable segment missing rates, even under highly dynamic network conditions.

Keywords Overlay networks . Video-on-demand . Multicast tree . Gossip protocol

1 Introduction

Recently, application-layer overlays have emerged as a readily deployable and thus
promising alternative to IP multicast for multi-point video distribution [1–4, 9, 16,
18, 20–22, 24–27]. An overlay network is built out of unicast tunnels across
cooperative nodes with certain buffering capabilities. Each overlay node acts as an
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application-layer proxy, and caches a certain amount of the data it receives; the data
are then relayed among the active nodes in the overlay to realize multicasting. As an
application-layer solution, it largely avoids the known practical and political issues
for IP multicast deployment.

In existing overlay construction algorithms, a tree structure is often advocated for
data delivering [5, 7, 8, 10, 12–15, 17, 23], which originates from and works efficiently
with IP multicast. For an application-level overlay with dynamic nodes, it however
suffers from several severe problems. In particular, any bandwidth fluctuation or
failure at a node close to the root may cause buffer underflow at a large population
of downstream nodes; such situations are not uncommon as each overlay node can
join or leave at will. For on-demand streaming, the asynchronicity among client
requests further aggravates the above problems.

Opposite to a tree-based protocol, gossip protocols enable random data dissem-
ination with no support from a regular overlay structure [11, 19, 29, 30]. In a typical
gossip process, a node randomly selects a subset of target nodes to deliver recently
available data segments, and meanwhile, receives segments pushed from these nodes. It
is known that gossip algorithms achieve highly robust data distribution. Nevertheless,
it is not straightforward to apply gossiping in on-demand streaming, for it often fails to
achieve a timely delivery. Furthermore, the push-based gossip could cause excessive
data duplications, which is particularly severe for high-bandwidth videos.

In this paper, we present TAG, a Tree-Assisted Gossip protocol for on-demand
media streaming. TAG constructs and maintains two overlays, namely, a tree
overlay and a gossip overlay, which collectively deliver video streams to clients. We
design intelligent and efficient overlay construction and data delivering algorithms
for this hybrid system. They seamlessly integrate the two distinct approaches and
realize their best features: low delay with a regular tree topology, and robust
delivery with smart switching among multiple paths, thus making effective use of the
available bandwidth in the network. We present a timing listing that accommodates
the asynchronous requests in an on-demand streaming system. We also substitute
the push-based delivery by a pull process, which greatly eliminates the massive
redundancy due to random disseminations. Finally, we enhance the TAG system by
introducing AVL tree based indexing, which facilitates non-sequential accesses.

We evaluate the performance of TAG under various network configurations. The
results demonstrate that it is highly robust when facing local and global bandwidth
fluctuations. As compared a pure tree-based overlay VoD system, it achieves much
lower and stable segment missing rates (<10%) under dynamic network environ-
ments. Meanwhile, its control overhead is kept at low levels, suggesting that TAG
scales well to large overlay networks.

The rest of the paper is organized as follows. An overview of TAG is given in
Section 2, together with detailed protocol operations presented in Section 3. In
Section 4, we further enhance TAG by introducing AVL tree based indexing. The
performance of TAG is evaluated in Section 5. Finally, Section 6 concludes the
paper and offers some future research directions.

2 Overview of TAG

A TAG system consists of a content server, which stores a repository of media files,
and a set of autonomous nodes, which can join or leave the system at will. We assume
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that the address of the content server is publicly available through an advertising
protocol, such as SAP; thus, a node can always retrieve the media stream from the
server; yet a scalable solution is expected given the limited server resources. To this
end, each node in the TAG system contributes a certain buffer space, which caches
the recently received the data at the node, and a node thus can retrieve data not only
from the server, but also from other active nodes with expected data in their buffers.

TAG adopts a tree assisted gossip protocol to organize the nodes, locate partners
with cached data, and schedule the data fetching. Figure 1 shows such an overlay
structure, where a tree organizes all the nodes, and these nodes also form gossip
partners to exchange data with each other. We divide buffer at every node i into two
parts, namely, a forward buffer of size bþi , and a backward buffer of size b�i . A node
stores data segments pre-fetched from its parent or partners in its forward buffer,
and caches played out segments in its backward buffer, both of which can be used to
supply its children or partners upon requests.

