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Abstract. The use of Virtual Environments as a user interface is essential for certain types of applications,
both in education and entertainment. These worlds are even more attractive for the user when they are neither
static nor pre-scripted, but have dynamic characteristics and are populated by autonomous entities, also called
virtual agents. There has been a lot of research concerning visualization, animation and behavior of virtual
agents, but there are no generic architectures, methodologies and tools for the development of intelligent virtual
environments, i.e. 3D environments with autonomous virtual agents. In this paper, we present SimHuman, a tool
for the construction of virtual worlds with autonomous entities, targeted for a specific group of applications, such
as simple simulation systems, virtual environments, educational applications, multimedia presentations, etc. It
consists of a programming library and two utilities and it is highly dynamic and configurable, as it is not based on
fixed scenes and models. It has embedded characteristics such as Inverse Kinematics, Physically Based Modeling,
Collision Detection and Response, and Vision. SimHuman incorporates some important features for designing
and building virtual environments and turns out to be an effective tool for interactive 3D applications with virtual
agents.
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1. Introduction

Recent advances in Multimedia and Internet technology are giving rise to interactive virtual
worlds, which offer attractive opportunities both for entertainment and education [10]. The
ability to navigate and interact in a 3D environment, where anything from small objects to
large cities can be visualized, is essential for certain types of applications, such as virtual
classrooms [27], on-line museums or shops [28], games, or even detailed models of the
human body users can walk through [25].

The use of Virtual Environments as a user interface should not be limited to just browsing
a beautiful 3D scene. However attractive a synthetic world may be, if it is static and empty
of change and behavior, the immersive experience is of limited interest. Cities without
people cannot make the user feel a real sense of presence. Animation can create dynamic
environments, but its pre-scripted nature runs against the interactional freedom a Virtual
Environment should have, and can only hold the user interest for a limited time. Therefore,
Virtual worlds become more attractive, if there is dynamic sound and motion, and user-
independent action takes place inside the environment. In other words, 3D environments
would be more believable and interactive, if they were populated with virtual agents.
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A virtual agent can be defined as an autonomous entity in a virtual environment [22]. It
should not only look like, but also behave as a living organism (human [5], animal [23] or
other fictional character [2]) in a synthetic three-dimensional world, and be able to interact
with it and its inhabitants. These could be either real users in the form of avatars, or other
virtual agents.

There are numerous applications that would require some form of virtual agents in their
environments, especially in fields such as entertainment, education, virtual reality, simula-
tion, etc. [3]. Nevertheless, there are no standard architectures and methods of implementing
such ‘entities’ and this is due to the fact that different applications focus on different char-
acteristics of synthetic creatures. A game, for example, emphasizes mainly in appearance
and behavior, because it should combine appealing graphics with believability to attract
the user. On the other hand, a simulation system aims at higher accuracy, because it is the
numerical data that matter most (e.g., the total force applied on the driver in a car crash
simulation).

In this paper we present a programming library called SimHuman, which is our approach
towards the generation of virtual environments with synthetic characters for desktop VR
applications. It has an embedded engine for rendering and animating 3D environments,
which can use any 3D model for agents, avatars and other virtual objects and is therefore
highly dynamic and configurable. It using physically based modeling, and its agents have an
embedded vision model and can use inverse kinematics to interact with objects. SimHuman
is designed in such a way that it maintains a balance between performance, autonomy and
believability and can be used as a basis for simple virtual environments and simulation
systems.

The paper is structured as follows: In Section 2 we present the related work in the field of
virtual environments and believable agents, while in Section 3 we discuss about the available
tools for creating interactive 3D environments. The general functionality and architecture of
SimHuman are discussed in Section 4, and the design issues of virtual agents is the subject
of Section 5. In the next section we present an example application, and in the final one we
state our conclusions and possible extensions of this system.

2. Background

There has been a great amount of research in the field of visualization, motion and be-
havior of virtual humans or other articulated figures, and a number of different systems
and approaches have been proposed. Each of these approaches varies in functionality, be-
lievability and autonomy according to the application field and the required detail and
accuracy.

The process of displaying and animating a synthetic human involves three different stages.
The most primitive one is the visualization of the body [20], which is the same process as
displaying any other 3D object, and one can therefore use standard techniques from the
field of computer graphics (curved surfaces, voxels, polygons, etc.). To add more realism,
one could model the body as a deformable object [24]. The next stage is the modeling of
the skeleton [4], which defines the moving parts of the body and the type of motion that
they can perform, and the last one is the modeling of skin, hair and clothes [13], so as to
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produce more believable animation. The calculation of the skin and cloth motion is the most
computationally intensive task, which is why it is not suitable for real-time animation.

Believable animation of a living creature is a surprisingly hard task, because we are skilled
at perceiving the subtle details of motion. A person can, for example, often recognize friends
at a distance purely from their walk. Because of this ability, people have high standards
for animation sequences that feature humans or other creatures. For computer-generated
motion to be realistic and compelling, the virtual agents must move with a natural-looking
style.

Animation techniques fall into three basic categories: keyframing [11], motion capture
[18] and simulation [9]. Each of these has its own advantages and disadvantages, which
involve the level of control that the animator has over the fine details of the motion, the
production cost, the efficiency in real-time applications, and the ability to reuse the motion
sequence in different environments.

In keyframing, the animator has to specify critical, or key, positions for the body parts, and
the computer fills in the missing frames by smoothly interpolating between those positions.
Body postures can be defined either with the low-level forward kinematics approach, or
with the more elegant inverse kinematics one [26]. On the other hand, motion capture
involves measuring a real person’s/object’s position and orientation in physical space, and
then recording that information in a computer-usable form.

