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Abstract. Tools for the interpretation of significant events from video and video clip adaptation can effectively
support automatic extraction and distribution of relevant content from video streams. In fact, adaptation can
adjust meaningful content, previously detected and extracted, to the user/client capabilities and requirements. The
integration of these two functions is increasingly important, due to the growing demand of multimedia data from
remote clients with limited resources (PDAs, HCCs, Smart phones). In this paper we propose an unified framework
for event-based and object-based semantic extraction from video and semantic on-line adaptation. Two cases of
application, highlight detection and recognition from soccer videos and people behavior detection in domotic*
applications, are analyzed and discussed.
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1. Introduction

Adapting videos to the user’s requirements and terminal constraints is commonly referred
to as transcoding [6, 19, 26, 38] or as video adaptation [16]. Video adaptation assumes
that video is available in a certain format that is changed to a different one which is better
suited to the context where the video is used. Transcoding techniques can be classified into
intermedia and intramedia. Intermedia transcoding assumes that the media type changes
from source to destination (e.g. a video-to-text application in which a notification message
is sent whenever an event is recognized in the video). In intramedia transcoding source and
destination media are the same (e.g. a video-to-video or audio-to-audio) and transcoding
can be either homogeneous or heterogeneous: in heterogeneous transcoding [13, 25], source
and destination have different codes and information re-use is impossible.

*Domotics is a neologism coming from the Latin word domus (home) and informatics.
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As far as video is concerned, transcoding is often performed in the compressed domain to
avoid decompression and re-compression. In fact, this process introduces quantization errors
andis notefficient [18, 29, 31]. Typical direct video transcoding methods are requantization,
spatial resolution downscaling, and temporal resolution downscaling or a combination of
them [18, 25]. Requantization is performed by decoding the DCT coefficients and re-
quantizing them to fit bandwidth requirement [15, 34]. Spatial resolution downscaling is
useful to fit, for instance, the screen size capability of a PDA and it consists in generating a
video with lower spatial resolution [12, 27, 36]. Temporal resolution downscaling reduces
the video frame rate by skipping frames either in a predefined way or on the basis of the
amount of changes in the motion vectors [6, 13, 14, 32]. Transcoding for MPEG video
can use adaptive quantization as reported in [8, 11, 22, 23, 35]. In backward adaptative
quantization [37], quantizers are updated based only on the previously quantized data which
are available to both the encoder and the decoder and has the advantage of avoiding the
transmission of additional information to the decoding end. In forward adaptive quantization
[22], the encoder updates the quantizer by probing both current and future inputs. Since the
encoder’s decision is based on information that is not available to the decoder, additional
information must be given to specify the due changes.

Video transcoding is very effective if the code change is driven by video content [20]. With
semantic adaptation,' the most meaningful parts of the video may have different coding
than others, so as to adapt video transmission to both user’s requirements and device’s
capabilities. In this case direct transcoding techniques working on compressed domain are
not effective, since higher level semantics must be extracted in the uncompressed image
domain. As an example, in the transmission of a video of a soccer game, we can send
good quality video only for the frames where interesting actions take place, or within the
individual frames, provide high resolution sampling only for the most relevant parts (e.g.
those in the surrounding of the players). Extracting such events in the compressed domain
can be a challenging task.

Research in semantic transcoding mostly concentrated on the extraction and separate
coding of meaningful objects rather than of meaningful events with both spatial and tem-
poral extension. Smith et al. in [26] proposed image analysis processes for content-based
image transcoding using image type (e.g. graphs or photos) and image purpose classes.
The IBM’s Video Semantic Summarization Systems described in [24] exploits MPEG-7
for semantic transcoding: semantic annotation is provided manually by human experts; the
user specifies his/her request in terms of preference topics, topic ranking, query keywords,
and time constraint; the system outputs a video summary. In [20], Nagao et al. employ a
video annotation editor that is capable of scene change detection, speech recognition, and
correlation of scenes with the text obtained from the speech recognition engine. In this
way, semantic indexes for video-to-document or video translation and summarization are
produced. In [33], Vetro et al. presented an object-based transcoding framework that uses
dynamic programming or meta-data, for the allocation of bits among the multiple objects
in the scene.

Sports video and surveillance video are two of the most interesting subjects of inves-
tigation for semantic annotation and transcoding. In sports video, extraction of the most
significant highlights is important for broadcasters, in order to build meaningful resumes
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with no human effort and make them available at any user’s terminal. In surveillance video,
semantic annotation and transcoding are motivated by the growing interest in recognizing a
specific person, detecting suspicious people’s behaviours for law enforcement, monitoring
people’s behaviour for surveillance and make remote-assistance possible. In order to provide
effective semantic transcoding of sports and surveillance, it becomes therefore important
to have the possibility of making annotations of video highlights and more in general of
semantic events, automatically, and understanding significant entities within the individual
frames.