We show an example the gossip partnership for node 7 in figure 1, and stress
three salient features of this hybrid design: (1) Adaptive, as a receiver can
intelligently switch among multiple suppliers (parent and gossip partners), and the
fanout constraint for tree nodes can be relaxed; (2) Efficient, as the availability at
different paths/nodes can be explored; and (3) Robust, as the bandwidth fluctuation
or node failure at a particular path has less impact.

Our experimental results suggest that most of these features are enabled by the
gossip algorithm; yet the tree structure is indispensable to meet the real-time
constraints. It is, however, not straightforward to employ a tree structure or a gossip
algorithm for on-demand streaming, not to mention integrating them. There are
several challenges to be addressed, in particular:

1. How is a newly joined node inserted to the tree and assigned with gossip
partners? Note that the nodes are with asynchronous join times and limited

1

131211

97

8
6410

2 5 3

Fig. 1 Tree-assisted gossip overlay
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buffer spaces. Similar issues have to be addressed when node fail or leave the
system.

2. For each expected data segment, where and when to fetch it? There are multiple
suppliers with non-uniform bandwidth and data availability, and the playback
deadline has to be met.

We detail the TAG operations in the next two sections, which offer efficient
solutions to the above issues in this hybrid system.

3 Protocol operations

For ease of exposition, we focus on the distribution of a single video stream only,
and the solution can be easily extended to the multi-stream case. We assume that
the stream is divided into equal-sized data segments, each with a unit playback time.
The buffer size is measured as the total number of segments it can accommodate.
We also assume that each segment has a sequence number, and video playback at a
node always starts from the first segment. Extensions to support non-sequential
accesses will be addressed in the next section.

3.1 Timing condition and list

Due to data asynchronicity in on-demand streaming, a parent–child relationship or
gossip partnership cannot be directly set up between any two nodes, even without
the outbound bandwidth constraint. We now derive the conditions for two nodes to
form a parent–child or gossip relation, which will serve as a foundation for overlay
construction and maintenance.

Figure 2 depicts a snapshot of the buffers at nodes i and j, respectively, at time t.
Suppose t-ti is the currently played segment for node i, which joins the system at
time ti; the maximum sequence number of the data segments in its buffer is thus
t � ti � bþi , and the minimum one is t � ti � b�i ; so is node j.

From figure 2, the necessary condition for j being the parent of node i should be

t � ti < t � tj

t � ti > t � tj � b�;j

�
ð1Þ

which is equivalent to

ti � b�j < tj < ti: ð2Þ

That is, the join time of node j should be earlier than that of node i, and their
difference should be less than the draining time of the backward buffer of node j.

Data segment sequence number

-
i it - t - b it - t +

i it - t + b

-
j jt - t - b jt - t +

j jt - t + b

i

j

Fig. 2 Buffer status at nodes j
and i at time t

214 Multimed Tools Appl (2006) 29: 211–232



Opposite to the parent–child relation, data delivery is bidirectional with a gossip
partnership. From figure 2, for node i to forward data to node j, the following
condition should be met:

i! j :
t � ti � b�i < t � tj þ bþj
t � ti þ bþi > t � tj

�
ð3Þ

which basically states that at least part of the buffer (backward buffer plus forward
buffer) of node i should overlap with the forward buffer of node j. Similarly, the
condition for node j to forward data to i is

j! i :
t � tj � b�j < t � tj þ bþi
t � tj þ bþj > t � ti

�
ð4Þ

Combining Eqs. 3 and 4, we have

j$ i :

ti < tj þ b�j þ bþi
ti > tj � bþj
ti > tj � bþj � b�i
ti < tj þ bþi

8>><
>>:

ð5Þ

which follows that

ti � bþi < tj < ti þ bþj ð6Þ

To efficiently examine the above timing conditions in TAG, we link all the active
nodes into a timing list, sorted according to their joining times. In this list, node j is
the predecessor of node i if node j joined system immediately before node i, and,
accordingly, i is referred to as j’s successor. A bidirectional link is then added
between the predecessor and the successor. Figure 3 depicts such a timing list
structure for the nodes.

