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Abstract
The orbits space of an irreducible linear representation of a finite group is a variety
whose coordinate ring is the ring of invariant polynomials. Boris Dubrovin proved
that the orbits space of the standard reflection representation of an irreducible finite
Coxeter group W acquires a natural polynomial Frobenius manifold structure. We
apply Dubrovin’s method on various orbits spaces of linear representations of finite
groups.Wefind some of themhas non or several natural Frobeniusmanifold structures.
On the other hand, these Frobenius manifold structures include rational and trivial
structures which are not known to be related to the invariant theory of finite groups.

Keywords Invariant rings · Frobenius manifold · Representations of finite groups ·
Flat pencil of metrics · Quotient singularities · Orbifolds

Mathematics Subject Classification 53D45

1 Introduction

Frobenius manifold are a geometric realization introduced by B. Dubrovin associated
to a potential satisfying a system of partial differential equations known as Witten–
Dijkgraaf–Verlinde–Verlinde (WDVV) equations which describes the moduli space
of two dimensional topological field theory. Remarkably, Frobenius manifolds are
also recognized in many other fields in mathematics like invariant theory, quantum
cohomology, integrable systems and singularity theory [4]. Briefly, a Frobenius algebra
is a commutative associative algebra with identity e and a nondegenerate bilinear form
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� compatible with the product, i.e.,�(a◦b, c) = �(a, b◦c). A Frobeniusmanifold is
a manifold with a smooth structure of a Frobenius algebra on the tangent space at any
point with certain compatibility conditions. Globally, we require the metric � to be
flat and the identity vector field e is constant with respect to its Levi-Civita connection.
In this article, we show that orbits spaces of some non-reflection representations of
finite groups acquire Frobenius manifold structures.

We use the following notations and facts for a finite group G and a linear represen-
tation ψ : G → GL(V ), where V is a complex vector space. We denote by C[V ] the
ring of polynomial functions on V ,C[ψ] the subring of invariant polynomials inC[V ],
and O(ψ) the orbits space of the action of G on V , i.e., the spectrum of C[ψ]. Then
C[ψ] is finitely generated by homogeneous polynomials andO(ψ) is a variety whose
coordinate ring isC[ψ] [2, 15]. By the Chevalley–Shephard–Todd theorem,C[ψ] is a
polynomial ring if and only if ψ is generated by pseudo-reflections. Let (x1, . . . , xn)

be linear coordinates on V and f ∈ C[ψ]. Then the Hessian H( f ) := ∂2 f
∂xi ∂x j defines a

bilinear form on the tangent space ofO(ψ) and if det(H( f )) �= 0 then f is a minimal
degree invariant polynomial ([16], p. 6). In this article, we will drop the word pseudo
as all representations will be representations over complex vector spaces.

Let W be a finite irreducible Coxeter group or Shephard group of rank r and ρre f

is the standard reflection representation of W . Dubrovin proved that the orbits space
O(ρre f ) acquires a polynomial Frobenius manifold structure [5, 8]. This result led
to the classification of irreducible semisimple polynomial Frobenius manifolds with
positive degrees (see Sect. 4.1 for more details). His method was used in [22] whenW
is a Coxeter group of type Br or Dr to construct r Frobenius manifolds on O(ρre f ).
In this article, we show that linear representations of finite groups are a valuable
source to construct examples of Frobenius manifolds even if the representations are
not reflection representations.

We mention that Dubrovin and his collaborators constructed Frobenius manifolds
using invariant rings of infinite discrete groups being extensions of affineWeyl groups
[7, 9, 23]. However, we focus in this article on linear representations of finite groups.

Let us fix a finite group G and an irreducible linear representationψ : G → GL(V )

of rank r . Then we summarize Dubrovin’s method to construct Frobenius manifold
structure on O(ψ) as follows:

1. Fix homogeneous invariant polynomial f1 of the minimal degree.
2. Verify that the inverse of the Hessian H( f1) defines a contravariant flat metric

�2 on some open subset U of O(ψ). For example, this happens if ψ is a real
representation (in this case degree f1 equals 2) [11] orψ is the standard reflection
representation of a Shephard group [16].

3. Construct another contravariant metric �1 which forms with �2 a regular quasi-
homogeneous flat pencil of metrics (regular QFPM) on U (see Sect. 2.2 for
details).

4. Then using a theorem due to Dubrovin (see Theorem 2.6 below), we get a Frobe-
nius manifold structure on U which depends on the representation ψ of G or
C[ψ].

Definition 1.1 AFrobenius manifold structure obtained using Dubrovin’s methodwill
be called a natural Frobenius manifold structure on the orbits space.
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Frobenius Manifolds on Orbits Spaces  

Note that for a fixed metric �2, the problem of finding another metric �1 such
that (�2,�1) form a flat pencil of metric is not straightforward. For example, see
the discussion on the classification of flat pencils of metrics related to the theory of
Frobeniusmanifolds given in [10].Wealso observe that anorbits space canhave several
natural Frobenius manifold structures. In this article, we will prove that the orbits
spaces of the following representations posses natural Frobenius manifold structures:

1. The standard reflection representation of a finite irreducible Coxeter group: We
prove there is a natural rational Frobenius manifold structure different from the
ones constructed in [5, 22]. We give details in Sect. 4.1.

2. The non-standard irreducible representation of dimension r of a Coxeter group
of type Ar : We show that it is a non-reflection representation and we construct
certain r algebraically independent invariant polynomials. Then, we show that
the orbits space carries natural rational Frobenius manifold structures. We give
the details in Sect. 4.2.

3. Irreducible representations of dihedral groups and dicyclic groups: These groups
have only rank 1 and 2 irreducible representations. We will prove that any rank
2 representation acquires two natural Frobenius manifold structures. See Sect. 5
for details.

4. All finite subgroups of the special linear group SL2(C): We get natural polyno-
mial and rational Frobenius manifold structures related to representations of the
dihedral groups. See Sect. 5.3.

5. All finite subgroups of the special linear group SL3(C) where the invariant rings
are complete intersection: Dubrovin’s method fails on some of them and we find
natural trivial Frobenius manifold structures on others. We give details in Sect. 6.

As a consequence of this work, we noticed that Frobenius manifold structures on
orbits spaces of some non-reflection representations appear in pairs. Analyzing such
pairs led us to the notion of the conjugate Frobenius manifold structures and we wrote
the details on a separated article [1]. We review this notion in Sect. 3 and we show
that the conjugate of a natural Frobenius manifold structure is a natural Frobenius
manifold structure.

To make the article as self-contained as possible, we review in Sects. 2.1 and 2.2
the definition of Frobenius manifold and its relation with flat pencils of metrics.

2 Frobenius Manifolds and Flat Pencil of Metrics

2.1 Frobenius Manifolds

Let M be a Frobenius manifold with flat metric � and identity vector field e. In flat
coordinates (t1, . . . , tr ) for � where e = ∂tr the compatibility conditions imply that
there exists a function F(t1, . . . , tr ) which encodes the Frobenius structure, i.e., the
flat metric is given by

�i j (t) = �(∂t i , ∂t j ) = ∂tr ∂t i ∂t jF(t) (2.1)
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and, setting �1(t) to be the inverse of the matrix �(t), the structure constants of the
Frobenius algebra are given by

Ck
i j (t) = �

kp
1 (t)∂t p∂t i ∂t jF(t).

Here, and inwhat follows, summationwith respect to repeated upper and lower indices
is assumed. In this article, we assume the quasihomogeneity condition for F(t) takes
the form

EF(t) = di t
i∂t iF(t) = (3 − d)F(t); dr = 1. (2.2)

The vector field E = di t i∂ti is known as Euler vector field and it defines the degrees
di and the charge d of M . The associativity of the Frobenius algebra implies that the
potential F(t) satisfies WDVV equations, i.e.,

∂t i ∂t j ∂tkF(t) �
kp
1 ∂t p∂tq ∂tnF(t) = ∂tn ∂t j ∂tkF(t) �

kp
1 ∂t p∂tq ∂t iF(t), ∀i, j, q, n.