Automatic detection and recognition of highlights in sport videos has been an active
research topic in recent years. Typical events of tennis have been modeled and detected in
[28]. In [21], shots of basketball game are classified into one of three categories (crowd
cheer, scoreboard display, change of direction). Developing on this classification, basket
events (e.g. goal events) are detected when the shot sequence displays certain visual pat-
terns. In [17] MPEG motion vectors are used to detect events. In particular, they exploit
the fact that fast imaged camera motion is observed with typical soccer events, such as
shot on goal or free kick. In [10], the playfield is divided into several distinct zones. The
framed zone is identified using patterns of the playfield lines which appear in the im-
age. The ball position is also used to perform detection of shot on goal and corner kick
events. More recently, in [7], Ekin et al. have performed event detection in soccer video
using both shot sequence analysis and shot visual cues. In particular, they assume that the
presence of highlights can be inferred from the occurrence of one or several slow motion
shots and from the presence of shots where the referee and/or the goal box is framed. In
[2] Assfalg et al. provided a general model based on a Finite State Machine, to repre-
sent the spatio—temporal behavior of the most important highlights in soccer and defined
a limited number of observable cues whose combinations determine the transition from
one state to the other of the models. Highlights were detected using a model checking
engine.

Automatic semantic annotation of surveillance video has also received great attention.
In [1], a Bayesian network was used to detect human actions: by tracking the movement
of the head of the subject several typical actions were recognized. In [30] Hongeng et al.
proposed a method for the recognition of events that employs finite state automata, referred
to as “scenarios”. In [9] Cupillard et al. proposed an approach for the recognition of the
behaviours of isolated individuals or group of people or crowd in the context of visual
surveillance of metro scenes.

In this paper, we propose an integrated framework for semantic annotation and transcod-
ing of non-compressed video that applies transcoding on the basis of spatio-temporal cues
that are extracted automatically from the video stream. Please note that, though transcod-
ing is usually referred to techniques in which input video are coded, we actually work on
uncompressed video. However, since our videos are taken by video sources that introduce
some sort of compression (for network limited capacities), we can properly refer to it with
the term “transcoding” (or video adaptation).

Meaningful highlights are modeled with Finite State Machines. Transcoding is applied
to the frame sequence where the highlight is detected and to the part of each frame where
the event takes place. Applications to sports and surveillance video are presented.
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The paper is structured as follows. The system framework and the metric for performance
evaluation that have been used are described in Section 2 and 3, respectively. The details
on the algorithms used for annotation and transcoding are reported in Section 4 for soccer
videos and in Section 5 for indoor surveillance. Experimental results of both cases are also
presented. Conclusions are reported in Section 6.

2. The proposed framework

A class of relevance is defined as the set of meaningful elements in which the user is
interested in and that the system is able to manage. The importance of classes of relevance is
twofold. First, the set of classes defines an ontology of the scenario that must be recognized,
annotated, and provided to the user. Secondly, the user can exploit the classes of relevance
in order to define his/her preferences about the video content. In addition, it can be used for
performance evaluation purposes, as reported in the next section. Actually, for our purposes,
the set of classes of relevance includes all the events and objects of the scene that can be
automatically identified and transcoded.

Formally, a class of relevance C is defined as a pair C = <o;, e;>, where o; represents
an object class and e; is an event class, selected between the set of object classes O and
event classes E detectable by the system:

0 =1{01,0,,...,0,} U{0}; E ={ey,er,...,en}U{e}

The special class ¢ includes all the areas of the image that do not belong to user-defined
classes (for example, the part outside the soccer playfield can be considered as &). Analo-
gously, the event & includes all the non interesting events or the case of no-event.

The scheme reported in figure 1 displays the process of semantic transcoding adopted in
this research. The semantic annotation engine extracts from the raw video the meaningful
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Figure 1. Scheme of the semantic annotation and transcoding (SAQ-MPEG) used.
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objects (0;) and the events (e;). Then, objects and events are assigned to their class of
relevance C;. The TPR engine (Transcoding Policy Resolver) computes the quantiza-
tion multipliers QS; according to the user’s defined relevance weights. By multiplying
the QS; with the MPEG-2 quantization matrix a quantization matrix for each class of
relevance is obtained. Finally, a standard MPEG-2 encoder uses this coded
frame as [ frame and creates the GOP (Group Of Pictures) of the
stream.

Automatic annotation performs the extraction of low-level features and their classification
by means of high-level modules that are tailored on the specific application. For example,
in the case of soccer videos, we partition the playfield into a number of different zones
with slight overlapping and use the motion of the main camera as a cue for the description
of the evolution of the play. Each event is modeled with a Finite State Machine, where
key actions, defined in terms of the estimated cues, determine the transition from one state
to the following. The event models are checked against the current observations, using a
model checking algorithm. The objects of interest extracted are the playfield zones and
the background. They are classified using Naive Bayes classifiers. A short description of
this subsystem is reported in Section 4, while interested readers may consult the detailed
description provided in [3].

The semantic transcoding system can employ three different solutions. In the first solu-
tion (S-MJPEG), the extracted objects are encoded separately by considering the weights
assigned to their class (S-MJPEG). Each object is sent in a separated image with the as-
sociated alpha-plane mask. Also the background is sent in a separated image (one every
n frames, with n changing dynamically). At the client side, the decoder (non standard)
superimposes the objects to the current background. Coding is therefore made without
any temporal prediction but exploits the semantics to enhance the ratio quality/bandwidth
[5, 6]. The second solution, called semantic spatial transcoding (SS-MJPEG), extends
S-MJPEG. The frame size is adapted according to the user’s display size, centering and
resizing the most meaningful objects, and then compressed using a semantic coding as in
the case of S-MJPEG. Thus, resolution and quality of meaningful parts of the video are
preserved.

