
Multimedia Tools and Applications, 26, 277–298, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

Extraction of Film Takes for Cinematic Analysis

BA TU TRUONG truongbt@cs.curtin.edu.au
SVETHA VENKATESH svetha@cs.curtin.edu.au
Department of Computing Science, Curtin University of Technology, GPO Box U1987, Perth, 6845,
Western Australia

CHITRA DORAI dorai@watson.ibm.com
IBM T.J. Watson Research Center, P.O. BOX 704, Yorktown Heights, New York 10598, USA

Abstract. In this paper, we focus on the ‘reverse editing’ problem in movie analysis, i.e., the extraction of
film takes, original camera shots that a film editor extracts and arranges to produce a finished scene. The ability
to disassemble final scenes and shots into takes is essential for nonlinear browsing, content annotation and the
extraction of higher order cinematic constructs from film. A two-part framework for take extraction is proposed.
The first part focuses on the filtering out action-driven scenes for which take extraction is not useful. The second
part focuses on extracting film takes using agglomerative hierarchical clustering methods along with different
similarity metrics and group distances and demonstrates our findings with 10 movies.
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1. Introduction

Much of the work in content based video indexing and retrieval (CBVIR) has focused
on video segmentation including shot/scene extraction and effective algorithms have been
reported in this area. In addition, increasingly popular DVD technology has allowed many
features, including chapter/scene selection (manually labelled during DVD production) to
be incorporated in a DVD release for consumer ease of access to content. The challenge in
video analysis has now turned to developing technologies that take advantage of available
shot/scene indices for content annotation and better semantic understanding of audio-visual
materials to present useful modes to access and manipulate content. In this work, we study
the problem of extracting of original film takes from produced video and examine the use
of clustering techniques to detect film takes automatically.

A film take is defined as “one uninterrupted run of the camera to expose a series of
frames,” according to the Dictionary of Film Terms [2]. A film take is also known as a shot
captured during the film shooting1, and before the editing stage as opposed to shots in the
finished film which are generally understood as the portion of the visual stream between
two consecutive cut points, or in edited film, splice points. To avoid confusion, this paper
always uses the term ‘shot’ in the context of the finished film.

The left side of figure 1 shows the film production process from shooting raw takes to pro-
ducing the final edited material. During the shooting, different takes of a scene are acquired
from multiple camera setups, angles, and/or different filming sections. The editor creates
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Figure 1. Film production and reverse-editing process.

the final shot sequence of the scene by selecting, mixing, and alternating between different
portions of these takes to achieve the desired dramatic intention. Scenes are then assembled
into a finished film as seen by viewers. The right side of figure 1 outlines the reverse editing
process which uses keyframes/shot/scene indices previously extracted to detect takes that
contributed to the final production. It shows, for example, shots of a scene being analyzed
and grouped into four clusters which map to five takes captured during the film shooting.

Our survey of CBVIR literature reveals that take extraction problem has never been
specifically investigated. The main contribution of this work is in proposing a two-part
framework for take extraction. The first part deals with problem of filtering out action-
driven scenes, because the extraction of film takes in such scenes is less useful and very
difficult. The second part examines a wide range of clustering methods and configurations
to identify the best solution for take extraction. Apart from reusing existing techniques,
we also devise algorithms to deal with domain specific attributes of film content. The
significance of this work is that once take indices are extracted, they can be used for many
CBIVR applications ranging from content summarization, navigation and annotation to
computing many higher order cinematic constructs in film analysis. We discuss some of
these applications in Section 3 of the paper.

The layout of the rest of this paper is as follows. Section 2 reviews previous studies
related to our take extraction process. Section 3 describes a wide range of applications for
film takes, particularly for extracting higher-order cinematic constructs. The next section
overviews essential steps before the clustering process is applied: the use of HLS color
space; shot/scene index creation; and keyframe extraction. Section 5 details a technique for
filtering out scenes not essential for the take extraction process. The clustering algorithms are
described in Section 6. The results are presented in Section 7. Section 8 concludes the paper.

2. Previous work

There are many components in our take extraction process, and each component has its own
set of related work. In this section, we only review those works related to the last component,
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i.e., shot clustering. Good reviews of techniques for shot transition detection/scene boundary
detection/key frame extraction can be found in [13, 14, 21, 27].

Clustering of shots for the purpose of content browsing and presentation has been exam-
ined in [4, 31]. Zhong et al. [31], uses image features such as color, texture, shape together
with temporal features (mean and variance of differences of each frame to the keyframe)
and motion features (motion direction histogram, spread distributions) to create a hierar-
chical view of video content via fuzzy and K-mean clustering techniques. Dimitrova et
al. [4], uses a Centroid based clustering technique to cluster keyframes/shots into color
superhistograms. The work also outlines some applications of superhistograms including
program boundary detection and program classification. However, no performance results
are reported in the paper. Recently, we investigated the use of clustering to detect film
scenes that are coherent in time/space or mood and present them in a Scene-Cluster Tem-
poral Chart that depicts the alternating themes in a film [23]. Rather than using clustering,
content summarization presented in [16] relies on an adaptive and dynamic sampling of
the underlying video sequence via the extraction of sub shots and a measure of motion
intensity.