(2.3)

We say M is a polynomial (resp. rational) if F(t) is a polynomial (resp. rational)
function. Moreover, we say M is a semisimple or massive if the algebra Tt M is
semisimple for generic t .

Definition 2.1 Let M and ˜M be twoFrobeniusmanifoldswithflatmetrics� and˜�. Let
F and˜F be the corresponding potentials, respectively. We say M and ˜M are (locally)
equivalent if there are open sets U ⊆ M and ˜U ⊆ ˜M with a local diffeomorphism
φ : U → ˜U such that

φ∗
˜� = c2�, (2.4)

for some nonzero constant c, and φ∗ : TtU → Tφ(t)˜U is an isomorphism of Frobenius
algebras.

Note that if M and ˜M are equivalent Frobenius structures then it is not necessary that
φ∗

˜F = F [5].

2.2 Flat Pencil of Metrics

We review the relation between flat pencils of metrics and Frobenius manifolds out-
lined in [6].

Let M be a smooth manifold of dimension r and fix local coordinates (u1, . . . , ur )

on M .

Definition 2.2 Asymmetric bilinear form (., .) on T ∗M is called a contravariantmetric
if it is invertible on an open dense subset M0 ⊆ M . We define the contravariant
Christoffel symbols �

i j
k for a contravariant metric (., .) by

�
i j
k := −�im�

j
mk
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where �
j
mk are the Christoffel symbols of the metric < ., . > defined on T M0 by the

inverse of the matrix �i j (u) = (dui , du j ). We say the metric (., .) is flat if < ., . > is
flat.

Let (., .) be a contraviariant metric on M and set �i j (u) = (dui , du j ). Then we
will use � to refer to the metric and �(u) to refer to its matrix in the coordinates.
In particular, the Lie derivative of (., .) along a vector field X will be written LieX�

while X�i j means the vector field X acting on the entry �i j . The Christoffel symbols
given in Definition 2.2 determine for � the contravariant (resp. covariant) derivative
∇ i (resp. ∇i ) along the covector dui (resp. the vector field ∂ui ). They are related by
the identity ∇ i = �i j (u)∇ j .

Definition 2.3 A flat pencil of metrics (FPM) on M is a pair (�2,�1) of two flat
contravariant metrics �2 and �1 on M satisfying

1. �2 + λ�1 defines a flat metric on T ∗M for a generic constant λ,
2. The Christoffel symbols of �2 + λ�1 are �

i j
2k + λ�

i j
1k , where �

i j
2k and �

i j
1k are

the Christoffel symbols of �2 and �1, respectively.

Definition 2.4 A flat pencil of metrics (�2,�1) on M is called quasihomogeneous
flat pencil of metrics (QFPM) of degree d if there exists a function τ on M such that
the vector fields E and e defined by

E = ∇2τ, Ei = �
i j
2 (u)∂u j τ, (2.5)

e = ∇1τ, ei = �
i j
1 (u)∂u j τ

satisfy

[e, E] = e, LieE�2 = (d − 1)�2, Liee�2 = �1 and Liee�1 = 0. (2.6)

Such a QFPM is regular if the (1,1)-tensor

R j
i = d − 1

2
δ

j
i + ∇1i E j (2.7)

is nondegenerate on M .

We will use the following source for FPM.

Lemma 2.5 [5] Let �2 be a contravariant flat metric on M. Assume that in the coor-
dinates (u1, . . . , ur ), �i j

2 (u) and �
i j
2k(u) depend almost linearly on ur , i.e., ∂ur �

i j
2 (u)

and ∂ur �
i j
2k(u) are constants. Suppose that �1 := Lie∂ur �2 = ∂ur �2(u) is nonde-

generate. Then (�2,�1) form a FPM. The Christofell symbols of �1 has the form
�

i j
1k(u) = ∂ur �

i j
2k(u).

If M is a Frobenius manifold then M has a QFPM of degree d but it does not
necessarily satisfy the regularity condition (2.7) [6]. In the notations of Sect. 2.1, the
QFPM consists of the intersection form �2(t) and the flat metric �1(t) where

�
i j
2 (t) := (d − 1 + di + d j )�

iα
1 �

jβ
1 ∂tα ∂tβF. (2.8)
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Furthermore, τ = �i1t i and E with e are defined by (2.5) and satisfy equations (2.6).
The converse is given by the following theorem

Theorem 2.6 [6] Let M be a manifold carrying a regular QFPM (�2,�1) of degree
d. Then there exists a unique Frobenius manifold structure on M of charge d where
(�2,�1) is the associated QFPM.

3 Conjugate Frobenius Manifold and Dubrovin’s Method

We begin this section with a theorem proved in [1] which leads to the notion of
conjugate Frobenius manifold structure. Then we will prove that the conjugate natural
Frobenius manifold structure constructed on an orbits spaces is also natural.

Theorem 3.1 [1] Let M be a Frobenius manifold with the Euler vector field E and
the identity vector field e. Suppose the associated QFPM is regular of degree d with
a function τ . Assume that

e(τ ) = 0 and E(τ ) = (1 − d)τ. (3.1)

Then there exists another Frobenius manifold structure on M\{τ = 0} of degree 2−d.
Moreover, we can apply the same method to the new Frobenius manifold structure and
it leads to the original Frobenius manifold structure.

The existence of the Frobenius manifold structure mentioned in Theorem 3.1 was
proved by constructing it as follows. Let M be a Frobenius manifold satisfies the
hypothesis of the theorem and T = (�2,�1) be the associated QFPM. We define the

vector field ẽ = τ
2

1−d e and consider the Lie derivative˜�1 := Li ẽe�2. Then it turns out
that T is regular and ˜�1 defines a contravariant metric. Furthermore, ˜T := (�2, ˜�1)

forms a regular QFPM of degree 2−d with the function −τ which leads to a different
Frobenius manifold structure.

For a fixed Frobenius manifold the new structure that can be obtained using Theo-
rem 3.1 will be called the conjugate Frobenius manifold structure.

Let us adapt the notations of Sect. 2.1 and assume �i j = δr+1
i+ j , i.e., the potential F

has the standard form

F(t) = 1

2
(tr )2t1 + 1

2
tr

r−1
∑

i=2

t i tr−i+1 + G(t1, . . . , tr−1). (3.2)

Then we get the following consequence of Theorem 3.1.

Theorem 3.2 [1] Let M be a Frobenius manifold with charge d �= 1. Suppose in the
flat coordinates (t1, . . . , tr ), the potential F(t) has the standard form (3.2) and the

quasihomogeneity condition takes the form (2.2) with di �= d1
2

for every i . Then we

can construct the conjugate Frobenius manifold structure on M\{t1 = 0}. Moreover,
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flat coordinates for the conjugate Frobenius manifold are

s1 = −t1, si = t i (t1)
d1−2di

d1 f or 1 < i < r , sr = 1

2

r
∑

i=1

t i tr−i+1(t1)
−2
d1

−1
.

(3.3)

In addition, the corresponding potential equals the potential obtained by applying the
inversion symmetry to F(t) and it is given by

˜F(s) = (t1)
−4
d1

(

F(t1, . . . , tr ) − 1

2
tr

r
∑

1

t i tr−i+1

)

. (3.4)

The degrees ˜di and the charge ˜d of the conjugate Frobenius manifold structure are
given by

˜d1 = −d1, ˜dr = 1, ˜di = di − d1 f or 1 < i < r , ˜d = 2 − d. (3.5)

See ([4], Appendix B) for details about inversion symmetry of solutions to WDVV
equations. Form the point of view of this article, Theorem 3.2 explains the appear-
ance of pairs of natural Frobenius manifold structures on orbits space of some linear
representations of finite groups.