The third solution (SAQ-MPEG), employs the MPEG-2 standard and its capabilities
of temporal prediction, to reduce the required bandwidth and produce a video that can
be played by a standard decoder. The semantics extracted is used to drive the adaptive
quantization of frame I in the MPEG stream (see figure 1). This results into standard
MPEG stream, but with different compression, according to the image region that is under
examination.

3. Performance evaluation metric

Performance evaluation of annotation and transcoding systems is typically based on a
comparison with ground-truthed data obtained from manual annotation. In the case of
annotation, comparison is made at object- or event-level by collecting errors or computing
a confusion matrix with false positives and negatives. Instead, in the case of transcoding,
the comparison is usually at pixel-level by computing figures, such as the PSNR (Peak
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Signal-to-Noise Ratio), that evaluate the difference between original and distorted (adapted)
images.

For semantic transcoding, since the user can access specific parts of the video he/she is
interested in, a weighted version of PSNR is more appropriate as global measure of system
performance.

The following definition can be therefore used as in [6]:

V2
WPSNR = 101og,, (W;%E ) (1)

where Vyax is the maximum (peak-to-peak) value of the signal to be measured and WMSE
is the Weighted Mean Square Error, computed as:

Ncr
WMSE = Z wy - MSE; )
k=1

where N¢ is the number of classes of relevance and with the MSE defined as:

MSE, = e d*(p) A3)

ICel 1=z,

where Cy, is the set of the points belonging to the user-defined class k and | Cy | its cardinality;
d(p) is a properly defined distance that measures the error between original and distorted
images in the point p. As a distance, we use the Euclidean distance in the RGB color
space (different color spaces can be used, but with similar comparison results). The weights
wy can be used to set the preferences for each class. For instance, in the case the user is
particularly interested in the playfield and almost disregards other parts of the image, he/she
can set the weights to 0.95 and 0.05, respectively.

Since the WPSNR is defined for a generic frame j the PSNR for the whole video can be

M WPSNR; .
defined as PSNR = = [5, 6], where NF is the number of frames. In our framework
we have modified the previous metric to take into account the performance of the annotation
engine (for each class of relevance) and the fact that the metric refers to events that have
a finite temporal extension. Therefore we will have different PSNR for different frame
sequences within the video stream.

In particular, the following measures must be taken into account:

CRy; = (C/Overall); the ratio between the number of highlights correctly detected (C)
over the total number of highlights for class k.

F R, = (F/Overall); the ratio between the number of falsely detected highlights (F) over
the total number of highlights for class k.

M R, = (M /Overall), the ratio between the number of missed highlights (M) over the total
number of highlights for class k.
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Hence, from Eq. (2) we can define the following performance indexes for integrated
semantic transcoding:

Nep
WMSEcg = Z w - MSE, - CR,
k=1
Ncir
WMSErg = Y wy - MSEy - FR; @)
k=1
Ncp
WMSEyr = Z wy - MSE; - MR,
k=1

that provide respectively measures of:

— Weighted Mean Square Error according to the recognition rate by the annotation engine
for each class k.

— Weighted Mean Square Error due to falsely recognized highlights by the annotation
engine for each class k (it results into some excess of bandwidth requirements).

— Weighted Mean Square Error due to missed highlights by the annotation engine for each
class k (it results into some loss of quality in the transcoded data).

A global performance measure for a frame sequence is obtained by summing up these
three figures over the individual frames:

VZ
WPSNR = 101og,,, MAX 5)
WMSEcg + WMSE g + WMSEyg

4. Semantic annotation and adaptation of soccer videos

Automatic annotation and adaptation of soccer video is becoming more and more important
since telecommunication providers are ready to offer innovative services of live sport events
on last generation cell phone or PDAs with very low bandwidth.

Inspection of videos showed that producers of soccer video use a main camera to follow
the action of the game. The main camera is positioned along one of the long sides of the
playing field. Due to the fact that the play always takes place next to the ball, it is fair
to assume that the main camera follows the ball. Accordingly, ball motion is conveniently
described in terms of pan/tilt camera motion, and estimated from the apparent image motion
induced by the camera action. The validity of this assumption has been confirmed in the
experiments carried out in the EU-ASSAVID project [2]. Identification of the part of the
playing field currently framed and camera actions are the most significant features that can
be used to describe and identify relevant game events. Recognition of the framed playfield
zone is also useful for transcoding within the individual frames.
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Figure 2. Playfield zones, Z7 to Z12 are symmetrical.

Events that are detected are forward launch, shot on goal, turnover, placed kick and
counterattack. Placed kicks include penalty kicks, free kicks next to the goal box, and
corner kicks. Counterattacks are a sequence of other basic events: a turnover followed by a
forward launch.

