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Abstract. Some of the major objectives of the JPEG 2000 still image coding standard were compression and
memory efficiency, lossy to lossless coding, support for continuous-tone to bi-level images, error resilience,
and random access to regions of interest. This paper will provide readers with some insight on various features
and functionalities supported by a baseline JPEG 2000-compliant codec. Three JPEG 2000 software implemen-
tations (Kakadu, JasPer, JJ2000) are compared with several other codecs, including JPEG, JBIG, JPEG-LS,
MPEG-4 VTC and H.264 intra coding. This study can serve as a guideline for users to estimate the effective-
ness of JPEG 2000 for various applications, and to select optimal parameters according to specific application
requirements.
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1. Introduction

Since the release of the Joint Photographic Experts Group (JPEG) still image coding standard
in 1994 [7], it has been widely adopted in applications involving digital communication
and storage of still images and graphics. Motivated by the evolution of image coding
technology and by an increasing field of applications, the JPEG committee initiated a
new project in 1997 to develop the next generation still image coding standard. The joint
effort of the International Organization for Standardization (ISO) and the International
Telecommunication Union (ITU-T), resulted in the JPEG 2000 International Standard [10],
published in December 2000.

The original Call for Contributions for the JPEG 2000 standardization effort [8]
identified a set of coding features believed to be vital to many existing and emerging
image applications. These were translated into goals for the new standard, as shown
below.

• The system should offer excellent compression performance at very low bit rates, typically
0.25 bits-per-pixel (bpp) or less.
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• The system should be able to compress both continuous-tone and bi-level images with
similar system resources.

• The system should provide lossy to lossless compression by means of a progressive
coding process.

• The system should be able to perform progressive coding in terms of both pixel accuracy
and spatial resolution.

• The system should produce code streams that are robust to channel errors.
• The system should allow random access to and processing of certain parts of the image

such as regions of interest.

Various techniques have been proposed to address these requirements. The standard even-
tually converged to a baseline coding system that achieves a good balance in supporting the
desired features.

The purpose of this paper is to provide readers with some insight on the coding struc-
ture of JPEG 2000, its functional parameters, and their effect on coding performance. The
codec is also compared to several other standard codecs, including JPEG, JBIG, JPEG-LS,
MPEG-4 VTC and H.264 intra coding. The performance measures we take into considera-
tion when comparing the codecs are compression efficiency, lossless coding, bi-level image
coding, computational complexity, handling of large images, progressive coding, and error
resilience. Other aspects should be considered when evaluating an image codec for a par-
ticular application, including perceptual image quality, scalability, rate control precision,
and intellectual property rights. These issues are beyond the scope of our work.

This study can serve as a guideline for the evaluation of the effectiveness of JPEG 2000
for various applications, and for the selection of effective options and parameter settings
according to particular application requirements. Comparative analyses can be found in the
literature [14, 18, 20], but our study attempts to be more extensive by considering a wide
variety of images, a comprehensive set of performance measures, and all the codecs and
implementations currently available. It is not our intention to discuss the detailed coding
algorithm and its implementations in this paper. For such information, the reader should
refer to a tutorial on the coding engine by Taubman [20], a system level introduction by
Christopoulos et al. [3], and the standard text [10].

The remainder of this manuscript is organized as follows. Section 2 provides a detailed
description of the JPEG 2000 coding algorithm and its parameters and data structures.
Alternate algorithms are briefly discussed in Section 3. The experimental setup and results
are given in Section 4, and conclusions are drawn in Section 5.

2. The JPEG 2000 coding algorithm

JPEG 2000, like the other codecs tested in this paper, is essentially a transform coder,
which consists of three stages: image transform, quantization and entropy coding. An image
transform is used to achieve image data decorrelation. An efficient transformation yields
a representation of the image data where the energy is concentrated in a small number
of transform coefficients. Transform coefficients are then quantized to a finite number of
quantization levels. It is during quantization that intentional loss of information occurs and



JPEG 2000 PERFORMANCE ANALYSIS 29

most of the compression gain is achieved. Finally, the quantized coefficients are scanned and
encoded into a bit stream using an entropy coder. An image decoder performs the inverse
operations to obtain a reconstructed image.

The coding engine of the JPEG 2000 standard is a coding algorithm derived from the Em-
bedded Block Coding with Optimal Truncation (EBCOT) technique proposed by Taubman
[20]. Detailed descriptions of the codec are given in, among others [1, 17, 22]. In this
section, we briefly describe the basic concepts, parameters, and structures of the coding
algorithm. Although the JPEG 2000 standard, like many other coding standards, only de-
fines the decoder operations, it also provides some informative description of the encoder
implementation. Our discussion is written primarily from the encoder point of view.

In our tests, we used three software implementations of the JPEG 2000 codec: the JasPer
implementation [24], the Kakadu implementation [21], and the JJ2000 implementation [5].

2.1. The image transform

The JPEG 2000 algorithm is based on the Discrete Wavelet Transform (DWT). It is therefore
not compatible with the JPEG coding algorithm, which uses the two-dimensional (2-D)
Discrete Cosine Transform (DCT). Studies have shown [2] that a well designed DWT may
have a moderate gain over DCT in the sense of data decorrelation. More importantly, a
significant improvement in performance is achieved by applying the transform to the whole
image or large blocks thereof instead of small image blocks (JPEG uses 8×8-pixel blocks).
The drawback of this approach is its increased computational complexity. The selection of
DWT at the beginning of the JPEG 2000 project essentially determined the coding structure
of this new standard.

The 2-D DWT is usually implemented through iterative 2-D subband decomposition,
as seen in figure 2. First, the image is decomposed into four subbands, LLN , LHN , HLN ,
and HHN . The same 2-D subband decomposition is then applied to the lowest frequency
subband (LLN ) to obtain subbands LLN−1, LHN−1, HLN−1, and HHN−1. The process is
repeated N times, for an N -level decomposition. Commonly, the number of decomposition
levels is around N = 5. This subband decomposition structure is called the Mallat (or
dyadic, or pyramid) decomposition. This is the only decomposition structure supported by
Part 1 of the standard. The inverse DWT transformation consists in N 2-D subband synthesis
operations applied starting at the lowest resolution.

A one-level 2-D subband decomposition is usually achieved by applying a one-
dimensional (1-D) two-band decomposition to all the rows (or columns) of a 2-D array
and then to all the columns (or rows) of the resulting array. Therefore, the decomposition
generates four subbands, as shown in figure 2. Each 1-D subband decomposition consists
in filtering the input sequence with a low-pass/high-pass filter bank and downsampling
the two filtered sequences by a factor of two. JPEG 2000 specifies two sets of 1-D filter
banks. The reversible 5/3 filter bank performs a reversible integer-to-integer transformation
which can be used to achieve lossless coding. The irreversible 9/7 filter bank performs a
real-to-real transformation which is reversible in infinite precision but irreversible in fi-
nite precision. The resulting DWT achieves better energy compaction and is used in lossy
coding.
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In addition to the DWT for spatial decorrelation, the standard also defines two sets
of component transforms for multi-component images, such as color images. Again, an
irreversible component transformation (ICT) is defined for lossy coding and a reversible
component transformation (RCT) is defined for lossless coding.

At the very beginning of the encoding process, a DC level shift is applied to each image
component. For an image component of bit depth B, the quantity 2B−1 is subtracted from
all the pixel values, in an attempt to obtain a zero-mean distribution. This level shift is
compensated for at the decoder.