Theorem 3.3 Let M be the orbits space of a linear representation of a finite group.
Assume M inherits a natural Frobenius manifold structure which has a conjugate
Frobenius manifold structure. Then the conjugate Frobenius manifold structure on M
is also natural.

Proof Let T = (�2,�1) be the associated QFPM of the Frobenius manifold structure
on M which is obtained using Dubrovin’s method. Then �2 is defined using the
Hessian of a minimal invariant polynomial f1. The QFPM associated to the conjugate
Frobenius manifold has the same intersection form �2 and hence it constructed by
Dubrovin’s method. 
�

For convenience we write in the examples the indices of coordinates as subscripts
instead of as superscripts.

Example 3.4 The potential

F = t31
6

− 1

2
t22 t1 + 1

2
t22 t3 + 1

2
t1t23 . (3.6)

defines two inequivalent trivial Frobenius manifold structures, i.e., both have charge
d = 0 and Euler vector field E = ∑

ti∂ti (all degrees equal 1). Setting the identity
vector field to be ê = ∂t1 ,F defines a Frobeniusmanifold structure ̂P3 whose associated
regular QFPM does not satisfy condition (3.1), i.e., it does not have a conjugate
structure. Considering instead e = ∂t3 as the identity vector field, we get a Frobenius
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manifold structure P3 which has conjugate. The associated regular QFPM (�2,�1)

has �
i j
1 (t) = δ

i+ j
3 while

�2(t) =
⎛

⎝

t1 t2 t3
t2 t3 − t1 −t2
t3 −t2 t1

⎞

⎠ .

Setting

s1 = −t1, s2 = t2
t1

, s3 = t22
2t31

+ t3
t21

,

the conjugate QFPM has ˜�
i j
1 (s) = δ

i+ j
3 and

�2(s) =

⎛

⎜

⎜

⎝

−s1 0 s3

0 s3 + 3s22
2s1

+ 1
s1

− s32
s21

− 2s2
s21

s3 − s32
s21

− 2s2
s21

3s42
4s31

+ 3s22
s31

− 1
s31

⎞

⎟

⎟

⎠

.

The potential of the conjugate Frobenius manifold structure reads

˜F(s) = −1

6s1
+ s22

2s1
+ s42

8s1
+ 1

2
s22s3 + 1

2
s1s23 . (3.7)

Here ˜E = −s1∂s1 + s3∂s3 and ˜E˜F = ˜F.

4 Coxeter Groups

4.1 The Standard Reflection Representation

In this section, we recall the standard reflection representations of irreducible finite
Coxeter groups and review the construction of natural Frobenius manifolds on their
orbits space. Then we classify those having conjugate Frobenius manifold structures.
Note that the conjugate Frobenius manifold structures will be rational and they are not
known to be related to the invariant theory of finite groups.

We fix an irreducible finite Coxeter system (W, S) of rank r , i.e.,

W =< S| (ss′)m(s,s′) = 1; ∀s, s′ ∈ S >, r = |S|. (4.1)

Let V be the formal vector space over C with basis {αs | s ∈ S}. Then the standard
reflection representation ofW is defined by
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Frobenius Manifolds on Orbits Spaces  

ρre f : W → GL(V ), s → Rs, s ∈ S.

Rs(v) := v − 2B(αs, v)αs, v ∈ V , B(αs, αs′) := − cos
π

m(s, s′)
.

Here B is the standard positive-definite Hermitian form on V which is invariant under
ρre f . By Chevalley–Shephard–Todd theorem, the invariant ring C[ρre f ] is a polyno-
mial ring generated by r homogeneous polynomial. We fix generators u1, . . . , ur for
C[ρre f ]. We assume deg ui = ηi and

2 = η1 < η2 ≤ η3 ≤ . . . ≤ ηr+1 < ηr . (4.2)

These degrees are uniquely determined by the group W [13].
We assume that u1 equals the quadratic from of B. Hence, the inverse of the Hessian

of u1 defines a flat contravariant metric �2 on O(ρre f ). It is easy to prove that �2(u)

is almost linear in ur by analysing the degrees of �
i j
2 (u). We fix the vector field

e = ∂ur . Note that changing the generators of C[ρre f ], e is uniquely defined up to
a constant factor. Setting �1 := Liee�2, Dubrovin proved that T := (�2,�1) is a
regular QFPM of charge ηr −2

ηr
[6]. In this case, τ = 1

ηr
u1 and the vector field E is

given by E = 1
ηr

∑

i ηi ui∂ui . This result initiated what we call Dubrovin’s method.
We observe that E is uniquely defined and does not depend on the choice of invariants
ui ′s. We also mention that the flat metric �1 was studied by Saito [17, 18] and his
results was very important to the work [5]. We restate Dubrovin’s theorem.

Theorem 4.1 ([5, 6]) The FPM (�2,�1) defines a unique (up to equivalence) natural
polynomial Frobenius manifold on O(ρre f ) with degrees ηi

ηr
and charge ηr −2

ηr
.

The following theorem was conjectured by Dubrovin and proved by C. Hertling.

Theorem 4.2 [12] Any irreducible semisimple polynomial Frobenius manifold with
positive degrees is isomorphic to a polynomial Frobenius manifold constructed by The-
orem 4.1 on the orbit space of the standard reflection representation of an irreducible
finite Coxeter group.

The following theorem guarantees the existence of another natural Frobenius man-
ifold structure on O(ρre f ).

Theorem 4.3 The polynomial Frobenius manifold constructed by Theorem 4.1 on the
orbits space O(ρre f ) has a conjugate Frobenius manifold structure. Thus, we get a
rational natural Frobenius manifold structure on O(ρre f ).

Proof There exist invariant polynomials t1, . . . , tr which form flat coordinates and
the potential has the form (3.2) [5]. From the structure of the degrees, we can and
we will apply Theorem 3.2 to get a rational conjugate Frobenius manifold. The last
statement is a consequence of Theorem 3.3. 
�

Let us assume W is of type Br . Then Dafeng Zuo obtained r Frobenius mani-
fold structures on O(ρre f ) by fixing certain generators z1, . . . , zr for C[ρre f ] [22].
Under these generators, �2(z) and its Christoffel symbols �

i j
2k(z) are almost linear
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in each zk , k = 1, 2, . . . , r . Then he proved that Lemma 2.5 can be applied and
constructed r rational Frobenius manifold structures using the flat pencils of metrics
̂Tk := (�2,Lie∂zk �2). He also proved that the same Frobenius manifold structures
can be constructed whenW is of type Dr . Even it is not written explicitly in [22], we
confirm that they are natural Frobeniusmanifold structures as each ̂Tk is regular QFPM
of degree 1 − 1

k with τ = 1
4k z1. Here e = ∂zk . Thus, we can obtain these Frobenius

manifolds directly using Theorem 2.6. Here is the statement of Zuo’s theorem.

Theorem 4.4 [22] There exists a unique natural Frobenius structure for each 1 ≤
k ≤ r of charge d = 1 − 1

k on the orbit space O(ρre f ) when W is of type Br or Dr

polynomial in t1, t2, . . . , tr , 1
tr such that:

1. The identity vector field is e = ∂
∂zk = ∂

∂tk .

2. The Euler vector field is E = ∑r
i=1 di t i∂t i , where

d1 = 1

k
, di = i

k
f or 2 ≤ i ≤ k, di = 2k(r − i) + r

2k(r − k)
f or k + 1 ≤ i ≤ r .