The soccer playfield has been divided in 12 zones, 6 for each side (figure 2). These zones
may overlap, and were chosen with support of a domain expert, so that passing from one
to the other has a specific meaning in the way in which the play action evolves. The low-
level features used to recognize the playfield zones are playfield shape and the playfield
lines. The first one is extracted from color information, through color histogram analysis.
This step is then followed by a processing chain of k-fill, flood fill and the erosion and
dilation morphological operators. Then, the bitmap image is represented using a polygonal
shape. The playfield lines are extracted from the edge map of the original image, and then
creating a vectorial representation through a stick growing algorithm. Close and collinear
segments are then merged, and length and color information is used to discard segments
due to players. The classification of the playfield zone is performed according to a num-
ber of attributes derived from these low-level cues: playfield shapes descriptor, playfield
line orientation descriptor, playfield size descriptor, playfield corner position, midfield line
descriptor.
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Figure 3. Shot model: the arcs report the camera motion and playfield zones needed for the state transition.

Twelve independent Naive Bayes classifiers have been used to classify the playfield
zones shown in the video. Each highlight is modeled with a Finite State Machine, where
key events, defined in terms of the playfield zone currently framed and motion of the ball,
determine the transition from one state to the following. For instance, the forward launch
requires that the ball moves quickly from midfield toward the goal box. This approach was
chosen over other methods, such as HMMs, due to the fact that it does not need a very large
training set, to cope with all the possible occurrences of an highlight, and it is easier to
deal with the temporal duration of an event, that is necessary to define a class of relevance.
The highlight models are checked against the current observations, using a model checking
algorithm. figure 3 shows the FSM for the shot on goal. The model is composed of 4 states:
Start, O K, and two other states for each side of the playfield. Logical symbols (and, or, not)
are used to combine visual cues extracted from the video stream. For example the sentence
“play is around the left goal box” is modeled by expression written above the arc connecting
S1 to S2. This expression is made by two constraints, one related to the motion of the play
(direction toward left and fast motion), and the other one ( Z, ) related to the current framed
playfield zone (which is the part of the playfield surrounding the goal box, as shown in
figure 2).

In conclusion, in the case of soccer videos, our system is able to extract at least the
following object and event classes:

0=1{Zi,...,Zn}U{e); E={FL,SG,TO,PK,CO}U (¢}

where Z; ... Z; are the twelve playfield zones detected; FL is forward launch, SG is shot
on goal, TO is turnover, PK is placed kick, CO is counterattack.

It must be noted that the events belonging to the E class extend over a certain amount
of time, from the beginning to the end of the action, and are not punctual. The system has
been tested on about one hour of soccer videos, including 85 sequences, selected from 15
European competitions. Table 1 reports the results: it can be noticed that, for most of the
highlights, correct detection is over 90%. False detection of shots on goal is due to attack
actions near the goal box. The model for turnovers was designed so as to achieve a low
missed detection, even if this results in a high false detection rate. This was done since they
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Table 1. Highlight classification results.

Detected Correct Missed False
Forward launch 36 32 1
Shot on goal 18 14 1
Turnover 20 10 3 10
Counterattack 3 3 1
Placed kick 13 13 2

are used to detect counterattacks, that are a composition of turnovers followed by forward
launches. Therefore this false detection is not a serious problem, since false turnover can
be discarded after checking for forward launches.

Transcoding can be applied to objects and events detected by the annotation engine.
For example suppose that the classes of relevance defined by the user are the followings:
C=<"8é>V <0, é>,Cy = <0,*>,C3 = <*,e,>,and Cy = <*,e,>, with e, €
{FL,TO,CO}, e, € {SG, PK} and * represents the case of “any event” or “any object”.

A user will be probably more interested in class C4 to see the most relevant actions
at the best quality, at least in the playfield zone. Besides, the user does not want to waste
bandwidth with actions of no interest, thus class C, will be less relevant to him/her. Possible
values of the weights could be w = {w;, wy, w3, we} = {0.005, 0.005, 0.20, 0.79}. As a
consequence of this definition, the transcoding system will heavily compress the classes C|
and C, (or even not sending data in the case of not relevant events), by using an average
quality in the C3 case, and by preserving as much of the quality as possible for the class
Cy.

To evaluate the performance of the semantic transcoding proposed, this has been com-
pared with a standard “syntactic” transcoding based on JPEG and MPEG-2. S-MJPEG and
SAQ-MPEG “‘semantic” transcoding methods have been used. The figures reported in the
following display the performance expressed in terms of PSNR and W PSN R. Figure 4
shows the graph of the PSNR of two different compression levels of standard JPEG com-
pared with our S-MJPEG. During this video some events occur and objects (as playfield
zones or 0) are detected. From frame 12 to 26 a false detection of FL occurs, that is encoded
using the Cj3 class of relevance, and thus resulting in a small waste of bandwidth. No missed
detection occurs.

