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Abstract
We consider the Klein-Gordon operator on an -dimensional asymptotically anti-
de Sitter spacetime together with arbitrary boundary conditions encoded
by a self-adjoint pseudodifferential operator on of order up to 2. Using tech-
niques from -calculus and a propagation of singularities theorem, we prove that
there exist advanced and retarded fundamental solutions, characterizing in addition
their structural and microlocal properties. We apply this result to the problem of
constructing Hadamard two-point distributions. These are bi-distributions which are
weak bi-solutions of the underlying equations of motion with a prescribed form of
their wavefront set and whose anti-symmetric part is proportional to the difference
between the advanced and the retarded fundamental solutions. In particular, under a
suitable restriction of the class of admissible boundary conditions and setting to zero
the mass, we prove their existence extending to the case under scrutiny a deforma-
tion argument which is typically used on globally hyperbolic spacetimes with empty
boundary.
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1 Introduction

The -dimensional anti-de Sitter spacetime (AdS ) is a maximally symmetric solu-
tion of the vacuum Einstein equations with a negative cosmological constant. From
a geometric viewpoint it is noteworthy since it is not globally hyperbolic and it pos-
sesses a timelike conformal boundary. Due to these features the study of hyperbolic
partial differential equations on top of this background becomes particularly interest-
ing, especially since the initial value problem does not yield a unique solution unless
suitable boundary conditions are assigned. Therefore several authors have investi-
gated the properties of the Klein-Gordon equation on an AdS spacetime, see e.g. [5,
18, 27, 36, 41] to quote some notable examples, which have inspired our analysis.

A natural extension of the framework outlined in the previous paragraph con-
sists of considering a more general class of geometries, namely the -dimensional
asymptotically AdS spacetimes, which share the same behaviour of AdS in a
neighbourhood of conformal infinity. In this case the analysis of partial differential
equations such as the Klein-Gordon one becomes more involved due to admissible
class of backgrounds and, in particular, due to the lack of isometries of the metric.
Noteworthy has been the recent analysis by Gannot and Wrochna, [26], in which,
using techniques proper of -calculus they have investigated the structural properties
of the Klein-Gordon operator with Robin boundary conditions. In between the several
results proven, we highlight in particular the theorem of propagation of singularities
and the existence of advanced and retarded fundamental solutions.

Yet, as strongly advocated in [10], the class of boundary conditions which are of
interest in concrete models is greater than the one considered in [26], a notable exam-
ple in this direction being the so-called Wentzell boundary conditions, see e.g. [9,
13, 19, 38, 42]. For this reason in [16], we started an investigation aimed at gener-
alizing the results of [26] proving a theorem of propagation of singularities for the
Klein-Gordon operator on an asymptotically anti-de Sitter spacetime such that the
boundary condition is implemented by a -pseudodifferential operator
with 2, see Section 3.1 for the definitions.

Starting from this result, in this work we proceed with our investigation and,
still using techniques proper of -calculus, we discuss the existence of advanced
and retarded fundamental solutions for the Klein-Gordon operator with prescribed
boundary conditions. The first main result that we prove is the following:

Theorem 1.1 Let be the Klein-Gordon operator as per (20) where abides to
Hypothesis 4.1. Then there exist unique retarded and advanced propagators,
that is continuous operators 1 1 1 such that

on 1 1 and on 1 . Furthermore, is a continuous

map from 1
0 to 1 where the subscript 0 indicates that we consider

only functions of compact support.
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Here the spaces 1 1 , 1 as well as 1
0 , 1 and

1 are characterized in Definition 3.5 and in Section 4, see in particular Equa-
tions (41b), (41a) and (42). Although the exact definition of the operator requires
several additional ingredients which are mainly discussed in Section 3, we stress that

1 1 is defined in terms of a suitable energy form, see (20).
In addition, we characterize the wavefront set in Theorem 4.2, we use a propaga-

tion of singularity theorem proven in [16] to characterize the singular structure of the
advanced and of the retarded fundamental solutions. This result allows us
to discuss a notable application which is strongly inspired by the so-called algebraic
approach to quantum field theory, see e.g. [8] for a recent review. In this frame-
work a key rôle is played by the so-called Hadamard two-point distributions, which
are positive bi-distributions on the underlying background which are characterized
by the following defining properties: they are bi-solutions of the underlying equa-
tions of motion, their antisymmetric part is proportional to the difference between
the advanced and retarded fundamental solutions and their wavefront set has a pre-
scribed form, see e.g. [30]. If the underlying background is globally hyperbolic and
with empty boundary, the existence of these two-point distributions is a by-product
of the standard Hörmander propagation of singularities theorem and of a deformation
argument due to Fulling, Narcovich and Wald, see [20].

In the scenarios investigated in this work this conclusion does no longer apply
since we are considering asymptotically AdS spacetimes which possess in particular
a conformal boundary. At the level of Hadamard two-point distributions this has far-
reaching consequences since even the standard form of the wavefront set has to be
modified to take into account reflection of singularities at the boundary, see [14]
and Definition 5.3 below. Our second main result consists of showing that, under a
suitable restriction on the allowed class of boundary conditions, see Hypothesis 4.1
in the main body of this work, it is possible to prove existence of Hadamard two-point
distributions. First we focus on static spacetimes and, using spectral techniques, we
construct explicitly an example, which, in the language of theoretical physics, is often
referred to as the ground state. Subsequently we show that, starting from this datum
and using the theorem of propagation of singularities proven in [16], we can use also
in this framework a deformation argument to infer the existence of an Hadamard
two-point distribution on a generic -dimensional asymptotically AdS spacetime.
It is important to observe that this result is in agreement and it complements the
one obtained in [37]. To summarize our second main statement is the following, see
also Definition 4.2 for the notion of static and of physically admissible boundary
conditions:

Theorem 1.2 Let be a globally hyperbolic, asymptotically anti-de Sitter
spacetime and let be its static deformation as per Lemma 5.2. Let be a
static and physically admissible boundary condition so that the Klein-Gordon oper-
ator on admits a Hadamard two-point function as per Proposition
5.5. Then there exists a Hadamard two point-function on for the associated
Klein-Gordon operator with boundary condition ruled by .

