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Abstract
Wegive a conjugacy relation on certain type of Frobeniusmanifold structures using the
theory of flat pencils of metrics. It leads to a geometric interpretation for the inversion
symmetry of solutions to Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations.
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1 Introduction

Boris Dubrovin introduced the notion of a Frobenius manifold as a geometric realiza-
tion of a potential F which satisfies a system of partial differential equations known
in topological field theory as Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equa-
tions. More precisely, a Frobenius algebra is a commutative associative algebra with
an identity e and a nondegenerate bilinear form � compatible with the product, i.e.,
�(a◦b, c) = �(a, b◦c). A Frobenius manifold is a manifold with a smooth structure
of a Frobenius algebra on the tangent space at any point with certain compatibility
conditions. Globally, we require the metric � to be flat and the identity vector field e
to be covariantly constant with respect to the corresponding Levi–Civita connection.
Detailed information about Frobenius manifolds and related topics can be found in
[7].
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Let M be a Frobenius manifold. In flat coordinates (t1, . . . , tr ) for�where e = ∂tr

the compatibility conditions imply that there exists a function F(t1, . . . , tr ) which
encodes the Frobenius structure, i.e., the flat metric is given by

�i j (t) = �(∂t i , ∂t j ) = ∂tr ∂t i ∂t jF(t) (1.1)

and, setting �1(t) to be the inverse of the matrix �(t), the structure constants of the
Frobenius algebra are given by

Ck
i j (t) = �

kp
1 (t)∂t p∂t i ∂t jF(t).

Here, and inwhat follows, summationwith respect to repeated upper and lower indices
is assumed. The definition includes the existence of a vector field E of the form
E = (a j

i t
i + b j )∂t j satisfying

EF(t) = (3 − d)F(t) + 1

2
Ai j t

i t j + Bi t
i + c (1.2)

where a j
i , b j , c, Ai j , Bi and d are constantswith arr = 1. The vector field E is called the

Euler vector field and the number d is called the charge of the Frobenius manifold. The
associativity of Frobenius algebra implies that the potential F(t) satisfies the WDVV
equations

∂t i ∂t j ∂tkF(t) �
kp
1 ∂t p∂tq ∂tnF(t) = ∂tn∂t j ∂tkF(t) �

kp
1 ∂t p∂tq ∂t iF(t), ∀i, j, q, n.

(1.3)
Conversely, an arbitrary potential F(t1, . . . , tr ) satisfying Eqs. (1.3) and (1.2) with
(1.1) determines a Frobenius manifold structure on its domain [7]. Moreover, there
exists a quasihomogenius flat pencil of metrics (QFPM) of degree d associated to
the Frobenius structure on M which consists of the intersection form �2 and the flat
metric �1 with the function τ = �i1t i (see Definition 2.3 below). Here

�
i j
2 (t) := E(dti ◦ dt j ) (1.4)

where the product dti ◦ dt j is defined by lifting the product on T M to T ∗M using the
flatmetric�1. In this articleweprove that,whend �= 1, e(τ ) = 0 and E(τ ) = (1−d)τ ,
we can construct another QFPM of degree 2 − d on M consisting of the intersection
form �2 and a different flat metric ˜�1. We call it the conjugate QFPM. In particular,
under a specific regularity condition, we get a conjugation between a certain type of
Frobenius manifold structures on a given manifold. Precisely, we prove the following
theorem.

Theorem 1.1 Let M be a Frobenius manifold with the Euler vector field E and the
identity vector field e. Suppose the associated QFPM is regular of degree d with a
function τ . Assume that e(τ ) = 0 and E(τ ) = (1 − d)τ . Then we can construct
another Frobenius manifold structure on M\{τ = 0} of degree 2 − d. Moreover, we
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Conjugate Frobenius Manifold and Inversion Symmetry Page 3 of 19 23

can apply the same method to the new Frobenius manifold structure and it leads to
the original Frobenius manifold structure.

For a fixed Frobenius manifold the new structure that can be obtained using Theorem
1.1 will be called the conjugate Frobenius manifold structure.

Let us assume �i, j = δr+1
i+ j , i.e., the potential F has the standard form

F(t) = 1

2
(tr )2t1 + 1

2
tr

r−1
∑

i=2

t i tr−i+1 + G
(

t1, . . . , tr−1
)

(1.5)

and the quasihomogeneity condition (1.2) takes the form

E = di t
i∂t i , EF(t) = (3 − d)F(t); dr = 1. (1.6)

Here, the numbers di are called the degrees of the Frobenius manifold. Recall that a
symmetry of the WDVV equations is a transformation of the form

t i �→ zi , � �→ ˜�, F �→ ˜F

such that ˜F satisfies the WDVV equations. The inversion symmetry ([7], Appendix
B) is an involutive symmetry given by setting

z1 = − 1

t1
, zr = �i j (t)

t i t j

2t1
, zk = tk

t1
, 2 ≤ k < r . (1.7)

Then
˜F(z) := (t1)−2

(

F(t) − 1

2
tr�i j t

i t j
)

(1.8)

is another solution to the WDVV equations with the flat metric ˜�i j (z) = δr+1
i+ j . The

charge of the corresponding Frobenius manifold structure is 2−d and the degrees are

˜d1 = −d1, ˜dr = 1, ˜di = di − d1 f or 1 < i < r . (1.9)

The inversion symmetry is obtained from a special Schlesinger transformation of the
system of linear ODEs with rational coefficients associated to the WDVV equations.
A geometric relation between Frobenius manifold structures correspond to F(t) and
˜F(z) was outlined through the sophisticated notion of Givental groups in [13]. In this
article, we obtained a simple geometric interpertation and we report that ˜F(z) is the
potential of the conjugate Frobenius manifold structure. In other words, we prove the
following theorem.

