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PHASE COMPOSITION AND HARDENING

OF CASTABLE Al – Ca – Ni – Sc ALLOYS CONTAINING 0.3% Sc
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The phase composition of aluminum alloys of the Al – Ca – Ni – Sc system containing 0.3 wt.% Sc is studied.

It is shown that the aluminum solid solution may be in equilibrium not only with binary phases (Al
4
Ca, Al

3
Sc

and Al
3
Ni) but also with a ternary Al

9
NiCa compound. The temperature of attainment of maximum hardening

due to precipitation of nanoparticles of phase Al
3
Sc is determined for all the alloys studied. Principal possibil-

ity of creation of castable alloys based on an (Al) + Al
4
Ca + Al

9
NiCa eutectic, the hardening heat treatment of

which does not require quenching, is substantiated.

Key words: Al – Ca – Ni – Sc system, nanoparticles of Al
3
Sc, phase composition, eutectic,

microstructure, hardening.

INTRODUCTION

Scandium is a very effective hardener of aluminum al-

loys due to formation of secondary precipitates of phase

Al
3
Sc (Ll

2
) less than 10 nm in size in their structure [1 – 7].

These nanoparticles form in the process of annealing due to

decomposition of supersaturated aluminum solid solution

(Al). This phenomenon raises substantially the strength of

aluminum alloys not subjected to a classical hardening heat

treatment (quenching + aging). Deformable magnals, such as

alloy 1570, are the most widely applied representatives of

this group [3]. Despite the high cost of scandium, the latter is

assumed today to be the most promising alloying element for

aluminum alloys of the new generation.

In standard castable aluminum alloys the addition of

scandium does not produce the same hardening effect as in

deformable alloys. This is the most typical for silumins,

which constitute the major part of the total production of

castings from aluminum alloys [8, 9]. This is explainable by

the fact that silicon lowers considerably the solubility of

scandium in (Al) and thus makes it impossible to form a suf-

ficient number of nanoparticles of Al
3
Sc phase during an-

nealing. However, in aluminum alloys based on other eutec-

tics, for example, nickel-containing ones, the addition of

scandium provides considerable hardening [10, 11]. Since

the castable alloys should contain an enough content of a

eutectic [8], it seems expedient to search for other eutectic-

forming elements not lowering the hardening effect due to

scandium alloying. One such element is calcium, the eutectic

concentration of which in the Al – Ca system is 7.6% at

617°C [12].

It is known that ternary (and more complex) eutectics

commonly have a finer structure than binary ones. Spe-

cifically, this has been proved experimentally for the

Al – Ce – Ni [13] and Al – Mg – Ni – Si systems [14]. We

may state that the addition of a second eutectic-forming ele-

ment may be a kind modifying (like the introduction of

strontium into silumins for modifying the aluminum-silicon

eutectic). In our opinion, the Al – Ca – Ni system, where a

eutectic reaction L � (Al) + Al
4
Ca + Al

3
Ni occurs at 6.7% Ca

and 5.7% Ni at 607°C [12], has prospects as a base for

castable aluminum alloys hardened by a low addition of

scandium without the use of quenching. It should be noted

that by the data of later reports, for example [15], this ternary

system contains an Al
9
CaNi compound that participates in a

eutectic reaction L � (Al) + Al
4
Ca + Al

9
CaNi at 610°C.

However, the published information on the transformations

occurring in aluminum alloys with calcium additions is

scarce.

The aim of the present work was to study the phase com-

position and structure of alloys of the Al – Ca – Ni – Sc sys-

tem in the aluminum-rich range at a constant concentration
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of scandium (0.3 wt.%) experimentally and by computation

and to determine the influence of calcium and nickel on pre-

cipitation hardening due to nanoparticles of phase Al
3
Sc.

METHODS OF STUDY

We studied six alloys of the Al – Ca – Ni – Sc system

containing 0.3% Sc and different contents of Ni and Ca,

namely, three quaternary alloys, two ternary alloys and one

binary alloy (Table 1). The alloys were melted in a LAC

electric resistance furnace in graphite-chamotte crucibles.

All the alloys were based on high-purity aluminum A99

(GOST 11069–2001). Calcium, nickel and scandium were

introduced into the aluminum melt in the form of alumi-

num-base alloying additions (Al – 18% Ca, Al – 20% Ni and

Al – 2% Sc respectively). The melts were cast into graphite

crucibles at 730 – 740°C to obtain flat castings 15 � 30 �

180 mm in size (the rate of the crystallization cooling was

about 10 K�sec). The castings were cut into specimens for

the study.