Page 3 of 36    28Math Phys Anal Geom (2021) 24: 28



It is important to stress that the deformation argument forces us to restrict in
the last part of the paper the class of admissible boundary conditions. The main
reason can be ascribed to the fact that it is unknown whether the advanced and
retarded fundamental solutions do obey the standard support properties, which
are intertwined to the causal structure of the underlying manifold. To the best of our
knowledge, this is still an open problem even when considering special boundary
conditions such as those of Dirichlet and of Neumann type. As a particular conse-
quence, we cannot apply directly the deformation argument to Wentzell boundary
conditions and this particular result needs to be addressed in a separate analysis [4].

The paper is structured as follows. In Section 2 we recollect the main geometric
data, particularly the notions of globally hyperbolic spacetime with timelike bound-
ary and that of asymptotically AdS spacetime. In Section 3 we discuss the analytic
data at the heart of our analysis. We start from a succinct review of -calculus
in Section 3.1, followed by one of twisted Sobolev spaces and energy forms. In
Section 3.4 we formulate the dynamical problem, we are interested in, both in a
strong and in a weak sense. In Section 4 we obtain our first main result, namely the
existence of advanced and retarded fundamental solutions for all boundary condi-
tions abiding to Hypothesis 4.1. In addition we investigate the structural properties
of these propagators and we characterize their wavefront set. In Section 5 we investi-
gate the existence of Hadamard two-point distributions in the case of vanishing mass.
First, in Sections 5.1 and 5.2, using spectral techniques we prove their existence on
static spacetimes though for a restricted class of admissible boundary conditions, see
Hypothesis 4.1 and Definition 4.2. Subsequently, in Section 5.3, we extend to the case
in hand a deformation argument due to Fulling, Narcowich and Wald proving exis-
tence of Hadamard two-point distributions on a generic -dimensional asymptotically
AdS spacetime.

2 Geometric Data

In this section our main goal is to fix notations and conventions as well as to
introduce the three main geometric data that we shall use in our analysis, namely
globally hyperbolic spacetimes with timelike boundary, asymptotically anti-de Sit-
ter spacetimes and manifolds of bounded geometry. We assume that the reader is
acquainted with the basic notions of Lorentzian geometry, cf. [33]. Throughout this
paper with spacetime, we indicate always a smooth, connected, oriented and time ori-
ented Lorentzian manifold of dimension dim 2 equipped with a smooth
Lorentzian manifold of signature . With (resp. 0 ) we
indicate the space of smooth (resp. smooth and compactly supported) functions on ,
while (resp. 0 ) stands for the collection of all smooth (resp. smooth
and compactly supported) functions vanishing at with all their derivatives. In
between all spacetimes, the following class plays a notable rôle [2].

Definition 2.1 Let be a spacetime with non empty boundary .
We say that
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1. has a timelike boundary if is a smooth, Lorentzian manifold,
2. is globally hyperbolic if it does not contain closed causal curves and if, for every

, is either empty or compact.

If both conditions are met, we call a globally hyperbolic spacetime with
timelike boundary and we indicate with ˚ the interior of .

Observe that, for simplicity, we assume throughout the paper that also is
connected. Notice in addition that Definition 2.1 reduces to the standard notion of
globally hyperbolic spacetimes when . The following theorem, proven in
[2], gives a more explicit characterization of the class of manifolds, we are interested
in, and it extends a similar theorem valid when .

Theorem 2.1 Let be an -dimensional globally hyperbolic spacetime with
timelike boundary. Then it is isometric to a Cartesian product where is an

1 -dimensional Riemannian manifold. The associated line element reads
2 2 (1)

where 0 while plays the rôle of time
coordinate. In addition identifies a family of Riemannian metrics,
smoothly dependent on and such that, calling

.
, each is a

Cauchy surface with non empty boundary.

Remark 2.1 Observe that a notable consequence of this theorem is that, calling
the natural embedding map, then where is a globally

hyperbolic spacetime. In particular the associated line element reads
2 2 .

In addition to Definition 2.1 we consider another notable class of spacetimes
introduced in [26].

Definition 2.2 Let be an -dimensional manifold with non empty boundary .
Let be a boundary function, namely a function such that 0
and suppose that ˚ is equipped with a smooth Lorentzian metric and
that

a) 2 extends smoothly to a Lorentzian metric on .
b) The pullback via the natural embedding map

individuates a smooth Lorentzian metric.
c) 1 1 on .

Then is called an asymptotically anti-de Sitter (AdS) spacetime. In addition,
if is a globally hyperbolic spacetime with timelike boundary, cf. Definition
2.1, then we call a globally hyperbolic asymptotically AdS spacetime.

Observe that conditions a), b) and c) are actually independent from the choice of
the boundary function and the pullback is actually determined up to a conformal
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multiple since there exists always the freedom of multiplying the boundary function
by any nowhere vanishing . Such freedom plays no rôle in our inves-

tigation and we shall not consider it further. Hence, for definiteness, the reader can
assume that a global boundary function has been fixed once and for all.

As a direct consequence of the collar neighbourhood theorem and of the freedom
in the choice of the boundary function in Definition 2.2, this can always be engi-
neered in such a way, that, given any , it is possible to find a neighbourhood

containing and 0 such that on 0 the line element associated
to reads

2
2

2
(2)

where is a family of Lorentzian metrics depending smoothly on such that 0
.

Remark 2.2 It is important to stress that the notion of asymptotically AdS spacetime
given in Definition 2.2 is actually more general than the one given in [1], which is
more commonly used in the general relativity and theoretical physics community.
Observe in particular that in (2) does not need to be an Einstein metric nor is
required to be diffeomorphic to 2. Since we prefer to make a close connection
to both [26] and [16] we stick to their nomenclature.

Remark 2.3 Throughout the paper, with the symbols and we shall always indicate
respectively the time coordinate as in (1) and the spatial coordinate as in (2).