2.2. Quantization

To quantize DWT coefficients, JPEG 2000 uses a uniform scalar quantizer with a dead zone
around zero. This quantizer has been chosen mostly because of its simplicity. It can easily
be implemented as a rounding operation. Each DWT coefficient ab(u, v) in subband b is
quantized to the integer qb(u, v) using the formula

qb(u, v) = sign(ab(u, v))

⌊ |ab(u, v)|
�b

⌋
,

where �b is the quantization step, which can vary from one subband to another and is
encoded into the bit stream. The standard does not specify how the quantization step sizes �b

are chosen, and different implementations can use various strategies. The decoder performs
inverse quantization, described by the equation

âb(u, v) =
{

0, if qb(u, v) = 0

sign(qb(u, v))(|qb(u, v)| + 0.5)�b, if qb(u, v) �= 0.

In lossless coding, coefficients of reversible transforms are not quantized, or they can be
thought as quantized by a step size of one. In lossy compression, the quantization step sizes
control the final size of the compressed data file, and thus the compression ratio. The larger
the step sizes are, the smaller the compressed file size will be. Therefore, selecting the step
sizes is a rate control issue and will be discussed in a later section.

In general, a well-designed quantizer minimizes the quantization distortion at certain
bit rates, using an objective measure of the distortion such as the peak-signal-to-noise
ratio (PSNR). For a wide class of signals, the same quantization step must be chosen for
all subbands to optimize the PSNR. However, objective distortion measures don’t always
truly reflect the perceptual quality. In applications where perception is more important
than accuracy in the decoded image, the encoder can use visual weighting. The technique is
similar to the use of a quantization matrix in JPEG and it consists in choosing a quantization
step �b according to the average contrast sensitivity of the human visual system in that
frequency band. Thus, smaller quantization steps will be used for lower-frequency bands.
This adjustment only affects encoder functionality, and is transparent to the decoder.
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2.3. Entropy coding

The major differences between various wavelet-based image coding algorithms are mostly
in the lossless entropy coding stage. This is the step that affects their different coding
performances and features to the greatest extent.

2.3.1. Bit-plane coding. To encode quantized DWT coefficients, JPEG 2000 uses a block
based bit-plane coding method with multiple passes per bit-plane. Each subband is parti-
tioned into a set of non-overlapping rectangular code blocks with a fixed size. Each block is
then encoded independently of other blocks. Within each block, the coding starts from the
most significant non-zero bit-plane and proceeds to the least significant bit-plane. In each
bit-plane, three coding passes are performed, namely the significance propagation pass, the
magnitude refinement pass and the cleanup pass. Each coding pass scans the block accord-
ing to a scanning pattern, and generates coding symbols using a set of pre-defined rules.
The scanning pattern, shown in figure 1, has been chosen to facilitate efficient software and
hardware implementations.

During the significance propagation pass, the encoder identifies the block coefficients
which have been zero (or insignificant) at higher bit-planes but have non-zero (or significant)
neighbors. It is assumed that these coefficients are more likely to become significant in the
current bit-plane. For each tested coefficient, the test result is encoded into the bit stream
(1 if significant, 0 if insignificant). If a new significant coefficient is detected, its sign bit is
encoded immediately.

The magnitude refinement pass processes coefficients which have been found significant
in previous bit-planes. For each such coefficient, the magnitude bit in the current plane is
encoded into the bit stream.

The cleanup pass tests all the insignificant coefficients which have not already been
tested in the significance propagation pass in the current bit-plane. It is expected that these
coefficients are less likely to become significant because they do not have any significant
neighbor. Therefore, to reduce the number of symbols generated in this pass, test results
are run-length encoded when four consecutive coefficients in a scan pattern column are
all insignificant. Once a significant coefficient is identified, its sign bit is also encoded
immediately.

Each coefficient in a code block will be coded once and only once in each bit-plane.
The symbols generated by these three passes are usually passed through a binary adaptive
arithmetic coder with context modeling. Specific context models are defined for the coding of
each pass and for the coding of sign bits. Each context determines which adaptive probability
model will be used in the arithmetic coding of the current symbol. The contexts are selected
based on the significance of the eight or four connected neighboring coefficients. To simplify
context calculation and achieve reliable probability estimation, the number of contexts is
kept small. More specifically, the significance propagation pass uses nine contexts, the
magnitude refinement pass uses three contexts, the cleanup pass uses the nine significance
propagation contexts plus one extra context for run-length coding, and the sign bit coding
uses five contexts. JPEG 2000 uses a binary adaptive arithmetic coder called the MQ coder,
designed to reduce computational complexity. It is closely related to the well-known QM
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Figure 1. Components of the JPEG 2000 image data structure.
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and an offspring of the Q coder. Arithmetic coding is always initialized at the beginning of
a code block and can be optionally reinitialized at the beginning of a coding pass.

JPEG 2000 also defines a selective arithmetic coding bypass or lazy coding mode in
which, after the first four bit planes, significance propagation and magnitude refinement
symbols bypass arithmetic coding. The purpose of this coding mode is to further reduce
computational complexity without significant loss in compression performance.

2.3.2. Rate control. One rough method for rate control has been mentioned in the context
of quantization. However, the multipass bit-plane coding approach described above allows
for rate control with better precision and reliability.

A distinguishing feature of JPEG 2000 is its post-compression rate-distortion (PCRD)
optimization [22], or optimal bit stream truncation. Its purpose is to determine the optimal
bit allocation for each code block under the constraint of a target bit rate.

During quantization, a very fine quantization step size �b is used for all the coefficients
inside a subband. Encoding of each code block results in a bit stream which represents
all the quantized coefficients to a very fine scale. For most useful compression ratios, it is
not possible to send all these streams in their entirety. Therefore, these streams are subject
to truncation in order to meet the overall target bit rate. PCRD attempts to choose the
truncation points in a way that minimizes the coding distortion for a target bit rate. The
possible truncation points in a bit stream are at the end of each coding pass. If a bit stream of
a certain block is truncated at a bit-plane that is N bit-planes higher than the least significant
bit plane, the effective quantization step of this block is 2N �b.

During the coding process, whenever a coding pass is completed, the bit rate consumption
and the reduction in distortion due to this coding pass are calculated and recorded. When the
coding of a whole block is completed, the rates and distortions of all the passes are recorded
in a rate-distortion (R-D) table. Similar tables are generated for all code blocks. PCRD
optimization uses a Lagrangian optimization method to determine which rate-distortion
pair is to be used for each code block. Details for the optimization routine are given in [22],
pp. 339–348, and are beyond the scope of this paper.