3. The assciated QFPM is ̂Tk.

Note that when k = 1, ̂T1 does not satisfy condition (3.1). Thus the corresponding
Frobenius manifold structure has no conjugate. For k > 1, we get the following
theorem.

Theorem 4.5 For k > 1, the natural Frobenius manifold structure corresponding to
̂Tk constructed by Theorem 4.4 has a conjugate Frobenius manifold structure which
is also natural.

Proof Similar to the proof of Theorem 4.3, we apply Theorems 3.2 and 3.3. 
�
Considering Theorem 4.2, let K be the type ofW , thenwe say a Frobeniusmanifold

is of type K (rep. of type ˜K ) if it isomorphic to a natural polynomial Frobeniusmanifold
(resp. a natural conjugate Frobeniusmanifold) constructed onO(ρre f ) byTheorem4.1
(resp. Theorem 4.3).

Example 4.6 We list in Table 1 all Frobenius structures constructed on O(ρre f ) when
W is of rank 3 using the above theorems. We borrow the potentials of Frobenius
structures of type A3, B3 and H3 from [6]. From these potentials, we find Frobenius
manifold structures of type ˜A3, ˜B3 and ˜H3 using the formula (3.4). Then applying
Theorem 4.4 to a Coxeter group of type B3, we get a Frobenius manifold of type B3
(resp. A3) when k = 3 (resp. k = 2). For k = 1, we get a rational Frobenius manifold
B1
3 which has no conjugate.

4.2 Sign Times Reflection Representation

We keep the notations of the last section and we assumeW is of type Ar . We study an
irreducible representation ρnew ofW which can be defined using the sign representa-
tion and the representation ρre f . The definition will enable us to construct r invariant
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Table 1 Frobenius manifolds on orbits spaces of reflection groups of rank 3

Notations F(t1, t2, t3) d1, d2, d3 d

A3
1
2 t23 t1 + 1

2 t22 t3 + 1
4 t21 t22 + 1

60 t51
1
2 , 3

4 , 1 1
2

˜A3
1
2 t23 t1 + 1

2 t22 t3 + t42
8t1

+ t22
4t21

− 1
60t31

−1
2 , 1

4 , 1 3
2

B3
1
2 t23 t1 + 1

2 t22 t3 + 1
6 t22 t31 + 1

6 t32 t1 + 1
210 t71

1
3 , 2

3 , 1 2
3

˜B3
1
2 t23 t1 + 1

2 t22 t3 + t42
8t1

+ t32
6t21

− t22
6t31

− 1
210t51

−1
3 , 1

3 , 1 4
3

H3
1
2 t23 t1 + 1

2 t22 t3 + 1
20 t22 t51 + 1

6 t32 t21 + 1
3960 t111

1
5 , 3

5 , 1 4
5

˜H3
1
2 t23 t1 + 1

2 t22 t3 + t42
8t1

− t32
6t31

− t22
20t51

− 1
3960t91

−1
5 , 2

5 , 1 6
5

B1
3

1
2 t43 + 3

2 t1t2t3 + 1
8 t31 + 1

16
t32
t3

1, 3
4 , 5

4 0

polynomials of ρnew. We will prove the invariant ring C[ρnew] is not a polynomial
ring when r > 2. We recall that the degrees of a complete set of generators ofC[ρre f ]
are 2, 3, . . . , r + 1.

We consider the sign representation of W , ρsign : W → C
∗ defined by sending

each element s ∈ S to −1. Then we define the representation ρnew of W by

ρnew : W → GL(C ⊗ V ), ρnew(w) = ρsign(w) ⊗ ρre f (w), ∀w ∈ W. (4.3)

Note that ρnew is a real representation of rank r . The following proposition proves that
ρnew is an irreducible representation.

Proposition 4.7 The new representation ρnew is an irreducible representation of W .
Moreover, ρnew and ρre f are isomorphic when r = 2 and different otherwise.

Proof Recall that if χψ denotes the character of a representation ψ of a finite group
G, then ψ is irreducible if and only if [19]

1

|G|
∑

g∈G

χψ(g)χψ(g) = 1. (4.4)

Note that ρre f and ρsign are irreducible representations and

χρnew(w) = χρsign (w)χρre f (w).

Then

1

|W|
∑

w∈W
χρnew(w)χρnew(w) = 1

|W|
∑

w∈W
(χρsign (w)χρre f (w))(χρsign (w)χρre f (w))

= 1

|W|
∑

w∈W
(χρre f (w)χρre f (w)) = 1. (4.5)
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For the second part, note that for any generator s ∈ S, χρnew(s) = −χρre f (s) =
−(r − 2). Hence, the two representations are different when r �= 2. For r = 2, we can
check that ρnew is equivalent to ρre f by direct computations. 
�

For the remainder of this section we assume the rank r > 2. Recall that the Cox-
eter group of type Ar is isomorphic to the symmetric group Sr+1. Thus, irreducible
representations of Ar are in one to one correspondence with the partition of r + 1.
For a given partition λ of r + 1, the corresponding irreducible representation can be
constructed using Young tableaux associated to λ [11]. Under this construction, the
reflection representation ρre f is associated with the partition [r , 1], ρsign is associated
with the partition [r + 1] while ρnew is associated with [2, 1, 1, . . . , 1]. The character
of each representation is given by Frobenius formula [11]. We use this formula to
prove the following proposition.

Proposition 4.8 The irreducible representation ρnew is not a reflection representation.
In particular the ring C[ρnew] is not a polynomial ring.

Proof Assume that ρnew is a reflection representation. Then, it is generated by a
set of involutions w1, . . . , wr . Since ρnew is a real representation, we must have
χρnew(wi ) = r − 2. From ρnew(wi ) = ρsign(wi )ρre f (wi ), we have ρsign(wi ) = −1
and χρre f (wi ) = χρsign (wi )χρnew(wi ) = 2 − r . Otherwise, χρre f (wi ) = r − 2,
i.e., ρre f (wi ) is a reflection which implies that χρnew(wi ) = 2 − r , a contra-
diction. On the other hand, considering the one-to-one correspondence between
conjugacy classes of Sr+1 and integer partitions of r + 1, wi corresponds to a
partition of the from [2, 2, . . . , 2, 1, 1 . . . , 1] = [2p, 1q ] with 2p + q = r + 1,
p > 0. Using Frobenius formula, χρre f (wi ) is the coefficient of xr+1y in the
expansion g := (x − y)(x2 + y2)p(x + y)r+1−2p which equals the coefficient of

lim
y →0

∂g

∂ y
= (r − 2p)xr+1. Hence, χρre f (wi ) = r − 2p. Comparing the two values of

χρre f (wi ) we get 2r − 2 = 2p ≤ r + 1. Thus r ≤ 3. However, the case r = 3 is
excluded by direct computations. 
�

We study the ring C[ρnew] in order to apply Dubrovin’s method. We fix a basis
e1, e2, . . . , er for V and let x1, . . . , xr be the dual basis satisfying xi (e j ) = δi

j . Then
ẽi := 1 ⊗ ei , i = 1, . . . , r form a basis of C ⊗ V and we get a natural isomorphism

θ : C ⊗ V → V , ẽi → ei . (4.6)

Then the pullback x̃ i = θ∗(xi ) defines the dual basis of ẽi . Let w ∈ W and a j
i be the

matrix of ρre f (w) under the basis ei . Then ρnew(w)(ẽi ) = ρsign(w)1⊗ ρre f (w)ei =
ρsign(w)a j

i ẽ j . Therefore, ρnew(w) = ρsign(w)ρre f (w).

Lemma 4.9 Let w ∈ W with ρsign(w)ρnew(w) /∈ ρre f (W) and f ∈ C[ρre f ] be a
homogeneous polynomial. Then

w · θ∗( f ) = (ρsign(w))deg( f )θ∗( f ). (4.7)

In particular, if degree f is even then θ∗( f ) ∈ C[ρnew].