Unlike keyframing and motion capture, simulation uses the laws of physics to generate
motion of figures and other objects. Virtual creatures are usually represented as a collection
of rigid body parts. Although the models can be physically plausible, they are nonetheless
only an approximation of the body, because they ignore the movement of muscle mass
relative to bone. Recently, researchers have begun to build more complex physical models
based on bio-mechanical data, and the resulting simulations are becoming increasingly
lifelike [8].

There have been some significant approaches towards the introduction of synthetic figures
in virtual environments, such as the work of Kalra et al. [12], which describes an interactive
system for building realistic virtual humans for real time applications, and that of Aubel et al.
[1], which presents techniques for rendering and animating a multitude of virtual humans in
real-time. Both approaches focus on algorithms for modeling and rendering virtual figures,
without presenting a tool for embedding these figures in applications.

One important application that utilizes many aspects of human motion and simulation is
a commercial system called Jack, developed at the University of Pennsylvania [5]. It con-
tains kinematic and dynamic models of humans based on biomechanical data and displays
several built-in behaviors including balance, reaching and grasping, walking and running.
Jack is targeting at the fields of industrial simulation, human factor analysis, and similar
environments that require accurate biological and mechanical modeling of the human body.
Nevertheless, not much attention is paid on appearance, and the application features only
one type of male and female bodies, which can be scaled to various sizes, without using
particularly attractive graphics.

A similar environment is HUMANOID [7], which is additionally using metaballs for a
more realistic representation of the skin and muscles. Focusing more on appearance, it fea-
tures realistic skin deformation for the body and hands, and facial animation. Unfortunately,
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it uses its own type of human models, so one cannot import new models from commercial
programs, but one has to design them manually. Additionally, like Jack, HUMANOID is
running only on graphic workstations, such as SGI and SUN systems, meaning that one
cannot create a simple application for average PC users. Furthermore, there is much detail
on how the environment can render and animate deformable characters, but the paper does
not describe how a programmer can use that environment to construct a virtual world with
multiple agents.

Another application, which is using virtual agents in complex 3D environments, is Steve
(Soar Training Expert for Virtual Environments) [19], an animated agent that helps students
learn to perform physical, procedural tasks. Steve inhabits a virtual world, continuously
monitoring its state and periodically manipulating it through virtual motor actions, using
perception, cognition and motor modules. Steve is using a sophisticated intelligent agent
implementation in a 3D environment, but it is limited in educational applications. Addi-
tionally, it is using Jack as a rendering and animation engine and has, therefore, all its
limitations.

One interesting application towards a 3D environment with intelligent virtual agents are
the Virtual Teletubbies [2]. The system uses a simple physics model to simulate gravity and
the agents’ personality is based on a novel behavioral architecture, the Behavioral Synthesis
Architecture. The paper presents a novel approach, which applies a robot architecture to
virtual agents, but it cannot be considered as a general tool, as there are no hints on how to
construct other applications using this method.

Agents with personality are also the main subject of the work of D. Silva et al. [21]. They
propose a Synthetic Actor model that connects emotions and social attitudes to personality,
providing a long-term coherent behavior. They present two games as case studies to their
proposed architecture. The Synthetic Actor model is a very interesting behavioral model,
but there is no indication on how to interface it with a virtual environment. The case studies
they present have been implemented using the Java/VRML platform, which is not one of
the most efficient ones.

The EXCALIBUR project [14] is a system that uses a generic architecture for au-
tonomously operating agents that can act in a complex computer-game environment. The
agents use planning in a constraint programming framework and the behavioral model is
able to handle incomplete knowledge and information gathering. The project has been built
for computer games and there is no specific information on how to connect the proposed ar-
chitecture to a virtual world and how to interface it with the sensing and acting mechanisms
of a virtual agent.

Another interesting system for the creation of real-time behavior-based animated actors is
Improv [17]. It consists of an Animation Engine that uses procedural techniques to generate
layered, continuous motions and transitions between them, and a Behavior Engine that is
based on rules governing how actors communicate and make decisions. The combined sys-
tem provides an integrated set of tools for authoring the ‘minds’ and ‘bodies’ of interactive
actors. Improv seems, however, to be more suitable for interactive storytelling rather that
virtual environments, since there is no indication that the system is using collision detection
and physics, while the actors have total freedom to manipulate the world (even to change
other actors’ properties), so they cannot be considered virtual agents.



TOOL FOR CONSTRUCTING 3D ENVIRONMENTS WITH VIRTUAL AGENTS 257

Our research team has also done some preliminary work on virtual environments with
autonomous entities during the last years. We have worked towards the introduction of
logic programming in virtual worlds and we designed and implemented an intelligent agent
framework in VRML environments [15]. After a few years, we abandoned the Java/VRML
platform and started using C++ and OpenGL to build a generic tool for rendering and
animating virtual agents, a research, which lead to SimHuman.

3. Creating interactive 3D environments for multimedia
and educational applications

There are no general methodologies and architectures for the development of 3D interactive
environments, because it is usually the target application, which sets the requirements. Some
systems may have to use models with great detail, while others may need to render very
large scenes. There are cases where accurate modeling of the physical laws is needed, and
others where the emphasis is put in visual appearance. In general, the fact that high-quality
graphics and animation decrease the performance dramatically, makes it very hard to set
standard features for all possible applications with virtual environments.