The specimens were heat treated in SNOL 8.2�1100 and

SNOL 58�350 muffle electric furnaces with about 3°C accu-

racy of keeping of the temperature. We used multistage an-

nealing modes in the range of 200 – 600°C at a step of 50°C

and a hold for 3 h in each stage (Table 2). The stage modes

were chosen in order to be able to study the effect of the

heating temperature on the structure for one specimen. This

method has proved to be both informative and efficient as ap-

plied to aluminum alloys hardened due to precipitation of

particles of Ll
2
nanophase [16].

The laps were prepared by mechanical polishing of the

specimens and etching with Keller reagent. The primary

analysis of the microstructure was performed using an Olym-

pus GX51 optical microscope (OM); the detailed metallo-

graphic studies were performed using a TESCAN VEGA 3

scanning electron microscope (SEM). The TESCAN micro-

scope equipped with an Oxford Instruments energy disper-

sive attachment for microanalysis and AZtec software was

also used for microscopic x-ray spectrum analysis (MXRSA).

The Brinell hardness was measured according to the GOST

9012–59 Standard using a Wilson Wolpert 930N hardness

meter with ball diameter 2.5 mm at a load of 306 N and a

hold time of 30 sec. The phase composition of the Al – Ca –

Ni – Sc system was computed with the help of the Thermo-

Calc software (the TTAL5 database) [17].

RESULTS AND DISCUSSION

We will explain the choice of the composition of the ex-

perimental alloys (Table 1) below. Alloy 1 containing only a

scandium additive, which has been studied well [1 – 7],

played the role of a standard. Alloys 2 and 3 contained

eutectic concentrations of nickel and calcium, which follows

from the Al – Ni (Fig. 1a ) and Al – Ca (Fig. 1b ) diagrams.

The concentration of Ca and Ni in alloys 4, 5 and 6 was cho-

sen on the basis of computation of the liquidus surface of the

Al – Ca – Ni phase diagram (Fig. 1c ), i.e., alloy 4 near the

eutectic polytherm, and alloys 5 and 6 in the regions of sure

presence of primary crystals of phases Al
3
Ni and Al

4
Ca, re-

spectively. It should be noted that the computed concentra-

tion of nickel at the point of ternary eutectic was about twice

lower with respect to the data of [12].

The effect of nickel on the phase composition of alloys

of the Al – Ca – Ni – Sc system at different temperatures

matches the polythermal section computed for 4% Ca and

0.3% Sc. It can be seen from Fig. 2 that even at low contents

of this element we should expect appearance of primary

crystals of phase Al
3
Sc. It is obvious that their presence

should lower the concentration of scandium in (Al) and, as a

consequence, the capacity of the alloy for precipitation hard-

ening due to phase Ll
2
. It also follows from Fig. 2 that inde-

pendently of the content of nickel all the alloys of this sec-

tion should finish crystallization at 607°C, i.e., at the temper-

ature of ternary eutectic.

Analysis of the cast structure of alloys 2 and 3 shows that

the presence of 0.3% Sc virtually does not affect the mor-

phology of the binary eutectics (Al) + Al
3
Ni (Fig. 3a ) and
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TABLE 1. Chemical Compositions of Experimental Aluminum Al-

loys

Alloy

Content of element, wt.%

Ca Ni Sc

1 – – 0.3 (0.38)

2 – 6 (5.85) 0.3 (0.29)

3 7.6 (7.53) – 0.3 (0.28)

4 4 (2.71) 4 (4.20) 0.3 (0.30)

5 4 (2.58) 8 (6.06) 0.3 (0.32)

6 10 (8.32) 4 (4.45) 0.3 (0.31)

Note. The content of impurity elements in the blend (by the data of

spectrum analysis) does not exceed 0.01.