1

131211

87

9
6410

2 5 3

Fig. 3 An illustration of the index list structure (dashed line), which facilitates the construction of
the delivery tree (solid line) and gossip partnerships
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Note that, to construct and maintain the timing list, the content server needs to
keep track of the latest joined node only. In the bootstrapping stage, the content
server itself is such a node. Each newly joined node first contacts the content server,
which then redirects the node to the existing latest joined node, and a predecessor
and successor relation can then be formed, as will be detailed next.

3.2 Construction of TAG overlay

A TAG system is constructed with nodes joining the overlay asynchronously. To
facilitate the join process, each node maintains a set of status information, as shown
in Table 1, and a new node i performs the following join operations:

1) Node i sends message Join<i> to the content server;
2) The content server records the join time of node i, and redirects it to nodes L,

which is the latest joined node so far, i.e., the one immediate before node i;
3) Node L sets node i as its successor, and node i sets node L as its predecessor.

The predecessor’s predecessor and successor’s successor relation is also set
between node i and the predecessor of node L;

4) Node i invokes a parent search and a partner search algorithm to locate its
parent and gossip partners, and then sets the corresponding relations. Both
algorithms rely on the timing list to check the timing conditions, as shown in
figures 4 and 5, respectively.

For both search algorithms, the number of nodes involved is bounded by O(K),
and we will show through experiments that a relatively small K (say less than 12) is
enough in most cases. The number of gossip partners, k, is also an important factor,
whose impact will be investigated in our experiments as well. Note that we also
make each node linked to its predecessor’s predecessor and successor’s successor in
the timing list, which helps with recovering from node failures. The predecessor for
the list head (the content server) and the successor for the list tail (the latest joined
node) are two special cases, in which the predecessor and the successor are set as the
head itself and tail itself, respectively.

1) Traverse the timing list, staring from the predecessor of node i;  

2) Test condition (2) for each encountered node, until the second node violating 

the condition is found, or K nodes have been visited;  

3) For all the nodes that satisfy the condition, select the one with the maximum 

 bandwidth to node i as its parent.  

Fig. 4 Parent search algorithm for node i

Table 1 Fields in each node for overlay construction

Parent Parent of a node in the delivery tree

ChildrenList List of children in the delivery tree

Predecessor Predecessor in the timing list

Pre-Predecessor Predecessor of predecessor in the timing list

Successor Successor in the timing list

Suc-Successor Successor of successor in the timing list

PartnerList List of gossip partners
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3.3 Maintenance of TAG overlay

We use a heartbeat protocol to maintain the parent–child and partner relationships.
Each node periodically sends an Echo message to its related nodes, namely, parent,
children, and partners, as well as successor and predecessor in the index list. The
leave of a node, due either to an intended departure or abrupt failure, can thus be
easily detected. The following failure recover operations will then be executed at the
affected nodes:

Predecessor/Successor:

1) The predecessor and successor of the failed node contact each other and
form a direct predecessor–successor relationship; this is viable because each
node records its pre-predecessor and suc-successor as well;

Parent/Gossip Partners:

1) Removes the failed node from its children list or gossip partner list;

Children:

1) Each child invokes the parent search algorithm to locate a new parent. The
starting node will be the predecessor of the child, or the pre-predecessor if
its predecessor is just the failed node.

In a dynamic network, the above operations can as well be periodically invoked
by a node to refine its parent–child relationship or gossip partnership.

3.4 Data delivering

In TAG, a data segment could be available at multiple suppliers, and a commonly
used push mechanism for data delivering may cause excessive redundancy. We thus
resort to a pull mechanism, in which a node with data available first sends a Data
Offer message to a target node, namely, a child or a gossip partner. The target node
will then send back a Data Request if it decides to fetch a data segment.

The fields included in a Data Offer are shown in figure 6. Note that their sizes are
relatively small, as the availability for each segment is indicated by one bit only. To
further reduce the overhead, the data offer and request can both be piggyback by
the Echo messages, and the requests for a set of segments from the same supplier
can be batched together as well.