An embedded code stream is a code stream that can be decoded as a whole, or it can be
truncated and decoded at various bit rates lower than the original bit rate. Therefore, the
lower bit rate streams can be seen as embedded in a higher bit rate stream. This scalability
feature can be helpful in applications involving multiple bandwidth channels or multiple
decoding platforms. In this context, although the complete code stream is optimized in the R-
D sense, an arbitrarily truncated stream may not be optimal at its reduced bit rate. To address
this problem, EBCOT supports the concept of quality layers. During PCRD optimization,
instead of performing one R-D optimization for a single target rate, the coder can perform a
series of R-D optimizations from lower rates to higher rates. Each new optimization is built
upon the previous optimal bit stream truncations, and each optimization generate a quality
layer that will be appended to previous layers to form the final code stream. Therefore, any
truncation of the code stream at the end of a quality layer will always be optimal in the R-D
sense. The number of bits corresponding to each data block included in a layer is encoded
in the code stream as header information.
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2.3.3. Regions of interest. Many applications may require that some areas within an image
(or regions of interest, ROI) be encoded with higher accuracy than the rest of the image.
Therefore, at a certain total bit rate, the encoder should allocate more bits for ROI pixels
and less bits for for non-ROI (or background) pixels. This feature usually involves an ROI
mask and a shift scale s. The ROI mask is a binary map defining an arbitrary-shape region
of interest. A set of smaller ROI masks are calculated for each subband according to the
original mask. The shift scale s specifies how much the ROIs will be emphasized. It is used
to shift the quantization indices of all ROI subband coefficients to higher bit-planes, and
effectively amplify their magnitude by a factor of 2s . This shift will be corrected at the
decoder. In Part 1 of the standard, the ROI implementation is based on the Maxshift method
[22], in which the shift scale is always larger than the largest number of magnitude bit-planes
of all the background regions. As a result, after the ROI shift, the least significant bit-plane
of the ROIs will still be higher than the most significant bit-plane of the background regions.
This shift scale will have to be coded into the code stream and sent to the decoder. Entropy
coding of the shifted subband coefficients is performed as usual. Since the decoder is using
bit-plane decoding, it will always complete the decoding of all ROI coefficients before it
can reach the background coefficients. Therefore the decoder can determine the ROI mask
as the set of significant coefficients after s bit planes have been decoded. Thus the ROI mask
does not have to be transmitted.

2.4. The JPEG 2000 data structure

The JPEG 2000 defines a set of data structures that standardizes the access and reference
to all the data involved. One set of structures is related to the processing of image data, the
other is related to the formation of the code stream.

2.4.1. The image data structure. A diagram showing the image data structure is shown
in figure 1. An image refers to the input of the encoder and the output of the decoder.
The associated data structure is described below, the components being listed in decreasing
order of their size.

Component: An image is first separated into one or more components. A component can
be an arbitrary 2-D rectangular array of samples. The most common image components are
the color components representing the three color (R, G, B) planes of an image. The inter-
component transform defined in the standard is mainly used with RGB images. However,
other decompositions are possible for multi-component images such as radar images (in-
phase and quadrature) or printer output images (the CMYK color space). Components do
not necessarily have the same size, nor the same bit depth.

Tile: Each component is divided into one or several tiles, which are then encoded inde-
pendently. All tiles are the same size, except tiles at the boundaries. The purpose of tiling is
to allow for the coding of very large images by reducing memory consumption and speeding
up the coding process. Tiling may cause a slight decrease in compression efficiency, since
the ability to exploit spatial redundancy is reduced when small tiles are used. Also, at low
bit rates, blocking artifacts may be visible at tile boundaries.

Subband: Each tile in a particular component, is encoded using the JPEG 2000 DWT
coding algorithm. The tile is input to the wavelet transform, which generates a set of
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Figure 2. A three-level (N = 3) 2-D DWT decomposition.

subbands representing different spatial frequency components. Due to subsampling in the
wavelet transform, subband sizes decrease by a factor of four at each subband decomposition
level.

Precinct: At a particular resolution level except the level 0, a precinct contains a group of
code blocks that cover the same rectangular area in all three subbands. At level 0, a precinct
is just a group of code blocks in the subband L L1. Therefore a precinct represents all the
information in a particular image region at a certain resolution level. It is then reasonable
to suggest that such information should be packed together in the final code stream. In the
code stream, bits are organized by precincts, instead of subbands.

Code block: After the quantization of all subband coefficients, each subband is partitioned
into non-overlapping rectangular code blocks. These code blocks are confined within a
certain subband, and have the same size except at boundaries of the subband. The maximum
size of a code block is 64 × 64. They are input to the EBCOT coding engine. Each code
block is encoded independently, and produces a bit stream to be included in the final code
stream.

2.4.2. The code stream data structure. The code stream refers to the output of the encoder
and the input of the decoder. Its associated data structure, sketched in figure 3, includes the
following components, in increasing order of their size.

Encoded code block: After a code block is encoded using the EBCOT coding en-
gine, a bit stream results. This is the smallest independent unit in the JPEG 2000 code
stream.

Packet: Packets are the basic data units in the final code stream. A packet contains all
the encoded code blocks from a specific precinct in a tile at a quality layer. The length of
a packet can be affected by the size of the precinct and the number of layers. Packets may
certainly have different lengths, but they are always aligned at 8-bit boundaries in the final
code stream. Each packet has a header indicating its content and related parameters.

Layer: We have introduced the concept of quality layer, which provides finer code stream
truncation points with R-D optimization. In order to preserve the embedded feature of the
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Figure 3. Components of the JPEG 2000 code stream structure.

layered coding mechanism, the final code stream should be organized by quality layers.
The lower layers should be at the front of the code stream and the higher layers should be
at the end. When the code stream is truncated at the decoder, the lower quality layers will
be used to reconstruct the image.

Resolution level: The resolution level is closely related to the decomposition level in the
discrete wavelet transform in figure 2. The four subbands, LLl , LHl , HLl , and HHl at each
decomposition level l represent a particular resolution. For example, LL1, LH1, HL1, and
HH1 can be used to reconstruct the image at its original resolution. Also, LL2, LH2, HL2,
and HH2 can be used to reconstruct LL1, which is the original image at 1

4 resolution. The
resolution levels are defined as follows: LLN belongs to resolution 0, LHN , HLN and HHN

belong to resolution level 1, LHN−l , HLN−l and HHN−l belong to resolution level l + 1,
and finally LH1, HL1, and H H1 belong to resolution level N.

2.4.3. Progression order. Because the code stream can be arbitrarily truncated at the
decoder, the order of packets in the code stream will affect the decoding performance. The
standard defines a set of progression orders, which can be easily implemented through re-
ordering the packets in the code stream. The LRCP progression first encodes all the Precincts
in a component, then all Components at the current resolution level, then all the Resolution
levels for the current quality layer and finally sequences through all quality Layers. This
procedure is implemented using four nested loops, where the precinct loop is the innermost
and the quality layer loop is the outermost. Four additional progression orders are defined:
RLCP, RPCL, PCRL, and CPRL. Notice that the LRCP order is accuracy progressive, RLCP
and RPCL are resolution progressive, while PCRL and CPRL are spatially progressive.

2.5. Complexity analysis

The most complex coding tasks are clearly the DWT and block coding. Three complexity
measures are discussed: memory size, affecting system cost, and memory bandwidth and
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number of computations, affecting execution speed. The implementation details described
in this section are discussed in in Chapter 17 of [22]. We assume here that a single tile is
used, covering the entire image.

DWT memory size: When memory size is not an important constraint, the entire image
can be stored in memory, and the DWT can be computed in place. A conservative estimate
of the maximum bit depth of various subbands is 16 bits. Then, for an image of size N1 rows
by N2 columns, 2N1 N2 bytes of memory are necessary for the DWT step. The same amount
of memory is required at the decoder. In many applications, such as satellite imaging, high-
quality scanning and printing, the image size is very large and the entire image cannot be
stored. A memory-saving pipelining technique can be used in such applications. Byte-size
image pixels are presented to the encoder in a continuous stream and are “consumed” by the
encoder. If the 9/7 filter bank is used, the DWT stage N buffers nine input rows. The buffered
pixels are sufficient to compute a row for each of the LLN , LHN , HLN , and HHN subbands.
The computed rows are not stored: the LLN line is piped into the next DWT level, while the
lines corresponding to LHN , HLN , and HHN are fed to the EBCOT block coder. Therefore,
the memory size required for the first DWT level is 9N2 bytes. The process continues at
level N − 1, where 9N2/2 coefficients are buffered. These coefficients are 16-bit values
though, so 18N2/2 bytes of memory are required. The total necessary memory size for the
DWT is then 9N2(1 + 1 + 1/2 + 1/4 + · · ·) � 27N2 bytes. Memory size is reduced by a
factor of 2N1/27 when pipelining is used. A similar pipelining technique can be used at the
decoder.