TABLE 2. Modes of Annealing of Castings from Ex-

perimental Alloys

Notation Annealing mode

S00 Without annealing (cast condition)

S200 200°C, 3 h

S250 S200 + 250°C, 3 h

S300 S250 + 300°C, 3 h

S350 S300 + 350°C, 3 h

S400 S350 + 400°C, 3 h

S450 S400 + 450°C, 3 h

S500 S450 + 500°C, 3 h

S550 S500 + 550°C, 3 h

S600 S550 + 600°C, 3 h



(Al) + Al
4
Ca (Fig. 3b ). These eutectics have a quite fine

structure, which can be determined under a high magnifica-

tion impossible for optical microscopy. Primary crystals of

phase Al
3
Sc have not been detected in the structure of alloys

2 and 3, which allows us to speak of complete dissolution of

scandium in (Al).

The structure of alloy 4 agrees well with the computed

results (Fig. 1c ), because it contains colonies of two eutec-

tics, i.e. a coarse (light) one and fine one (Fig. 4a ). The fine

eutectic seems to be a ternary one crystallized in the last turn.

In alloy 5 we observe light primary crystals (Fig. 4b ) with

morphology corresponding to phase Al
3
Ni [11]. In alloy 6

we detect primary crystals of two types, i.e., light compact

ones and gray acicular ones (Fig. 4c ), which cannot be ex-

plained by the simple structure of the Al – Ca – Ni diagram

(Fig. 1c ). It should be noted that all the quaternary alloys

contained colonies of a fine eutectic.

Determination of the concentrations of all elements in in-

dividual particles and in eutectic colonies by the method of

MXRSA allowed us to identify them. We analyzed at least

three regions for each experimental alloy. The results ob-

tained for alloy 6 (Fig. 5, Table 3) seem the most interesting.

The composition of the acicular crystals (spectra 36 – 38 )

corresponds to the expected phase Al
4
Ca. On the other hand,

by the data of [15] the light crystals (spectra 32 – 35 ) belong

to compound Al
9
CaNi containing about 9 at.% Ca and about

9 at.% Ni. The less fine eutectic (spectra 42 – 44 ) has com-

position close to a binary (Al) + Al
4
Ca one (Fig. 1b ), and the
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Fig. 1. Binary Al – Ni (a) and Al – Ca (b ) diagrams and liquidus surface of the Al – Ca – Ni diagram (c) (designed with the help of
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3 (b ) based on binary eutectics.



finer eutectic (spectra 39 – 41 ) most probably matches a ter-

nary (Al) + Al
4
Ca + Al

8
NiCa one. It should be noted that the

concentration of scandium in the eutectics is close to its con-

tent in the alloy. At the same time, its concentration in the

primary crystals is obviously lower. We have not detected

primary crystals of Al
3
Sc in any of the alloys studied, which

does not agree with the computed polythermal section

(Fig. 2). This mismatch may be explained by the influence of

the conditions of nonequilibrium crystallization, which re-

sults to this or that degree in a shift of phase boundaries. The

results of the MXRSA also confirm the identification of pri-

mary crystals of phase Al
3
Ni in alloy 5. Note that the compo-

sition of the fine eutectic in alloys 4 and 5 is about the same

as in alloy 6 (Table 3). It may be assumed with a high proba-

bility that in all the quaternary alloys it is represented by a

ternary eutectic (Al) + Al
3
Ca + Al

9
NiCa.

To estimate the precipitation hardening of the experi-

mental alloys we analyzed the curves describing the depend-

ence of their hardness on the annealing temperature. It can be

seen from Fig. 6 that maximum hardness is attained in all the
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TABLE 3. Results of Quantitative Analysis of the Composition of Individual Particles and Structural Components

in Cast Alloy 6 (Fig. 5)

Spectrum

Content of elements, wt.%

Phase (structural component)

Al Ca Sc Ni

32 69.61 12.17 0.05 18.17 Al
9
NiCa (primary)

33 69.00 12.44 0.10 18.46 Al
9
NiCa (primary)

34 69.17 12.13 0.06 18.64 Al
9
NiCa (primary)

35 70.21 11.88 0.08 17.82 Al
9
NiCa (primary)

36 72.66 26.93 0.16 0.25 Al
4
Ca (primary)

37 72.59 26.91 0.16 0.35 Al
4
Ca (primary)

38 72.51 26.96 0.11 0.42 Al
4
Ca (primary)

39 88.87 7.10 0.44 3.59 (Al) + Al
4
Ca + Al

9
NiCa (eutectic)

40 89.49 6.98 0.33 3.20 (Al) + Al
4
Ca + Al

9
NiCa (eutectic)

41 89.15 7.07 0.31 3.47 (Al) + Al
4
Ca + Al

9
NiCa (eutectic)

42 91.57 6.85 0.44 1.13 (Al) + Al
4
Ca (eutectic)