The S-MJPEG code operates a different video adaptation depending on the classes of
relevance. The corresponding average bandwidth is reported in the caption. It is possible
to note that the bandwidth occupation of our method (S-MJPEG) is comparable to that
of JPEG at high compression level (C = 80). Using a lower compression level (JPEG
C = 20) increases significantly the PSNR but the bandwidth required is about 3 times
higher than in the other cases, that is impractical for slow connection devices, such as
PDAs or cell phones. In figure 4, it can be observed that S-MJPEG obtains similar results
as JPEG with C = 80 for the classes C, and C3, and, obviously, lower performance for
the class C; (frames from 26 to 87 or from 202 to 250) that is of no interest for the user
and is therefore heavily degraded. On the other hand, in the case of interesting events
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Figure 4. Comparison of JPEG-based techniques with our S-MJPEG with standard PSNR. Average bandwidth
occupations are 1128.63 kbps for JPEG C = 20,423.46 kbps for JPEG C = 80, and 432.11 kbps for our S-MJPEG.
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Figure 5. Comparison of JPEG-based techniques with our S-MJPEG with weighted PSNR. Bandwidth occupa-
tions are the same as above.

(class C4) S-MIJPEG outperforms JPEG of comparable bandwidth (frames from 251 to

354).

A similar behaviour can be observed in figure 5 where WPSNR is used. In this case,
S-MJPEG has almost the same quality of the low compression JPEG (with C = 20). This
is due to the fact that in the frames from 251 to 354 we detected both objects of class Cy4
(the playfield in the case of event “shot at goal”) and of the class C, (outside the playfield).
Besides we should consider that the frames in the test sequences used have backgrounds that
change from one frame to the other. This fact is the worst case situation for the S-MJPEG, that
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send background objects every frame. Visual results of S-MJPEG are reported as example
in figure 6: figure 6(a) reports a frame associated with class Cj, (b) associated with classes
C, or Cs, figures (c) and (d) one image in the case of interesting events, thus associated
with class Cy.

Comparison with standard transcoding based on MPEG shows even more interesting
results. In this case SAQ-MPEG method has been tested, with similar bandwidth alloca-
tion. Figure 7 presents PSNR of MPEG-compressed video and the PSNR of SAQ-MPEG
for each class of relevance. Weights were taken as w = {0.005, 0.005, 0.20, 0.79}. It is
possible to notice that for the classes C and C, (the less relevant ones) the standard method
outperforms SAQ-MPEG. Instead, for relevant classes (C3 and Cy4) the SAQ-MPEG (and
therefore the use of adaptive quantization) provides higher quality, particularly for the most
relevant events (C4). Similar results are obtained with weighted PSNR as shown in fig-
ure 8. It must be noted that the video examples used were particularly suited to standard
prediction techniques due to the fact that large parts of the frames have uniform green
color.

= "k','.'.'. <

Roi ‘L Una

Figure 6. Examples of the S-MJPEG transcoding results on the soccer video: (a) frame with no interesting events
(class Cy), (b) frame with low interest objects and/or events (classes C, and C3), and (c) and (d) two examples of
class with high-interest objects and events (class Cy).
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Figure 8. Comparison of MPEG-based techniques with our SAQ-MPEG with weighted PSNR. Bandwidths
occupations are the same as above.

5. Semantic annotation and adaptation for indoor surveillance for domotic
applications

The reference scenario used in in semantic annotation and adaptation of surveillance video
is referred to a domotic application in which tele-presence and tele-viewing are essen-
tial for the safety of disabled people. In this scenario the staff taking care of a disabled
person can use a PDA to monitor his/her condition continuously, or when an event oc-
curs. Since PDAs have limited resources and (typically) a low Internet connection event
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annotation is performed, followed by downscaling transcoding to adapt to the display
capability.

Objects are extracted from the scene acquired with a static camera, by background sup-
pression. A statistical, knowledge-based updating process is used to react quickly to scene
changes as presented in [4]. Moving objects are classified into two distinct classes, namely
“people” and “others”. People objects are recognized according to a number of features
that take into account shape and color. In particular the ratio between height and width
of the silhouette is used as a first cue. The presence of a person face is detected using
both color and edge data: a generalized Hough transform is used to check for the pres-
ence of elliptical patterns, and the ellipsis that has the color histogram most similar to
a face model histogram is selected and tracked along time. The posture of the person is
recognized considering head and feet positions and a-priori knowledge of the 3D scene
geometry. Features that are obtained from the sequence analysis are to input to FSM (sim-
ilarly to the case of soccer video highlight detection) that detects whether the person is
actually “walking”, “sitting”, “falling down”, or “laying down”. Our experiments showed
no misdetection and no false detection of these events over 2 hour video sequences used for
test.

The objects and the events that the annotation engine detects are the following:

O ={FF,FP,FO}U {3}
E ={PW, PS, PF, PL} U {?}

where F F is Foreground Faces, F P is Foreground People (the person full body), F O is
other Foreground Objects, and the background (o). As events we use PW to indicate a
person that is walking, P S for a person sitting, P F for one falling down (as transition
between a state of standing or sitting and one of laying down), and P L for a person laying
down on the floor.

Three classes can be identified: C; = <FP,PL>, C, = <FP,e,> (with ¢, €
E,e. # {PL}), and C3 = <0, *>. Possible weights are w = {w;, w,, w3} = {0.7,0.2,
0.1}, i.e. the user is very interested in having the image of the fallen person (C) at the best
quality possible, while in other situations the image of the person (C,) can be sent with
lower quality.