Theorem 1.2 Let M be a Frobenius manifold with charge d �= 1. Suppose in the
flat coordinates (t1, . . . , tr ), the potential F(t) has the standard form (1.5) and the

quasihomogeneity condition takes the form (1.6) with di �= d1
2

for every i . Then we
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can construct the conjugate Frobenius manifold structure on M\{t1 = 0}. Moreover,
flat coordinates for the conjugate Frobenius manifold are

s1 = −t1, si = t i (t1)
d1−2di

d1 f or 1 < i < r , sr = 1

2

r
∑

i=1

t i tr−i+1(t1)
−2
d1

−1
. (1.10)

In addition, the corresponding potential equals the potential obtained by applying the
inversion symmetry to F(t) and it is given by

˜F(s) = (t1)
−4
d1

(

F(t1, . . . , tr ) − 1

2
tr

r
∑

1

t i tr−i+1

)

. (1.11)

Examples of Frobeniusmanifolds satisfying the hypotheses of Theorem 1.2 include
Frobenius manifold structures constructed on orbits spaces of standard reflection rep-
resentations of irreducibleCoxeter groups in [9, 22] and algebraic Frobeniusmanifolds
constructed using classicalW -algebras [5]. However, the result presented in this article
is a consequence of the work [1, 6]. There, we investigated the existence of Frobenius
manifold structures on orbits spaces of some non-reflection representations of finite
groups and we noticed that certain structures appear in pairs. Analyzing such pairs led
us to the notion of conjugate Frobenius manifold.

This article is organized as follows. In Sect. 2,we review the relation betweenFrobe-
niusmanifold, flat pencil of metrics and compatible Poisson brackets of hydrodynamic
type. Then we introduce a conjugacy relation between certain class of quasihomoge-
neous flat pencils of metrics in Sect. 3. It can be interpreted as a conjugacy relation
between certain class of compatible Poisson brackets of hydrodynamic type.We prove
Theorem 1.1 in Sect. 3 and Theorem 1.2 in Sect. 4. In Sect. 5, we discuss the find-
ings of this article on polynomial Frobenius manifolds. We end the article with some
remarks.

2 Background

Wereview in this section the relation betweenflat pencil ofmetrics, compatible Poisson
brackets of hydrodynamics type and Frobenius manifold. More details can be found
in [8].

Let M be a smooth manifold of dimension r and fix local coordinates (u1, . . . , ur )
on M .

Definition 2.1 Asymmetric bilinear form (., .) on T ∗M is called a contravariantmetric
if it is invertible on an open dense subset M0 ⊆ M . We define the contravariant
Christoffel symbols �

i j
k for a contravariant metric (., .) by

�
i j
k := −�im�

j
mk
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where �
j
mk are the Christoffel symbols of the metric < ., . > defined on T M0 by the

inverse of the matrix �i j (u) = (dui , du j ). We say the metric (., .) is flat if < ., . > is
flat.

Let (., .) be a contraviariant metric on M and set �i j (u) = (dui , du j ). Then we
will use � to refer to the metric and �(u) to refer to its matrix in the coordinates.
In particular, the Lie derivative of (., .) along a vector field X will be written LieX�

while X�i j means the vector field X acting on the entry �i j . The Christoffel symbols
given in Definition 2.1 determine for � the contravariant (resp. covariant) derivative
∇ i (resp. ∇i ) along the covector dui (resp. the vector field ∂ui ). They are related by
the identity ∇ i = �i j (u)∇ j .

Definition 2.2 A flat pencil of metrics (FPM) on M is a pair (�2,�1) of two flat
contravariant metrics �2 and �1 on M satisfying

1. �2 + λ�1 defines a flat metric on T ∗M for a generic constant λ,
2. the Christoffel symbols of �2 + λ�1 are �

i j
2k + λ�

i j
1k , where �

i j
2k and �

i j
1k are the

Christoffel symbols of �2 and �1, respectively.

Definition 2.3 A flat pencil of metrics (�2,�1) on M is called quasihomogeneous
flat pencil of metrics (QFPM) of degree d if there exists a function τ on M such that
the vector fields E and e defined by

E = ∇2τ, Ei = �
i j
2 (u)∂u j τ

e = ∇1τ, ei = �
i j
1 (u)∂u j τ (2.1)

satisfy

[e, E] = e, LieE�2 = (d − 1)�2, Liee�2 = �1 and Liee�1 = 0. (2.2)

Such a QFPM is regular if the (1,1)-tensor

R j
i = d − 1

2
δ
j
i + ∇1i E

j (2.3)

is nondegenerate on M .