We believe, nevertheless, that there are certain types of applications, such as educa-
tional environments, multimedia presentation systems, multi-user chat rooms and simple
simulation systems, which have similar requirements. Such environments usually involve
relatively small spaces and need visually appealing graphics and animation combined with
a simplified physical model. The combination of attractive graphics, complex animation
and physics should make the environments more realistic and believable to the user. Fur-
thermore, such applications should be dynamic, i.e., to allow the user to interact with the
environment, through navigation, manipulation of objects, or assignment of orders to virtual
agents, using the appropriate interface, e.g., speech processing, natural language commands,
joystick, mouse, etc. In all these cases, the use of commercially available products such as
Macromedia Flash or QuickTime VR is not enough, because they are restricted either to
2D graphics or to static 3D environments with limited interaction.

As seen in the previous section, there has been a lot of research in the field of virtual
worlds with synthetic characters and all these approaches have many important features to
offer, but in all cases, the systems seem to be targeting at a specific subgroup of applications.
There are sophisticated tools for designing and animating virtual agents, which are running
only in expensive graphical workstations, and in some cases they focus more on accuracy
than on visual appearance. On the other hand there are some interesting approaches that
use intelligent agent architectures in virtual environments, but are presented as case studies
and not as a way to design and implement custom worlds.

There are cases where complex behavioral architectures for 3D environments have
been proposed, lacking, however, details on how these approaches are interfaced with
a graphical environment, and whether it is possible to use them in a custom applica-
tion. Finally, there are tools such as Improv, made especially for the design of synthetic
actors, which focus more on storytelling and lack features, such as collision detection
and physics, that would allow the development of simple simulation systems with virtual
agents.
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There are commercially available tools for rendering and animating virtual agents, such
as the 3D Game engines, but due to the fact that these engines are built especially for games,
they also have a number of limitations. In most of the cases they use their own file format for
3D models (e.g., the MD3 files used by Quake III engine), which is not widely supported,
so the user may have to use specific editors to design a scene. Furthermore, the agents have
cannot use an arbitrary body hierarchy (they usually have simple skeletons) and there are
few actions that they can implement, such as running, jumping and picking objects. It is
very hard (if not impossible due to the simplicity of the skeleton) to design more complex
actions using game engines, e.g., to have an agent sit on a chair, or open a door. Finally,
game engines tend to run in full screen, or at least to cover the whole application window,
limiting the interaction with the user through messages and keyboard input. Therefore, one
cannot use such an engine to have a virtual world as a part of a larger application.

As a conclusion, we believe that there is a lack in general tools for designing and imple-
menting single-user interactive 3D environments with multiple virtual agents that can be
embedded in applications for average PC users. Therefore, we have designed and created
SimHuman as a tool to build such environments.

4. SimHuman

The field of character modeling, simulation and behavior is an area of continuous research
and many different approaches have been proposed. In our case, we tried to combine algo-
rithms that balance between efficiency and accuracy in order to produce believable motion
in real-time environments and to create a useful tool for the development of interactive 3D
applications.

SimHuman is a tool that can aid programmers in the design, rendering and animation of
virtual environments with single or multiple agents and avatars. These synthetic worlds have
characteristics such as Inverse Kinematics, Physically Based Modeling, Collision Detection
and Response, and Vision, and can be easily embedded in larger multimedia applications.

SimHuman consists of a programming library and two utilities. The library is imple-
mented in C++ and allows users to define and animate three-dimensional scenes with an
arbitrary number of objects, virtual humans and user-controlled avatars. The utilities are
Agent Designer, a program that loads agent models and helps users design the skeleton and
create animation libraries, and Scene Designer, a program that lets users place objects in a
scene and visualize sequences of agents’ actions.

4.1. Creating an application with SimHuman

The process of using SimHuman for the generation of an interactive 3D environment as
part of a larger application consists of four stages (figure 1). First of all, the user has to
define the geometry of the objects and agents that will be part of the world. Then, a more
detailed description of the virtual agents is needed, mainly their skeleton hierarchy with the
joint limits, as well as an animation library, which contains the actions that the agents can
perform. After that, one has to design the scene, i.e., to define how the objects and agents
will be initially arranged inside the environment. Agent Designer and Scene Designer can
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Figure 1. The process of creating a 3D environment with SimHuman.

help the user construct the agents’ skeleton and animation libraries, as well as place the
objects and define the initial settings of the 3D environment.

The final step is to construct an application using the SimHuman library. The library’s
main feature is the SimHuman engine, a global engine that coordinates the synthetic char-
acters’ activities and animates the virtual world. The user has to define how the agents
‘behave’ in the 3D environment and how the world changes during time. These behaviors
are assigned to the engine as callback functions.

We will now present in more detail the files that are used by the SimHuman engine to
render and animate the environment.
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Character geometry and motion. Each virtual agent is using three different files for ren-
dering and executing its actions, a geometry model, a hierarchy file and an animation library.
The geometry model can be imported from Curiouslabs Poser, a commercial program for
modeling, posturing and animating synthetic characters. Character motion is defined by the
hierarchy file, which represents the virtual agent’s skeleton, i.e., the joints and segments
of the body and their limits. The animation library holds a set of keyframed animation
sequences and can be used by synthetic characters to implement various actions.

Object geometry. The geometry models for the objects that will compose the scenery can
be imported from commercial 3D Modeling programs provided that they are in VRML97
format.

The Virtual Reality Modeling Language may not be as popular as it used to be a few
years ago, but it is still a universal file format for 3D objects, and one can find nu-
merous free VRML objects on the Internet. Many commercial 3D Modeling programs,
such as 3D Studio Max, can export to VRML97 files, and there are also file conversion
utilities (e.g., 3D Exploration), that can convert almost any popular 3D file format to
VRML97.