DWT memory bandwidth: This parameter is measured as the average number of byte read
or write operations per original image pixel. If the pipelining technique described above is
used, the memory bandwidth is 9.2 byte transactions per sample. If M subband lines are
computed at a time instead of just one, the memory bandwidth can be reduced at the expense
of a higher memory size. For example, for M = 8, the memory bandwidth is reduced to
4.1 while the memory increases by a factor of 2.5 ([22], p. 681).

Block coding memory size and bandwidth: Since the DWT outputs data in pixel order
and block coding processes data in bit-plane order, the complete block must be buffered
before being encoded. For blocks of maximum size (64 × 64), it can be shown that as many
as 3N2/64 blocks are simultaneously encoded at any time if pipelining is used. Therefore,
192N2 quantized coefficients need to be stored at any given time. The memory bandwidth
is 3 byte transactions per sample.

Entropy coding computational complexity: Unlike the DWT computations, which are
highly regular and repetitive and consist of multiply-and-accumulate operations, entropy
coding operations include many comparisons and branches. These can disrupt the CPU
execution pipeline and significantly increase execution time. The MQ coder must be care-
fully implemented such that the most probable execution paths have the smallest number
of branches, thus optimizing average pipeline utilization. Another technique used to speed
up entropy coding is state broadcasting. This technique reduces the number of memory
accesses necessary for context computation. Every time a coefficient becomes significant,
the contexts of the neighboring coefficients are updated accordingly and those contexts need
not be read again from memory. Memory bandwidth is reduced because at typical bit rates
most coefficients never become significant.
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3. Description of the alternate codecs

Before proceeding to performance comparison, we briefly describe the alternate coding
algorithms and comment on the particular implementations used in the experiments.

JPEG: JPEG was the first popular lossy image compression standard [7]. It is a block-
based transform coding method. An input image is first partitioned into 8 × 8 blocks. A 2-D
8 × 8 DCT is then applied to each block, resulting in 64 DCT coefficients. The coefficients
are quantized using a uniform quantizer, with finer quantization steps for low frequency
coefficients and coarser for high frequency coefficients. The DC coefficients for all the
blocks in the image are encoded using a 2-D DPCM. The AC coefficients within each block
are zigzag scanned and run-length coded. The resulting DC and AC components are finally
variable-length encoded. In our tests, the JPEG implementation from the Independent JPEG
Group [23] is used.

JPEG-LS: JPEG-LS is the new lossless image coding standard adopted by the JPEG
committee [9, 27]. It is a low-complexity algorithm based on DPCM, two-dimensional
prediction, and Rice-Golomb entropy coding. Pixels are processed in conventional raster
order. If a pixel resides in a smooth area, a run-length coding scheme is applied. Otherwise, a
median edge detection (MED) predictor is used to form the prediction. Run-length symbols
and prediction errors are encoded using adaptive Rice-Golomb coding with elaborate context
modeling. The codec also supports near-lossless coding by quantizing the prediction errors.
The pixel coding error is equal to at most half the quantization step. In our tests, we used
the UBC implementation of the JPEG-LS codec [25].

JBIG: The Joint Binary Image Expert Group (JBIG) is responsible for standardization
efforts involving bi-level images. The first version of the standard, or JBIG1, was released
in 1993 [6]. Its objective was to provide improved lossless compression performance for
business-type documents and binary halftone images. It contains a lossless compression
algorithm and a progressive coding algorithm. The compression algorithm is essentially
an adaptive arithmetic coding with context modeling. The arithmetic coding algorithm is
implemented using the QM coder. The second generation JBIG standard, or JBIG2, was
released in 2001 [11]. While JBIG1 was intended to code generic bi-level images, JBIG2
defines a set of coding methods to code different type of image regions separately. In JBIG2,
an image is first segmented into regions that fall into three categories. Symbol regions,
containing mostly text data, are encoded using a 2-D dictionary-based coding method
with character-based pattern matching techniques. Halftone regions, containing halftone
images, are encoded with another dictionary-based coding method, using halftone templates.
Generic regions, which can not be classified into one of the two previous categories, are
encoded using a bitmap encoder like JBIG1. In our tests, the JBIG-kit [15] by Markus Kuhn
and the the UBC JBIG2 implementation [26] have been used.

MPEG-4 VTC: MPEG-4 was adopted by the ISO/IEC Moving Picture Experts Group
and became an international standard in 2001 [12]. It defines a video coding standard,
an audio coding standard and specifications for the related system. The video coding
standard contains a separate tool for still texture image coding, i.e. visual texture cod-
ing (VTC). Like JPEG 2000, VTC is based on the discrete wavelet transform. To achieve
various levels of spatial and quality scalability, three quantization modes are supported
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(single, multiple, and bi-level) as well as two scanning modes of the transform coeffi-
cients (tree-depth and subband-by-subband). The lowest frequency (DC) subband is en-
coded using 2-D DPCM, and all higher frequency (AC) subbands are encoded using a
zero-tree coding method [19]. Zero-tree coding exploits the fact that, after quantization,
a large percentage of transform coefficients are zero. Moreover, if a wavelet coefficient
at a certain scale is zero, then its child coefficients in the wavelet tree are very likely
to be zero. The zero-tree structure used by this coding technique is a very efficient rep-
resentation of the location of the zero coefficients. Finally, the DC DPCM symbols, the
zero-tree symbols, and the non-zero transform coefficients are encoded using an adaptive
binary arithmetic coder. In our tests, the Microsoft MPEG-4 implementation [16] has been
used.

H.264-Intra: The H.264 standard currently developed jointly by the ISO and ITU-T
[13, 28] is intended to provide enhanced video coding performance compared to both the
ISO MPEG-4 and the ITU-T H.263v2 video codecs. The codec provides bit rate savings
of up to 50%, consistently high video quality in a wide range of bit rates, a low-delay
mode for real-time communications applications, error resilience for handling packet loss
bit errors, and flexible packetization and information priority control. A good analysis of
the codec’s video coding performance is given in [29]. Coding of Intra pictures relies on
spatial prediction, an integer transform, quantization, and variable length coding. Spatial
redundancy in the image is exploited by prediction of 4 × 4-pixel blocks or 16 × 16-
pixel macroblocks from surrounding previously encoded blocks or macroblocks, typically
the ones located on top and to the left. The prediction error is transformed using an in-
teger 4 × 4-pixel transform that is an approximation of the DCT. The transform coeffi-
cients within a macroblock are quantized using a uniform quantizer with a quantization
step that can vary from one macroblock to another. Finally, the quantized coefficients
are encoded using a Universal Variable Length Code. In our tests, we used the reference
software implementation of the H.264 codec employed by the ISO/ITU-T Joint Video
Team [4].