Let (�2,�1) be a QFPM of degree d. Then according to [8], we can fix flat coor-
dinates (t1, t2, . . . , tr ) for �1 such that

τ = t1, Ei = �i1
2 , ei = �i1

1 , �
i j
1,k = 0,

�i1
2,k = 1 − d

2
δik, �

1 j
2,k = d − 1

2
δ
j
k + ∂tk E

j , ∂t1E
1 = 1 − d. (2.4)

Moreover, if (�2,�1) is regular then d �= 1.
Consider the loop space L(M) of M , i.e., the space of smooth maps from the circle

S1 to M . A local Poisson bracket on L(M) is a Lie algebra structure on the space of
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local functionals on L(M). Let {., .} be a local Poisson bracket of hydrodynamic type
(PBHT), i.e., it has the following form in the local coordinates [8]

{ui (x), u j (y)} = �i j (u(x))δ′(x−y)+�
i j
k (u(x))ukxδ(x−y), i, j = 1, . . . , r (2.5)

where δ(x − y) is the Dirac delta function defined by
∫

S1 f (y)δ(x − y)dy = f (x).
Then we say {., .} is nondegenerate if det�i j �= 0 and the Lie derivative of {., .} along
a vector field X := Xi∂ui reads

LieX {., .}(ui (x), u j (y)) = (Xs∂us�
i j − �s j∂us X

i − �is∂us X
j )δ′(x − y)

(Xs∂us�
i j
k − �

s j
k ∂us X

i − �is
k ∂us X

j

+ �
i j
s ∂uk X

s − �is∂us∂uk X
j )ukxδ(x − −y).

We will use the following two theorems.

Theorem 2.4 [21] Let X be a vector field on M and {., .} be a PBHT on L(M).
If Lie2X {., .} = 0, then LieX {., .} is a PBHT and it is compatible with {., .}, i.e.,
{., .} + λLieX {., .} is a PBHT for every constant λ.

Theorem 2.5 [10] The form (2.5) defines a nondegenerate PBHT {., .} if and only if the
matrix �i j (u) defines a flat contravariant metric on M and �

i j
k (u) are its Christoffel

symbols.

From Theorems 2.5 and 2.4, we get the following corollary:

Corollary 2.6 Let {., .}2 and {., .}1 be two nondegenerate compatible PBHT on L(M)

having the form

{ui (x), u j (y)}α = �i j
α (u(x))δ′(x − y) + �

i j
α,k(u(x))ukxδ(x − −y), α = 1, 2.

Suppose {., .}2 + λ{., .}1 is a nondegenerate PBHT for a generic constant λ. Then
(�2,�1) is a FPM on M. Conversely, a FPM on M determines nondegenerate com-
patible Poisson brackets of hydrodynamic type on L(M).

As mentioned in the introduction, if M is a Frobenius manifold of charge d then
there is an associated QFPM (�2,�1) of degree d on M , where �2 is the intersection
form and �1 is the flat metric. In the flat coordinates (t1, . . . , tr ) we have τ = �i1t i .
Then the Euler vector field E and the identity vector field e of the Frobenius manifold
have the form (2.1) and satisfy equations (2.2). The following theorem give a converse
statement.

Theorem 2.7 [8] Let M be a manifold carrying a regular QFPM (�2,�1) of degree
d. Then there exists a unique Frobenius manifold structure on M of charge d where
(�2,�1) is the associated QFPM.
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3 Conjugate Frobenius Manifold

We fix a manifold M with a QFPM T = (�2,�1) of degree d �= 1. We fix a function
τ for T which determines the vector fields E and e (see Definition 2.3). We suppose

e(τ ) = 0 and E(τ ) = (1 − d)τ. (3.1)

We introduce the function f (τ ) := (τ )
2

1−d and the vector field ẽ := f (τ )e. We define

˜�1 := Lieẽ�2 = f �1 − f ′(E ⊗ e + e ⊗ E). (3.2)

Then

Lie2ẽ�2 = f 2(Lie2e�2) + (2( f ′)2E(τ ) − 4 f f ′)e ⊗ e + f f ′e(τ )�1

+ (( f ′)2 − f f ′′)e(τ )(E ⊗ e + e ⊗ E) = 0 (3.3)

We fix flat coordinates (t1, . . . , tr ) leading to the identities (2.4). Considering the
condition (3.1), we will further assume that e = ∂tr . Thus

�i1
1 = δir , ∂tr �

i1
2 = ∂tr E

i = δir . (3.4)

Let {., .} denote the nondegenerate PBHT associated to �2. Then by Corollary 2.6,
Liee{., .} is the PBHT associated to�1 and Lie2e{., .} = 0.We have a similar statement
for ẽ.

Proposition 3.1 Lie2ẽ{., .} = 0. In particular, Lieẽ{., .} is a PBHT compatible with
{., .}.
Proof The PBHT associated to �2 has the form

{tα(x), tβ(y)} = �
αβ
2 δ′(x − y) + �

αβ
2,γ t

γ
x δ(x − y).

Here and in what follows, it is to be understood that all functions on the right hand
side depend on t(x). Note that

Lieẽ{., .}(tα(x), tβ(y)) = ˜�
αβ
1 δ′(x − y) + ˜�

αβ
2,γ t

γ
x δ(x − y)

where

˜�
αβ
2,γ = ẽε∂ε�

αβ
2,γ − �

εβ
2,γ ∂ε ẽ

α − −�αε
2,γ ∂ε ẽ

β + �
αβ
2,ε∂γ ẽ

ε − −�αε
2 ∂2εγ ẽ

β

= −�
εβ
2,γ δα

r δ1ε f ′ − −�αε
2,γ δβ

r δ1ε f ′ + �
αβ
2,εδ

ε
r δ

1
γ f ′ − −�αε

2 δβ
r δ1γ δ1ε f ′′.