Shot clustering/grouping has been often used as an intermediate step in extracting scene
boundaries [18, 25, 28, 30]. Hence, these methods do not demand that shots clustered
together come from the same take, but from the same scene. They then use overlapping link
reasoning to merge separated clusters into scenes. Rui et al. [18] proposes a technique called
time-adaptive grouping to create a table-of-content for a video document. They attempt to
incorporate other features such as shot length, and shot activity into the measure of similarity
between shots. Zhao et al. [30] investigates the use of probabilistic clustering based on best-
first model merging to group shots into scenes. Corridoni and Bimbo [3] uses a similarity
obtained by integrating a local measure over pixel positions to group similar shots into
scenes under the constraint that the sequence has been constructed using shot/reverse-shot
technique. Yeung et al. [28] proposes the notion of Scene Transition Graph which organizes
clustered shots into a directed graph for compact representation and scene segmentation in
a video. Our work alternatively uses scene indices available through other methods (some
we have developed) as the temporal constraints in our clustering analysis. Rather than
extracting takes, [20] aims at detecting different classes of soccer shots including long shot,
in-field medium shot, close-up shot, and out of field shot. Moriayama et al. [15] uses a track-
structure based approach, in particular from the point of view of montage components and
how they relate to psychological of drama video to provide video summarization.

Clustering has also been used to extract a set of representative frames from the video
[5, 6, 8, 9, 17, 32]. These algorithms, as opposed to methods based on shot indices, cluster
all video frames regardless of shot boundaries. One frame is then selected from each cluster
to create a list of representative frames for the whole video sequence.

The common problem with previous studies is that they tend not to explicitly specify what
the extracted clusters represent, other than to describe them in terms of the results obtained
(e.g., indoor, coffee shop scenes), and neither do they specify any consistent groundtruth
nor measure the system performance on a large set of data. These studies also use clustering
in a general manner without investigating the domain specific features of film data such as
shot ordering and editing practices.
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Figure 2. A hypothetical scene.

3. Potential utility of film take extraction

This section outlines how automated extraction of film takes via shot clustering plays an
essential role in computing many higher order cinematic constructs and tasks in film analysis.
For illustration purposes, we use a hypothetical scene. The annotated shot sequence of this
scene and its shot/take transition graph are shown in figure 2. In this graph, each take is
represented by one node. There is a directed edge from one take to another if there is at
least one shot from the first take that precedes another shot from the second take. The
numbers denote the take indices, and shots of the same shading belong to the same take.
The take transition graph has two added features: the thickness of an edge indicates how
often a transition is made from one take to another; the two half circles indicate if the take
contains the start shot ([) or the end shot (]) of the scene. Note that the paper will not aim at
adressing the realization of these potentialities; the purpose of this section is to call for the
attention to take extraction problem by listing its many interesting applications in content
summarization and cinematic analysis.

– Content Summarization/Annotation: The identification of film takes will enable more
compact representation of the video under analysis. Rather than being overwhelmed by
all the shots of the scene, only one shot from each take needs to be presented to the user.
The reduction factor for the above scene is 11/29. In real sequences, the reduction would
be much higher. It also allows the user to browse the video content in a graph-like structure
rather than linearly going through all shots. Many shot features can be annotated for the
whole take and these include distance, angle, color, lighting, framing, and composition.

– Shot Flow: We can extract certain shot flow characteristics from their patterns of alter-
nation. Takes 8 and 9, 10, and 11 alternate with each other suggesting a dialogue scene.
Take 4 branches to shots of different takes suggesting that it is the centre of action around
which other shots revolve. In addition, takes 2, 3, 4, 5, 6, 7 seem to be separated from
takes 8, 9, 10, 11.

– Shot Associations: By identifying film takes we have already detected the association
between shots. There are also associations between different takes which can be inferred
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from shot flows. For example, since there is neither a flow from takes 10 and 8 nor from
takes 11 and 9, we can generally deduce that the transition between them would break
the flow of the story. Therefore, it is likely that that takes 10 and 8 (11 and 9) shoot the
same character using different focal lengths.

– Dramatic Shift: Certain shift in drama/action are reflected in the shift of shot patterns.
There is a shift between takes 8/9 to takes 10/11. We can also interpret the kind of dramatic
shift within the scene by measuring the shot distance (e.g., via face sizes). If take 8/9 is a
medium-shot and take 10/11 is a close-up-shot, we can infer that the drama has probably
increased toward the end of the scene.

– Movement Within Scene: Certain aspects of character/camera movements within the
scene can also be interpreted. Assume that there is some motion in the first shot of take 8
and the last shot of take 10 and there is no motion in between; it is likely that these two
shots involve characters entering/leaving the position of action.

– Relative Difference/Contrast: If a detected take is in a cold tone while another is in
a warm tone, we can conclude that there is different state of mind associated with
characters in these takes. Likewise, if one contains motion whilst another is static,
we can probably deduce that one character is volatile or unsettled while the other is
calm.

– Measuring Shot/Take Importance: An essential component of the scene can be measured
by how many times the shot is repeated or how long the total duration of all shots of
the same take are. Takes 1, 4, 8, 9, 10, 11 seem to contain essential story information
while takes 2, 3, 5, 6, 7 are likely to be peripheral. Also, takes 10/11 are likely to be more
important than takes 8/9.