4. Experimental results

4.1. Test environment

All tests have been conducted on a SUN Ultra10 Model 440 workstation with a 440 MHz
UltraSPARC-IIi processor, 384 MB DRAM, 2 MB L2 cache, running the SunOS 5.8 operat-
ing system. All c/c++ source code has been compiled with the GNU gcc compiler version
2.95.2 with “-O2” optimization. The java source code has been compiled with the Solaris
JDK 1.2.1 javac compiler. For all codecs, coding performance was measured by the peak
signal-to-noise ratio (PSNR), execution time as measured by the UNIX time command, and
memory consumption tracked with the mpatrol tool (version 1.4.8) for c/c++ programs
and the hprof tool for java programs.

Although considerable effort has been made to ensure fairness of the tests, in order to
correctly interpret the test results, several issues need to be mentioned.
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• Only Kakadu, JasPer and JJ2000 allow the user to specify a target bit rate. Rate control
for the other lossy coders is a lot less precise.

• Because the PSNR is used to measure the compression performance, the default visual
weighting configurations in JPEG and Kakadu have been disabled, and constant quanti-
zation steps have been used.

• Both MPEG-4 VTC and H.264-intra codecs are embedded in their video coding struc-
tures, so the computing time and memory usage of their image coding algorithms are
very likely overestimated.

• Since both MPEG-4 VTC and H.264-intra codecs can only take YUV input with 4:2:0
sampling, the the test images had to be modified accordingly.

• The memory usage provided by mpatrol indicates the peak allocation, while hprof
only provides the total memory allocation.

• The current JJ2000 decoder contains a bug that prevents correct decoding of some large
images in the Solaris java VM.

• It appears that the current H.264 decoder has some problems with irregular image sizes.

The test images used in the experiments are shown in figures 4 and 5. They are:

• gray-level images (8 bits/pixel): LENA (512×512), GOLD HILL (512 × 512), ULTRASOUND

(512 × 512), CHART (1688 × 1688), CAFE (2048 × 2560);
• color images (24 bits/pixel): BIKE (2048 × 2560) and WOMAN (2048 × 2560);
• bi-level images (1 bit/pixel): CCIT1 (3504 × 4750) and CCIT2 (3072 × 4352).

4.2. Compression efficiency

Lossy compression. Tables 1 and 2 and figure 6 present the results of the compression
performance comparison between the various lossy codecs. Most of these codecs have been
tested using their optimal compression settings. A rough time profiling of major encoder
and decoder components has been performed for both Kakadu and JasPer, and results are
shown in Tables 5(a) and (b). Several comments on the results follow.

All three JPEG 2000 implementations achieve effectively the same PSNR performance.
However, the different implementations have significantly different speed and memory con-
sumption. JasPer is an intuitive straightforward implementation. Its memory usage increases
almost linearly with the image size. Kakadu employs a series of algorithmic optimizations
as discussed in Section 2.5. Therefore it is at least three times faster and consumes about
10 times less memory than the other implementations. Some of these optimizations are not
limited to the JPEG 2000 standard, and they could be used in other codecs. JJ2000 runs
relatively slow with small images, which is somewhat expected because of the Java VM
overhead. The time profiling also indicates that the wavelet transform is generally the most
computationally intensive component in the coding algorithm.

JPEG 2000 implementations outperform JPEG by 1. . .3 dB in PSNR. The difference is
relatively consistent across various bit rates. JPEG is about three times faster than Kakadu,
and about ten times faster than JasPer. The JPEG encoder implementation saves the whole
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Figure 4. Grayscale and color test images. Color images are typeset as grayscale.

image at the encoder, therefore it uses between 60 and 800% more memory than the Kakadu
encoder. However, considering the near-symmetric coding structure of a JPEG encoder and
decoder, the remarkably lower memory usage of the decoder probably reveals a more
accurate minimum memory requirement for JPEG. With such significant advantages in
speed and memory consumption, it is possible that JPEG will remain an attractive coding
method for many mobile applications.
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Figure 5. Bilevel test images.

The underlining wavelet coding structure of MPEG-4 VTC is very similar to JPEG
2000, therefore its performance is quite comparable with the three JPEG 2000 implemen-
tations. Although the H.264-intra coding algorithm resembles more the JPEG block coding
structure, its spatial prediction feature helps it achieve a performance similar to JPEG 2000.
It is interesting to see that H.264-intra performs especially well on images ULTRASOUND

and CHART. This is because these images have many artificial homogeneous flat regions as
well as regions with similar structures, which are well-suited for spatial prediction.

Lossless compression. Although the primary application of JPEG 2000 is lossy com-
pression, it also supports lossless compression by using the reversible 5/3 filter bank with
integer arithmetic, and bypassing quantization and the PCRD procedure. The resulting bit
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Table 1. Complexity comparison of various codecs for images LENA, GOLD HILL and ULTRASOUND.

Time (s) Mem. (Mbytes) Time (s) Mem. (Mbytes)

Codec enc. dec. enc. dec. enc. dec. enc. dec.

LENA at 0.125 bpp LENA at 1.00 bpp

Kakadu 0.21 0.11 0.30 0.28 0.33 0.16 0.34 0.30

JasPer 0.86 0.50 3.19 2.41 0.91 0.59 3.24 2.41

JJ2000 2.44 1.73 2.52 2.74 2.54 1.93 2.68 3.58

MPEG-4 VTC 0.94 1.13 7.26 8.27 1.22 1.49 7.26 8.27

H.264-intra 6.86 1.27 23.63 5.96 7.90 1.40 23.63 5.96

JPEG 0.08 0.05 0.54 0.04 0.10 0.06 0.54 0.04

GOLD HILL at 0.125 bpp GOLD HILL at 1.00 bpp

Kakadu 0.21 0.12 0.30 0.28 0.33 0.19 0.34 0.30

JasPer 0.90 0.50 3.22 2.41 0.98 0.59 3.28 2.41

JJ2000 2.47 1.69 2.55 2.75 2.49 1.85 2.71 3.71

MPEG-4 VTC 0.93 1.13 7.26 8.27 1.21 1.48 7.26 8.27

H.264-intra 6.90 0.61 23.63 5.96 8.03 0.74 23.63 5.96

JPEG 0.07 0.03 0.54 0.04 0.09 0.05 0.54 0.04

ULTRASOUND at 0.125 bpp ULTRASOUND at 1.00 bpp

Kakadu 0.19 0.12 0.30 0.28 0.28 0.18 0.33 0.30

JasPer 0.76 0.45 2.89 2.13 0.80 0.52 2.95 2.13

JJ2000 2.34 1.69 2.41 2.76 2.33 1.84 2.53 3.34

MPEG-4 VTC 0.87 1.03 6.35 7.24 1.05 1.32 6.35 7.24

H.264-intra 6.02 0.54 20.80 5.24 6.79 0.64 20.80 5.24

JPEG 0.06 0.03 0.48 0.04 0.08 0.04 0.48 0.04

stream structure is different from lossy compression. Therefore lossless JPEG 2000 is not
equivalent to lossy JPEG 2000 at a very high bit rate. Table 3 provides lossless coding
performance for the codecs supporting lossless coding. JPEG-LS is specially designed for
lossless coding. Its performance is relatively good with small images. However, since it
does not have the capability to exploit spatial redundancy over large areas, it becomes less
efficient compared to JPEG 2000 for large images. Nevertheless, its clear advantage in
speed and memory usage demonstrates its viability for this particular application.

Bi-level compression. Bi-level image compression is also supported by JPEG 2000, but
no special accommodations are made for this type of images. The only recommendation is
to bypass the wavelet transform and apply the MQ coder with JPEG 2000 context models
directly to the binary pixels. Table 3 provides performance comparisons for lossless coding
of bi-level images, in which codecs were configured for bi-level input with lossless mode
and without wavelet transform.