2.1 Manifolds of bounded geometry

To conclude this section we introduce the manifolds of bounded geometry since they
are the natural arena where one can define Sobolev spaces when the underlying back-
ground has a non empty boundary. In this section we give a succinct survey of the
main concepts and of those results which will play a key rôle in our analysis. An
interested reader can find more details in [3, 21, 25, 35] as well as in [10, Sec. 2.1 &
2.2].

Definition 2.3 A Riemannian manifold with empty boundary is of bounded
geometry if

a) The injectivity radius is strictly positive,
b) is of totally bounded curvature, namely for all 0 there exists a

constant 0 such that .

This definition cannot be applied verbatim to a manifold with non empty boundary
and, to extend it, we need to introduce a preliminary concept.

Definition 2.4 Let be a Riemannian manifold of bounded geometry and let
be a codimension , closed, embedded smooth submanifold with an inward
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pointing, unit normal vector field . The submanifold is of bounded
geometry if:

a) The second fundamental form of in and all its covariant derivatives
along are bounded,

b) There exists 0 such that the map defined as
.

is injective.

These last two definitions can be combined to introduce the following notable
class of Riemannian manifolds

Definition 2.5 Let be a Riemannian manifold with . We say that
is of bounded geometry if there exists a Riemannian manifold of bounded

geometry of the same dimension as such that:

a) and
b) is a bounded geometry submanifold of , where is

the embedding map.

Remark 2.4 Observe that Definition 2.5 is independent from the choice of .
For completeness, we stress that an equivalent definition which does not require
introducing can be formulated, see for example [35].

Definition 2.5 applies to a Riemannian scenario, but we are particularly interested
in Lorentzian manifolds. In this case the notion of bounded geometry can be intro-
duced as discussed in [21] for the case of a manifold without boundary, although
the extension is straightforward. More precisely let us start from a Rieman-
nian manifold of bounded geometry such that dim . In addition we call

0 2 , the space of all bounded tensors on the ball 0 2
centered at the origin of the Euclidean space where stands for the flat
metric. For every 0 , we denote with the space of all rank

tensors on such that, for any , calling
.

exp where
is a linear isometry, the family is bounded on

0 2 .

Definition 2.6 A smooth Lorentzian manifold is of bounded geometry if
there exists a Riemannian metric on such that:

a) is of bounded geometry.
b) 0

2 and 1 2
0 .

On top of a Riemannian (or of a Lorentzian) manifold of bounded geometry
we can introduce 2 which is the completion of

. 2
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with respect to the norm

2

0

2

1
2

where is the covariant derivative built out of the Riemannian metric , while
indicates the -th covariant derivative. This notation is employed to disambiguate
with .

Remark 2.5 One might wonder why the assumption of bounded geometry is neces-
sary since it seems to play no rôle in above characterization. The reason is actually
two-fold. On the one hand it is possible to give a local definition of Sobolev spaces via
a suitable choice of charts, which yields in turn a global counterpart via a partition of
unity argument. Such definition is a priori different from the one given above unless
one assumes to work with manifolds of bounded geometry, see [25]. In addition such
alternative characterization of Sobolev spaces allows for introducing a suitable gen-
eralization to manifolds of bounded geometry of the standard Lions-Magenes trace,
which will play an important rôle especially in Section 5.1.

Observe that, henceforth, we shall always assume implicitly that all manifolds that
we consider are of bounded geometry.

3 Analytic Preliminaries

In this section we introduce the main analytic tools that play a key rôle in our inves-
tigation. We start by recollecting the main results from [16] which are, in turn, based
on [26] and [40, 41].

3.1 On b-pseudodifferential Operators

In the following we assume for definiteness that is a globally hyperbolic,
asymptotically spacetime of bounded geometry as per Definition 2.2 and Def-
inition 2.6. In addition we assume that the reader is familiar with the basic ideas
and tools behind -geometry, first introduced by R. Melrose in [32]. Here we limit
ourselves to fix notations and conventions, following the presentation of [23].

In the following with we indicate the -tangent bundle which is a vector
bundle whose fibres are

˚

span

where is the global boundary function introduced in Definition 2.2, here promoted
to coordinate. Similarly we can define per duality the -cotangent bundle,
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which is a vector bundle whose fibers are

˚

span

For future convenience, whenever we fix a chart of centered at a point ,
we consider and , 1 1 dim , local coor-
dinates respectively of and of . Since we are considering globally
hyperbolic spacetimes, hence endowed with a distinguished time direction , cf. (1),
we identify implicitly 1 . In addition, observe that there exists a natural
projection map

which is non-injective. This feature prompts the definition of a very important
structure in our investigation, namely the compressed -cotangent bundle

.
(3)

which is a vector sub-bundle of , such that whenever ˚ .
The last geometric structure that we shall need in this work is the b-cosphere bundle
which is realized as the quotient manifold obtained via the action of the dilation group
on 0 , namely

.
0 . (4)

We remark that, if we consider a local chart such that and the
local coordinates , 1 1 dim , on

.
,

we can build a natural counterpart on , namely where
1

and
1

. On top of these geometric structures we can define two natural
classes of operators.

Definition 3.1 Let be a globally hyperbolic, asymptotically spacetime.
We call

Diff .
0 Diff the graded, differential operator algebra generated

by , the space of smooth sections of the -tangent bundle.
– the set of properly supported -pseudodifferential operators (

DOs) of order , – is the microlocalization of the space Diff .

The notion of DOs is strictly intertwined with the set of all
symbols of order on and in particular there exists a principal symbol map

1 (5)

which gives rise to an isomorphism

1 1 .
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In addition we can endow the space of symbols with a Fréchet topology
induced by the family of seminorms

sup max

where 1 2 1
2 , while , being an index set, is an exhaustion of

by compact subsets. Hence one can endow with a metric as follows

2
1

.

In view of these data the following definition is natural

Definition 3.2 A subset of is called bounded if such is the associated subset
of with respect to the Fréchet topology.