Since a node will collect a set of Data Offers from its parent and gossip partners
during an exchange period, a key issue is thus to decide which unavailable data
segments should be fetched from which node. There are two constraints in this

1) Traverse the timing list, staring from the predecessor of node i;  

2) Test condition (6) for each encountered node, until the second node violating 

the condition is found, or K nodes are visited; 

3) Among all the nodes that satisfy the condition, randomly select k nodes as 

gossip partners. 

Fig. 5 Gossip partner search algorithm for node i
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process: 1) each data segment should be fetched before its playback deadline; 2) the
number of data segment fetched from a partner should be within its delivery
capability, i.e., the outbound bandwidth.

We have designed a heuristic algorithm that follows the above constraints and
tries to maximize the success ratio for segment delivering. It starts from examining
the segment with the earliest deadline, and then the second earliest, and so on. In
case multiple suppliers are available for a segment, the algorithm selects the supplier
that offers the least number of unavailable data segments. For example, suppose the
segment has two suppliers, one offers ten unavailable segments, while the other does
not have any other unavailable segment but the expected segment; the latter is then
selected, because the former is more flexible in supplying data and can potentially
be use to fetch other unavailable segments if needed. In addition, fewer suppliers
also imply that the segment could be relatively new, and thus should be gossiped as
soon as possible to minimize delay.

4 Enhancement with AVL tree based indexing

In the basic TAG system, we assume sequential accesses that always starts playback
from the initial segment of a stream. For implementing VCR-like operations, such
as forward, backward, and random seek, however, non-sequential access from
arbitrary starting position become necessary. In this section, we present effective
enhancement to the basic TAG system to support non-sequential accesses.

Suppose a new node i joins the overlay at time ti with a playback offset oi; at time
t, the node expects to play out segment (t j ti + oi). Since the conditions to form
parent/children and gossip partners still hold if we replace ti by (ti j oi), a naive
solution is to search the timing list until candidates satisfying the revised condition
are found. Unfortunately, in the worse case, this may result in a traverse across all
the nodes in the sorted timing list, yielding unacceptably high cost. Earlier studies
on this issue [8, 13, 15] have suggested that a centralized server maintains a global
tree structure for both timing and data delivering. While this solution is easy to
implement, it is often not scalable, and the delivery tree itself is not an ideal
indexing structure given that its height is unbounded.

To this end, we introduce an AVL index tree to assist the search in the timing list.
An AVL tree is a binary search tree with the following balance property [6]: for any
node in the tree, the height of the left and the right sub-tree can differ by at most 1.
It is known that, for an AVL tree with N nodes, its height H satisfies H < 1.44log
(N + 2) – 1.328. Hence, the cost of locating an proper insertion point is O(logN),
implying that the joining and failure recovery costs would be greatly reduced for
non-sequential accesses. It is worth noting that the AVL indexing tree is a
complement to the timing list, and is independent of the data delivery tree; hence,
the list construction and maintenance, as well as the data scheduling and
dissemination algorithms, remain unchanged.

Buffer Bitmapseq

Fig. 6 Fields of message Data Offer
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We now detailed the operations of the AVL index tree for non-sequential
accesses. Table 2 lists the related information kept at each node.

4.1 Joining operations with playback offset

The AVL index tree is constructed with the growth of the timing list. For a newly
joined node with playback offset, the following operations are performed:

1) Node i sends message Join<i, oi> to the content server;
2) The content server records the virtual join time (ti j oi) of node i, and redirects

it to nodes R, which is the root of the AVL index tree;
3) If the virtual join time of node i is less than that of node R, R redirects i to its

left child in the AVL index tree, or otherwise to its right child. The above
operations are repeated until the corresponding child is empty, and node i is
then inserted to this position as a leaf node;

4) If i is inserted as left child of its avlParent, it will be the predecessor of avlParent
in the timing list, or else its successor. Similar operations for a new node to join
the timing list and data delivery tree are performed (steps 3 and 4 in Section
4.2) with this insert position;

5) Node i sets its height to 0, and sends a HeightReport message to its avlParent.
Upon receiving the report, the parent resets its avlLeftHeight or avlRightHeight,
depending on which branch the report comes from, and then calculate its own
height as

max avlLeftHeight ; avlRightHeightð Þ þ 1:

If the height is changed, the node reports as well to its own avlParent until
the root of the AVL tree is reached;

6) If unbalance is detected after update the height, a subtree rotation should be
performed, and the root of the AVL, if updated, is then reported to the content
server.