Scene definition. The most primitive step in using the SimHuman library is to define a
scene, i.e. a 3D environment with an arbitrary number of objects and virtual humans. This
scene can be loaded from a scene definition file, which describes the objects and their
attributes, or created dynamically during the execution of the program by constructing new
C++ objects. Each object in the scene definition file has the following form:

OBJECT classname name modelname
Position px py pz
Orientation rx ry rz

Spot name px py pz
Spot name px py pz
...

END OBJECT

Each object has a unique name and its geometry is described in a VRML model. The
classname variable is for the class that the object belongs to, which may be useful for the
implementation of certain actions (e.g., one can sit on an object of class chair but not on
an object of class window). Each object has also a position and orientation in the 3D space
(denoted by the variables (px, py, pz) and (rx, ry, rz) respectively), and an arbitrary number
of spots which are again used for the implementation of human-object interactions as we
shall describe later. Each spot has a unique name and its position in the local coordinate
space of the object is (px, py, pz). The reason for using the object’s coordinate space instead
of the global one is to give the user the ability to easily change the position and orientation
of the object in the scene without having to readjust all the spots. All VRML models of the
scene are declared in the beginning of the file as:

MESH modelname filename sx sy sz
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Filename is the name of the wrl file, modelname is a unique name assigned to the model,
which is referenced in the OBJECT declaration, and (sx, sy, sz) is a global scale factor of
the model.

A sample screen definition file for a scene with one table and two chairs is the
following:

MESH smallchair chairnew.wrl 0.4 0.4 0.5
MESH bluetable metaltable.wrl 0.5 0.5 0.5
END

OBJECT chair chair1 smallchair
Position 0.0 0 0.0
Orientation 0 90 0
Spot s1 0.0 0.22 0.0
Spot s2 0.19 0 0
Spot s3 1.19 0 0
END

OBJECT table table1 bluetable
Position 0.0 0 0.3
Orientation 0 0 0
END

OBJECT chair chair2 smallchair
Position -0.3 0 0.3
Orientation 0 0 0
END

The 3D scene generated by this scene definition file is depicted in figure 2.
Virtual Creatures can be either computer controlled characters (Agents) or user con-

trolled (Avatars). Their definition resembles that of the virtual objects, but in addition to the
geometry model, one has to add the name of the hierarchy file and the animation library,

Figure 2. A sample scene with a table and two chairs.
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which describe the virtual character’s joint structure and the actions it can perform. We shall
describe the definition and functionality of virtual agents in more detail in the next section.

4.2. Using the library

The SimHuman library is a C++ library that can be linked to a larger application and render
and animate an interactive virtual environment with one or more virtual agents. The method
of using this library in an application is to define the initial objects and their properties and
then to initialize the SimHuman engine using the appropriate callback functions. The initial
scene definition can be loaded from the scene definition file. Alternatively, the library allows
the dynamic creation or destruction of objects and agents, so an application could possibly
have an interactive object placement and initialization of the environment. Another issue that
the programmer can control is whether an object (or agent) will take part in the physically
based modeling and collision detection process or not. This is mainly for performance
reasons, e.g., static objects such as walls do not change their position over time and have
always a zero velocity, so there is no need of applying gravity on them and testing their
collision with the ground. On the other hand, moving objects do have a velocity and it is
possible for them to collide with other moving or static objects.

The SimHuman engine is responsible of animating and rendering the virtual agents and
the other objects of the environment. During each timeframe, all agents follow a Sense—
Decide—Act sequence, while the world is causing changes to the objects based on any
global laws that may exist in the environment. After these changes in the object properties,
the physically based modeling module applies the laws of physics to the objects and tests for
possible collisions. This process may also alter some geometric properties of the world’s
entities, which may be sensed by the agents only in the next timeframe. Using the final
positions and orientations of the objects, the visualization module renders the scene on the
screen. The process of rendering a frame in the SimHuman engine is displayed in figure 3.

The engine is using processes for agents’ sensing, deciding and acting, but, unfortunately,
the way that an agent should react to the environment depends strongly upon the application.
Therefore, the user should assign callback functions that will determine how each agent

Figure 3. Operation of the SimHuman engine.
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should ‘behave’ based on the current state of the world. There is an embedded sensing
mechanism, which may be used for additional believability, and there is also a set of different
actions that the agents can perform to interact with the environment. To create an avatar
in the environment, one can simply use a callback ‘Decide’ function that maps user input
(keyboard, joystick or mouse) to specific agent actions.

The global changes that will be applied during time (e.g., time of day, weather, other
laws) are also determined by a callback function that the user should assign to the engine.

4.3. Physically based modeling

Traditional animators rely upon a mixture of visual memory and drawing skills to simulate
various physical behaviors. When a line test reveals that the animator is not correct, it is
redrawn and re-tested until it satisfies the animator. Unfortunately, such techniques cannot
be used in real-time computer graphics systems. If the aim is realism, one must rely upon
deterministic procedures that encode knowledge of the physical world, which is the physi-
cally based modeling process. Moreover, in such a simulated environment all objects have
to behave as rigid bodies, i.e., no object should be allowed to penetrate another. The process
of collision detection is to examine if the whole or part of the geometry of an object is
within another. Associated with this is another equally important process, that of collision
response, which should determine the new position and velocity of the two (or more) objects
that collided.

SimHuman has an embedded physically based modeling engine that is used to enhance the
naturalness of the animation. The engine uses a simple and fast approach to simulate forces
and to check for collisions. There are more sophisticated approaches that can, however, be
implemented in the future, and easily replace the current one, due to SimHuman’s modular
architecture.