From Eq. (3.3), the coefficients of δ′(x − y) of Lie2ẽ{., .} vanish while the coefficients
˜
˜�

αβ

2,γ of δ(x − y) have the form
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˜
˜�

αβ

2,γ = − f f ′′∂r�αε
2 δβ

r δ1γ δ1ε + f ′2δα
r δβ

r δ1mδ1ε�
mε
2,γ − f ′2δβ

r δmr δ1γ δ1ε�
αε
2,m

+ f ′2δβ
r δα

r δ1ε δ
1
m�εm

2,γ − f ′2δα
r δmr δ1γ δ1ε�

εβ
2,m + f ′ f ′′�εm

2 δ1ε δ
α
r δβ

r δ1γ δ1m

− f ′2δ1γ δβ
r δ1mδε

r�
αm
2,ε − f ′2δ1γ δα

r δ1mδε
r�

mβ
2,ε − ˜�αε

2 δβ
r δ1γ δ1ε f ′′.

Then from the identities (2.4) and the definition of f (τ ), it follows that˜˜�
αβ

2,γ = 0. For
example,

˜
˜�
rr
2,1 = − f ∂r�

r1
2 f ′′ + f ′2�11

2,1 − f ′2�1r
2,r + �11

2 f ′′ f ′

+ f ′2�11
2,1 − f ′2�r1

2,r − f ′2�r1
2,r − f ′2�r1

2,r − ˜�r1
1 f ′′

= −(d + 1) f ′2 + (1 − d)τ f ′ f ′′ − f f ′′ − (− f ) f ′ = 0

and when γ = 1, α = r and β �= r

˜
˜�
rβ
2,1 = −2 f ′2�1β

2,r = −2 f ′2
(

d − 1

2
δβ
r + ∂tr E

β

)

= 0.

�
Lemma 3.2 The pair ˜T = (�2, ˜�1) form a QFPM of degree ˜d = 2 − d. Moreover, if
T is regular then ˜T is regular.

Proof The second term of the identity

˜�1(t) = f �1 − f ′Ei (∂t i ⊗ ∂tr + ∂tr ⊗ ∂t i )

contributes only to entries of the last row and last column of ˜�1(t). From the normal-
ization of �1, we get

˜�i1
1 (t) = ( f − f ′E(τ ))δir = ( f − (1 − d)τ f ′)δir = (− f )δir .

Therefore,

det ˜�1(t) = f r det�1(t) �= 0.

Hence, using Proposition 3.1 and Corollary 2.6, ˜T is a FPM. Let ˜∇ denote the con-
travariant (and also the covariant) derivative of ˜�1 and set τ̃ := −τ = −t1. Then the
vector fields

ẽ := ˜∇1τ̃ , and ˜E := ∇2τ̃ = −E

satisfy equations (2.2) and

Lie
˜E�2 = Lie−E�2 = −(d − 1)�2 = (˜d − 1)�2. (3.5)
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Hence, ˜T is a QFPM of degree ˜d = 2− d. For the regularity condition (2.3), we have

˜R j
i (t) = ˜d − 1

2
δ
j
i + ˜∇1i (−E j ) = 1 − d

2
δ
j
i − ∇1i (E

j ) = −R j
i (t). (3.6)

Therefore, det(˜R j
i ) �= 0 if and only if det(R j

i ) �= 0. �
We keep the definitions τ̃ = −τ and ˜E = −E given in the proof of Lemma 3.2

and we call ˜T = (�2, ˜�1) the conjugate QFPM of T . The name is motivated by the
following corollary.

Corollary 3.3 ˜T has a conjugate and it equals T .

Proof We observe that ˜d = 2 − d �= 1 and the function τ̃ = −τ satisfies the require-
ments (3.1) as

ẽ(̃τ ) = 0 and ˜E (̃τ ) = −E(−t1) = (1 − d)t1 = (1 − ˜d )̃τ . (3.7)

However, applying Lemma 3.2 to ˜T , we get a QFPM (�2,Liẽẽ�2) where

˜ẽ = f (̃τ )̃e = τ̃
2

1−˜d ẽ = (t1)
2

1−˜d .(t1)
2

1−d ∂tr = e.

�
Now we can prove Theorem 1.1.

Proof of Theorem 1.1 From the work in [8], regularity of the associated QFPM implies
that the charge d �= 1. Then the proof follows from applying Lemma 3.2, Corollary
3.3 and Theorem 2.7 to the associated regular QFPM. �
For a fixed Frobenius manifold, the new Frobenius manifold structure constructed
using Theorem 1.1 will be called the conjugate Frobenius manifold structure.

Example 3.4 We consider the Frobenius manifold structure of charge -1 defined by the
following solution to the WDVV equations.

F = 1

2
t22 t1 + t21 log t1

In the examples, we use subscript indices instead of superscript indices for con-
venience. Here, the identity vector field e = ∂t2 and the Euler vector field E =
2t1∂t1 + t2∂t2 . Note that EF = (3 − d)F + 2t21 . The corresponding regular QFPM
consists of

�2(t) =
(

2t1 t2
t2 4

)

, �1(t) =
(

0 1
1 0

)

. (3.8)

The conjugate QFPM ˜T = (�2, ˜�1) is of degree ˜d = 3. In the coordinates

s1 = −t1, s2 = t2
t1

123



23 Page 10 of 19 Z. Al-Maamari, Y. Dinar

we have

�2(s) =
(−2s1 s2

s2
4
s21

)

, ˜�1(s) =
(

0 1
1 0

)

and the potential of the conjugate Frobenius manifold structure has the form

˜F = 1

2
s1s

2
2 − log s1.

Note that the Euler vector field ˜E = −E(s) = −2s1∂s1+s2∂s2 and ˜E˜F = (3−˜d)˜F+2.
We observe that applying the inversion symmetry to the potential F(t), we get

̂F(z) = 1

2
z1z

2
2 − log z1 + constant

and̂F(z) defines the same conjugate Frobenius manifold structure. We prove this for
certain type of Frobenius manifolds in next section.