43 92.24 6.84 0.24 0.68 (Al) + Al
4
Ca (eutectic)

44 90.62 8.01 0.27 1.10 (Al) + Al
4
Ca (eutectic)

à b c20 m� 20 m� 50 m�

Fig. 4. Microstructures of cast alloys of the Al – Ca – Ni – Sc system: a) alloy 4; b ) alloy 5; c) alloy 6.
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Fig. 5. Analyzed regions of the cast structure of alloy 6 (Table 3).



alloys at 300 – 350°C (Table 2, regimes S300 and S350). The

difference in the absolute hardening is relatively low (i.e., it

does not differ from that of standard alloy 1 ), which can be

seen in Fig. 7. This means that (1) virtually the entire scan-

dium has entered (Al) under crystallization and (2) it has pre-

cipitated during annealing in the form of nanoparticles of

phase Al
3
Sc (Ll

2
). This means that nickel and calcium, both

jointly and individually, do not affect negatively the harden-

ing due to the scandium additive.

Starting with 500°C, annealing changes the structure of

the eutectics; the aluminides are first fragmented and then

coarsened. It can be seen that the finest eutectic in the struc-

ture of alloy 6 annealed by regime S600 (Table 2) contains

particles of two kinds (light and gray) in addition to (Al)

(Fig. 8). This means that such a eutectic is a three-phase one.

The results of the MXRSA prove the identification of phases

Al
4
Ca and Al

9
NiCA.

Generalization of the computational and experimental re-

sults allows us to determine the structure of the phase dia-

gram of the Al – Ca – Ni system in the region of the alumi-

num angle. Specifically, we should expect there two three-

phase systems, i.e., (Al) + Al
4
Ca + Al

9
NiCa and (Al) +

Al
8
NiCa + Al

3
Ni (Fig. 9a ), which corresponds to the variant

given in [15]. The composition of the ternary eutectic and the

structures of the experimental alloys allow us to describe the

kind of the liquidus surface of this ternary system, as it is

shown in Fig. 9b. With allowance for the structures of other

ternary systems in the region of the aluminum angle [11, 12]

we may expect existence of two nonvariant reactions, i.e., a
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eutectic reaction L � (Al) + Al
3
Ca + Al

8
NiCa (point E ) and

a peritectic reaction L + Al
3
Ni � (Al) + Al

9
NiCa (point P ).

It should also be noted that in accordance with the results ob-

tained scandium should not form phases other than Al
3
Sc in

the quaternary system studied.

We may speak of a principal possibility of creation of

castable aluminum alloys on the base of an (Al) + Al
4
Ca +

Al
9
NiCa eutectic. Such alloys should combine high casting

properties (due to the narrow range of crystallization) with

the possibility of hardening due to annealing at 300 – 350°C

(i.e., without quenching). It should also be noted that the

computed total volume fraction of the particles of Al
4
Ca and

Al
9
NiCa in the ternary eutectic is about 33 vol.%, which ex-

ceeds considerably the content of silicon particles in

silumins. For this reason, we may expect a noticeable growth

in the properties obeying the rule of additivity in multiphase

systems (for example, the coefficient of thermal expansion

and the modulus of elasticity). The high fineness of the

eutectics also promises high mechanical properties, which

requires, however, an experimental verification.

CONCLUSIONS

1. We have studied the phase composition of aluminum

alloys of the Al – Ca – Ni – Sc system with the help of com-

putational and experimental methods. We established that the

aluminum solid solution may be in equilibrium not only with

the phases of the binary systems (Al
4
Ca, Al

3
Sc and Al

3
Ni)

but also with the ternary Al
9
NiCa compound.

2. Maximum hardening due to precipitation of nanopar-

ticles of phase Al
3
Sc is attained in all the alloys studied after

annealing at 300 – 350°C. Starting with 500°C the morpho-

logy of the eutectics changes; the aluminides are first frag-

mented and then coarsened.

3. We have shown the principle possibility of creation of

castable aluminum alloys on the basis of a (Al) + Al
4
Ca +

Al
9
NiCa eutectic. We expect that such alloys should combine

high casting properties with the possibility of hardening

without quenching.
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