Since the height of the AVL tree is O(logN), the cost for a joining operation is
thus bounded by O(logN).

4.2 Failure recovery

We assume that each node also maintains its relation with its avlParent, avlLeftChild
and avlRightChild through the heartbeat protocol, and its failure can thus be
detected by these nodes. The following recovery operations will then be performed

Table 2 Fields at each node for the AVL indexing tree

avlParent Parent in the AVL tree

avlLeftChild Left child in the AVL tree

avlRightChild Right child in the AVL tree

avlLeftHeight Height of the left subtree in the AVL tree

avlRightHeght Height of the right subtree in the AVL tree

Virtual join time Value (tijoi) for node i

avlGrandParent Parent’s parent in the AVL tree
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(for ease of exposition, we denote the failed node as node F, and its predecessor and
successor in the timing list as P and S, respectively):

1) F ’s avlParent removes F from its children list; F ’s avlLeftChild and avlRight-
Child, respectively, mark their links to F as broken;

2) P and S, respectively, send a probe, which is forwarded toward the root in the
AVL tree, until the root or a link marked as broken is encountered;

3) Assume Wp is the last node traversed by P’s probe and Ws is that by S’s probe.
There are three different cases to be addressed:

Case 1: Both probes stop after encountering a broken link.
We can prove (see Appendix) that Wp and Ws must, respectively, be the

avlLeftChild and the avlRightChild of F in the AVL tree. Furthermore, S must
be a leaf node or a node with only right child in the AVL tree. The following
operations are then performed:

a) If S has avlRightChild, it will be connected to the avlParent of S as a right
child;

b) S sets Wp as its avlLeftChild, and Ws as avlRightChild;
c) S sets the avlGrandParent of Wp (which is S’s avlLeftChild now) as its own

avlParent;

Case 2: Only one probe stops after encountering a broken link; the other
stops after reaching the root, or there is no probe sent in that branch
at all. We can prove (see Appendix) that F must have either avlLeftNode
or avlRightNode, while not both. This child is then directly connected
to its avlGrandParent to substitute the failed node;

Case 3: Neither probe encounters a broken link. We can prove (see Appendix)
that F in this case must be a leaf node in the AVL tree, and thus no
further operations are needed;

4) Both the avlLeftChild and the avlRightChild of F report their tree height to
their new avlParent, and, if necessary, perform re-balancing operations as in
Step 4 of the joining process.

5) The timing list is recovered following the steps described in Section 4.2.

Figure 7 shows an example of the recovery process for failed node 5. Suppose in
the timing list its predecessor (P) is node 4 and successor (S) is node 6. According to
the AVL tree construction algorithm, they should be, respectively, in the left
subtree and the right subtree of node 5. In Step 2 of the recovery algorithm, nodes 4
and 6 probe toward the AVL root and stop nodes 2 (Wp) and 7 (Ws), which are,
respectively, the avlLeftChild and the avlRightChild of failed node 5. Node 6 then
serves as a substitute for node 5 (figure 7b), and a double rotation is then performed
to re-balance the AVL index tree (figure 7c).

5 Performance evaluation

We evaluate the performance of TAG under various network settings, with a focus
on the following two important measures: control overhead and streaming quality,
as well as their sensitivity to parameter settings. We also compare TAG with other
overlay on-demand systems, in particular, oStream, a pure tree-based system.
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5.1 System configurations

Unless otherwise specified, the results presented in this section are based on the
following default configurations; yet, similar results have been observed with other
configurations, and the impact of several key parameters will be further investigated
in the end of this section.

The content server has ten videos for streaming, each with 256 Kbps rate and
2-h length. The length of a segment (or a time unit) is 1 s, and the buffer at a node
can accommodate 1,080 segments, i.e., 15% of a video stream, which is equally split
into the forward and backward buffers. The size of the candidate set for parent or
gossip partner search is 12, and each node has five gossip partners.