Example 3.5 We consider Frobenius manifold structures found recently in [3] on the
orbits space of the reflection group of type B4. It is provided to us by the anonymous
reviewer of this article as an example of Frobeniusmanifold structurewhose associated
QFPM has a conjugate but it is not regular. The potential of this Frobenius manifold
reads

F = 1

2
t24 t1 + t2t3t4 − 1

72
t41 + 1

2
t3t

2
1 + 1

6
t22 t3t1 − 9

4
t23 + 1

108
t42 t3 + 3

2
t23 log t3.

where the charge and degrees given by

d = 1

3
, d1 = 2

3
, d2 = 1

3
, d3 = 4

3
, d4 = 1.

The action of the Euler vector field reads

E F(t) = (3 − d)F(t) + 1

2
Ai j t

i t j = (3 − d)F(t) + 2t23 (3.9)

and the intersection metric �2 will be

�̇
i j
2 (t) = �

i j
2 (t) + Ai j , Ai j = �iα

1 (t)� jβ
1 (t)Aαβ. (3.10)

The associatedQFPM T = (�2,�1) is not regular. However, it has a conjugate QFPM
˜T = (�2, ˜�1). Flat coordinates (s1, s2, s3, s4) for ˜�1 are defined by

t1 = −s1, t2 = s2, t3 = −s31s3, t4 = −s4s
3
1 − s2s3s

2
1
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Note that one can still apply the inversion symmetry to the potentialF to get a Frobenius
manifold structure with a potential̂F(z) [7].We checked that the QFPM obtained from
̂F(z) agrees with ˜T . We do not consider this type of Frobenius manifolds in the next
section as we will assume regularity condition (2.3) of the quasihomogeneous flat
pencils of metrics.

Let us assume E has the form E = di t i∂t i . Then d1 = 1 − d and we have the
following standard results.

Corollary 3.6 T is regular QFPM if and only if di �= d1
2 for all i .

Proof Applying the definition 2.3 to thematrix R j
i (t) = ( d−1

2 +di )δ
j
i = (− d1

2 +di )δ
j
i .�

Lemma 3.7 If �i j
1 �= 0, then di + d j = 2 − d. Thus, if the numbers di are all distinct

then we can choose the coordinates (t1, . . . , tr ) such that �i j
1 = δ

i+ j
r+1.

Proof Notice that using [e, E] = e, we get LieE�1 = (d − 2)�1. Then the statement
follows from the equation

(2 − d)�
i j
1 (t) = LieE�

i j
1 (dti , dt j ) = −di�1(dt

i , dt j ) − d j�1(dt
i , dt j ).

�

4 Relation with Inversion Symmetry

We continue using notations and assumptions given in the previous section, but we
suppose that T is regular. Consider the Frobenius manifold structure defined on M by
Theorem 2.7 and let F(t) be the corresponding potential. We assume �

i j
1 (t) = δ

i+ j
r+1

which is equivalent to requiring that F(t) has the standard form (1.5). We suppose
further that the quasihomogeneity condition for F(t) takes the form (1.6). In this case
the intersection form �2 satisfies [8]

�
i j
2 (t) = (d − 1 + di + d j )�

iα
1 �

jβ
1 ∂tα ∂tβF. (4.1)

Note that at this stage we are working under the hypothesis of Theorem 1.2.
Let us consider the coordinates (1.10) on M\{t1 = 0}. Then the nonzero entries of

the Jacobian matrix are

∂si

∂t1
= d1 − 2di

d1
t i (t1)

−2di
d1 ,

∂sr

∂t1
=

(−2 − d1
2d1

) r−1
∑

2

t i tr−i+1(t1)
−2
d1

−2

− 2

d1
tr (t1)

−2
d1

−1
,

∂si

∂t i
= (t1)

d1−2di
d1 ,

∂sr

∂t i
= tr−i+1(t1)

−2
d1

−1
,

∂sr

∂tr
= (t1)

−2
d1 .
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Proposition 4.1 Consider the conjugate QFPM ˜T = (�2, ˜�1). Then τ̃ = s1,
˜�
i j
1 (s) = δ

i+ j
r+1, ẽ = ∂sr and ˜E = ˜di si∂si where the numbers ˜di are given in (1.9).

Proof Using the duality between the degrees outlined in Lemma 3.7, we calculate the
entries ˜�

i j
1 (s) as follows.

(I) For i = 1

˜�
1 j
1 (s) = −∂s j

∂tα
˜�1α
1 = −∂sr

∂tr
˜�1r
1 = −∂sr

∂tr
(−(t1)

2
d1 )δ1r = δ1r .

(II) For 1 < i < r and 1 < j < r

˜�
i j
1 (s) = ∂si

∂tk
∂s j

∂tk
˜�kl

1

= ∂si

∂t1
∂s j

∂t1
˜�11
1 + ∂si

∂t i
∂s j

∂t1
˜�i1
1 + ∂si

∂t1
∂s j

∂t j
˜�
1 j
1 + ∂si

∂t i
∂s j

∂t j
˜�
i j
1

= ∂si

∂t i
∂s j

∂t j
˜�
i j
1 δi+ j,r+1

= (t1)
2d1−2di−2dr−i+1+2

d1 δi+ j,r+1

= δi+ j,r+1.