The physical simulation is conducted in discrete timesteps, where each object has its
own mass, position and velocity. In each timestep objects’ positions and velocities are
recalculated following the laws of kinematics and collision. It is optional whether an object
will participate in the physically based modeling engine or not, and it depends on the target
application. Collision detection is also optional and it is using the bounding boxes of the
objects, which are automatically calculated when the geometry models are loaded.

The Physically based modeling process in each timestep dt is as follows:
For each object

1. Calculate the total force F applied to it. This will give rise to acceleration a such that:
F = m · a. The value of a is calculated.

2. Assuming the object’s velocity in the previous timestep was v0, then the current velocity
v is: v = v0 + a · dt

3. Assuming the object’s position in the previous timestep was p0, its new position p is
calculated as if the object had moved with a constant velocity, the mean between that of
the previous and the current timestep. So: p = p0 + v+v0

2 · dt
4. Check if the object collides with any other object in the scene. If not, assign the new

position p and the new velocity v to the object and proceed to the next one.
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5. Assuming that the other object did not move during dt find the position pc of the object
exactly when the collision occurred. Find the relation λ between the impact position and
the current one to approximate the exact time of impact and the object’s velocity at that
time.

λ = |pc − p0|
|p − p0|

, 0 < λ ≤ 1 vc = λ · v dtc = λ · dt

6. Assign the position pc and velocity vc to the object and repeat the process (go to Step 1)
for the rest of the time dt − dtc

4.4. SimHuman utilities

The SimHuman library is accompanied with two additional programs that render and test
3D Scenes and agents, and aid the programmer during the development of applications
based on virtual environments.

The first one is Agent Designer, a program for constructing the skeleton and creating
animation libraries for virtual agents. It has the ability to load and render agent models and
visualize their skeleton, where one can rotate the camera and zoom in or out to examine the
model from different views. The user can select a body segment and rotate it in any direction
to test and readjust the joint limits and the centers of rotation. He/she can also change the
joint’s parent and children in the tree hierarchy using drag and drop in the appropriate dialog.
With this method, one can create the appropriate joint hierarchy file or adjust an existing
one to the needs of the application.

Multiple segment rotations create body postures, which the user can export to text files.
Additionally, one can define or load series of postures and create keyframed animation
sequences, which can, then, be used by the agent as actions in the 3D Environment. The
SimHuman engine is able to select animation sequences from library files and execute them
during runtime.

Figure 4. Agent designer (left) and scene designer (right).
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The other program is Scene Designer, which is built for visualizing and testing 3D
Scenes. The user can load and examine any 3D environment from the scene definition
file and easily readjust the objects’ positions and rotations. He/she can also select avatars
and directly manipulate them to test the walking algorithm, the collision detection with
objects and the physically based modeling engine. Additionally, the program can visualize
the agent’s sensing algorithm with ray-casting and display the objects that are visible to
the agent during each timeframe. One of the most important features of the program is
that it can execute a sequence of actions for each one of the agents, and the user can
therefore setup different environments and test the outcome of certain actions or action
combinations.

Using these two tools, the programmer can refine the agent models and scenes and create
all the necessary input files that will be used by the SimHuman library.

5. Virtual agents in SimHuman

In this section we will focus on the design issues and functionality of the virtual agents that
are part of SimHuman. We will present issues such as primitive motion, walking, collision
detection, sensing, dynamic actions, and behavioral control.

5.1. Display and primitive motion

In the SimHuman library, all objects of the scene (including virtual agents’ bodies) are
defined in terms of 3D Polygons. Agents and avatars are not based on a fixed model, but the
library gives the ability to load models dynamically, from a geometry file that contains the
details of their appearance. The models can be loaded directly from Curiouslabs Poser, a
commercial program for the design, posturing and animation of virtual humans or animals.
Therefore, it is practically very easy to design new virtual agent models and embed them
in an application based on SimHuman.

A synthetic character’s body could be just one big polygon mesh, but it would be very
difficult to animate it. If, for example, a virtual human had to raise its arm, the program
would have to find which vertices and polygons belong to the arm and only rotate these.
A much better approach is to define the body in terms of joints and segments, where each
segment should be the body part that connects two joints and should maintain its geometry
throughout the animation. The number of joints and segments that should be defined on
the human body depends on the application and the animation detail required. So does
the number of degrees of freedom allowed per joint. A real human has in total over two
hundred degrees of freedom, but efficient animation can be produced with significantly less.
A simple walking animation may need less than a dozen joints. On the other hand, a virtual
human that can grasp various objects requires a lot of additional joints and segments (for
the fingers of each hand).

In our approach a virtual character can have an arbitrary number of joints and seg-
ments and any possible hierarchy tree (or skeleton) to connect them. This information is
stored in a supplementary file called hierarchy file, which gives the user/programmer the
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ability to adjust the program to the needs of different applications having any possible
detail.

The hierarchy file has the following structure:

NODE nodename
Centre cx cy cz
Max rx1 ry1 rz1
Min rx2 ry2 rz2
NODE nodename
...
END
NODE nodename
...
END
...

END

Each node has a unique name (nodename variable), which is the name of the body part
it controls. The center of rotation expressed in global coordinates of the body is (cx, cy,
cz), while (rx1, ry1, rz1) and (rx2, ry2, rz2) are the maximum and minimum rotation values
allowed, the joint limits. Between the declaration of the Node and the END keyword, one
can declare an arbitrary number of joints, which are the descendant nodes of the hierarchy
tree.