123

22 Page 12 of 26 Z. Al-Maamari, Y. Dinar



Frobenius Manifolds on Orbits Spaces

Proof We obtain θ∗( f ) simply by replacing the coordinate xi with x̃ i . Therefore,

w.θ∗( f )(x̃1, x̃2, . . . , x̃n) = θ∗( f )(ρnew(w)x̃1, ρnew(w)x̃2, . . . , ρnew(w)x̃n)

= θ∗( f )
(

ρsign(w)ρre f (w)x̃1, ρsign(w)ρre f (w)x̃2, . . . ,

ρsign(w)ρre f (w)x̃n)

= (ρsign(w))deg( f )θ∗( f )(x̃1, x̃2, . . . , x̃n). 
�
Let z1, . . . , zr be algebraically independent invariant polynomials of ρnew and

u1, . . . , ur be the generators ofC[ρre f ] (in the notation of Sect. 4.1). We assume z1 =
θ∗(u1). Hence, the Hessian of z1 defines a contravariant flat metric �2 on O(ρnew).
Examples show that the entries of�2(z) are rational in general and it is hard to construct
flat pencil ofmetrics.We overcome this problemby defining certain invariants for ρnew

which also leads to the construction of Frobenius manifold structures.

Proposition 4.10 There exist r algebraically independent invariant polynomials
z1, z2, . . . , zr of ρnew with the degrees

2, 4, 6, . . . , 2�r + 1

2
�; 6, 8, . . . , 2�r + 3

2
�. (4.8)

Proof We will use the invariants u1, . . . , ur of ρre f to construct invariants of ρnew.
We set I = {i : ηi is even} and J = { j : η j is odd}. Using Lemma 4.9, θ∗(ui ) is an
invariant of ρnew for any i ∈ I . Let κ be the minimal index in J . Then θ∗(uκu j ) is
an invariant of ρnew for any j ∈ J . By this way, we construct r invariants polyno-
mial, z1, . . . , zr for ρnew with the degrees given in (4.8). Note that any polynomial
in z1, . . . , zr can be written as a polynomial in u1, . . . , ur . Hence, z1, . . . , zr are
algebraically independent. 
�
Remark 4.11 We observe that the invariant polynomials constructed by Proposition
4.10 do not necessarily form a set of primary invariant polynomials of ρnew. According
to the invariant theory [2], the product of the degrees of primary invariants is divisible
by the order of the group. For example, when W is type A4, the degrees of zi are
2, 4, 6, 8. The product of these degrees is not divisible by the order 120 of the group.

We keep the notations z1, . . . , zr for the invariant polynomials of ρnew constructed
in Proposition 4.10.

Theorem 4.12 The orbits space O(ρnew) has natural Frobenius manifold structures
isomorphic to the natural Frobenius manifolds structures defined on O(ρre f ) by The-
orems 4.1 and 4.2.

Proof We consider the map (u1, . . . , ur ) → (z1, . . . , zr ) given in Proposition 4.10
as diffeomorphism on some open subset of uκ �= 0 where κ is defined in the proof
of Proposition 4.10. Note that, under this diffeomorphism, the metric defined by the
Hessian of u1 is identified with the metric defined by the Hessian of z1. Thus, we can
transfer to O(ρnew), any regular QFPM given by the Theorems 4.1 and 4.2. In this
way, we obtain natural Frobenius manifold structures on O(ρnew). 
�
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Example 4.13 The irreducible reflection representation ρre f of Coxeter group of type
A4 is generated by the matrices

σ =

⎛

⎜

⎜

⎝

1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 −1

⎞

⎟

⎟

⎠

and τ =

⎛

⎜

⎜

⎝

−1 1 0 0
−1 0 1 0
−1 0 0 1
−1 0 0 0

⎞

⎟

⎟

⎠

. (4.9)

The polynomial ring C[ρre f ] coincides with C[u1, u2, u3, u4], where

u1 = x21 − 1

2
x1x2 − 1

2
x1x3 − 1

2
x1x4 + x22 − 1

2
x2x3 − 1

2
x2x4 + x23 − 1

2
x3x4 + x24 ,

u2 = x31 − 3

4
x21 x2 − 3

4
x21 x3 − 3

4
x21 x4 − 3

4
x1x22 + x1x2x3

+x1x2x4 − 3

4
x1x23 + x1x3x4 − 3

4
x1x24 + x32 − 3

4
x22 x3

−3

4
x22 x4 − 3

4
x2x23 + x2x3x4 − 3

4
x2x24 + x33 − 3

4
x23 x4 − 3

4
x3x24 + x34 ,

u3 = x41 − x31 x2 − x31 x3 − x31 x4 + x21 x2x3 + x21 x2x4 + x21 x3x4 − x1x32

+x1x22 x3 + x1x22 x4 + x1x2x23 − 3x1x2x3x4

+x1x2x24 − x1x33 + x1x23 x4 + x1x3x24 − x1x34 + x42 − x32 x3 − x32 x4 + x22 x3x4

−x2x33 + x2x23 x4 + x2x3x24

−x2x34 + x43 − x33 x4 − x3x34 + x44 ,

u4 = x51 − 5

4
x41 x2 − 5

4
x41 x3 − 5

4
x41 x4 + 5

3
x31 x2x3 + 5

3
x31 x2x4 + 5

3
x31 x3x4

−5

2
x21 x2x3x4 − 5

4
x1x42 + 5

3
x1x32 x3

+5

3
x1x32 x4 − 5

2
x1x22 x3x4 + 5

3
x1x2x33 − 5

2
x1x2x23 x4 − 5

2
x1x2x3x24

+5

3
x1x2x34 − 5

4
x1x43 + 5

3
x1x33 x4

+5

3
x1x3x34 − 5

4
x1x44 + x52 − 5

4
x42 x3 − 5

4
x42 x4 + 5

3
x32 x3x4 − 5

4
x2x43

+5

3
x2x33 x4 + 5

3
x2x3x34 − 5

4
x2x44 + x53

−5

4
x43 x4 − 5

4
x3x44 + x54 .
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Frobenius Manifolds on Orbits Spaces

The Frobenius manifold of type A4 is a result of the regular QFPM and it consists
of �2(u) and �1 = ∂u4�2(u) where �2(u) is defined by the Hessian of u1. The
representation ρnew is generated by τ and −σ . It turns out that the primary invariants
of ρnew have degrees 2, 4, 6, 10 while the secondary invariants have degrees 8, 13, 15.
The Hessian of the degree 2 invariant z1 leads to the flat contravariant metric �2(z)
but it is hard to find a FPM.We fix the following 4 invariants polynomials forO(ρnew)

of degrees 2, 4, 6 and 8:

z1 = u1, z2 = u3, z3 = u2
2, z4 = u2u4.

Then the matrix of �2(z) consists of the columns

�i1
2 (z) =

⎛

⎜

⎜

⎝

z1
2z2
3z3
4z4

⎞

⎟

⎟

⎠

, �i2
2 (z) =

⎛

⎜

⎜

⎜

⎝

2z2
− 64

625 z31 + 68
25 z1z2 + 864

625 z3
12
5 z1z3 + 18

5 z4
64
75 z21z3 + 43

15 z2z3 + 62
25 z1z4 + 9

5
z24
z3

⎞

⎟

⎟

⎟

⎠

,

�i3
2 (z) =

⎛

⎜

⎜

⎝

3z3
12
5 z1z3 + 18

5 z4
2
3 z21z3 + 25

3 z2z3
− 26

45 z31z3 + 95
18 z1z2z3 + 14

5 z23 + 1
3 z21z4 + 25

6 z2z4

⎞

⎟

⎟

⎠

and

�i4
2 (z)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

4z4
64
75 z21z3 + 43

15 z2z3 + 62
25 z1z4 + 9

5
z24
z3

− 26
45 z31z3 + 95

18 z1z2z3 + 14
5 z23 + 1

3 z21z4 + 25
6 z2z4

214
2025 z41z3 + 52

81 z21z2z3 + 625
324 z22z3 + 56

25 z1z23 − 26
45 z31z4+ 95

18 z1z2z4+ 62
15 z3z4+ 1

z3

z21z24
z3

+ 25
12

z2z24
z3

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Therefore, we get on O(ρnew) the regular QFPM formed by �2(z) and �1(z) =
Liee�2 where e = √

z3∂z4 . Of course, the resulted Frobenius manifold is of type A4.