Finally we can recall the notion of elliptic DO and of wavefront set both of
a single and of a family of pseudodifferential operators, cf. [28]:

Definition 3.3 A b-pseudodifferential operator is elliptic at a point

0 0 if there exists such that

1 1

in a conic neighbourhood of 0. We call the (conic) subset of 0 in
which is elliptic.

Definition 3.4 For any , we say that 0 0 if the asso-
ciated symbol is such that, for every multi-indices and for every ,
there exists a constant such that

for in a neighbourhood of 0 and in a conic neighbourhood of 0 .
Similarly, if is a bounded subset of and . We say that

if there exists 0 , elliptic at , such that is a
bounded subset of .

To conclude this part of the section, we stress that, in order to study the behavior of
a b-pseudodifferential operator at the boundary, it is useful to introduce the notion of
indicial family, [26]. Let . For a fixed boundary function , cf. Definition
2.2, and for any we define the indicial family

as:

(6)

where is any function such that .
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3.2 Twisted Sobolev Spaces

In this section we introduce the second main analytic ingredient that we need in
our investigation. To this end, once more we consider a globally hyper-
bolic, asymptotically spacetime and the associated Klein-Gordon operator

.

2, where 2 plays the rôle of a mass term, while is the D’Alembert wave
operator built out of the metric . It is convenient to introduce the parameter

1

2
1 2 4 2 (7)

which is constrained to be positive. This is known in the literature as the
Breitenlohner-Freedman bound [6]. In the spirit of [26] and [16, Sec. 3.2] we
introduce the following, finitely generated, space of twisted differential operators

Diff1 . Diff1

where 1
2 , dim . Starting from these data, and calling with

and respectively the global boundary function, cf. Definition 2.2, and the metric
induced volume measure we set

2 . 2 2 and 1

. 2 2 Diff1 . (8)

The latter is a Sobolev space if endowed with the norm

2
1

2
2

1

2
2

where 1 is a generating set of Diff1 . In addition we shall be using
2 , the space of locally square integrable functions over with respect to the

measure 2 and 2 the counterpart built starting from in place
of . Starting from these spaces we can build the first order Sobolev spaces

1 and 1 as well as their respective topological duals, 1 and
1 . Finally, calling the topological dual space of , we set

1
0

1 (9)

while, similarly, we define 1
0 .

We discuss succinctly the interactions between and Diff1 . We begin
by studying the action of pseudodifferential operators of order zero on the spaces

0 , 1, just defined. Every 0 is a bounded operator thereon,
as stated in the following lemma.

Lemma 3.1 ([26], Lemma 3.8 and [39], Lemma 3.2, Corollary 3.4) Let 0 .
Then is a continuous linear map

1
0

1
0

1
0

1
0
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which extends per duality to a continuous map
1

0
1

0
1

0
1

0 .

The proof of this lemma gives a useful information. Let 0 be with
compact support . Then there exists 0 such that

(10)

for every with 1. The constant is bounded by a seminorm of .
To study in full generality the interactions between and Diff1 , we

need to introduce one last class of relevant spaces

Definition 3.5 Let 1 0 1 and let 0. Given (resp. ),

we say that (resp. ) if (resp. ) for all
. Furthermore, we define as:

.

0

. (11)

Remark 3.1 As observed in [39], whenever is finite, it is enough to check that both
and lie in for a single elliptic operator .

Observe that, in full analogy to Definition 3.5, we define similarly 0 and

. In the following definition, we extend the notion of wavefront set to the

spaces .

Definition 3.6 Let 0 1 and let , . Given 0 ,

we say that if there exists such that and
, where stands for the elliptic set as per Definition 3.3. When

, we say that if there exists 0 such that

and .

With all these data, we can define two notable trace maps which will be a key
ingredient in the next section. The following proposition summarizes the content of
[26, Lemma 3.3] and [16, Lemma 3.4]:

Theorem 3.1 Let be a globally hyperbolic, asymptotically spacetime
of bounded geometry with dim and let 0, cf. (7). Then there exists a
continuous map 1

0 , which can be extended to a continuous
map

1 0.

Remark 3.2 In order to better grasp the rôle of the trace map defined in Theorem
3.1, it is convenient to focus the attention on

.
0 1. In this setting,
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any 1 can be restricted to the subset 0 1, 0 admitting an
asymptotic expansion 1

0 where 2 2, while
and 0

1 0 2 1 . In this context it holds that .

At last we recall from [26] a notable property of the trace related to its
boundedness. Let 1 , then for every 0 there exists 0 such that

2
2

2
1

2
2 . (12)

3.3 Twisted Energy Form

In this section we focus the attention on discussing the last two preparatory key con-
cepts before stating the boundary value problem, we are interested in. We recall that

2 is the Klein-Gordon operator and, following [26], we can individu-
ate a distinguished class of spaces whose elements enjoy additional regularity with
respect to :

Definition 3.7 Let be a globally hyperbolic, asymptotically anti-de Sitter
spacetime and let be the Klein-Gordon operator. For all , we define
the Frechét spaces

1 2 0 (13)

with respect to the seminorms

1
2

0 (14)

where 0 .

At this point we are ready to introduce a suitable energy form. The standard def-
inition must be adapted to the case in hand, in order to avoid divergences due to
the behaviour of the solutions of the Klein-Gordon equation at the boundary. To this
end it is convenient to make use of the so-called admissible twisting functions, that
is, calling the global boundary function as per Definition 2.2, the collection of

such that

1. 0 on ,
2.

. 1 2 where is the Klein-Gordon operator.

For any such function, we can define a twisted differential

. 1 1 .
(15)

Accordingly we can introduce the twisted Dirichlet (energy) form

0
.

. 2 (16)
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Starting from these data, we are ready to introduce a second trace map. More
precisely we start from

1 1 2 1 .

where is the parameter defined in (7). Calling † the formal adjoint of as in (15)
with respect to the inner product on 2 we observe that, on account of the
identity † 1 , the following Green’s formula holds true for all

and for all 1
0 :

0 . (17)

With these premises the following result holds true, cf. [26, Lemma 4.8]:

Lemma 3.2 The map can be extended to a bounded linear map

and, if , the Green’s formula (17) holds true for every 1
0 .