Figure 5 displays a hierarchy tree and shows a simple human body mesh in wireframe
and the underlying skeleton, which is defined by that tree. The red spheres are the joints

Figure 5. A sample hierarchy tree and its respective representation in the human body.
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Figure 6. Shoulder rotation with and without common vertices.

of the skeleton, which transform the body parts to generate animation sequences, while the
green spheres are dummy joints, since they do not cause any transformation on the human
body. The dummy joints on the hands and feet are used as end-effectors in inverse kinematic
chains to implement actions such as catching an object. The joint on the head is the ‘eye’
of the virtual human and is used for first person view in the case of avatars and for sensing
the environment in the case of agents.

A classic problem of articulated figures (i.e., figures that are based on a skeleton model) is
that the rotation of a segment causes a crack around the joint, because the faces of adjacent
segments are not adjoining anymore. One way to deal with this is to have fixed primitives
(usually spheres) on the joints, but one drawback is the fact that these primitives do not
always fit perfectly with the model’s meshes, thus distorting the appearance of the model.
Another problem is that they add a lot more polygons to the scene, which may decrease the
program’s performance.

In our engine we have the ends of adjacent segments always connected with each other
and, whenever a segment is rotated, the vertices that are common with any adjacent segment
are not transformed. The effect of this method is demonstrated in figure 6. With SimHuman,
one can generate arbitrary animation sequences using keyframing, where the engine pro-
duces a smooth transition between two or more predefined states (poses). With this simple
process of keyframing, one can load various body postures stored in an animation library
and use them to create more complex animation sequences, such as walking, sitting on a
chair etc.

5.2. Walking animation

The animation of a walking human is a typical keyframing example. This is because of the
nature of walking, which is a continuous transition between several states. During walking
a person changes between the following states:
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Figure 7. The two states for rotating the body.

• State 1: the left leg touches the ground and pushes the body forward.
• State 2: the right leg is on the ground and drives the body.

Nevertheless, a walking animation should contain two more states. One is the transition
from current position to state 1 to start walking, and the other is the transition from any
state to a rest position to stop walking. This state—transition process is only capable of
animating walking along a straight line. However, in most of the cases, the virtual human
may have to change its direction while walking. One cannot do this by simply interpolating
the global rotation, because the motion will not look natural. In reality, humans use their
feet to rotate; they cannot just turn their bodies while walking. The body rotation is a motion
that has two extra states, as shown in figure 7. These two states may not be enough, because
one cannot usually rotate the body more than ninety degrees using just two steps. If the
rotation angle is bigger the rotation process is split into two smaller ones.

If the human body is resting, the rotation process can start immediately. This is, however,
not the case if the virtual human is walking. If the rotation starts on arbitrary time, there
might be a case where no leg touches the ground, and the animation will look unnatural.
Therefore, the rotation has to be coordinated with the walking to achieve better visual results.

When the human is walking and the body has to be rotated, the program waits until one
of the two legs is on the ground and the body is standing on it. The body is then rotated
around that leg, so that the whole process is animated smoothly and realistically enough.
The state diagram for the walking process is shown in figure 8.

Figure 8. State diagram for walking.
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Figure 9. A human body mesh and the respective bounding cylinders.

5.3. Collision detection and response

Calculating an accurate collision detection and response for a synthetic character’s body
mesh is not an easy task. The program has to check each polygon of the mesh against all the
other objects of the scene and determine if it is penetrating another polygon. The approach
that we use in our engine is somehow different. We use bounding primitives around the
human body segments and perform all collision detection checks with them. This reduces
the computational time significantly, making it possible to run in acceptable speeds in real-
time applications. The primitives that we have chosen are cylinders, mainly because their
geometry is more symmetrical compared to bounding boxes and they still fit well around
the human body (figure 9). Once a model is loaded, SimHuman automatically calculates
the bounding cylinders of each body segment.

The bounding cylinders need to be calculated once and then they are only translated
and rotated following the motion of the limbs they correspond to. This calculation is done
initially, when the human model is loaded. The process is simple and follows the next three
stages for each limb (mesh) of the body:

1. Calculation of the bounding box. The program checks all vertices of the mesh and
finds the maximum and minimum x , y and z values. The result will be two vectors (max
and min) which will define the corners of the bounding box. The size and center of the
box can be found very easily: size = max – min and center = max+min

2 .
2. Cylinder type. Each cylinder can be aligned on the x , y or z axis. The use of arbitrary

cylinders has been avoided because it would complicate the calculations significantly.



270 VOSINAKIS AND PANAYIOTOPOULOS

This is not a drawback since they can be rotated and translated as any other object in
the scene, it just affects their initial definition. The axis on which the cylinder will be
aligned is be the one with the highest value in the size vector of the bounding box.

3. Centre, radius and height. The cylinder’s center is the center of the bounding box. Its
height (or length, or width, depending on the axis) is the size value of the axis on which
it is aligned. The cylinder’s diameter is the mean between the size values of the two
other axes. For example, if the cylinder is aligned on the x-axis and the size vector of
the bounding box is [sx sy sz], then the length will be sx and the diameter sy+sz

2 . So the
radius is going to be sy+sz

4 .

After defining the initial position and size of each cylinder the next step is to check for
collision with other objects in the scene. In each timestep the cylinders have the translation
and rotation of the limbs they correspond to. Let us for example check if a cylinder collides
with a sphere. Instead of transforming the cylinder, the program inverse transforms the
position and velocity of the sphere and checks for collision with the initial cylinder. If the
objects collided the new position and velocity of the sphere has to be transformed back to
the original coordinate system. The steps are:

1. Find the matrix of the corresponding mesh and calculate its inverse.
2. Multiply the inverse matrix with the center and velocity of the sphere.
3. Check if the sphere collides with the initial cylinder.
4. If they do, calculate the new position and velocity values and multiply them with the

transformation matrix.