(III) For 1 < i < r

˜�ir
1 (s) = (t1)

2
d1

∂si

∂t i
∂sr

∂tr−i+1 +
(

−(t1)
2
d1

∂si

∂t1
+ −2di

d1
t i (t1)

2
d1

−1 ∂si

∂t i

)

.
∂sr

∂tr

= (t1)
2
d1 (t1)

d1−2di
d1 .t i (t1)

−2
d1

−1 +
(

−d1 − 2di
d1

(t1)
2
d1 t i (t1)

−2di
d1

+−2di
d1

t i (t1)
2
d1

−1
(t1)

d1−2di
d1

)

(t1)
−2
d1

= (t1)
−2di
d1 t i +

(

−d1 − 2di
d1

(t1)
−2di
d1 t i + −2di

d1
(t1)

−2di
d1 t i

)

= (t1)
−2di
d1 t i − (t1)

−2di
d1 t i

= 0.

(IV) Finally,

˜�rr
1 (s)

= −(t1)
2
d1

∂sr

∂tr
.
∂sr

∂t1
+

r−1
∑

i=2

(

(t1)
2
d1

∂sr

∂tr−i+1 − 2di
d1

t i (t1)
2
d1

−1 ∂sr

∂tr

)

.
∂sr

∂t i

+
(

−(t1)
2
d1

∂sr

∂t1
+

r−1
∑

i=2

−2di
d1

t i (t1)
2
d1

−1 ∂sr

∂t i
+ −4

d1
tr (t1)

2
d1

−1 ∂sr

∂tr

)

.
∂sr

∂tr
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= (
2

d1
+ 1)

r−1
∑

2

t i tr−i+1(t1)
−2
d1

−2 + 4

d1
tr (t1)

−2
d1

−1 +
r−1
∑

2

t i tr−i+1(t1)
−2
d1

−2

−
r−1
∑

2

2di
d1

t i tr−i+1(t1)
−2
d1

−2 −
r−1
∑

2

2dr−i+1

d1
t i tr−i+1(t1)

−2
d1

−2 − 4

d1
tr (t1)

−2
d1

−1

=
r−1
∑

2

(

2

d1
+ 2 − 2di

d1
− 2dr−i+1

d1

)

t i tr−i+1(t1)
−2
d1

−2

= 0.

It is straightforward to show that ẽ = ∂sr . The vector field ˜E = �
1 j
2 (s)∂s j while

�
1 j
2 (s) =

(

d1t1 −d1t1
∂s2

∂t1
− d2t2

∂s2

∂t2
−d1t1

∂s3

∂t1
− d3t3

∂s3

∂t3
· · · −d1t1

∂sr

∂t1
− d2t2

∂sr

∂t2
+ · · · − tr ∂sr

∂tr

)

=
(

d1t1 (d2 − d1)t2(t1)
d1−2d2

d1 (d3 − d1)t3(t1)
d1−2d3

d1 · · · ∑r
i=1(−d1(

−2−d1
2d1

) − di )t i tr−i+1(t1)
−2
d1

−1
)

=
(

d1t1 (d2 − d1)t2(t1)
d1−2d2

d1 (d3 − d1)t3(t1)
d1−2d3

d1 · · · 1
2

∑r
i=1 t

i tr−i+1(t1)
−2
d1

−1
)

= (−d1s1 (d2 − d1)s2 (d3 − d1)s3 · · · sr
)

. (4.2)

�
We observe that the inverse transformation of the inversion symmetry (1.7) is given

by

t1 = −1

z1
, tr = zr + 1

2

r−1
∑

2

zi zr−i+1

z1
, tk = −zk

z1
, 2 ≤ k ≤ r .

Thus, the potential (1.8) obtained from applying the inversion symmetry to F(t) has
the form

˜F(z) = (z1)2F

(

−1

z1
,
−z2

z1
, . . . ,

−zr−1

z1
,
1

2

r
∑

1

zi zr−i+1

z1

)

+ 1

2
zr

r
∑

1

zi zr−i+1.

Lemma 4.2 The potential˜F(z) has the form

˜F(s) = (t1)
−4
d1

(

F(t1, . . . , tr ) − 1

2
tr

r
∑

1

t i tr−i+1

)

, zi ↔ si . (4.3)

Proof We use the identities

t1 = −s1 = (s1)2(
−1

s1
), tr = (s1)

2
d1

(

1

2

r
∑

1

si sr−i+1

s1

)

,

t i = (s1)
2di
d1 (

−si

s1
), 1 < i < r ,
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and the quasihomogeneity of the potential F(t), i.e.,

(

2

d1
E

)

F(t) = 2(3 − d)

d1
F(t) =

(

4

d1
+ 2

)

F(t). (4.4)

Then

(t1)
−4
d1

[

F(t1, . . . , tr ) − 1

2
tr

r
∑

1

t i tr−i+1

]

= (t1)
−4
d1

[

F(t1, . . . , tr ) + ( − t1(tr )2
) − 1

2
tr

r−1
∑

2

t i tr−i+1

]

= (s1)
−4
d1

[

F

(

(s1)2
(−1

s1

)

, (s1)
2d2
d1

(−s2

s1

)

, . . . , (s1)
2dr−1
d1

(−sr−1

s1

)

,

(s1)
2
d1

(

1

2

r
∑

1

si sr−i+1

s1

))

+(

(sr )2(s1)
4
d1

+1 + sr
r−1
∑

2

si sr−i+1(s1)
4
d1 + s1

(

1

2

r−1
∑

2

(s1)
2
d1

−1
si sr−i+1

)2
)

−1

2
sr (s1)

4
d1

r−1
∑

2

si sr−i+1 − s1
(

1

2

r−1
∑

2

(s1)
2
d1

−1
si sr−i+1

)2⎤

⎦

= (s1)
−4
d1

[

(s1)
4
d1

+2
F

(

−1

s1
,− s2

s1
,− s3

s1
, . . . ,

1

2

n
∑

i=1

−si sn−i+1

s1

)

+ (sr )2(s1)
4
d1

+1

+1

2
sr

r−1
∑

2

si sr−i+1(s1)
4
d1

]

= (s1)2F

(

−1

s1
,
−s2

s1
, . . . ,

−sr−1

s1
,
1

2

r
∑

1

si sr−i+1

s1

)

+ 1

2
sr

r
∑

1

si sr−i+1

which is the potential of the inversion symmetry by setting si = zi . �
Now we prove Theorem 1.2 stated in the introduction.