The underlying network topology is generated using the GT-ITM package [28],
which emulates the hierarchical structure of the Internet by composing inter-
connected transit and stub domains. The network topology for the presented results
consists of ten transit domains, each with seven transit nodes, and a transit node is
then connected to six stub domains, each with seven stub nodes. The total number of
nodes is thus 3,010. We assume that each node represents a local area network with
plenty of bandwidth, and routing between two nodes in the network follows the
shortest path. The initial bandwidth assigned to the links is as follows: 1.5 Mbps
between two stub nodes, 6 Mbps between a stub node and a transit node, and 10 Mbps
between two transit nodes. We will also inject cross traffic in the experiments to
emulate dynamic network conditions.

To mitigate randomness, each result presented in this section is the average over
ten runs of an experiment.
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Fig. 7 An illustration of failure recovery (failure recovery case 1)
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5.2 Overhead of join and failure recovery

We first consider the control overhead of TAG, in particular, the overhead for node
joining, leaving, or failing in a dynamic overlay. We are interested in both local and
global overheads and thus adopt two measures: the maximum node cost, which
represents the maximum possible overhead at each node, and the overall cost, which
represents the total control overhead of the system per operation. The costs are
measured in terms of the number of messages exchanged per operation, thus
reflecting both the bandwidth consumption and the execution time.

Figure 8 shows the maximum node cost for a joining operation in the three
variations of TAG, namely, basic TAG with sequential accesses (TAG-S), basic
TAG with non-sequential access (TAG-N), and TAG with non-sequential accesses
and AVL indexing (TAG-NA). We assume that the content server is the only initial
node in the system, and other nodes then join the system following a Poisson arrival
with an inter-arrival time of 2 s. In TAG-N, the naive timing list searching algorithm
is employed.

Intuitively, the joining node itself incurs the maximum node cost, which is mainly
for joining the timing list and initiating the search for parent and gossip partners. As
shown in figure 8, the cost monotonically increases with increasing the overlay size
in the initial part, and becomes almost a constant when the overlay size is greater
than 100 nodes. Since TAG-NA incurs extra overhead to maintain the AVL index
tree, its maximum node cost is higher than that of the other two.

Nevertheless, as shown in figure 9, the overall join cost of TAG-NA can be much
lower than that of TAG-N. Since the overall cost is calculated across all the affected
nodes in a join operation, it is related not only to the individual node cost but also the
number of affected nodes. For TAG-N, the overall join cost is almost a linear function
of the system size, for the number of involved nodes is proportional to the overlay size
in the naive searching algorithm. For TAG-NA, this becomes a logarithmic function
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Fig. 8 Maximum node cost for node join
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(note that the y-axis in figure 8 is log-scaled), suggesting that the joining operation
with AVL indexing is scalable, and the cost for maintaining the AVL tree can be
ignored for large networks. On the other hand, for TAG-S, the overhead is almost a
constant, as only a limited number of tail nodes in the timing list are affected.

The maximum node costs and the overall costs for a failure recovery operation
are shown in figures 10 and 11, respectively. The general trends are quite similar to
that of joining operations, and the overall costs for failure recovery are slightly
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higher in all the three TAG variations. This is because more nodes are affected, in
particular, all children of the failed the node have to re-locate parents.

In summary, the joining/failure recovery operations are efficient for both TAG-S
and TAG-NA, while that for TAG-N might suffer from high cost in large overlay
networks. We thus focus only on the performance of TAG-S and TAG-NA in our
following experiments.

5.3 Streaming quality

Given that playback continuity is critical for streaming applications, we adopt the
Segment Missing Rate (SMR) as the major criterion for evaluating streaming
quality. A data segment is considered missing if it is not available at a node till the
play-out time, and the SMR for the whole system is the average ratio of the missed
segments at all the participating nodes during the simulation time. As such, it
reflects two important aspects of the system performance, namely, delay and capacity.

For comparison, we also simulate an existing on-demand overlay streaming
system, oStream, with the same network and buffer settings. oStream employs a pure
tree structure, in which each node caches played out data and relays to its children
of asynchronous playback times. A centralized directory server is used to maintain
the global information of the overlay, and facilitates node join or failure recovery.
Detailed about oStream can found in [8].

5.3.1 Streaming quality with bandwidth fluctuations

We first investigate the performance of TAG under dynamic network environments
with local and global bandwidth fluctuations.