Without wavelet transform and quantization, JPEG 2000 essentially becomes a binary
lossless coder, similar to JBIG and JBIG2. The major difference is in the probability models
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Table 2. Complexity comparison of various codecs for images CHART and WOMAN.

Time (s) Mem. (Mbytes) Time (s) Mem. (Mbytes)

Codec enc. dec. enc. dec. enc. dec. enc. dec.

CHART at 0.125 bpp CHART at 1.00 bpp

Kakadu 2.35 1.45 0.93 0.82 4.26 2.60 1.51 1.28

JasPer 14.79 9.80 47.35 35.84 15.42 11.26 47.79 35.90

JJ2000 15.29 8.48 21.53 18.46 15.37 11.59 23.66 19.87

MPEG-4 VTC 15.79 19.12 112.96 128.83 19.47 23.83 112.96 128.83

H.264-intra 124.62 n/a 344.49 n/a 139.65 n/a 344.49 n/a

JPEG 0.94 0.33 7.62 0.05 1.12 0.52 7.62 0.05

WOMAN at 0.125 bpp WOMAN at 1.00 bpp

Kakadu 8.43 5.55 2.89 2.70 11.66 7.02 3.68 3.31

JasPer 79.24 62.09 180.49 141.59 80.51 63.79 181.36 141.68

JJ2000 69.40 42.20 80.30 108.61 70.03 47.82 85.77 118.75

JPEG 2.22 1.10 15.11 0.11 2.51 1.48 15.11 0.11

used for the entropy coder. Context classes defined by JPEG 2000 are mostly optimized
for gray scale images, and are not effective for bi-level images. Therefore JPEG 2000 is
outperformed by JBIG and JBIG2. JBIG and JBIG2 have clear advantages over JPEG 2000
with bi-level images because of their special designs. JBIG2 is more sophisticated than
JBIG, and consumes more time and memory. However, the performance improvement is
also significant. These results show that JPEG 2000 will not replace JBIG and JBIG2 in
document and facsimile coding.

4.3. Progressive coding

We compared JPEG 2000 and JPEG in terms of their progressive coding performance for the
image BIKE. In figure 7(a), “jpeg optimal” represents the normal JPEG performance when
bit streams are fully decoded at their various encoded bit rates (from 0.125 to 1.0 bpp);
“jpeg progressive” represents the performance when a bit stream encoded in progressive
at 1.0 bpp is truncated and decoded at various bit rates (from 0.125 to 1.0 bpp); “jpeg
non-progressive” represents the same truncated decoding performance when the bit stream
is encoded in non-progressive mode at 1.0 bpp. Figures 7(b) and (c) show the decoding
performance of Kakadu at bit rates from 0.125 to 1.0 bpp when the bit stream is encoded at
1.0 bpp with two progression modes, LRCP and RLCP, and four different layer settings:

• 1-layer: rate/distortion is optimized at 1.0 bpp.
• 2-layer: rate/distortion is optimized at 1.0 and 0.5 bpp.
• 4-layer: rate/distortion is optimized at 1.0, 0.75, 0.5 and 0.25 bpp.
• 8-layer: rate/distortion is optimized at 1.0, 0.875, 0.75, 0.625, 0.5, 0.375, 0.25 and

0.125 bpp.
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JPEG 2000 introduces the bit stream layer structure to achieve accuracy progressive
encoding. It is only effective when the layer loop is the outermost loop in the progression
order, i.e. LRCP progression is used. In such setting, bit stream truncation will preserve low
quality layers and discard higher quality layers following the truncation point. Figure 7(b)

(a)

(b)

Figure 6. Performance comparison of various codecs with images: (a) LENA, (b) GOLD HILL, (c) ULTRASOUND,
(d) CHART, (e) WOMAN. (Continued on next page.)
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(c)

(d)

Figure 6. (Continued).

also reveals that layer settings at lower bit rates (e.g. 0.125 bpp, 0.25 bpp) are more effective
than at higher bit rates.

RLCP represents resolution progressive coding, and its bit stream is organized by res-
olutions instead of layers. Figure 7(c) shows that quality optimization for lower bit rates
(e.g. 0.5 bpp) is lost. However, RLCP can be used to reconstruct images at reduced sizes
(by factors of 2n).
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(e)

Figure 6. (Continued).

Default JPEG coding is spatially progressive. A truncated bit stream will produce blank
regions in the reconstructed image, yielding poor perceptual and PSNR performance. The
JPEG progressive mode significantly improves its performance in such situation. The PSNR
value increases smoothly at successively higher truncated bit rates. Therefore, the progres-
sive feature of JPEG is comparable to that of JPEG 2000.

The progressive settings do not significantly affect the coding complexity and perfor-
mance of Kakadu. Minor decreases in PSNR can be observed when number of layers
increases. However, the progressive mode of JPEG almost doubles the computing time, and
significantly increases its decoding memory usage, since the decoder will now store the
whole image in its memory.

4.4. Large images

The introduction of the tile structure in JPEG 2000 makes possible the processing of very
large images on low-end computing devices. This approach reduces the memory usage and
computational complexity at the expense of some compression efficiency, because cross-
tile correlations cannot be exploited. Another mechanism that reduces coding complexity
is the arithmetic coding bypass mode, which avoids arithmetic coding at certain refinement
layers. Table 4 shows the effects of tile and bypass settings on the coding performance of
Kakadu, JasPer and JPEG.
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Table 3. Performance comparison of various lossless codecs for images LENA, WOMAN, CCIT1, and CCIT2.

Size Comp. Enc. Dec. Enc. mem. Dec. mem.
Coder (bytes) rate time (s) time (s) (Mbytes) (Mbytes)

LENA lossless
Kakadu 141089 1.8580 0.38 0.40 0.43 0.40

JasPer 141116 1.8576 0.70 0.57 3.52 2.42

JJ2000 142148 1.8442 2.63 2.10 3.23 5.62

JPEG 153839 1.7040 0.28 0.10 3.01 0.03

JPEG-LS 138809 1.8885 0.14 0.14 0.03 0.03

WOMAN lossless

Kakadu 7537793 2.0866 18.94 19.48 11.02 10.35

JasPer 7538026 2.0866 59.00 50.75 193.79 141.96

JJ2000 7572340 2.0771 60.47 n/a 117.60 n/a

JPEG 10080849 1.5602 11.91 5.84 60.04 0.07

JPEG-LS 8991690 1.7492 8.76 8.31 0.05 0.06

CCIT1 lossless

Kakadu 150495 13.8244 2.54 1.91 0.87 0.85

JasPer 151533 13.7297 13.58 11.76 187.53 150.04

JJ2000 157960 13.1711 11.57 n/a 99.59 n/a

JBIG2 83505 24.9147 14.35 13.49 4.81 4.32

JBIG 93868 22.1641 2.04 1.68 2.51 2.51

CCIT2 lossless

Kakadu 543219 3.0764 3.94 3.38 1.19 1.19

JasPer 544287 3.0704 13.18 11.40 151.01 120.57

JJ2000 549607 3.0407 14.00 n/a 82.26 n/a

JBIG2 168640 9.9097 11.95 10.70 4.11 3.62

JBIG 214192 7.8022 1.51 1.45 2.03 2.02

The advantage of using multiple tiles is clearly demonstrated by the results for the
JasPer implementation. The 64 × 64-pixel tile setting reduces its memory usage by a
factor of ten, and almost doubles its processing speed. The cost is a notable loss in PSNR
performance. On the other hand, Kakadu complexity does not seem to be significantly
affected by different tile settings. This is explained by its efficient implementation using
pipelining, as described in Section 2.5. As expected, the PSNR loss is more pronounced for
WOMAN, a relatively smooth image with strong global correlations, than for CAFE, a highly
detailed image with different regional structures and therefore less cross-tile correlation.
The bypass mode does not have a noticeable impact on any performance measure. It has
been found that the bypass mode in fact only generates a small portion of the output bit
stream.
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4.5. Error resilience

JPEG 2000 defines several error resilient mechanisms working at both the entropy coding
level and at the bit stream packet level. These include

(a)

(b)

Figure 7. Progressive coding performance results for (a) JPEG, (b) JPEG 2000 with LRCP progression, and (c)
JPEG 2000 with RLCP progression. (Continued on next page.)
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(c)

Figure 7. (Continued).