In this scenario, since live video is concerned, SAQ-MPEG can not be used, being neces-
sary a forward prediction (for B-type frame) that are not available as far as no delay in the
transmission is admitted. Therefore experiments will compare semantic spatial transcoding
method (SS-MJPEG, that use adaptive transcoding) against S-MJPEG (that only encodes
objects and events, with no frame size adaptation), the spatial resolution downscaling clas-
sical method (SRD, that uses fixed transcoding) and the standard JPEG based method.

In figure 9 frame 9a and b show results of the SS-MJPEG transcoding method. Frame
9c and d present the results obtained with the spatial resolution downscaling with fixed
transcoding. It is worth notice that spatial resolution downscaling still displays the whole
scene but with much lower quality than SS-MJPEG.

Table 2 reports a quantitative analysis of the performance of SS-MJPEG with respect to
S-MJPEG, SRD and JPEG, in terms of PSNR, WPSNR and required bandwidth. WPSNR
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Table 2. Numerical Results of the Comparison (original bandwidth = 24304.22 kbps).

Transcoding WPSNR WPSNR Req. bandwidth
policy PSNR w; =[0.9,0.1, 0] w; =[0.9,0.1] (kbps)
SS-MIPEG 33.98 31.32 3223 181.74
S-MJPEG 3137 29.98 25.58 118.32
SRD (C=20) 26.89 24.85 26.11 494.34
JPEG (C=20) 41.09 38.05 38.42 1342.42
JPEG (C=80) 30.35 27.54 28.05 511.28

(a) (b) (d)

Figure 9. Frames with semantic spatial transcoding (a) and (b) or spatial transcoding (c) and (d).

has been analysed for two different cases where they are considered: (a) person’s face
(FF), person’s full body (FP) and background & (in this case weights w = {0.9, 0.1, 0}
are assigned); and (b) person’s full body and background only (in this case weights w =
{0.9, 0.1} are assigned).

The classical JPEG transcoding method at low compression rates (C = 20) has the
highest bandwidth requirements, the quality of the compressed images is obviously very
high. On the other hand, JPEG with higher compression rate, while reducing the required
bandwidth, presents bad performance for quality. SRD has bandwidth requirement similar
to JPEG at C = 80, but with lower quality. S-MJPEG and SS-MJPEG both show better
performance in bandwidth requirements and, moreover, they achieve a good quality perfor-
mance, as soon as referred to the correct weights in the WPSNR. It is shown that whenever
the transcoding applies a higher compression to the background and lower to the person,
and the WPSNR is measured viceversa by applying a larger relevance (weight) to the back-
ground, the result for S-MJPEG falls down (fourth column of Table 2. SS-MJPEG appears
to outperform all the other methods as to the quality of the compressed video. It should
be considered that although the quality of the compressed video could not, in some cases,
be perceived at a visual inspection, it actually prevents any further processing of the video
stream.
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6. Conclusions

In this paper we have proposed an unified framework for event-based and object-based
semantic extraction from video and semantic on-line adaptation. Two cases of application,
highlight detection and recognition from soccer videos and people behavior detection in
domotic applications, were analysed and discussed.

Results have shown that semantic transcoding performance is dependent on the perfor-
mance of the annotation engine, but provides high performance both in terms of bandwidth
and quality for recognition rate from 90-100% of the annotation engine.
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Note

1. Many researchers refer to this technique as semantic transcoding.

References

1. J.K. Aggarwal and A. Madabhushi, “A bayesian approach to human activity recognition,” in Proc. of the
Second IEEE International Workshop on Visual Surveillance (CVPR workshop), Fort Collins, CO (USA),
June 1999, pp. 25-30.

2. J. Assfalg, M. Bertini, C. Colombo, A. Del Bimbo, and W. Nunziati, “Automatic interpretation of soccer video
for highlights extraction and annotation,” in Proceeedings of the ACM Symposium on Applied Computing,
March 2003, pp. 769-773.

3. J. Assfalg, M. Bertini, C. Colombo, A. Del Bimbo, and W. Nunziati, “Semantic annotation of soccer videos:
Automatic highlights identification,” Computer Vision and Image Understanding, Vol. 92, No. 2/3, pp. 285-
305, 2003.

4. R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, “Detecting moving objects, ghosts and shadows in video
streams,” in press on IEEE Transcations on Pattern Analysis and Machine Intelligence, 2003.

5. R. Cucchiara, C. Grana, and A. Prati, “Semantic transcoding for live video server,” in Proceedings of ACM
Multimedia 2002 Conference, December 2002, pp. 223-226.

6. R. Cucchiara, C. Grana, and A. Prati, “Semantic video transcoding using classes of relevance,” International
Journal of Image and Graphics, Vol. 3, No. 1, pp. 145-169, 2003.

7. A. Ekin, A. Murat Tekalp, and R. Mehrotra, “Automatic soccer video analysis and summarization,” IEEE
Transactions on Image Processing, 2003 (to appear).

8. D. Farin, M. Ksemann, P.H.N. de With, and W. Effelsberg, ‘“Rate-distortion optimal adaptive quantization and
coefficient thresholding for MPEG coding,” in 23rd Symposium on Information Theory in the Benelux, May
2002.

9. F. Brémond, F. Cupillard, and M. Thonnat, “Behaviour recognition for individuals, groups of people and
crowd,” in IEEE Proc. of the IDSS Symposium—Intelligent Distributed Surveillance Systems, London (UK),
February 2003.