Proof of Theorem 1.2 By Corollary 3.6 and Theorem 1.1, we use the above notations
and assume T = (�2,�1) is the associatedQFPM.Weneed to show that the conjugate
QFPM ˜T = (�2, ˜�1) equals the QFPM associated to the potential ˜F(s) given in
(4.3). This leads to verifying that �2(s) equals the intersection form ̂�2(s) defined
by ˜F(s). It is straightforward to show that ˜F(s) is a quasihomogenius function, i.e.,
˜E˜F = (3 − ˜d)˜F . Hence

̂�
i j
2 (s) := (˜d − 1 + ˜di + ˜d j )�

iα
1 �

jβ
1 ∂sα ∂sβ

˜F.
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After long calculations we find that ˜�
i j
2 (s) = ̂�

i j
2 (s). For examples, we obtained the

first row of �
i j
2 (s) in (4.2) and for even r and 1 < i, j < r , we get by denoting

∂t i ∂t j G(t) as Gi, j

�
i j
2 (s) = ∂si

∂t1
∂s j

∂t1
�

1,1
2 + ∂si

∂t i
∂s j

∂t1
�

i,1
2 + ∂si

∂t1
∂s j

∂t j
�

1, j
2 + ∂si

∂t i
∂s j

∂t j
�

i, j
2

= d1

(

1 − 2di
d1

) (

1 − 2d j

d1

)

t i t j (t1)
1− 2di

d1
− 2d j

d1

+ di

(

1 − 2d j

d1

)

t i t j (t1)
1− 2di

d1
− 2d j

d1

+ d j

(

1 − 2di
d1

)

t i t j (t1)
1− 2di

d1
− 2d j

d1

+ (d − 1 + di + d j )(t
1)

2− 2di
d1

− 2d j
d1 (Gr−i+1,n− j+1 + trδr ,i+ j )

= (d1 − di − d j )t
i t j (t1)

1− 2di
d1

− 2d j
d1

+ (−d1 + di + d j )(t
1)

2− 2di
d1

− 2d j
d1

(

Gr−i+1,r− j+1 + trδr ,i+ j
)

= (d1 − di − d j )(t
1)

1− 2di
d1

− 2d j
d1

(

t i t j − t1Gr−i+1,r− j+1 − t1trδr ,i+ j
)

.

(4.5)

On the other hand

∂2˜F

∂sr−i+1∂sr− j+1

=
(

trδr ,i+ j (t
1)

1− 2
d1

− 2dr−i+1
d1 + Gr−i+1,r− j+1(t

1)
−1− 4

d1
+ 2dr−i+1

d1

)

×
(

−(s1)
2dr− j+1

d1
−1

)

+
(

t i (t1)
1− 2

d1
− 2di

d1

) (

si (s1)
2
d1

−1
)

=
(

trδr ,i+ j (t
1)

2− 2di
d1

− 2d j
d1 + Gr−i+1,r− j+1(t

1)
−2− 4

d1
+ 2dr−i+1

d1
+ 2dr− j+1

d1

)

−
(

t i t j (t1)
2− 2di

d1
− 2d j

d1

)

= (t1)
1− 2di

d1
− 2d j

d1

(

trδr ,i+ j t1 + Gr−i+1,r− j+1t
1 − t i t j

)

. (4.6)

Therefore,

̂�
i j
2 (s) = (di + d j − d1)(t

1)
1− 2di

d1
− 2d j

d1

(

tr t1δr ,i+ j + Gr−i+1,r− j+1t
1 − t i t j

)

= �
i j
2 (s). (4.7)

�
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Example 4.3 Consider the following solution to WDVV equations

F = t31
6

− 1

2
t22 t1 + 1

2
t22 t3 + 1

2
t1t

2
3 . (4.8)

It corresponds to a trivial Frobeniusmanifold structure, i.e., Frobenius algebra structure
does not depend on the point. Here the charge d = 0, the Euler vector field E = ∑

ti∂ti
and identity vector field e = ∂t3 . The intersection form is

�2(t) =
⎛

⎝

t1 t2 t3
t2 t3 − t1 −t2
t3 −t2 t1

⎞

⎠

Setting

s1 = −t1, s2 = t2
t1

, s3 = t22
2t31

+ t3
t21

the conjugate QFPM has ˜�
i j
1 (s) = δ

i+ j
3 and

�2(s) =

⎛

⎜

⎜

⎝

−s1 0 s3

0 s3 + 3s22
2s1

+ 1
s1

− s32
s21

− 2s2
s21

s3 − s32
s21

− 2s2
s21

3s42
4s31

+ 3s22
s31

− 1
s31

⎞

⎟

⎟

⎠

The potential of the conjugate Frobenius manifold structure reads

˜F(s) = −1

6s1
+ s22

2s1
+ s42

8s1
+ 1

2
s22s3 + 1

2
s1s

2
3 .