– Cinesthetic Elements: Stefan Sharff [19] states that cinema has its own unique method of
providing aesthetic gratification and composing cinematic sentences, called ‘cinesthetic
elements.’ Four of eight different elements described by Sharff can benefit from the extrac-
tion of film takes: separation, familiar image, orchestration, and multi-
angularity.

• Separation: Separation is the fragmentation of a scene into single images, seen in
alternation, A, B, A, B, A, B, etc. Separation is a particularly strong element in cinema.
In the example, separation starts at the first shot of take 8 and ends just before the last
shot. Separation would be detected based on the alternation between takes. In a take
transition graph, separation elements are often visible in two-way heavily-connected
nodes (Take 8, 9, 10, 11).

• Familiar Image: This element refers to the repetition of certain images which thus
become familiar and are used as the means of keeping together continuity. Familiar
images would be detected by looking for takes with at least 3 shots and not alter-
nating with other takes. Takes 1 and 4 are familiar images in the sample
scene.

• Orchestration: This is an open concept and includes symmetry of shot arrangements.
Take 1 includes the opening and ending shots and can be seen as an orchestration
element.
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4. Primitive features and temporal segmentation

4.1. HLS color space

For this work, the HLS color model, rather than the RGB color model, becomes a natural
choice, since it better models human perception and is commonly used in art and psychology
literature. HLS color model comprises of Hue (H), Lightness (L) and Saturation (S), three
basic color sensation in our objecive perception of color [29]. Hue describes the color itself
such as blue, red, green or yellow. Saturation or chroma describes the color richness, the
color strength. Since white, gray and black have no chroma, they are called achromatic.
Lightness indicates how light or dark the color would appear.

We quantize the HLS space into 12 bins of hue, 5 bins of lightness, and 4 bins of
saturation. All colors with the first and last bin of lightness are combined as black, and
white respectively, while all colors with first bin of saturation form 3 different gray levels,
depending on their lightness. We have a total of 113 = 1 + 1 + (5 − 2) + 12(4 − 1)(5 − 2)
different colors in our final quantized color palette. This quantization is chosen because the
palette produced roughly matches the colors palette used in color studies [12]. The color
palette is used to compute the histogram for each keyframe and is the basis for subsequent
computation described in Section 6.1.

4.2. Temporal segmentation

4.2.1. Shot boundaries. The first step in our approach is to extract a list of shot indices from
the movies. We used techniques developed previously [22] that detect different types of shot
transition effects such as cuts and fades. In this work, we improve conventional cut detection
methods using color histogram differences by utilizing an adaptive threshold computed from
a local window on the luminance histogram difference curve. Based on the mathematical
models for producing ideal fades, different clues (e.g., monochrome frames) for discovering
the existence of these effects are proposed, and constraints on the characteristics of frame
luminance mean and variance curves are derived analytically to eliminate false positives
caused by camera and object motion during gradual transitions. We then use an effective
technique for eliminating false positives from a list of detected transitions. Truong et al.
[22] also describe a technique for detecting dissolves, However, we chose to skip it as the
technique is sensitive to false positives when applied to film data.

4.2.2. Scene boundaries. As takes are extracted for individual scenes, a list of scene
indices needs to be created. Our previous work in the area of scene boundary extraction
[21] provides us with two set of indices:

Groundtruthed indices: This set is used as the groundtruth in our scene index extraction
work and it reflects the ideal case for non-noisy input data.

Detected scene indices: This set is created by one of techniques we propose in [21]. This
technique estimates the coherence level at each shot by computing color similarity of
neighborhood shots. These coherence values are used to extract a set of raw scene indices.



EXTRACTION OF FILM TAKES FOR CINEMATIC ANALYSIS 283

Different mechanisms are then used for further improvement of the results from our scene
detector including film punctuation detection, temporal window extension, color analysis
and tempo analysis. This set contains noise and reflects the situation where scene indices
are extracted by any automatic method.

We use these two sets of indices to evaluate if the noisy sene detection has a significant
impact on take detection results.

4.3. Representative (R) frames

As will be detailed later in the paper, the shot similarity is computed from the similarity
of their respective representative frame (R-frame)- sets. There are many techniques for
extracting these R-frames. However, the simple technique of selecting the first, middle or
last frame of a shot as an R-frame may not effectively approximate the content of a shot
due to object and camera movement. It is desirable to extract R-frames in a manner such
that the number of extracted frames is proportional to the degree of visual change within
the shot. The following technique can meet this requirement. Assume Fm , Fm+1, . . . Fn are
n − m + 1 frames making up a shot S, R-frames Fk1 , Fk2 , . . . , Fkt are selected as: k1 = m
, and for all 1 ≤ i ≤ t − 1, Fki+1 is the first frame after Fki such that S(Fki+1 , Fki ) > T with
S(Fi , F j ) being the histogram difference measure between frame Fi and F j and T being the
minimum difference between two frames computed across cut points. If the shot is static,
we only need one R-frame, the first frame of the shot, whilst we require some R-frames in
the middle if the shot exhibits a significant level of visual change.