To emulate local bandwidth fluctuations, we randomly inject traffic to the
network links such that the available bandwidth at each link various over time, yet
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the total available bandwidth of the network remains constant, which is 0.8 of the
base setting (with no cross traffic).

Figure 12 shows the segment loss rates (SMRs) for TAG and oStream over time.
It can be seen that the loss rate of TAG is not only lower than oStream, but also
quite stable, which is generally around 0.05 to 0.1. From a video decoding point of
view, such a loss can be effectively masked by interleaving or error-concealment
techniques. On the other hand, the loss rate of oStream greatly fluctuates over time,
and the peak value can be as high as 0.7, resulting in poor video quality. This is
because oStream relies on a specific tree structure for streaming, and the bandwidth
reduction at an internal link of the tree, especially those close to the root, could
result in the loss multiplicity problem.

It is known that not only the available bandwidth of local links dynamically
changes, but also the overall available bandwidth of a network changes over time on
an hour or daily basis, e.g., working and sleeping hours, working days and weekends.
Hence, in the second set of experiments, we compare the performance of TAG and
oStream under different global network bandwidths. Their segment loss rates are
depicted in figure 13, where the overall available bandwidth of the network is
gradually reduced from 100 to 60% of the base setting.

Not surprisingly, for both TAG and oStream, SMR increases with decreasing the
overall bandwidth. However, the increasing rate for TAG is generally lower than
that of oStream, especially when the reduction is less than 25%. As an example, for
a reduction of 25%, the SMR of oStream has reached 0.35, or 35% of the segments
are lost or missed the playback deadline; yet the SMR of TAG is still close to 0.1.
This is because oStream explores the available bandwidth at a small subset of
network links only, i.e., those tree links, while TAG makes more effective use of
the available bandwidth across much more paths. In addition, as explained before,
once a segment is lost at a high level node in an oStream tree, it will be lost at all
downstream nodes. This is, however, not the case in TAG for each segment has
multiple potential suppliers. As a matter of fact, we have observed that over 90%
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of the data segments are delivered through the gossip process in our experiments,
which confirms our intuition that gossip greatly enhances the robustness of the system.

5.3.2 Streaming quality with node failures

In this set of experiments, we consider dynamic node failures. We assume that there is
no global bandwidth reduction, so as to focus on the impact of node failures. Figure 14
presents the segment missing rates as a function of node failure rate for oStream,
TAG-S, and TAG-NA. It can be seen that, when there is no failed node, all the
systems work well in this stable scenario. For TAG-S, the segment missing rates
slightly increase with increasing the failure rate, but are generally less than 6%. The
missing rate of TAG-NA is only a little higher than that of TAG-S. On the other hand,
when 10% nodes fail, the segment missing rate for oStream can be as high as 25%.

We next investigate the effect of random seeking, a key operation toward
supporting interactive streaming. For both oStream and TAG-NA, random seeking
can be implemented by letting the node leave the system and then re-join with the
new playback offset. Figure 15 compares the streaming quality of oStream and
TAG-NA in this scenario. Obviously, the tree-assisted gossip enables a quite robust
delivering structure, making the re-seeking operation in TAG-NA much smoother
than that in oStream. When 10% nodes perform reseeking, the SMR of TAG-NA is
still lower than 10%, while that of oStream has reached 35%, which is difficult to
mask at the receiver’s end.

5.4 Sensitivity to parameter settings

In the last set of experiments, we study the sensitivities of the key parameters in the
TAG system, in particular, the number of gossip partners, the size of candidate set,
and the size of buffers.
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Figure 16 depicts the streaming quality as a function of number of gossip partners
for TAG-S and TAG-NA under different system bandwidths. It can be seen that the
segment missing rate reduces when increasing the number of gossip partners. This is
consistent with our intuition that the system is more robust when increasing the
number of suppliers. However, the improvement with over five partners is marginal.
Since the computation and transmission overhead of maintaining a large number of
partners can be excessive, we believe that 5 is a reasonable choice, which is used in
our default setting. Similarly, from figure 17, we choose 12 as the default value for
K, the size of the candidate set in parent or gossip partner searching. As shown in
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our previous results, these default settings lead to reasonably low control overhead
and quite good streaming quality under various network configurations.