Remark 3.3 In order to better grasp the rôle of the second trace map characterized in
Lemma 3.2, it is convenient to focus once more the attention on

.
0 1

endowed with a metric whose line element reads in standard Cartesian coordinates

2
2

2

where is a smooth Lorentzian metric on 1. Consider an admissible twist-
ing function such that lim

0
1 and 1

0 such that

2 0
0 for 0. Then, for every 0, the restriction of to

0 admits an asymptotic expansion of the form
2 2 0 3 1 where 2 2 while 1 and

1 2 1 . In this context it holds that 2 .

3.4 The Boundary Value Problem

In this section we use the ingredients introduced in the previous analysis to for-
mulate the dynamical problem we are interested in. At a formal level we look for

1 such that

2
(18)

where while are the trace maps introduced in Theorem 3.1 and
in Lemma 3.2 respectively. It is not convenient to look for strong solutions of (18).
More precisely, for any , we assume that there exists an admissible
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twisting function and we define the energy functional

0 (19)

where 1 , 0 is the twisted Dirichlet form, cf. (16), 1 ,
while 1

0 . Hence, we can introduce 1 1 by

. (20)

Observe that, on account of the regularity of , we can extend as an operator
1 1 , [26].

Remark 3.4 The reader might be surprised by the absence of in the weak formu-
lation of the boundary value problem as per (20). This is only apparent since the last
term in the right hand side of (20) is a by-product of the Green’s formula as per (17)
together with the boundary condition introduced in (18).

We are now in position to recollect the two main results proved in [16] concerning
a propagation of singularities theorem for the Klein-Gordon operator with boundary
conditions ruled by a pseudo-differential operator with 2. As
a preliminary step, we introduce two notable geometric structures. More precisely,
since the principal symbol of 2 reads

.
, where ,

the associated characteristic set is

0 0 (21)

while the compressed characteristic set is

(22)

where is the projection map from to the compressed cotangent bundle, cf.
(3). A related concept is the following:

Definition 3.8 Let be an interval. A continuous map is a gen-
eralized broken bicharacteristic (GBB) if for every 0 the following conditions
hold true:

a) If 0 0 , then for every ,

0 (23)

where 0 is the unique point for which 0 0, while
and are the Poisson brackets on .

b) If 0 0 , then there exists 0 such that 0 0 implies
0, where is the global boundary function, cf. Definition 2.2.

With these structures and recalling in particular the wavefront set introduced in
Definition 3.6 we can state the following two theorems, whose proof can be found in
[16]:
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Theorem 3.2 Let with 0 2. If 1 for 0 and

, then 1 1 1 1 1 is the union

of maximally extended generalized broken bicharacteristics within the compressed
characteristic set .

In full analogy it holds also

Theorem 3.3 Let with 0. If 1 for 0 and

, then it holds that 1 1 1 is the union of maximally
extended GBBs within the compressed characteristic set .

4 Fundamental Solutions

In this section we prove the first of the main results of our work. We start by inves-
tigating the existence of fundamental solutions associated to the boundary value
problem as in (18). We shall uncover that a positive answer can be found, though we
need to restrict suitably the class of admissible b- DOs in comparison
to that of Theorem 3.2 and 3.3. We stress that, from the viewpoint of applications,
these additional conditions play a mild rôle since all scenarios of interest are included
in our analysis.

We recall that the case of Dirichlet boundary condition was already analysed in
[41], while the generalization to Robin boundary conditions was studied in [36] and
[26], that we follow closely. We introduce a cutoff function playing an important rôle
in the following theorems. Consider

0

1 0

0 0

and let 1 be an increasing function such that 1 0 for all
0 while 1 1 if 1 . For any but fixed 0 1 with 0 1,

we call 0 1 the smooth function

.
0

1
1 1 0 (24)

where 1 while 0 1 0 , see Fig. 1. Under these hypotheses, calling

0
0 , it holds that, cf. [41]

1
1 0

2 with 1
0

1
1 . (25)

Consider 1 1 such that its support lies in 0 1 , cf. Definition 2.1.
As discussed in [26], one can use the cutoff function introduced to prove a twisted

version of the Poincaré inequality proved in [41, Proposition 2.5]:

1 2 2
2

1 2 2
2 (26)

where is the twisted differential as per (15).
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Fig. 1 The function as per
(24)

Since we deal with a larger class of boundary conditions than those considered
in [41] and in [26], we need to make an additional hypothesis. Recall that, as in the
previous sections, we are identifying a pseudodifferential operator on with its
natural extension on , i.e. constant in , the global boundary function. As starting
point we need a preliminary definition:

Definition 4.1 Let . We call it local in time if, for every in the domain
of , supp supp where is the time coordinate
individuated in Theorem 2.1.

Recalling [29, Sec. 6] for the definition of the adjoint of a pseudodifferential
operator, we can now formulate the following hypothesis

Hypothesis 4.1 We consider with 2, only if it is local in time, see
Definition 4.1, and if .

We remark that the assumption that 2 is motivated mainly by Proposition
(4.2) in which we need to invoke Theorem (3.2).

The next step in the analysis of the problem in hand lies in proving the following
proposition which generalizes a counterpart discussed in [26] for the case of Robin
boundary conditions. Since the case with of order 0 can be seen as
a corollary of the well-posedness result of [26], here we focus only on the case 0.