5. Scene filtering

Our preliminary study of the problem reveals that it is not always useful and easy to extract
film takes, especially for action driven scenes. The emphasis of these scenes is more on
events, pace and visual impressions than the repetition of individual shots. Due to substantial
object and camera movement, it is very difficult to set up the groundtruth for these scenes.
Takes produced for these scenes are prone to errors and would incor + rectly depict what
is going on in the scene. The use of film takes as outlined earlier is more applicable to
drama driven scenes. Therefore, before setting up the groundtruth and applying clustering
algorithms over the shot data, it is essential to filter out action driven scenes. The rest are
considered as drama driven scenes. It should be noted that our objective here is not to
robustly discriminate between action driven and drama driven scenes. Such work requires
thorough investigation and a complete feature space including shot distance and audio
analysis. The labelling done here is approximate. In this section, we outline an automatic
method for filtering out action driven scenes based on the film tempo [1]. This is because
the underlying basis for a tempo function is that a film sequence with fast editing and/or
high motion tends to be perceived as being of high tempo and vice versa.
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The initial tempo function proposed in [1] that defines the tempo at shot Si as:

P(Si ) = α
µl − Sl

i

σ l
+ β

Sm
i − µm

σm
,

where Sl
i refers to shot length in frames, Sm

i to shot motion magnitude and i to shot number.
The motion magnitude is calculated for each shot as the aggregation of the absolute value
of the sum of the pan and tilt value for consecutive frame pairs of that shot. The 1st and 2nd
statistical moments (mean µ and standard deviation σ ) of shot length and motion magnitude
are calculated for entire film.

This function is refined in subsequent work using different weighting schemes [1]. We use
a simpler version in our implementation, in which the shot length and motion are normalized
using the median and the motion was calculated from intensity differences across frames.
We note that the use of locally computed means and variances (for individual movie) are
appropriate for detecting events and story units as they are influenced by the relative tempo of
a film [1]. The concept of action driven and drama driven scenes are rather absolute/global.
This also means that it is not necessary to have at least one action driven/drama driven scene
for an entire film. Therefore, it is worthwhile to experiment with the motion and shot length
statistics computed globally.

We measure the characteristics of a scene Si via two features: its average tempo and the
ratio of high tempo shots HTSR. The latter is calculated from the number of shots having
tempo value above 0.

P(Si ) =
∑

Sx ∈Si
P(Sx )

‖ Si ‖ HTSR(Si ) =
∑

Sx ∈Si
(P(Sx ) > 0?1 : 0)

‖ Si ‖

Note that we do not need to smooth the tempo signal as done in [1].

6. Algorithms used in take detection

6.1. Measuring shot similarity

One of the most popular method for measuring the similarity between two images Fi and
F j represented by histograms Hi and H j is traditional bin-wise intersection:

S(Fi , F j ) = S(Hi , H j ) =
∑

u min(Hi [u], H j [u])

w ∗ h
,

where u represents the bin index and w ∗ h is the number of pixels in the image. This
measure essentially ignores the spatial distribution of color within the image. A simple
method for incorporating the spatial distribution of color is pixel-by-pixel matching:

S(Fi , F j ) =
∑

u(Fi [u] ≈ F j [u]?1 : 0)

w ∗ h
,
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Figure 3. Shot-reverse-shot editing.

where u is now the pixel index. However, we also need to tolerate variances due to motion
and camera adjustments and avoid producing spurious clusters. One method to exploit
the advantages of both histogram intersection and pixel-by-pixel matching is to use sub-
blocks. We chose to match 4 blocks of the frames separately and combine the results. This
essentially addresses the arrangement of colors on the top-left (tl), top-right (tr), bottom-left
(bl) and bottom-right (br) parts of the frame. Each block is represented by a color histogram
and their similarity is calculated using histogram intersection. The similarity between two
frames Fi , F j can be measured as:

S(Fi , F j ) = S
(
Htr

i , Htr
j

) + S
(
Htl

i , Htl
j

) + S
(
Hbr

i , Hbr
j

) + S
(
Hbl

i , Hbl
j

)

4

Figure 3 illustrates the possible advantage of using sub-blocks over global histogram
intersection in extracting film takes. A very popular scenario in film editing is one in which
two frames/shots from two different takes form a shot-reverse-shot pattern. The global
histogram intersection would indicate that two frames/shots are similar (especially in dark
and monotone scenes), whereas the sub-block method would pick up their differences.

A shot is represented by a set of key-frames. We need to devise a method for measuring
the shot similarity from keyframe similarities. One way to do is to formulate the similarity
between two shots as the maximum similarity between any pair of keyframes of these shots:

S(Si , S j ) = max
Fkmi ∈SR

i ,Fknj ∈SR
j

S
(
Fkmi , Fknj

)
,

Where SR
i denotes the set of R-frames of shot Si .

Alternatively, one may want to experiment with the average version:

S(Si , S j ) =
∑

Fkmi ∈SR
i ,Fknj ∈SR

j
S
(
Fkmi , Fknj

)

SR
i SR

j

Using a shot similarity measure we can produce a proximity matrix for each scene in
a film. This matrix contains the similarity value for any two shots within the scene. This
proximity matrix is used as input for a clustering algorithm to extract film takes.
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6.2. Fundamental clustering techniques

Due to the fact that two shots of the same take have a strong visual similarity while shots
of different takes tend to differ visually, the purpose of this step is to cluster shots into
‘raw’ sets of take indices based purely on shot similarity. There are various agglomerative
hierarchical clustering techniques which proceed by producing a series of partitions of data,
Pn, Pn−1, . . . , P1 with Pi consisting of i clusters. They share the same basic operation as
outlined in Algorithm 1 [7].