• terminating and restart arithmetic coding at each pass with predictable rules (PRED-
TERM/RESTART) that can synchronize the decoder with the encoder;

• inserting special arithmetic coded segmentation marker at the end of each bit-plane
(SEGMARK);

• resetting the arithmetic coding probability context at each new pass (RESET-PROB);
• using the selective arithmetic coding bypass mode (BYPASS);
• inserting a re-synchronization marker (SOP) in the header of each packet.

The error handling method suggested by JPEG 2000 requires the capability to detect and
isolate an error event. Once an error is located at a certain layer within a block (subband
or tile), the following layers of this block (subband or tile) will not be decoded. This can
prevent a corrupted bit stream from degrading the previously decoded correct information.
Kakadu is used in the test because it is the only implementation supporting error tolerance.
The decoder option “-resilient” is enabled.

These methods and some of their combinations have been tested in a simulated random
noise channel with bit error rate (BER) ranging from 10−5 to 10−3. Each recorded entry
represents 100 trials. Results shown in Tables 6 and 7 include the number of decodeable
trials, and the mean, maximum, minimum and standard deviation of PSNR values from
all decoded bit streams. Decodeability depends mostly on the implementation, and less on
channel condition. An implementation can terminate the decoding process upon a minor bit
stream error. Therefore it is not an error resilient measure. Instead it represents a relative
sense of error severeness and an adjustment factor for the rest of the PSNR values.
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Table 4. Performance of codecs for large images CAFE and WOMAN at 1.0 bpp.

Enc. Dec. Enc. mem. Dec. mem.
Coder setting PSNR (dB) time (s) time (s) (Mbytes) (Mbytes)

CAFE

Kakadu, 1-tile 32.07 5.51 3.36 1.86 1.59

Kakadu, 4-tile 32.06 5.56 3.37 1.86 1.23

Kakadu, 16-tile 32.03 5.69 3.44 2.03 1.18

Kakadu, 64-tile 31.93 6.21 3.66 2.62 1.32

Kakadu, BYPASS 32.00 4.86 3.21 1.86 1.59

JasPer, 1-tile 32.04 31.54 21.90 63.73 47.33

JasPer, 4-tile 31.12 27.45 18.63 19.96 15.63

JasPer, 16-tile 30.25 19.79 10.88 8.93 7.71

JasPer, 64-tile 29.61 19.55 10.03 6.25 5.76

JasPer, BYPASS 31.98 30.09 21.96 63.75 47.33

JPEG, 1-tile 30.18 1.57 0.79 10.05 0.05

WOMAN

Kakadu, 1-tile 38.45 5.70 3.31 1.88 1.59

Kakadu, 4-tile 38.44 5.81 3.32 1.91 1.33

Kakadu, 16-tile 38.41 5.94 3.40 2.07 1.20

Kakadu, 64-tile 38.18 6.44 3.57 2.66 1.33

Kakadu, BYPASS 38.40 4.90 3.08 1.87 1.59

JasPer, 1-tile 38.44 29.26 21.94 62.53 47.31

JasPer, 4-tile 37.26 25.45 18.64 19.69 15.63

JasPer, 16-tile 35.29 17.75 10.80 8.91 7.71

JasPer, 64-tile 34.09 17.45 9.91 6.24 5.74

JasPer, BYPASS 38.40 28.52 21.89 62.55 47.31

JPEG, 1-tile 36.66 1.56 0.77 10.05 0.05

Test results show that PRED-TERM/RESTART and SEGMARK are the most effec-
tive methods for detecting errors. In fact these two methods work similarly. The correct
decoding of a segmentation marker or correct termination of a bit plane coding pass indi-
cates the correctness of the bit stream up to the current point. The combination of PRED-
TERM/RESTART and SEGMARK does not further improve performance. This is expected
because the mechanisms are similar, and there is little chance that an error can pass one of
them but be detected by the other.

If the arithmetic coding is not terminated, the SOP in the next packet header may be
overrun if error occurs, and therefore it is not an effective error detection method by its own.
When SOP is combined with PRED-TERM/RESTART, the performance is only slightly
improved.
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Table 5. Time profiling (in%) of major encoder (a) and decoder (b) components, for the color image WOMAN.

Bit rate Pixel Color Wavelet Coeff. Sig. Ref. Cleanup
Codec (bpp) conv. trans. trans. conv. pass pass pass

(a)

Kakadu 0.25 2.6 7.3 46.7 13.9 9.6 4.1 12.3

Kakadu 1.0 2.4 6.2 36.8 10.6 18.6 6.5 14.3

JasPer 0.25 5.1 2.7 66.1 2.8 4.8 2.7 8.1

JasPer 1.0 4.8 2.5 64.8 2.6 4.9 2.6 8.1

Bit rate Sig. Ref. Cleanup Coeff. Wavelet Color Pixel
Codec (bpp) pass pass pass conv. trans. trans. conv.

(b)

Kakadu 0.25 2.8 0.9 3.3 3.1 74.8 8.7 4.8

Kakadu 1.0 9.8 4.3 7.5 3.8 57.1 9.3 5.8

JasPer 0.25 0.3 0.2 0.3 2.5 79.1 2.1 5.3

JasPer 1.0 1.3 0.5 1.4 2.5 78.5 1.8 5.5

The purpose of the RESET-CONTEXT and BYPASS methods is to limit error propa-
gation, not to detect errors. RESET-CONTEXT only helps slightly when combined with
PRED-TERM/RESTART, and BYPASS does not have clear advantage by itself or combined
with PRED-TERM/RESTART.

The noisy channel performance of the JPEG 2000 codec is mostly determined by the
actual number of bit errors and the position of the first bit error in the bit stream. Because
the image GOLD HILL has a much shorter bit stream, it will have much fewer bit errors than
the CAFE bit stream at the same BER. Therefore, the error effects in GOLD HILL are less
severe than those in CAFE. This situation also explains why a bit stream encoded at a higher
bit rate may have a lower PSNR in a noisy environment.

All these error resilience tools are generic methods used to combat random errors. Given
the JPEG 2000 error handling approach, bursty errors can be translated into random errors
since any number of errors occurring in one coding pass are equivalent to a single error in
the same pass. Therefore, having many consecutive errors is preferred to to the worst-case
scenario featuring random isolated errors.