Proposition 4.1 Let , 0, be such that its canonical extension to

abides to the Hypothesis 4.1 and let 1 1 . Then there exists a compact
subset and a real positive constant such that

1 2
1 1 1

where , being the same as in (26), while is defined in (20).
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Proof The proof is a generalization of those in [41] and [26] to the case of bound-
ary conditions encoded by pseudodifferential operators. Therefore we shall sketch
the common part of the proof, focusing on the terms introduced by the bound-
ary conditions. Adopting the same conventions as at the beginning of the section,
assume that supp 0 1 . We start by computing a twisted version
of the energy form considered in [41]. Consider , with

1 Diff 1 and with compact support. Note that, since
is self-adjoint, i.e., , then is a second order formally

self-adjoint operator, the purpose of being to remove zeroth order terms. Let
with . Observe that we should also localize in space, work-

ing on a compact subset of a Cauchy surface. Hence the vector field should be
multiplied by a smooth, compactly supported test function which depends only on
the spatial variables. However, to avoid burdening the notation, in the following we
do not write explicitly the test function . Focusing on , it belongs to
because 0. A direct computation shows that

2
2 0 2 2

(27)

where 0 is the twisted Dirichlet energy form, cf. (16), is defined in Section 3.3,
while and are the trace maps introduced in Theorem 3.1 and in Lemma 3.2.
We analyze each term in the above sum separately. Starting form the first one and
proceeding as in [26], we rewrite

2 0

where , 1 is a generating set of Diff1 , while the symmetric tensor
is

2 1 2 1 1

1 2 .
(28)

Here is the stress-energy tensor, with respect to , see Definition 2.2, of
a scalar field associated with and , that is, denoting with the symmetric
tensor product,

1

2
1. (29)

Focusing on this term and using that , a direct computation yields:

1

2
2 1 . (30)

Since and are respectively past- and future-pointing timelike vectors, then
is negative definite. Hence we can rewrite (27) as

2 0

2 2
(31)

with
1 2 1 1 1.
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Since is positive definite, then
.

0. This can be seen by direct inspection from the explicit form

1

2
2

2 1 2 2
(32)

where is the sesquilinear pairing between 1-forms induced by the metric. Focusing
then on the term , we observe that, as a consequence of our choice
for the functions and , we have 0 on . In addition it
holds that 1 1 near , and 1 2 2 . These
observations allow us to establish the following bound, cf. [41] and [26]:

1 2
2

1
1 0

2 1 2 2
2

(33)
with a suitable, positive constant. Now we focus on establishing a bound for the
terms on the right hand side of (31). We estimate the first one as follows:

1 2 1 2
1

1 2 2
1

1 2 2
2

1 2 1 2
2

1 2
1

1
1 0

2 1 2 2
1

2
2

1
1 0

2 1 2 1 2
2 (34)

where in the last inequality we used (25). As for the second term in (31), using that
2 , we establish the bound

2 1 2 2
2

1 2 2
2

for a suitable constant 0. Using (25) and the Poincaré inequality, this last bound
becomes

2 1
1 0

2 1 2 2
2 . (35)

At last we give a give a bound for the last term in (27), containing the pseudodiffer-
ential operator which implements the boundary conditions. Recalling Hypothesis
4.1, it is convenient to consider the following three cases separately

a) with 1,
b) with 1 2.

Now we give a bound case by case.

a) It suffices to focus on 1 recalling that, for 1,
1 . If with a slight abuse of notation we denote with both the operator

on the boundary and its trivial extension to the whole manifold, we can write
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where is the indicial family as in (6). We recall that any

, , can be decomposed as
1

, with 1 ,

while , 1 is a generating set of Diff1 . Hence we can rewrite
as

where and are in 0 . Therefore

.

To begin with, we focus on the first term on the right hand side of this inequality.
Using Equations (12) and (25) together with the Poincaré inequality (26) and
Lemma 3.1,

1 2 2
1

1 2 1 2
1

1 2 2
2

1 2 1 2
2

1
1 0

2 1 2 2
2

for a suitable constant 0. As for the second term, since 1 1 we
can proceed as above using that the operator is of order 0 and we
can conclude that

1 2 2
1

1
1 0

2 1 2 2
2

for suitable positive constants and . Therefore, it holds a bound of the
form

1
1 0

2 1 2 2
2 .

b) Since if , it is enough to consider 2

and to observe that, we can decompose as

1 1

where 1 while 0 . At this point one can apply twice
consecutively the same reasoning as in item a) to draw the sought conclusion.
Here the key hypotesis it that 1 1 .

Finally, considering (31) and collecting all bounds we proved, we obtain
2

1 1
1

1 0
2 1 2 2

2 . (36)

Since the inner product defined by the left hand side of (32) is positive definite,
then for large enough

1
1 0

2 1 2 2
2 0
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and the associated Dirichlet form defined as

2 1 2 1
1 0

2 1 2 2 2 (37)

bounds 1 2 2
2 . We conclude the proof by observing that, once we

have an estimate for 1 2 2
2 , with the Poincaré inequality we can also

bound 1 2
2 . Therefore, considering the support of and , there exists

a compact subset such that
1 2

2
1 2

1 1 (38)

from which the sought thesis descends.

Remark 4.1 If is of non-positive order, then in the previous state-
ment can be taken in 1 1 instead of 1 1 . The same holds true for the
statements of Corollary (4.1).

The following two statements guarantee uniqueness and existence of the solutions
for the Klein-Gordon equation associated to the operator individuated in (20).
Mutatis mutandis, since we assume that is local in time, the proof of the first
statement is identical to the counterpart in [41, Lemma 4.13] and therefore we omit
it.

Corollary 4.1 Let be a globally hyperbolic, asymptotically anti-de Sitter space-
time, cf. Definition 2.2 and let 1 1 – being the order of – be
vanishing whenever 0, 0 . Suppose in addition that abides to the
Hypothesis 4.1. Then there exists at most one 1 such that supp

0 and it is a solution of .

At the same time the following statements hold true.

Lemma 4.1 Let be a globally hyperbolic, asymptotically anti-de Sitter spacetime,
cf. Definition 2.2 and let 1 1 be vanishing whenever 0, 0 .
Then there exists 1 1 solution of the problem , cf. (20), such
that supp 0.

Lemma 4.2 Let be a globally hyperbolic, asymptotically anti-de Sitter spacetime,
cf. Definition 2.2, let with 0 and let 1 1 be vanishing
whenever 0, 0 . Then there exists 1 1 solution of the problem

, cf. (20), such that supp 0.