Algorithm 1. Hierarchical clustering procedure

1. Form n single-member clusters.
2. Find the closest pair of distinct clusters, merge them as a new cluster. Delete old clusters

and decrement number of clusters by one.
3. Stop if the number of clusters equals 1, else goto 2

Several methods emerge because of the different ways of measuring the closeness between
groups. Some of more popular methods are:

– Complete linkage (CL): This method defines the distance between groups as that of the
furthest pair of individuals, one from each groups.

– Group-average linkage (GAL): The defining feature this method is that distance between
two groups is the average of the distances between all pairs of individuals.

– Median (MED): The distance between two groups in this method is measured as the the
distance between the centroid of two groups, assuming that they are of equal size, the
mean of new group will always between two the two component groups.

– Ward’s minimum variance (WARD): The aim of this method is to form the partitions in
a way that minimizes the losses associated with each grouping. At each step, all possible
pairs of clusters are considered and two clusters whose fusion results in the minimum
increase in ‘information’ losses are combined. Information loss is defined here as error
sum-of-squares criterion.

It should be noted that we perform the clustering procedure on a proximity matrix. An
exact recurrence formulas is often used to manipulate this similarity matrix at each clustering
step. For WARD method which requires the information about the centroid of each cluster,
the recurrence is approximate.

6.3. Clustering refinements/post processing

General clustering techniques do not take into account specific characteristics of the data do-
main. Based on the understanding of underlying film production process and film techniques,
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we devise algorithms for recursively merging and splitting clusters to further improve the
results.

First, we need to deal with consecutive shots that are grouped into the same cluster. Other
than for some rare ‘staccato’ effects such as those found in ‘Run Lola Run’, it is very unlikely
that two consecutive shots are edited from the same take. The grouping of two consecutive
shots into a cluster is either due to noisy shot indices or the failure of our similarity metric
to discriminate these two shots. Errors of the first kind are rare due to the reliability of shot
indexing process. Most errors are of the second type and these clusters need to be spilt. The
splitting algorithm is shown in Algorithm 6.3 and it proceeds by choosing two consecutive
shots with the least similarity as seeds for two new clusters. The rest are assigned to the
closest cluster while maintaining the minimum fusion level.

Secondly, movements within the scene may cause shots of one single take to be grouped
into at least two clusters. Since the camera follows character movements and actions so as
to maintain continuity, the viewer is presented with cues to perceive that the shot sequences
in old and new positions are of the same take. However, clustering techniques like CL and
WARD may fail as they measure the distance using all shots in two clusters. The shot with
movements is either the last shot of first cluster or the first shot of the second cluster. For the
first case, the last shot of a cluster is most similar to shots of the other cluster. Algorithm 3
shows how these movements can be detected to merge the clusters.

Algorithm 2. Splitting Clusters

1. Search all consecutive shots pairs of this cluster.
2. Select the least similar pair as seeds for two new clusters.
3. Stop if there are no remaining shots, else select the next shot that have the smallest

distance to either of the cluster and assign it to the closer cluster. Repeat 3.

Algorithm 3. Merging Clusters

1. Search all cluster pairs (C1, C2) satisfying the condition that the last shot of C1 is 2 shots
before the first shot of C2, i.e., C2[1] − C1[m] = 2 and m + n ≥ 4. Goto 4.

2. If (α1 < T and α1 > β1) or (α2 < T and α2 > β2), merge C1 and C2

3. Select the next cluster pair and goto 2, else stop.

A similar situation to movements within the scene is the use of fluid camera movements
that spans several shots for dramatic impact. For example, a zoom shot is cut to another shot
and back to the old shot where the zooming is still on. Due to visible camera movements,
those zoom shots are perceived as the same take; however, the differences between two
images tend to be larger than the threshold set during the clustering as the zoom continues
while the other shot is shown. Algorithm 4 outlines how clusters would be merged in this
situation. Currently, fluid camera shots are manually identified to facilitate this step.



288 TRUONG, VENKATESH AND DORAI

Figure 4. Cluster merging and cluster splitting.

Algorithm 4. Merging Clusters (Fluid camera movement)

1. Search all cluster pairs P(C1, C2) satisfying that the last shot C1 (size m) is 2 shots before
the first shot of C2 (size n), i.e., C2[1] − C1[m] = 2 and m ≥ 1, n ≥ 1. Goto 3.