10. Y. Gong, L.T. Sin, C.H. Chuan, H. Zhang, and M. Sakauchi, “Automatic parsing of tv soccer programs,” in
Proceedings of IEEE Int’l Conference on Multimedia Computing and Systems, 1995, pp. 15-18.



INTEGRATED FRAMEWORK FOR SEMANTIC ANNOTATION AND ADAPTATION 361

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31.

32.

34.

35.

C.A. Gonzales and E. Viscito, “Motion video adaptive quantization in the transform domain, IEEE Transactions
on Circuits and Systems for Video Technology, Vol. 1, No. 4, pp. 374-378, 1991.

M.R. Hashemi, L. Winger, and S. Panchanathan, “Compressed domain motion vector resampling for down-
scaling of MPEG video, in Proceedings of IEEE Int’l Conference on Image Processing, Vol. 4, pp. 276-279,
1999.

K.-L. Huang, Y.-S. Tung, J.-L. Wu, P--K. Hsiao, and H.-S. Chen, “A frame-based mpeg characteristics ex-
traction tool and its application in video transcoding, IEEE Transcations on Consumer Electronics, Vol. 48,
No. 3, pp. 522-532, 2002.

J. Hwang, T. Wu, and C. Lin, “Dynamic frame-skipping in video transcoding,” in Proceedings of the IEEE
Second Workshop on Multimedia Signal Processing, 1998, pp. 616-621.

G. Keesman, R. Hellinghuizen, Fokke Hoeksema, and Geert Heideman, “Transcoding of MPEG bitstreams,”
Signal Processing: Image Communication, Vol. 8, No. 6, pp. 481-500, 1996.

J.-G. Kim, Y. Wang, and S.-F. Chang, “Content-adaptive utility-based video adaptation,” in Proceedings of
IEEE Int’l Conference on Multimedia Computing and Expo, 2003.

R. Leonardi and P. Migliorati, “Semantic indexing of multimedia documents,” IEEE Multimedia, Vol. 9, No. 2,
pp- 44-51, 2002.

Y. Liang and Y-P. Tan, “A new content-based hybrid video transcoding method,” in Proceedings of IEEE Int’1
Conference on Image Processing, Vol. 1, 2001, pp. 429-432.

R. Mohan, J.R. Smith, and C. Li, “Adapting multimedia internet content for universal access,” IEEE Trans-
actions on Multimedia, Vol. 1, No. 1, pp. 104-114, 1999.

K. Nagao, Y. Shirai, and K. Squire, “Semantic annotation and transcoding: Making web content more acces-
sible,” IEEE Multimedia, Vol. 8, No. 2, pp. 69-81, 2001.

S. Nepal, U. Srinivasan, and G. Reynolds, “Automatic detection of ‘goal’ segments in basketball videos,” in
Proceedings of ACM Multimedia, 2001, pp. 261-269.

A. Ortega and K. Ramchandran, “Forward-adaptive quantization with optimal overhead cost for image and
video coding with applications to MPEG video coders,” in SPIE Digital Video Compression, February 1995.
K. Ramchandran and M. Vetterli, “Rate-distortion optimal fast thresholding with complete JPEG/MPEG
decoder compatibility,” IEEE Transactions on Image Processing, Vol. 3, No. 5, pp. 700-704, 1994.

IBM research. http://www.research.ibm.com/MediaStar/VideoSystem.html.

T. Shanableh and M. Ghanbari, “Heterogeneous video transcoding to lower spatio-temporal resolution and
different encoding formats,” IEEE Transactions on Multimedia, Vol. 2, No. 2, pp. 101-110, 2000.

J.R. Smith, R. Mohan, and C. Li, “Content-based transcoding of images in the internet,” in Proceedings of
IEEE Int’1 Conference on Image Processing, October 1998, Vol. 3, pp. 7-11.

J. Song and B.-L. Yeo, “Fast extraction of spatially reduced image sequences from MPEG-2 compressed
video,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 9, No. 7, pp. 1100-1114,
1999.

G. Sudhir, J.C.M. Lee, and A.K. Jain, “Automatic classification of tennis video for high-level content-based
retrieval,” in Proceedings of Int’l Workshop on Content-based Access of Image and Video Databases, 1998.

H. Sun, A. Vetro, J. Bao, and T. Poon, “A new approach for memory-efficient atv decoding,” IEEE Transcations
on Consumer Electronics, Vol. 43, No. 3, pp. 517-525, 1997.

F. Brémond S. Hongeng and R. Nevatia, “Representation and optimal recognition of human activities,” in
Proc. of the IEEE Conference on Computer Vision and Pattern Recognition CVPROO, South Carolina (USA),
June 2000.

A. Vetro, C. Chrisopoulos, and H. Sun, “Video transcoding architectures and techniques: An overview,” IEEE
Signal Processing Magazine, Vol. 20, No. 2, pp. 18-29, 2003.

A. Vetro and H. Sun, “Encoding and transcoding multiple video-objects with variable temporal resolution,”
in Proceedings of Intern. Symposium of Circuit and Systems, May 2001.

. A. Vetro, H. Sun, and Y. Wang, “Object-based transcoding for adaptable video content delivery,” IEEE

Transactions on Circuits and Systems for Video Technology, Vol. 11, No. 3, pp. 387-401, 2001.