4.6. Summary of experimental results

Photographic images: For natural images with consistent global structures (e.g. LENA and
WOMAN), JPEG 2000 clearly outperforms all other codecs. This is where the DWT
coding structure achieves its best efficiency. For natural images with uncorrelated regional
structures or detailed textures (e.g. GOLD HILL, BIKE, and CAFE), JPEG 2000’s advantage
over other codecs becomes less significant.
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Table 6. Noisy channel simulation for the image GOLD HILL.

at 0.5 bpp at 0.25 bpp

Decodeable Mean Max Min Decodeable Mean Max Min
BER (%) (dB) (dB) (dB) Std. (%) (dB) (dB) (dB) Std

No error resilience feature

0.00001 100 32.00 32.94 25.58 1.47 100 29.80 30.31 23.88 1.12

0.0001 100 24.62 31.05 10.09 4.47 100 26.23 30.31 9.36 3.10

0.001 98 14.25 20.70 6.09 3.84 97 14.77 21.93 6.09 4.74

With PRED-TERM/RESTART

0.00001 100 31.87 32.82 22.71 2.06 100 29.80 30.24 23.99 1.05

0.0001 100 26.57 31.66 14.25 3.76 100 26.59 30.24 14.25 3.04

0.001 98 19.73 22.76 14.25 2.85 98 20.00 23.49 14.25 3.03

With SEGMARK

0.00001 100 32.32 32.94 26.45 1.05 100 29.96 30.27 25.67 0.65

0.0001 100 27.76 31.41 14.25 3.01 100 27.32 30.27 14.25 2.59

0.001 98 20.13 24.48 13.65 3.33 98 19.79 25.11 8.08 3.41

With SOP marker

0.00001 100 31.81 32.94 18.30 2.13 100 29.73 30.31 17.87 1.51

0.0001 100 24.77 30.87 11.07 4.10 100 25.57 30.31 10.24 3.81

0.001 98 15.02 21.29 6.71 3.34 98 16.26 22.15 7.40 3.39

With BYPASS

0.00001 100 31.43 32.94 6.31 3.29 100 29.63 30.30 7.42 2.43

0.0001 100 24.62 30.63 6.30 4.61 100 25.68 30.30 7.42 4.36

0.001 98 13.38 20.24 6.24 3.96 98 14.44 23.60 6.23 4.65

Synthetic and medical images: For computer graphics, compound images and some medical
images (e.g. CHART and ULTRASOUND), the block-based H.264-intra codec appears to
be more efficient than JPEG 2000 because of its more efficient coding of inter-block
correlation within a single frame.

Bi-level images: JBIG and JBIG2 perform significantly better than JPEG 2000.
Lossless coding: JPEG 2000 in lossless mode and JPEG-LS achieve similar performance

on lossless coding, however JPEG-LS is much faster.
Large images: With traditional implementations (e.g. JasPer), tile partition is an effective

tool to balance memory usage with coding performance. It can also facilitate efficient
parallel processing, especially for images containing several less correlated regions.

Progressive coding: LRCP progression provides fine scale SNR progressive coding, while
RLCP progression provides resolution progressive coding.

Error resilience: Both PRED-TERM/RESTART and SEGMARK are effective error resilient
mechanisms. However, combinations of these or other settings will not achieve noticeable
further protection.
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Table 7. Noisy channel simulation for the image CAFE.

at 0.5 bpp at 0.25 bpp

Decodeable Mean Max Min Decodeable Mean Max Min
BER (%) (dB) (dB) (dB) Std. (%) (dB) (dB) (dB) Std

No error resilience feature

0.00001 96 21.68 26.08 12.48 4.26 96 20.65 23.11 13.44 2.71

0.0001 86 11.80 17.81 8.00 2.06 83 12.41 17.99 7.07 2.43

0.001 66 8.09 10.01 6.59 0.68 67 7.97 10.35 6.08 0.80

With PRED-TERM/RESTART

0.00001 100 22.13 26.33 13.54 3.50 100 20.67 23.00 12.62 2.59

0.0001 99 14.59 19.64 10.48 2.15 99 14.56 19.03 10.48 2.16

0.001 97 10.94 11.45 10.48 0.28 97 10.92 11.44 10.48 0.29

With SEGMARK

0.00001 100 22.85 26.33 13.40 3.58 100 21.20 23.08 13.13 2.54

0.0001 98 14.85 20.86 10.48 2.44 96 14.60 19.61 10.48 2.26

0.001 97 10.62 11.38 8.39 0.51 97 10.64 11.44 8.20 0.56

With SOP marker

0.00001 99 21.34 26.13 11.09 4.65 100 20.06 23.00 12.08 3.31

0.0001 84 11.54 18.33 8.37 2.32 96 12.17 17.71 7.36 2.29

0.001 73 7.57 9.39 5.71 0.68 78 7.35 10.33 5.55 0.71

With BYPASS

0.00001 100 21.15 25.95 10.92 4.84 100 19.91 23.02 10.40 3.57

0.0001 99 11.84 18.22 8.46 2.04 98 12.11 17.75 8.24 2.32

0.001 97 8.10 10.64 5.90 0.81 96 8.10 10.48 6.39 0.76

4.7. Topics for future study

JPEG 2000 has inferior performance for synthetic images as well as bi-level images. The
H.264-intra coding algorithm benefits from its flexible spatial prediction of an encoded
block. Significant portions of synthetic and bi-level images (such as flat areas or line draw-
ings) can be efficiently predicted from previously coded adjacent blocks, resulting in a very
small number of bits. Based on the same idea, improvements can be made to the context
modeling in JPEG 2000 binary arithmetic coding. In the current standard specification,
contexts are defined within a region surrounding the encoded DWT domain sample. More
sophisticate context models can be designed to include arbitrary encoded samples as long as
this context formation can be explicitly or implicitly encoded in the bitstream. This extension
could exploit correlations between repeated patterns in synthetic and bi-level images.

When coding large images, it is usually desirable to partition them into tiles if the coding
performance is not sacrificed. Large images tend to contain many objects and scenes that
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are less correlated. For each such image, an optimal tile partition that can minimize the loss
of coding efficiency may be determined by calculating a well-defined correlation parameter.

Progressive decoding is an important feature for many applications. However JPEG
2000 and all other DWT based coding algorithms are computatioinally progressive only
in encoding. The decoder has to perform a new inverse DWT for each new accuracy or
resolution level from the progressive bitstream. Because the IDWT accounts for a significant
amount of decoding computation, algorithmic improvements that avoid the multiple IDWT
computations would be very valuable.

Error resilience features specified in the standard are very basic, yet effective error detec-
tion tools. Because of the embedded nature of JPEG 2000 bitstream, usually the bits after the
first detected bit error will not contribute to any quality improvement at the decoder. For a
certain channel BER, the probability of a packet or segment containing at least one bit error
can be estimated. With this prediction, it is desirable to truncate this bitstream at this point
before it is sent into the channel. This scheme has clear advantages in TCP/IP networks. The
channel BER is usually time varying, so the challenge is to devise an statistically optimal
adaptive bitstream truncation policy.

5. Conclusion

A comprehensive performance analysis of the JPEG 2000 image coding standard was
presented. This study was conducted with various standard image coding tools currently
available. Although it was not intended to be exhaustive, most of the JPEG 2000 coding
algorithm, structure specifications, as well as frequently used features were discussed. The
experimental results provide an objective view of the advantages and disadvantages of this
new standard. It is evident that JPEG 2000 will be adopted in many applications that requires
high image quality over bandwidth constrained channels and media. However, it is unlikely
that it will become the only image coding tool to be used in still image coding applications.
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