Remark 4.14 It is straightforward to generalized the results of this section to other
types of Coxeter groups and we obtain natural Frobenius manifolds on O(ρnew). But
we lack sorting out when ρnew is not a reflections group (i.e. see Proposition 4.8).
Robert Howett informed us that when W is of type E8, the representation ρnew is
generated by reflections.

5 Dihedral and Dicyclic Groups

In this section, we give results of applying Dubrovin’s method to irreducible repre-
sentations of the Dihedral groups (Coxeter groups of type) I2(m), m > 2 and Dicyclic
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groups Dicm . We mention that Dubrovin computed by an ad-hoc procedure all possi-
ble potentials of 2-dimensional Frobenius manifolds [4]. Here we find some of them
are related to invariant theory of finite groups.

5.1 Dihedral Groups

Irreducible representations of I2(m) are of rank 1 or 2. Let ξm be a primitive m-th
root of unity. The rank 2 representations are ρk , k = 1, 2, . . . , m−2

2 for even m, and
k = 1, 2, . . . , m−1

2 for odd m. Here, ρk is generated by the matrices

(

ξ k
m 0
0 ξ−k

m

)

,

(

0 1
1 0

)

. (5.1)

Note that ρ1 is the standard reflection representation of I2(m). We observe that C[ρk]
can be interpreted as the invariant ring of the standard reflection representation of
I2(h) where h = m

gcd(m,k)
, i.e. it is generated by

t1 = 1

h
x1x2, t2 = xh

1 + xh
2 .

Hence, applying Dubrovin’s method, we get the polynomial Frobenius manifold of
type I2(h) and its conjugate ˜I2(h) obtained by Theorems 4.1 and 4.3.

5.2 Dicyclic Groups

We fix a natural number m. The dicyclic group Dicm is a group of order 4m defined
by

Dicm = 〈σ, α |σ 2m = 1, α2 = σm, α−1σα = σ−1〉. (5.2)

The irreducible representation of Dicm are of rank 1 or 2. The 2-dimensional irre-
ducible representations ψk and �l are defined by setting

ψk(σ ) =
(

ξ k
2m 0
0 ξ−k

2m

)

, ψk(α) =
(

0 1
−1 0

)

, (5.3)

and

�l(σ ) =
(

ξ l
m 0
0 ξ−l

m

)

, �l(α) =
(

0 1
1 0

)

. (5.4)

Here 1 ≤ k ≤ m−2
2 and 1 ≤ l ≤ m − 1 when m is even while 1 ≤ k ≤ m−1

2 and
1 ≤ l ≤ m − 2 when m is odd. Note that ψ1 is the standard representation of Dicm in
the litreture.We observe that the invariant ringC[�l ] can be interpreted as the invariant
ring C[ρl ] where ρl is the representation of I2(m) given in Sect. 5.1. Thus, the result
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Frobenius Manifolds on Orbits Spaces  

of applying Dubrovin’s method to �l is given in that section. We consider here the
representations ψk . Let us fix the integer k and set h = m

gcd(m,k)
. We define

u1 = x21 x22 , u2 = x2h
1 + x2h

2 , u3 = x1x2(x2h
1 − x2h

2 ). (5.5)

It is straightforward to verify that u1, u2 and u3 are invariants under the action of ψk .

Proposition 5.1 The invariant ring C[ψk] is generated by u1, u2 and u3.

Proof A general homogeneous polynomial of degree q has the form

f (x1, x2) = aq xq
1 + aq−1xq−1

1 x2 + · · · + a1x1xq−1
2 + a0xq

2 (5.6)

where a0, · · · , aq ∈ C. Being invariant under ψk(α), we get

f = aq xq
1 + aq−1xq−1

1 x2 + · · · + a1x1xq−1
2 + a0xq

2

= ψk(α) f = (−1)qaq xq
2 + (−1)q−1aq−1xq−1

2 x1 + · · · − a1x2xq−1
1 + a0xq

1 .

Thus ai = (−1)q−i aq−i for all i = 0, · · · , q. Similarly, the invariant of f under
ψk(α

2) implies q is even. Hence, f has the form

f =
q
2

∑

i=0

aq−i (x1x2)
i [xq−2i

1 + (−1)q−i xq−2i
2 ].

Moreover,

f = ψk(σ ) f =
q
2

∑

i=0

aq−i (x1x2)
i [ξ−k(q−2i)xq−2i

1 + (−1)q−iξ k(q−2i)xq−2i
2 ]

implies k(q − 2i) = 0 mod(2m). Then q − 2i = 2hl for some integer l. Therefore,
we can write

f =
∑

q=2hl+2i

aq−i (x1x2)
i [x2hl

1 + (−1)q−i x2hl
2 ]. (5.7)

Now we show that f ∈ C[u1, u2, u3]. It is sufficient to prove ˜fl = x2hl
1 + x2hl

2 and
̂fl = x1x2(x2hl

1 − x2hl
2 ) are invariant for every natural number l. When l = 1, ˜fl = u2

and ̂fl = u3. For l + 1, we get

˜fl+1 = x2h(l+1)
1 + x2h(l+1)

2 = (x2h
1 + x2h

2 )l+1 −
l

∑

d=1

(

l+1
d

)

x2hd
1 x (l+1−d)2h

2
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= (x2h
1 + x2h

2 )l+1 −
� l
2 �

∑

d=1

(

l+1
d

)

(x1x2)
2hd(x2h(l+1−2d)

2 + x2h(l+1−2d)
1 ). (5.8)

Since d ≥ 1, we have l + 1 − 2d ≤ l − 1 < l. Therefore, by the induction ˜fl+1 ∈
C[u1, u2, u3]. Likewise ̂fl+1 ∈ C[u1, u2, u3] since

̂fl+1 = x1x2(x2h
1 − x2h

2 )(x2hl
1 + x2h(l−1)

1 x2h
2 + x2h(l−2)

1 x4h
2 + . . . + x2hl

2 )

= x1x2(x2h
1 − x2h

2 )[(x2hl
1 + x2hl

2 ) + (x1x2)
2h(x2h(l−2)

1 + x2h(l−2)
2 )

+ (x1x2)
4h(x2h(l−4)

1 + x2h(l−4)
2 ) + . . .]. (5.9)

This proves the proposition. 
�
We note that the invariant ring C[ψk] can be interpreted as the invariant ring of the

standard representation of Dich . A result of applying Dubrovin’s method is obtained
in [3]. We summarize the construction here.