Regarding buffer size, though it would be desirable if every overlay node caches
all the video streams, it is often impractical given the large size of video streams.
The choice of buffer size is also closely related to the number of active nodes in the
overlay. As shown in figure 18, when there are enough active nodes, even a small
buffer can enable reasonably good streaming quality with node collaborations.
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Considering these factors, we set the buffer size as 20% of the video stream size in
our experiments, which is sufficient to achieve low segment loss rates and, with this
setting, the computation time for the scheduling algorithm is less than 20 ms, which
is suitable for real-time streaming.

6 Conclusion and future work

In this paper, we have presented TAG, a tree-assisted gossip protocol for on-
demand streaming. TAG has combined the best features of tree structure and
random message dissemination: low delay with a regular tree topology, and robust
delivery with random switching among multiple paths, which make effective use of
the available bandwidth in the network. The performance of TAG has been
extensively evaluated under various network configurations. The results demon-
strated that it is highly robust in the presence of local and global bandwidth
fluctuations. As compared pure tree-based overlay VOD system, TAG achieves
much lower and stable segment missing rates, even under highly dynamic network
environments. Possible further research avenues for TAG include optimizing the
scheduling algorithm and overlay organization, dealing effectively with failure of
multiple related nodes, and incorporating advanced coding techniques, such as
layered or multiple-description coding.

Appendix

In the failure recovery algorithm for AVL index tree, assume that the predecessor
and successor in the timing list for the failed node F are P and S, respectively, and
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WP is the last node traversed by P’s probe and WS is that by S’s probe. We have the
following observations:

Case 1: Both probe stop after encountering a broken links. In the AVL index tree,
WP and WS must be the avlLeftChild and the avlRightChild of F, respec-
tively. Furthermore, S must be a leaf node or a node with only the right
child in the AVL tree.

Case 2: Only one probe stops after encountering a broken link; the other stops after
reaching the root, or there is no probe message sent in that branch at all.
In this case, F must have either avlLeftChild or avlRightChild, while not both;

Case 3: Neither reaches a broken link. The failed node in this case must be a leaf
node in the AVL tree.

Proof:

Case 1: In this case, obviously, both the P and S are non-empty. Moreover,
according to the AVL tree construction algorithm, the P must be in the
left subtree of F, and S in the right subtree. It follows that, in the AVL
index tree, WP and WS must, respectively, be the avlLeftChild and the
avlRightChild of F, the failed node.

Suppose S has a left child, whose virtual join time should be less than
that of S, but greater than that of F. That is, in the timing list, this left child
should be the successor of F, which contradicts the fact that S is the
successor. Hence, S must be a leaf node or a node with only the right child;

Case 2: We first assume that only P’s probe reaches a node with a broken link, which
must be the avlLeftChild of the failed in the AVL tree, as proved in case 1.

In this case, if F ’s successor S is empty, i.e., there is no probe sent in the
right branch at all, F cannot have a right child in the AVL tree; otherwise, one
of the nodes in F’s right subtree will become its successor in the timing list.

On the other hand, suppose S is non-empty and F has a right child. Since
S’s probe does not reach the avlRightChild of F, S cannot be in the right
subtree of F. Assume R is the root of the minimum subtree that covers both F
and S. Then, S must be in the left subtree of R, while F must be either R itself
or a node in the right subtree of R; otherwise, S’s probe will reach a broken
link as well. It follows that the right child of F has a virtual join time greater
than that of F, but less than that of S. This contradicts our assumption that S is
the successor of F, and hence, the failed node F does not have right child.

Similarly, we can prove that F does not have a left child if only S’s probe
reaches a broken link (Note that, we can ignore the case that P is empty in the
proof given that content server persists). In summary, the failed node has a
single child in this case;

Case 3: Suppose F has a non-empty avlRightChild. Since the virtual join time of
this avlRightChild is greater than that of F, F must have a non-empty
successor according to the AVL tree construction algorithm. As proved in
Case 2, if S is non-empty and F has a right child, S must be in the right
subtree of F. Hence, S’s probe will encounter the broken link in the right
branch, which contracts the fact that no broken link is encountered.
Similarly, we can prove that F does not have a left child, and it thus must
be a leaf node.
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