The proof follows the one given in [41, Prop. 4.15], but we feel worth sketching
the main ideas, focusing for simplicity on the case 0. The first step consists
of proving a local version of the lemma, namely that given a compact set ,
there exists 0 such that for every 0 there exists 1 1 such that
supp 0 and for 0 . The main point
of this part of the proof consists of applying Lemma 4.1 to ensure that the adjoint
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of the Klein-Gordon operator, say , is invertible over the set of smooth functions
supported in suitable compact subsets of – see [41, Lem. 4.14] for further details.
With this result in hand, one divides the time direction into sufficiently small intervals

1 and uses a partition of unity along the time coordinate to build a global
solution for .

At last we extend our results for 1 and for 1 1 . Let
us consider , the proof for the positive cases being the same. If
0, Lemma 4.1 entails that (18) admits a unique solution lying in 1 . By the
propagation of singularities theorem, cf. Theorem 3.3 and using Hypothesis 4.1, the
solution lies in 1 and the following generalization of the bound in Lemma
4.1 holds true:

1 1 1 .

If 0 we can draw the same conclusion considering, as in [41, Thm. 8.12],

(39)

where 1 1 is sequence converging to as . Each of
these equations has a unique solution 1 . In addition the propagation of
singularities theorem, cf. Theorem (3.3) yields the bound

1 1 1

for suitable compact sets and for every . Since in
1 1 , we can conclude that the sequence is converging to 1 .

Considering such that each vanishes if 0 , one obtains the desired support
property of the solution. To conclude this analysis we summarize the final result
which combines Corollary 4.1 and Lemmata 4.1 and 4.2.

Proposition 4.2 Let be a globally hyperbolic, asymptotically anti-de Sitter space-
time, cf. Definition 2.2 and let 0 while 1 1 . Assume in
addition that abides to Hypothesis 4.1. If vanishes for 0, 0 being
arbitrary but fixed, then there exists a unique 1 such that

(40)

where is the operator in (20).

We have gathered all ingredients to prove the existence of advanced and retarded
fundamental solutions associated to the Klein-Gordon operator , cf. (20). To this
end let us define the following notable subspaces of , 0 1,

0 :

such that supp if
(41a)

such that supp if
(41b)

.
(41c)
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where the subscript stands for timelike compact. In addition we call

1 . 1 (42)

where are the trace maps introduced in Theorem 3.1 and in Lemma 3.2, while
is a pseudodifferential abiding to Hypothesis 4.1.
Exactly as in [26] from Lemma 4.1 and from Proposition 4.2, it descends the

following result on the advanced and retarded propagators associated to the
Klein-Gordon operator , cf. (20).

Theorem 4.1 Let be the Klein-Gordon operator as per (20) where abides to
Hypothesis 4.1. Then there exist unique retarded and advanced propagators,
that is continuous operators 1 1 1 such that

on 1 1 and on 1 . Furthermore, is a continuous

map from 1
0 to 1 where the subscript 0 indicates that we consider

only functions of compact support.

Observe that the restriction to 1 is necessary since, per construction an

element in the range of abides to the boundary conditions as in (18).

Remark 4.2 Associated to the advanced and to retarded propagators, one can define
the causal propagator 1 1

0
1 as .

Since are continuous maps, cf. Theorem 4.1, one can apply Schwartz kernel
theorem to infer that one can associate to them a bi-distribution .
Mainly for physical reasons we individuate the following special classes of boundary
conditions. Recall that, according to Theorem 2.1 is isometric to and
to .

Definition 4.2 Let with 2 and let We call

physically admissible if 1 1 1 1 for all
1 with 0 and .

a static boundary condition if is the natural extension to of a
pseudodifferential operator with 2.

Observe that any static boundary condition is automatically local in time, see
Definition 4.1.

To conclude the section we highlight a standard and important application of the
fundamental solutions and in particular of the causal propagator cf. Remark 4.2.
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Proposition 4.3 Let be the Klein-Gordon operator as per (20) and let be
its associated causal propagator, cf. Remark 4.2. Then the following is an exact
sequence:

0 1 1 1 1 0 . (43)

Proof To prove that the sequence is exact, we start by establishing that is injec-
tive on 1 . This is a consequence of Theorem 4.1 which guarantees that, if

0 for 1 , then 0.

Secondly, on account of Theorem 4.1 and in particular of the identity

on 1 , it holds that 0 for all 1 . Hence Im

ker . Assume that there exists 1 such that 0. It descends
that 1 . Applying it holds that , that

is 1 .
The third step consists of recalling that, per construction, 0 and that, still

on account of Theorem 4.1, Im ker . To prove the opposite inclusion,
suppose that ker . Let be a smooth function such that there exists

0 1 such that 1 if 1 and 0 if 0. Since is a static
boundary condition and, therefore, it commutes with , it holds that 1 .
Hence setting

.
, a direct calculation shows that

To conclude we need to show that the map on the before last arrow is surjective.
To this end, let 1 and let be as above. Let

.

1 . Per construction 1 and .

Starting from these premises we can investigate further properties of the fun-
damental solutions, starting from the singularities of the advanced and retarded
propagators. To this end let us introduce the space of bounded oper-

ators from 1
0 to 1 and we give a definition of wavefront set

complementary to that of Definition 3.4.

Definition 4.3 (Operatorial wavefront set ) Let 1
0

1 be a continuous map. A point 1 2

if there exists two b-pseudodifferential operators 1 and 2 in 0 elliptic at 1

and 2 respectively, such that 1 2 .

Recalling (4), we can state the following theorem characterizing the singularities
of the advanced and of the retarded fundamental solutions. The proof is a direct
application of Theorem 3.2 or of Theorem 3.3.

Theorem 4.2 Let denote the diagonal in and let be physically
admissible as per Definition 4.2. Then

1 2 1 2 1 2
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where 1 2 means that 1 2 are two points in , cf. (22) connected by a
generalized broken bicharacteristic, cf. Definition 3.8.