The collision detection of a primitive with a cylinder is not a very complex task. Let us
consider the case of an x-aligned (horizontal) cylinder and test if a point is inside it. Let the
centre of the cylinder be [cx cy cz], its radius be R and its length l. Let also the point be [px
py pz]. The point is inside if and only if:

• cx − l
2 ≤ px ≤ cx + l

2 and
• the distance of the point from the cylinder’s axis is less than the radius. In other words:√

(cy − px)2 (cz − pz)2 ≤ R.

Similarly one can check if an edge is penetrating a cylinder, and with these two primitives
(points and edges) one can test boxes, polygons or any kind of mesh.

5.4. Sensing the environment

A virtual agent has to have a way of interacting with its environment, i.e., to perform
actions on objects or other agents and cause a change in the state of the scene. A necessary
precondition for such an interaction is to have a mechanism to sense the environment. The
agent has to be able to know other objects’ position and attributes and to use this information
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Figure 10. A virtual agent ray-casting a scene.

for the execution of its actions. A virtual agent could be omniscient, i.e. be able to read the
attributes directly from scene, or could have a limited view of the environment, thus making
its behavior more believable to the user.

The sensing mechanism in SimHuman is based on ray casting. Whenever an agent ‘looks’,
it casts a number of rays into the scene, and reads the objects that these rays intersect with.
With this mechanism, it is able to know the position, size and type of the objects that are in
its field of view, and use this information to navigate inside the scene and to perform actions
on the objects. The agent keeps its own, internal map of the scene, which is memory and is
updated periodically, depending on the sensing frequency. In figure 10, the agent is casting
rays into a complex scene.

5.5. Dynamic actions

The actions that the agent can perform are either predefined, such as the execution of
an animation sequence using keyframing, or dynamic, meaning that they depend on the
environment and their outcome cannot be predicted. Consequently, dynamic actions may
fail, because the current state of the environment may not allow its success, e.g., in the case
of using the Inverse Kinematics engine for a target that cannot be reached. In SimHuman,
the physically based modeling engine as well as the co-existence of more than one agents
and avatars inevitably ‘generate’ a dynamic environment, and a virtual agent has to be able
to execute dynamic actions to interact with it.

One such action is path planning and obstacle avoidance, i.e., the ability to move to a
specified target without bumping into other objects, where the agent uses its own memory
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Figure 11. Path finding with the subdivision algorithm.

map to calculate a safe path to the target. More complicated dynamic actions involve catching
a moving object, hitting it, or leaving an object on a specified location. These actions must
use a form of inverse kinematics, because they involve more than one joints that have to be
coordinated to succeed.

Path finding. SimHuman is having a simple embedded algorithm for path finding and
obstacle avoidance. Using the Ray Casting engine, it tests if the agent will penetrate an
object while walking a straight line from the initial to the target position. If it does, the
segment is subdivided using a point on the perpendicular line that passes though its center.
The algorithm, then, works recursively for each of the two new segments. In case it fails,
it moves the point of subdivision further along the perpendicular line (both to the left and
right position). The step of moving the subdivision point, as well as the depth of recursion,
are both adjustable. Figure 11 shows a case where the algorithm succeeds in finding a path
in a scene with three different obstacles using four steps with equal subdivisions. The use
of this algorithm is of course optional; the programmer could implement other methods of
controlling the agents’ motion, such as a graph, a grid, etc., or use the objects’ bounding
boxes to perform other path finding techniques.

Inverse kinematics. Instead of using a generic inverse kinematics solver, a different
approach is introduced. This approach tests at every step the best rotation for each joint to
achieve the target. The set of joints (or the joint chain) that is going to be used by the Inverse
Kinematics engine is first defined. Then, a function has to be assigned and return on how
close to the target is the current state of the virtual human. The process (in pseudocode) is:

For each joint in the chain
For each degree of freedom of the joint
increase and decrease angle by a value v
check which of the two states improves the
function

if that state is different from the
previous one
decrease the value of v

else increase it
assign the value to the angle
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This process is repeated in each frame and the chain always corrects itself towards the
target. The speed of rotation change per joint depends on the success of the move. If one
segment is ‘shaking’ (the angle is increased in one step and decreased in the next, or vice
versa), the joint speed is decreased to provide finer approach to the target. On the other hand,
if an angle change is always heading towards the correct direction, the speed is increased
until it reaches the maximum value.

This continuous correction sequence has the advantage that the animation looks more
natural and human-like compared to applying a transition from the current state of the chain
to the solution of the problem. Additionally, it works with moving targets and can avoid
collisions with objects that lie between the agent and the target.

Let us consider the example of the pickup action, where an agent has to pick up an object.
The agent uses the dummy joint on the left or right hand and tries to equate its position with
a point on the surface of the object. This has the effect that the hand seems to touch the
object. The next step is to link the object’s position with the joint so that the object inherits
the joint’s transformation and remains attached to the hand. With most of real-world objects,
there is a standard way of catching them, and therefore we store this information inside
the object declaration in the scene definition file using the spot declaration (see paragraph
4.1). To implement the pickup action we employ the Inverse Kinematics engine and use the
distance between the dummy joint on the hand and the spot on the target object’s surface
as an objective function.

In figure 12 we display an agent trying to catch a moving ball with the use of the Inverse
Kinematics algorithm.