O. Werner, “Requantization for transcoding of MPEG-2 bit streams,” IEEE Transactions on Image Processing,
Vol. 8, No. 2, pp. 179-191, February 1999.

P.H. Westerink, R. Rajagopalan, and C.A. Gonzales, “Two-pass MPEG-2 variable-bitrate encoding,” IBM
Journal of Research and Developement, Vol. 43, No. 4, July 1999.



362 BERTINI ET AL.

36. C. Yim and M.A. Isnardi, “An efficient method for dct-domain image resizing with mixed field/frame-mode
macroblocks,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 9, No. 5, pp. 696-700,
1999.

37. Y. Yoo and A. Ortega, “Adaptive quantization without side information using svq and tcq,” in 29th Asilomar
Conference on Signals, Systems, and Computers, November 1995.

38. Y. Yu and C.W. Chen, “SNR scalable transcoding for video over wireless channels,” in Proceedings of the
Wireless Communications and Networking Conference (WCNC), 2000, Vol. 3, pp. 1396-1402.

Marco Bertini has a research grant and carries out his research activity at the Department of Systems and
Informatics at the University of Florence, Italy. He received a M.S. in electronic engineering from the University
of Florence in 1999, and Ph.D. in 2004. His main research interest is content-based indexing and retrieval of
videos. He is author of more than 25 papers in international conference proceedings and journals, and is a reviewer
for international journals on multimedia and pattern recognition.

Rita Cucchiara (Laurea Ingegneria Elettronica, 1989; Ph.D. in Computer Engineering, University of Bologna,
Italy 1993). She is currently Full Professor in Computer Engineering at the University of Modena and Reggio
Emilia (Italy). She was formerly Assistant Professor (‘93—°98) at the University of Ferrara, Italy and Associate
Professor (‘98—°04) at the University of Modena and Reggio Emilia, Italy. She is currently in the Faculty staff of
Computer Engenering where has in charges the courses of Computer Architectures and Computer Vision.

Her current interests include pattern recognition, video analysis and computer vision for video surveillance,
domotics, medical imaging, and computer architecture for managing image and multimedia data.

Rita Cucchiara is author and co-author of more than 100 papers in international journals, and conference
proceedings. She currently serves as reviewer for many international journals in computer vision and computer
architecture (e.g. IEEE Trans. on PAMI, IEEE Trans. on Circuit and Systems, Trans. on SMC, Trans. on Vehicular
Technology, Trans. on Medical Imaging, Image and Vision Computing, Journal of System architecture, IEEE
Concurrency). She participated at scientific committees of the outstanding international conferences in computer
vision and multimedia (CVPR, ICME, ICPR, ...) and symposia and organized special tracks in computer archi-
tecture for vision and image processing for traffic control. She is in the editorial board of Multimedia Tools and
Applications journal. She is member of GIRPR (Italian chapter of Int. Assoc. of Pattern Recognition), AixIA (Ital.
Assoc. Of Artificial Intelligence), ACM and IEEE Computer Society.



INTEGRATED FRAMEWORK FOR SEMANTIC ANNOTATION AND ADAPTATION 363

Alberto Del Bimbo is Full Professor of Computer Engineering at the Universita di Firenze, Italy. Since 1998
he is the Director of the Master in Multimedia of the Universita di Firenze. At the present time, he is Deputy
Rector of the Universita di Firenze, in charge of Research and Innovation Transfer. His scientific interests are
Pattern Recognition, Image Databases, Multimedia and Human Computer Interaction. Prof. Del Bimbo is the
author of over 170 publications in the most distinguished international journals and conference proceedings. He
is the author of the “Visual Information Retrieval” monography on content-based retrieval from image and video
databases edited by Morgan Kaufman. He is Member of IEEE (Institute of Electrical and Electronic Engineers) and
Fellow of IAPR (International Association for Pattern Recognition). He is presently Associate Editor of Pattern
Recognition, Journal of Visual Languages and Computing, Multimedia Tools and Applications Journal, Pattern
Analysis and Applications, IEEE Transactions on Multimedia, and IEEE Transactions on Pattern Analysis and
Machine Intelligence. He was the Guest Editor of several special issues on Image databases in highly respected
journals.

Andrea Prati (Laurea in Computer Engineering, 1998; PhD in Computer Engineering, University of Modena and
Reggio Emilia, 2002). He is currently an assistant professor at the University of Modena and Reggio Emilia (Italy),
Faculty of Engineering, Dipartimento di Scienze e Metodi dell’Ingegneria, Reggio Emilia. During last year of his
PhD studies, he has spent six months as visiting scholar at the Computer Vision and Robotics Research (CVRR)
lab at University of California, San Diego (UCSD), USA, working on a research project for traffic monitoring and
management through computer vision. His research interests are mainly on motion detection and analysis, shadow
removal techniques, video transcoding and analysis, computer architecture for multimedia and high performance
video servers, video-surveillance and domotics. He is author of more than 60 papers in international and national
conference proceedings and leading journals and he serves as reviewer for many international journals in computer
vision and computer architecture. He is a member of IEEE, ACM and IAPR.