2. If C1[m] and C2[1] are both classified ‘fluid’ and their difference is not too large merge
C1 and C2.

3. Select the next cluster pair and goto 2, else stop.

Figure 4 shows how these methods have refined 6 raw clusters into 5 final clusters for
a hypothetical scene. The cluster (2, 3, 4, 6, 8) is split into 2 clusters (2, 4) and (3, 6, 8)
as {2, 3, 4} are three consecutive shots. {2, 3} is assumed to be more similar than {3, 4}
and they set up seed points for the new clusters. {4} is placed into the same cluster with 2
as they are highly similar. Likewise, shots {6, 8} are placed into the same cluster as {3}.
Two clusters (7, 9) and (11, 13) are merged because shot {11} is the shot where some
character movements occur. This shot (the first frame) is similar to shots {7, 9}, although
shot {13} may be notably different to them. Shots {12, 14} are labeled with ‘fluid’ camera
movements and their similarity is rather high, so they are detected as part of the same take,
hence allowing two clusters (10, 12) and (14) to be merged.

6.4. Extracting a partition from the cluster hierarchy

For the purpose of take extraction, we are not interested in the entire cluster hierarchy, but
only one partition that is most likely dividing shots into take clusters. In this work, we test
four different stoping rules:

1. C-Index: The C-index is computed as [dw − min(dw)]/[max(dw) − min(dw)], where dw

is the sum of all nd within cluster distances, min(dw) is the sum of the nd smallest pairwise
distances in the data set, and max(dw) is the sum of nd biggest pairwise distances [26].
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2. Mojena: The Mojena stoping rule is based on the relative sizes of the fusion levels in
the dendogram. In detail, the proposal is to select the number of groups corresponding
to the first stage in the dedogram satisfying:

α j+1 > ᾱ + ksα

where α0, α1, . . . , αn are the fusion levels corresponding to stages with n, n − 1, . . . , 1
clusters. The term ᾱ and sα are the mean and unbiased standard deviation of the α value
respectively, and k is a constant [26].

3. Stepsize: This simple criterion involves examining the difference in fusion values be-
tween hierarchy levels. A large difference would suggest that data was overclustered in
the last merger. Thus, the maximum difference was taken as indicator of the optimal
number of clusters in the data [26].

4. Curve-Knee. This technique involves the detection of the knee, or the point of maximum
curvature of the fusion curve. That point is considered as the cut point. Knee detection
is done by finding the area between two lines that most closely fit the curve.

6.5. Cluster validation

In order to evaluate how well the clustering algorithms perform, we need to measure
the agreement between clusters produced by these algorithms and those set up as the
groundtruth. One of the common methods is to use the Rand Index [11]. Let U = u1, u2, . . . ,

unU and V = v1, v2, . . . , vnV represent the groundtruth and detected clusters respectively.
Let n be the number of elements to be clustered. Let a be the number of distinct pairs that
belong to the same cluster in both U and V, and d be the number of pairs that belong to
different clusters in both U and V. The Rand index is defined as:

R = a + d
(2

n

)

A problem with Rand index is the expected value of the Rand index of two random partitions
does not take a constant value and when the cluster size is small it moves toward 1 as the
number of cluster increases. Hubert and Arabie [11] proposed the adjusted Rand index.
The adjusted Rand index assumes the generalized hypergeometric distribution as the model
of randomness, i.e., the U and V partitions are picked at random such that the number of
objects in the classes and clusters are fixed. Let max(R) and E(R) are the maximum and
expected value of Rand index under this model. The adjusted Rand index is defined as:

R∗ = R − E(R)

max(R) − E(R)

The upper-bound of the adjusted Rand index is 1, and its expected value is 0.
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We proposed two new measures namely cluster recall (CR) and cluster precision (CP).
Analogously to recall and precision in information retrieval, CR is defined as the ratio of
correctly detected pairs to the all possible pairs in the groundtruth, while CP is defined as
the ratio of correctly detected pairs to the all possible pairs reported:

CR = a + n
∑nU

i=1

(‖ui ‖
2

) + n
CP = a + n

∑nV
i=1

(‖vi ‖
2

) + n

n is added, as we include n non-distinct pairs in the counting of number of pairs that belong
the same clusters. This is required to account for the contribution of clusters consisting of
single elements to the measure (especially when the cluster size is small). Two partitions
agree well when both CP and CR are high. When two partitions agree perfectly, both
CR and CP are 1. High CR and low CP imply that small clusters in the groundtruth are
grouped into bigger ones in detected clusters. On the other hand, low CR and high CP
imply that clusters in the groundtruth are broken into smaller ones in detected clusters.
Thus, CR is 1 when there is only one output cluster, while CP is 1 when all output clusters
contain one single element. The adjusted Rand index can serve as the overall measure of the
performance, whilst CR and CP provide more insight into the nature of clustering outputs.

7. Experimental results

7.1. Data set and groundtruthing

Currently, we limit this research to contemporary mainstream, color films. This means B&W,
early colored and arthouse films are not included in the data set. However, the styles and
characteristics of a film are influenced, although not determined, significantly by its genre.
The wide selection of movies of different genre would ensure that the overall measures of
the performance of the algorithm are not biased toward a specific movie kind. Therefore, we
set up a data set consisting of 10 full-length movies of all major genre including action (Act),
horror (Hrr), science fiction (Scifi), adventure (Adv), thriller (Thrl), fantasy (Fts), family
(Fml), drama (Drm), comedy (Cmd) and mystery (Mys). The basic information about each
movie is represented in Table 3. The genre classification is taken from The Internet Movie
Database Web site (IMDB)2.