The flat contravariant metric defined by the inverse of the Hessian of u1 is

�2(u) =
(

4
3u1

2h
3 u2

2h
3 u2 − 2h2

3u1
(u2

2 − 6uh
1)

)

. (5.10)

Then we considered a vector field e in the form e = f (u1)∂u2 and imposed the
conditions Liee�2 is flat and Lie2e�2 = 0. These conditions lead to two independent
solutions

f± = u
h
2

(

1±√
3
)

1 . (5.11)

Setting e± = f±∂u2 = u
h
2

(

1±√
3
)

1 ∂u2 , we get regular quasihomogenous flat pencils

of metrics (�2,Liee±�2) of degree d =
√
3h±2√
3h

with τ = ∓
√
3

2h u1. The resulting
Frobenius manifold structures are conjugate to each other. The corresponding flat
coordinates are

t1 = ∓
√
3

2h
u1, t2 = u2u

∓h
2

(√
3±1

)

1 , (5.12)

which lead to the potentials

F± = 2∓√
3h3

1
2

(

1±√
3h

)

(ht1) 1∓
√
3h

∓(3h2 − 1)
+ 1

2
t1t22 (5.13)

where the degrees are ∓ 2√
3n

and 1.
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5.3 Finite Subgroups of SL2(C)

In this section we use Dubrovin’s method on finite non trivial subgroups of SL2(C).
They are classified up to conjugation and they are called binary polyhedral groups.
They consist of the cyclic groups Cm and binary dihedral groups Dm , binary tetrahe-
dral group T , binary octahedral group O and binary icosahedral group I. We treat
them as representations of the corresponding groups. It is known that the invariant
rings of these representations are not polynomial rings and the relations between the
generators lead to the classification of simple hypersurface singularities. We use the
sets of generators of the invariant rings listed in [14]. Applying Dubrovin’s method,
we obtain natural polynomial Frobenius manifold structure and their conjugations (as
given in Sect. 4.1). We write below only the flat coordinates of the resulting polyno-
mial Frobenius manifold structures and its type. Note that the findings are not apparent
from examining the invariant rings.

1. Cyclic groups Cm : Herem ≥ 2 and the invarinat ring is generated by xy, xm, ym .
We fix the following invariant polynomials

t1 = 1

m
xy, t2 = xm + ym .

Then the ring generated by t1 and t2 is isomorphic to the invariant ring of the
standard representation of the dihedral group I2(m). Thus, using Dubrovin’s
method and (t1, t2) as coordinates on the orbits space, we get Frobenius manifold
of type I2(m).
In case we set t1 = 1

m xy and t2 = xm , we get the WDVV solution 1
2 t1t22 . It

corresponds to a trivial Frobenius manifold structure but here the natural charge
is m−2

m while the degrees are 1
m and 1.

2. The binary dihedral groupDm : This is the standard representation of the dicyclic
group Dicm . A result of applying Dubrovin’s method is given in Sect. 5.2.

3. The binary tetrahedral T : We fix the following set of generators of the invariant
ring

t1 = 5

12
xy

(

x4 − y4
)

, t2 =
(

x4 + y4
)3 − 36x4y4

(

x4 + y4
)

.

t3 = 16x4y4 + 2
(

x4 − y4
)

. (5.14)

We choose (t1, t2) as coordinates on the orbits space. Then the Hessian of 12
5 t1

defines a flat metric �2(t) linear in t2. Here, we apply Lemma 2.5 and we get a
regular QFPM of degree d = 1

2 with τ = t1 consists of

�
i j
2 (t) =

( 1
2 t1 t2
t2

−4478976
625 t31

)

, �
i j
1 = Lie∂t2

�
i j
2 (t) =

(

0 1
1 0

)

. (5.15)

The resulting Frobenius manifold is of type I2(4).
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4. The binary octahedral O: Let us fix the generators of the invariant ring to be

t1 = 7

12
(16x4y4 +

(

x4 − y4
)2

), t2 =
(

xy
(

x4 − y4
))2

,

t3 = yx17 − 34y5x13 + 34y13x5 − y17x . (5.16)

In the coordinates (t1, t2), the metric �2(t) defined by the Hessian of 12
7 t1 is

linear in t2 and leads to a regular QFPM with charge 1
3 . The resulting Frobenius

manifold is of type I2(3).
5. The binary icosahedral I: We fix the generators of the invariant ring

t1 = 11

30
(x11y + 11x6y6 − xy11),

t2 = x30 + 522x25y5 − 10005x20y10 − 10005x10y20 − 522x5y25 + y30,

t3 = x20 − 228x15y5 + 494x10y10 + 228x5y15 + y20. (5.17)

We consider (t1, t2) as coordinates, the Hessian of 30
11 t1 leads to a metric �2(t)

linear in t2. The regular QFPM formed by �2 and �1 = ∂t2�2(t) leads to a
Frobenius manifold of type I2(5).

6 Finite Subgroups of SL3(C)

Finite subgroups of SL3(C) are classified into the families (A), (B), …, (L) [21].
We treat them as representations of the corresponding groups and they are not reflec-
tion representations. Watanabe and Rotillon listed in [20] those subgroups where the
invariant rings are complete intersections missing type (J ) and (K). These missing
groups were recognized by Yau and Yu [21]. In the end, there is a total of 29 types
of finite subgroups of SL3(C) whose invariant rings are complete intersection and
their sets of generators are known explicitly. We treat them as linear representations
of finite groups and we apply Dubrovin’s method. The set of generators is taken from
[20] and we use the same numbering (1), (2), …, (27) of the 27 families of subgroups
listed there.

Recall that to apply Dubrovin’s method, we must find

a minimal degree invariant polynomial where the Hessian defines
a flat contravariant metric.

(6.1)

This condition excluded the following subgroups

1. (17) which are of type (A).
2. (3) − (8), (19) − (23) which are of type (B).
3. (10), (24) and (25) which are of type (C).
4. (13), (15), (16) and (27) which are of types (G), (L), (I) and (E), respectively.
5. The groups (J ) and (K) which are not considered in [20].
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Frobenius Manifolds on Orbits Spaces

For the remaining family of subgroups, when condition (6.1) is satisfied, we use
Lemma 2.5 to construct flat pencil of metric under appropriate choice of a set of
invariant polynomials. We find natural Frobenius manifold structures of types A3, B3,
H3, B1

3 , or the trivial P3 (see Examples 4.6 and 3.4). In each case, we will mention
the type of the resulting Frobenius structure and the corresponding flat coordinates.
From Theorem 3.3, we know that ones the orbits space acquire one of these structures
then it also possess the conjugate structure. Thus we will not mention explicitly the
appearance of the natural conjugate Frobenius manifold structures.

(1) This is a family of groups of type (A) depending on an integer m > 1. Complete
set of generators of the invariant rings consists of xm, ym, zm, xyz. The Hessian
of xyz does not define a flat metric. Hence, condition (6.1) exclude the case
m > 3.
For m = 2, we fix the invariant polynomials

u1 = x2 + y2 + z2, u2 = x2y2 + z2y2 + x2z2, u3 = (xyz)2. (6.2)

Then {u1, u2, u3} can be identified with the set of generators of the invariant ring
of the standard reflection representation of Coxeter groups of type B3. Thus,
applying Dubrovin’s method, we get natural Frobenius manifold structures of
types A3, B3 and B1

3 .We also get the natural trivial Frobenius manifold structure
of type P3 using the setting of the family (2) given below. Thus, considering
the conjugate structures and Frobenius manifolds obtained in Example 3.4, we
proved that the orbits space has 8 different natural Frobeniusmanifold structures.
For m = 3, we fix the invariant polynomials

u1 = x3 + y3 + z3, u2 = x3y3 + y3z3 + z3x3, u3 = (xyz)3. (6.3)

The Hessian of u1 defines a contravariant flat metric �2. This metric and its
Christoffel symbols are almost linear in each variable ui . We can and will apply
Lemma 2.5 and we get three regular QFPM. From QFPM (�2,Lie∂u3

�2), we
get Frobenius manifold structure of type B3. It has flat coordinates

t1 = 2

9
u1, t2 = −u2

1 − 4u2

6
√
2

, t3 = 7u3
1

216
− 1

6
u2u1 + u3. (6.4)

The QFPM (�2,Lie∂u2
�2) leads to type A3. It has flat coordinates

t1 = 1

3
u1, t2 = u2 − 1

8
u2
1, t3 = √

u3. (6.5)

Finally we get Frobenius manifold structure of type B1
3 from the QFPM

(�2,Lie∂u1
�2). Here the flat coordinates are

t1 = u1, t2 = u2u
− 1

4
3 , t3 = 4

3
u

1
4
3 . (6.6)

123

22Page 21 of 26



(2) This is a family of groups of type (B) depending on an integer m ≥ 1. The
polynomials x2m + y2m, (xy)2, xyz

(

x2m − y2m
)

and z2 form complete sets
of generators for the invariant rings. Because of condition (6.1), we can only
consider m = 1. In this case, we fix the invariant polynomials

u1 = x2 + y2 + z2, u2 = z2, u3 = x2y2.