One can check that this is the same potential obtained by applying the inversion
symmetry to F(t). Note that ˜E = −s1∂s1 + s3∂s3 and ˜E˜F = ˜F.

5 The Conjugate of a Polynomial Frobenius Manifold

In this section, we recall the construction of Frobenius manifolds on the space of orbits
of Coxeter groups given in [9] and we apply the results of this article.

We fix an irreducible Coxeter group W of rank r . We consider the standard real
reflection representation ψ : W → GL(V ), where V is a complex vector space
of dimension r . Then the orbits space M = V /W is a variety whose coordinate
ring is the ring of invariant polynomialsC[V ]W . Using the Shephard-Todd-Chevalley
theorem, the ring C[V ]W is generated by r algebraically independent homogeneous
polynomials. Moreover, the degrees of a complete set of generators are uniquely
specified by the group [16].
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We fix a complete set of homogeneous generators u1, u2, . . . , ur for C[V ]W . Let
ηi be the degree of ui . Here, we have

2 = η1 < η2 ≤ η3 ≤ · · · ≤ ηr−1 < ηr .

It is known that ηi + ηr−i+1 = ηr + η1. Consider the invariant bilinear form on V
under the action of W . Then it defines a contravariant flat metric �2 on M and we
let u1 equals its quadratic form. We fix the vector field e := ∂ur . There is another flat
contravariant metric�1 := Liee�2 on M , which was initially studied by K. Saito [19,
20] and it is called the Saito flat metric. Then T := (�2,�1) is a FPM and Dubrovin
proved the following theorem.

Theorem 5.1 [8] T = (�2,�1) is a regular QFPM of charge ηr−2
ηr

and leads to a
polynomial Frobenius manifold structure on M, i.e., the corresponding potential is a
polynomial function in the flat coordinates.

We observe that the polynomial Frobenius structure defined by T has τ = 1
ηr
u1, the

Euler vector field E = 1
ηr

∑

i ηi u
i∂ui , the identity vector field e and degrees

ηi
ηr
. Note

that E is independent of the choice of generators but e is defined up to a constant factor.
Thus, changing the set of generators will lead to an equivalent Frobenius manifold
structure [9]. The following theorem was conjectured by Dubrovin and proved by C.
Hertling.

Theorem 5.2 [15] Any semisimple polynomial Frobenius manifold with positive
degrees is isomorphic to a polynomial Frobenius structure constructed on the orbits
space of the standard real reflection representation of a finite irreducible Coxeter
group.

Clearly, T satisfies the hypotheses of Theorem 1.1 and we have a conjugate regular
QFPM ˜T := (�2,Lieẽ�2), where ẽ = (τ )ηr e. Moreover, from the work of K. Saito
and his collaborators (see also [9]), we can fix u1, . . . , ur to be flat with respect to
�1 and the potential of the polynomial Frobenius manifold will have the standard
form (1.5). In particular ˜T is the regular QFPM of the Frobenius manifold structure
obtained by applying inversion symmetry to the polynomial Frobeniusmanifold onM .
ConsideringTheorem5.2,wewonderwhat is the intrinsic description for the conjugate
Frobenius manifold as this may help in the classification of Frobenius manifolds.

In [1], we give a similar discussion for the r Frobenius manifold structures con-
structed in [22] on the orbits space M when W is of type Br or Dr .

6 Remarks

It is important to mention that the inversion symmetry of the WDVV equation can
be applied to a solution F(t) in the standard form (1.5) under more general quasiho-
mogeneity condition than condition (1.6) and without the regularity condition (2.3)
of the associated QFPM . In this case, if the conjugate Frobenius manifold structure
exists, we believe that it will be equivalent to Frobenius manifold structure obtained
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by applying the inversion symmetry, we confirm this by Example 3.4 and Example
3.5.

Note that Frobenius manifold structures which are invariant under inversion sym-
metry were studied in [18]. We did not consider these cases as the charge will equal
1.

It will be interesting to study the consequences of Theorem 1.2 on the interpretation
of the inversion symmetry in terms of the action of the Givental groups obtained in
[13] and the relation found in [17] between the principle hierarchies and tau functions
of the two solutions to the WDVV equations related by the inversion symmetry. We
also believe that the findings in this article can be generalized to the theory of bi-flat
F-manifolds [2].

It is known that the leading term of a certain class of compatible local Poisson
structures leads to a regularQFPMand thus to aFrobenius structure [8, 11]. Polynomial
Frobenius manifolds obtained in [4] are constructed by fixing the regular nilpotent
orbit in a simple Lie algebra and uses compatible local Poisson brackets obtained by
Drinfeld-Sokolov reduction. In these cases, the Poisson brackets form an exact Poisson
pencil, and thus their central invariants are constants [14]. If the Lie algebra is simply-
laced, then the central invariants are equal [12] which means the Poisson structures are
consistentwith the principle hierarchy associatedwith theFrobeniusmanifold [11]. Fix
one of these polynomial Frobenius structures and denote the associated local Poisson
brackets by B2 and B1 (here B2 is the classical W -algebra). In the flat coordinates,
these local Poisson brackets form an exact Poisson pencil under the identity vector
field e, i.e., LieeB2 = B1 and LieeB1 = 0. Let us denote the leading term of B2 by B2
and ẽ is the vector field associated with the conjugate Frobenius manifold structure.
We proved in this article that Lie2ẽ B2 = 0. Then it is natural to ask if ẽ also leads to
an exact Poisson pencil, i.e., Lie2ẽB2 = 0. Our calculations for the simple Lie algebra
of type A3, shows that this is not true.
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