While groundtruthing, we use the following three guidelines to decide if two shots belong
to the same take:

1. Both shots must belong to the same scene.
2. The last frame of the first shot must have similar camera parameters (framing, angle,

composition) as the first frame of the second shot.
3. Special case with fluid camera movements: The filmmaker did indeed signal to the viewer

that two shots are from the same take through continuous zooming. This is a common
technique used in film for time compression and for increasing dramatic impact.
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Table 1. Do two shots belong to the same take?

Table 1 shows different relations between a shot A and a shot B and indicates how we
decide if two shots belong to the same take during the groundtruthing process. Note that
each shot is presented by the model of its first and last frames. Each shape denote objects
in the frame and their relative sizes.

The take groundtruths are created for both sets of scene indices described in Section
4.2.2.

Apart from filtering out action driven scenes as described above, we also exclude ‘mon-
tage’ scenes without repeated shots from analysis as the ‘best match’ method always returns
the perfect results for these scenes. The adjusted Rand Index (R∗), cluster recall (CR) and
cluster precision (CP) are used to measure the performance.

7.2. Scene filtering

Using features discussed in Section 5, we build decision trees to classify action driven and
drama driven scenes. Table 2 shows the results for different configurations on α, β and the
scope of {µl, σ l, µm, σm}. The trees are built from 66% of data set and the reported results
are for the whole data set.

Figure 5(a) plots the tempo against HTSR (computed globally) and figure 5(b) shows the
decision tree produced for the best configuration of (α = 0.3, β = 0.7) and using global
statistics). These figures indicate that when tempo is very high, the scene is classified as
action driven. Conversely, when the tempo is low the scene is classified as drama driven.
When the tempo is average, scenes with a high rate of of ‘high’ tempo shots are considered
as drama driven which are probably scenes involving background motion or moving shots
which are consistent throughout the scene. If HTSR is low, it indicates that there is some
significant build-up in the action driven scene.
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Table 2. Scene filtering results.

Global parameters Local parameters

α 0.3 0.5 0.3 0.5

β 0.7 0.5 0.7 0.5

Using only P(Si ) Precision 91.7 74.5 69.8 68.1

Recall 71.6 85.1 73.8 74.5

Using both P(Si ) and Precision 91.7 74.5 70.6 68.1

HTSR(Si ) Recall 78.7 85.1 85.1 74.5

Figure 5. Scene filtering.

There are different kinds of errors in filtering out action driven scenes. Most of them
involve motion computation. This is understandable since the editing is controlled by the
filmmaker and the measure of shot length is always concrete and accurate.

– Some drama driven sequences contain background motion (two people talking in a night
club) or moving shots (traveling in the car with a changing background). The focus of
these scenes is still on the characters and their interactions.

– The motion in close-up shots tends to be manifested in our computation and this differs
largely to the level of motion perceived by the viewer.

– Action driven sequences may contain build-up sections that have slow pace. The average
pace is low, but they are marked as being filtered out.

– Movements in dark or toned scenes manifest less in our computation. This results in the
lower computed tempo values.

7.3. Clustering

First we examine the ability of hierachical clustering method and similarity measures in
identifying a partition of shots into takes. This is done by finding the partition in the
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Figure 6. Performance statistics (R∗) for different clustering configurations.

hierachy that ‘best’ match (i.e. score the highest adjusted Rand index) the groundtruth
partition.

Figure 6 shows the performance (R∗) on all movies for 4 clustering techniques (CL,
GAL, MED, WARD) and different configurations regarding (a) dividing/not dividing the
frame into 4 sub-blocks and (b) calculating the shot similarity as the average/maximum
similarity of keyframes. The best results are obtained for GAL and WARD. It is also
evident that the division of the image into sub-blocks and the ‘maximum’ approach offers
better performance. Figure 6(a) uses detected scene boundaries, whilst figure 6(b) uses
groundtruthed scene boundaries (see Section 4.2.2).

The performance of clustering algorithms on groundtruthed scene index set is slightly
better compared to that of detected scene index set. It should be noted however that errors
in scene indices does not necessarily mean a decrease in performance. However, false
scene indices (i.e., those not in grountruthed set but detected by a scene boundary detection
algorithm) may improve overall clustering performance statistics. This is because applying
clustering algorithms on a smaller data subset may be more accurate than on the whole data
set.

The performance with the best configuration and WARD method for individual movies
is shown in Table 3. Lower results are obtained for The Mummy, Sleepy Hollow, and
12 Monkeys while better results are obtained American Beauty, Chameleon, and Erin
Brockovich.

American Beauty and Erin Brockovich are two drama films with very few motion se-
quences. The editing of this film consistently follows the film grammar. Most of shots in
the film are static and each scene is also edited from relatively few selective takes. This
is to avoid distracting the viewer’s attention from the drama of the story. Chameleon is a
mysterious/scifi film which contains some action scenes, which are eliminated by our fil-
tering process. The rest of the film is dialogue oriented and shares the same characteristics
as American Beauty and Erin Brockovich. This film is also produced on limited resources,
which means only few takes are shot for each scene.

The Mummy and Sleepy Hollow contain many dark, toned sequences which cause more
shots to be merged even though they are not from the same take. These films also contain a



294 TRUONG, VENKATESH AND DORAI

Table 3. Take extraction results.