The metric �2(u) defined by the Hessian of u1 and its Christoffel symbols are
linear in each variable ui . However, Lemma 2.5 is applicable only for u2. The
QFPM (�2,Lie∂u2

�2) has degree 0 with τ = u1. It leads to a natural trivial
Frobenius manifold structure of type P3. Here the flat coordinates are

t1 = 1

2
u1, t2 = u2 − 1

2
u1, t3 = (−2u3)

1
2 . (6.7)

(9) This is a family of groups of type (C) depending on an integer m > 1. Complete
sets of generators of the invariant rings consist of xyz, xm + ym + zm, xm ym +
xm zm + ym zm , and (xm − ym)(zm −xm)(ym −zm). Here we get the same natural
Frobenius manifold structure obtained for the family (1).

(11) This is family of groups of type (C) depending on an integer m > 1. Complete
sets of generators of the invariant rings consists of

u1 = xm + ym + zm, u2 = x2y2z2, u3 = xm ym + ym zm + zm xm (6.8)

and

u4 = xyz
(

xm − ym) (

zm − xm) (

ym − zm)

. (6.9)

Since the Hessian u2 does not define a flat metric, we consider only 2 ≤ m ≤ 6.
For m = 2 we can use the same argument given for the family (1).
For 3 ≤ m ≤ 6, the contravariant metric�

i j
2 defined by the Hessian of u1 and its

Christofel symbols are almost linear in u1 and u3 and we can apply Lemma 2.5
to both variables.
The FPM (�2,Lie∂u3

�2) is regular quasihomogeneous of degree 1
2 with τ = u1.

We can fix the flat coordinates

t1 = m − 1

2m
u1, t2 = u

m
4
2 , t3 = u3 − 1

8
u2
1. (6.10)

The resulting natural Frobenius manifold structure is a polynomial of type A3.
Similarly, the FPM (�2,Lie∂u1

�2) is regular quasihomogeneous of degree 0

with τ = m−1
m u1. We can fix the flat coordinates

t1 = u1, t2 = u
m
8
2 , t3 = u3u

− m
8

2 . (6.11)

We get a natural Frobenius manifold structure of type B1
3 .
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(12) This is a group of type (F). A complete set of generators of the invariant ring
consists of

u1 = (x3 + y3 + z3)2 − 12(x3y3 + y3z3 + z3x3),

u2 = (x3 − y3)(y3 − z3)(z3 − x3),

u3 = (xyz)4 + 216(xyz)3(x3 + y3 + z3),

u4 = ((x3 + y3 + z3)2 − 18(xyz)2)2. (6.12)

The FPM (�
i j
2 ,Lie∂u3

�
i j
2 ) is regular quasihomogeneous of degree d = 1

2 with

τ = 5
12u1. Flat coordinates are given by

t1 = 5

12
u1, t2 = 10

√

62

41
u2, t3 = u3 − 847

1312
u2
1. (6.13)

The resulting natural Frobenius manifold structure is of type A3.
(14) This is a group of type (H) and a minimal set of generators of the invariant ring

consists of

u1 = x2 + yz, u2 = 8yzx4 − 2y2z2x2 −
(

y5 + z5
)

x + y3z3,

and

u3 = y10 + 6z5y5 + 20x2z4y4 − 160x4z3y3 + 320x6z2y2 + z10

− 4x
(

y5 + z5
) (

32x4 − 20yzx2 + 5y2z2
)

.

The Hessian of 10u1 leads to a regular QFPM (�2,Lie∂u3
�2) of degree d = 4

5

with τ = 1
10u1. By fixing the flat coordinates

t1 = 1

10
u1, t2 = √

2u2 − √
2u3

1, t3 = 14u5
1 − 20u2u2

1 + u3,

we arrive to a natural polynomial Frobenius structure of type H3.
(18) This is a family of groups of type (B) depending on integers p ≥ 1 and

q ≥ 2. A complete sets of generators of the invariant rings consists of
(x2pq + y2pq), (xy)2q , (xyz)2, (x2pq − y2pq)xyz, z2q . The Hessian of (xyz)2

does not define a flat metric. From condition (6.1), we consider only the two
cases: p = 1 but q = 2 or q = 3. In both cases we get 3 types of natural
Frobenius manifold structures. The first natural Frobenius structure is of type
P3. It has the flat coordinates

t1 = 2q − 1

2q
(x2q + y2q + z2q), t2 = −1

2
(x2q + y2q), t3 = (

2 − 4q

q
xy)

q
2 .

(6.14)
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The corresponding regular QFPM is (�2,Lie∂t2
�2) with τ = t1 where �2

defined by the Hessian of t1. Let us fix

u1 = x2q + y2q + z2q , u2 = (xyz)2, u3 = −2x2q y2q − 2x2q z2q − 2y2q z2q .

(6.15)

Then the second natural Frobenius manifold structure is of type B1
3 . It has the

flat coordinates

t1 = 2q − 1

2q
u1, t2 = u

q
4
2 , t3 = u3u

−q
4
2 . (6.16)

The corresponding regular QFPM is (�1
2,Lie∂t1

�2) has degree 0 with τ = t1.
Finally, we get natural Frobenius manifold structure of type A3 having the flat
coordinates

t1 = 2q − 1

4q
u1, t2 = 2

√
2q − 1√

q
u

q
2
2 , t3 = u3 + 1

4
u2
1. (6.17)

The corresponding regular QFPM (�2,Lie∂t3
�2) is of degree 1

2 with τ = t1.
(26) This is a family of groups of type (C) depending on even integer m ≥ 2. The set

of minimal generators of invariant ring has

x3m + y3m + z3m , (xyz)2, x2m ym + xm y2m + y2m zm + ym z2m + z2m xm + zm x2m ,

xyz(xm − ym)(ym − zm)(zm − xm), (xm − ym)2(ym − zm)2(zm − xm)2.

The only possible case under condition (6.1) is when m = 2. In this case we get
a natural Frobenius manifold of type A3. It has the flat coordinates

t1 = 5

12
(x6 + y6 + z6), t2 =

√

20

3
(xyz)3, t3 = x12 + y12 + z12 − 3

4
(x6 + y6 + z6)2.

Here,�2 is defined by the Hessian of 12
5 t1 and the corresponding regular QFPM

(�2,Lie∂t3
�2) is of degree d = 1

2 with τ = t1.

On the other hand, the Hessian of 5
6 t1 leads to a regular QFPM (�2,Lie∂t1

�2)

of degree 0 with τ = t1. In this case the flat coordinates are

t1 = 5

6
(x6 + y6 + z6), t2 = (xyz)

3
2 ,

t3 = −5

6
(xyz)

−1
2

(

x12 + y12 + z12 − 3

4
(x6 + y6 + z6)2

)

. (6.18)

The resulting natural Frobenius manifold structure is of type B1
3 .
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