Figure 12. A virtual agent tries to catch a moving ball.
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5.6. Behavioral control

So far we have presented a synthetic character with the ability to sense and execute various
actions in a 3D environment. Such features may be more than enough for the implementation
of user-controlled avatars or for synthetic actors that follow a predefined set of orders.
Nevertheless, a virtual agent should demonstrate a more believable and dynamic behavior,
and should therefore have an additional mechanism to select the appropriate actions and
execute them according to its goals. This is the agent’s equivalent of a mind, the part that
gives orders to the virtual body.

The agents in SimHuman do not have a fixed method for implementing their behavior,
because the way that an agent controls its actions depends much upon the application,
and therefore it would not be useful to restrict the decision function to a specific action
selection mechanism. The library provides all the necessary tools to the programmer to
build a behavioral controller as a callback function, which is then used to control the agent
during runtime. These tools are:

Perception: Knowledge about the environment comes from the embedded vision system,
which is using ray-casting and the collision detection mechanism. Alternatively one could
directly access the properties of objects.

Interaction with the environment: The keyframing mechanism, the inverse kinematics en-
gine and the direct manipulation of virtual objects allow programmers to implement a
variety of actions.

The behavioral mechanism could either be implemented with simple if-then rules or with
more sophisticated methods, such as the use of a planner.

5.7. Architecture of SimHuman agents

The architecture of the Virtual Agents used in SimHuman is depicted in figure 13. Virtual
Agents consist of three different modules. There is a motion controller, which is using the
geometry file, the joint hierarchy file and the animation library to generate motion, i.e.,
to implement the desired actions. For most of the actions, the motion controller needs to
be aware of the other objects’ position and orientation, and is, therefore, using a memory,
which holds this information. The sensing mechanism uses the information it gets from the
environment and updates the memory. Finally, there is a behavioral controller, which takes
all the high-level decisions of the agent. This module, which is defined by the programmer,
decides about the next action that the agent should perform and sends a command (such as
“pickup the ball”) to the motion controller, which then handles the implementation details.

6. A simple example: Virtual university

As an example, we have created a multimedia application for the interactive presentation of
the University of Piraeus (figure 14). It lets the user navigate inside a virtual representation
of the university’s main building and get information about its places and faculty. The user
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Figure 13. The architecture of SimHuman agents.

Figure 14. A sample screenshot of the Virtual University example.
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can navigate freely using the keyboard and the collision detection mechanism prevents
him/her from penetrating the walls and objects. Additionally, by clicking on doors, he/she
can read about the respective places and offices of the university.

The application also features a virtual agent, who serves as a guide and can assist the user
to locate specific areas or offices of members of the staff. The user can ask about an office
number or the name of a faculty member, and the virtual agent will walk towards the user and
guide him/her to the desired destination. The user’s point of view will automatically follow
the agent’s path. When the destination is reached, the program will display the appropriate
information. The agent can also present guided tours in specific departments or entire floors.

The application has been created using the SimHuman library as a basis for the visual-
ization of the 3D environment and the animation of the agent. The university’s model has
been created based on the building’s ground plans, and the agent model has been exported
from Curiouslabs Poser. The Virtual University example is an extension of an earlier project
[16] that was built with the VRML—Java platform.

7. Conclusions and future work

In this paper we have presented our approach towards designing and implementing custom
virtual environments with agents. We reviewed the literature and explained why we believe
that there is a lack of general tools for constructing 3D environments as parts of multimedia
applications, educational systems or simple simulations, and presented SimHuman, our tool
for designing and building such environments. Virtual Environments and simple Simulation
Systems do not need the best possible accuracy; they require natural looking motion, as well
as acceptable execution speed on an average PC, and this is the aspect that our approach is
focusing on.

The aim of SimHuman is to combine simple yet effective design algorithms and imple-
mentation techniques for the creation of synthetic humans for desktop VR applications. One
basic advantage of our approach is that it is suited for Windows applications on average PCs,
because it is based on the C++ programming language and the OpenGL graphics library.
Due to the latter, it is also taking full advantage of the graphics card acceleration, making
it possible to render large 3D scenes with a good frame rate. Table 1 shows some typical
rendering times for three different scenes with and without physically based modeling. The
times have been measured while a single agent was walking around the scene, using a
PIII – 500 processor and a Riva TNT2 graphics card.

Featuring a library, SimHuman can be part of a larger project and be combined with other
multimedia features, such as images, sound and video. A very important characteristic of our

Table 1. A table of typical rendering times.

No PBM PBM

∼4000 polygons 17 msec 18 msec
∼10,000 polygons 31 msec 34 msec
∼25,000 polygons 68 msec 72 msec
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engine is that it is fully configurable, since it can render a 3D scene using models in VRML
format and it can import synthetic humans from Curiouslabs Poser, a commercial program
built especially for modeling and animating virtual humans and animals. Consequently one
can use any 3D modeler to design the scene, export the objects in VRML format, and use
that scene in a SimHuman-based application.

We have already used SimHuman as a tool to present multimedia documents in an
educational application [6] and we are planning to extend it as a general platform for
scripting interactive presentations. There are, nevertheless, a lot of features that could be
added, such as a language to define custom actions, the ability to select between different
embedded behavioral architectures, etc. We are currently working on integrating spatio-
temporal reasoning and planning techniques into SimHuman’s behavioral control and on
allowing concurrent execution of agents’ actions. Our future plans are to develop a generic
visual tool for setting up a scene and describing the agents’ behavior to serve as a basis for
the automatic generation of virtual environments with believable agents.
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