Detected boundaries Groundtruthed boundaries

Movie Genre CP CR R∗ CP CR R∗

The 13th Floor Mys/Scifi/Thrl 0.96 0.94 0.88 0.97 0.94 0.88

The Matrix Act/Thrl/Scifi 0.95 0.87 0.81 0.97 0.92 0.87

Sleepy Hollow Fts/Hrr/Mys 0.95 0.90 0.84 0.94 0.90 0.82

Erin Brockovich Drm 0.97 0.96 0.92 0.99 0.96 0.93

12 Monkeys Drm/Thrl/Scifi 0.95 0.89 0.75 0.95 0.90 0.81

American Beauty Drm/Cmd 0.99 0.98 0.96 0.98 0.97 0.94

The Siege Act/Thrl/Drm 0.95 0.94 0.88 0.93 0.92 0.85

Truman Show Fts/Cmd/Drm 0.94 0.92 0.83 0.96 0.94 0.89

Chameleon Scifi/Thrl 0.99 0.96 0.93 0.99 0.97 0.95

The Mummy Adv/Act/Hrr 0.93 0.89 0.78 0.92 0.88 0.77

Average 0.96 0.92 0.85 0.96 0.93 0.87

significant level of motion throughout the film. 12 Monkeys is a ‘travelling’ film with many
driving sequences.

There are two different kinds of errors in the clustering process. First, a shot is inserted
into an incorrect cluster (over-clustering). Second, more shots are grouped into one cluster
than necessary (under-clustering).

Errors of the first kind are mainly due to:

– Cross-shots: Shots from two different takes may contain a similar framing at one point
during camera movement (e.g., Case 5 in Table 1). The similar framing makes two shots
incorrectly grouped into the same cluster.

– The inadequacy of our similarity measure: our similarity measure fails to distinguish
between different compositions or dark shots.

Errors of the second kind are mainly due to:

– False shot indices: An incorrect shot index breaks a real shot into two different shots.
They are grouped into two different takes during either the clustering or splitting process.

– Lighting/visual inconsistency: For some dramatic impact, the filmmaker may chose to
darken a shot making it inconsistent with other shots that also come from the same take.
In other cases, the filmmaker actually uses two almost identical physical takes. They are
considered as belong to the same ‘perceptive take’. These takes may have inconsistency
in lighting due to the fact they are taken in different camera runs or filming sections.

– Camera/object movement: Background motion may completely change the color his-
togram of an image. Our similarity measure may fail to spot two shots that belong to the
same take due to some slight changes in camera angle.



EXTRACTION OF FILM TAKES FOR CINEMATIC ANALYSIS 295

Figure 7. Performance of different stoping rules.

7.4. Extracting partition from hierachy

The evaluation of the stopping rules is shown in figure 7. The x-axis indicates the difference
between number of extracted clusters (returned by a stopping rule) and the ‘best’ number
of clusters (of the partition that best matches the groundtruth). The y-axis indicates a count
of number of scenes. The Mojena rule delievers the best and most stable performance,
as it has the highest score when x = 0 and lower variance. C-index often produces too
many clusters while stepsize and curve knee methods tend to produce fewer clusters than
expected.

7.5. Demonstration of utilities of film takes

In order to further showcase the application of film take extraction, we have devised a visu-
alization concept called Double-Ring Take-Transition-Diagram (DR-TTD) that is based on
STG and can be automatically generated [24]. This visualization allows a quick recognition
of subordinate and main takes of a scene depending on their positions on two rings. For two
real film scenes in Erin Brockovich, 14 and 20 shots can be summarized by 3 and 7 nodes
in figures 8(a) and (b) respectively. Dialogue and separation element can be recognized in
(1, 2) and (2, 3) from figure 8(a), and (4, 5) and (6, 7) from figure 8(b). For shot association
inference described in Section 3, Takes (1, 3) show the same character in the scene. There
is a dramatic shift via cut edge (4–6) in Figure 8(b).
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Figure 8. DR-TTD examples.

8. Conclusion

We have described our investigation into techniques for extracting film takes, a cinematic
element with many useful applications. Action driven scenes are first filtered out, then take
extraction for drama driven scenes are investigated by combining traditional hierarchical
clustering algorithms with three different post processing methods that handle different
aspects of film editing. Our experimental results on 10 movies show the usefulness of divid-
ing the frame into sub-blocks and measuring shot similarity as the maximum of keyframe
similarities.

There are other aspects that need further investigation and this includes:

– Investigating in detail the application of film take extraction in content annotation, sum-
marization and semantic extraction as outlined in this paper.

– Incorporating more spatial information into the shot similarity measure. The use of
color auto-correlogram would further improve the results, as [10] reports a superior
performance of this measure in matching images.

– Visualizing extracted film takes. We are developing techniques for visualizing extracted
film takes. The visualization should express as much as possible semantic information
that would be indicated by extracted takes and their arrangements.

– Incorporating domain knowledge to construct a better stopping mechanism. This mech-
anism needs to be based on the condition of the scene such as lightness, motion, hue
variance and patterns in the film editing practice.

Notes

1. During film shooting, a (production) shot is a set of production takes and the notation “Shot X, Take Y” is used
to distinguish between them.

2. www.imdb.com
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