Remark 4.3 The reason for the hypothesis on lies in the fact that we do not want
to alter the microlocal behavior of the system in ˚ . More precisely, if no restric-
tion on the wavefront set of is placed, then by the propagation of singularities
theorem, cf. Theorem 3.2, in addition to the singularities propagating along the gen-
eralized broken bicharacteristics of the Klein-Gordon operator we should account
also for those of . On the one hand this would be in sharp contrast with what
happens if were a globally hyperbolic spacetime without boundary. On the other
hand, in concrete applications such as the construction of Hadamard two-point func-
tions, one seeks for bi-distributions with a prescribed form of the wave front set
and whose antisymmetric part coincides with the difference between the advanced
and retarded fundamental solutions associated to the Klein-Gordon operator with
boundary condition implemented by , see e.g. [11, 14, 17, 26, 37].

In addition one can infer the following localization property which is sometimes
referred to as time-slice axiom.

Corollary 4.2 Let 1
1 2

1 be the collection of all
1 such that supp whenever 1 2 , 1 2 . Then,

if is a static boundary condition as per Definition 4.2, the inclusion map 1 2
1

1 2

1 induces the isomorphism

1 2

1
1 2

1
1 2

1

1
. (44)

Proof By direct inspection one can realize that the map 1 2 descends to the quotient

space
1

1 2

1
1 2

. The ensuing application 1 2 is manifestly injective. We

need to show that it is also surjective. Consider therefore any
1

1

and let be the associated solution of the Klein-Gordon equation, cf. (43). Let
be a smooth function such that 1 if 2 while 0 if 1. The

function
. 1

1 2
, where is the causal propagator,

cf. Remark 4.2 and Proposition 4.3. Per construction the map descends

to an application from
1

1
to

1
1 2

1
1 2

which is both a left and a

right inverse of 1 2 .
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5 Hadamard States

In this section, we discuss a specific application of the results obtained in the previous
section, namely we prove existence of a family of distinguished two-point correla-
tion functions for a Klein-Gordon field on a globally hyperbolic, asymptotically AdS
spacetime, dubbed Hadamard two-point distributions. These play an important rôle
in the algebraic formulation of quantum field theory, particularly when the underly-
ing background is a generic globally hyperbolic spacetime with or without boundary,
see e.g. [30] for a review as well as [11, 14, 15] for the analysis on anti-de Sitter
spacetime and [37] for that on a generic asymptotically AdS spacetime, though only
in the case of Dirichlet boundary conditions.

Here our goal is to prove that such class of two-point functions exists even if one
considers more generic boundary conditions. To prove this statement, the strategy
that we follow is divided in three main steps, which we summarize for the reader’s
convenience. To start with, we restrict our attention to static, asymptotically anti-
de Sitter and globally hyperbolic spacetimes and to boundary conditions which are
both physically acceptable and static, see Definition 4.2. In this context, by means of
spectral techniques, we give an explicit characterization of the advanced and retarded
fundamental solutions. To this end we use the theory of boundary triples, a framework
which is slightly different, albeit connected, to the one employed in the previous
sections, see [10].

Subsequently we show that, starting from the fundamental solutions and from
the associated causal propagator, it is possible to identify a distinguished two-point
distributions of Hadamard form.

To conclude, we adapt and we generalize to the case in hand a deformation argu-
ment due to Fulling, Narcowich and Wald, [20] which, in combination with the
propagation of singularities theorem, allows to infer the existence of Hadamard two-
point distributions for a Klein-Gordon field on a generic globally hyperbolic and
asymptotically AdS spacetime starting from those on a static background.

5.1 Fundamental Solutions on Static Spacetimes

In this section we give a concrete example of advanced and retarded fundamental
solutions for the Klein-Gordon operator , cf. (20) on a static, globally hyperbolic,
asymptotically AdS spacetime. For the sake of simplicity, we consider a massless
scalar field, corresponding to the case 1 2, see Eq. 7. Observe that, since
the detailed analysis of this problem has been mostly carried out in [10], we refer to it
for the derivation and for most of the technical details. Here we shall limit ourselves
to giving a succinct account of the main results.

As a starting point, we specify precisely the underlying geometric structure:

Definition 5.1 Let be an -dimensional Lorentzian manifold. We call it a
static globally hyperbolic, asymptotically AdS spacetime if it abides to Definition
2.2 and, in addition,

28   Page 26 of 36 Math Phys Anal Geom (2021) 24: 28



1) There exists an irrotational, timelike Killing field , such that
0 where is the global boundary function,

2) is isometric to a standard static spacetime, that is a warped product
with line element 2 2 2 where is a -independent

Riemannian metric on , while is a smooth, positive function not
depending on .

Remark 5.1 In the following, without loss of generality, we shall assume that, when-
ever we consider a static globally hyperbolic, asymptotically flat spacetime if it
abides to Definition 2.2, the timelike Killing field coincides with the vector field ,
cf. Theorem 2.1. Hence the underlying line-element reads as 2 2 where
both and are -independent and can be identified with the Cauchy surface in
Theorem 2.1. For convenience we also remark that, in view of this characterization
of the metric, the associated Klein-Gordon equation 0 with reads

2 0 (45)

where , being the Laplace-Beltrami operator associated to the the
Riemannian metric .

Henceforth we consider only static boundary conditions as per Definition 4.2
which we indicate with the symbol to recall that they are induced from

. Since the underlying spacetime is static, in order to construct the
advanced and retarded fundamental solutions, we can focus our attention on

˚ ˚ , the bi-distribution associated to the causal propagator , cf. Remark
4.2. It satisfies the following initial value problem, see also [10]:

0

0 (46)

where is the Dirac distribution on the diagonal of ˚ ˚ . Starting from one
can recover the advanced and retarded fundamental solutions via the identities:

and (47)

where is the Heaviside function. The existence and the properties of have
been thoroughly analyzed in [10] using the framework of boundary triples, cf. [24].
Here we recall the main structural aspects.

Definition 5.2 Let be a separable Hilbert space over and let
be a closed, linear and symmetric operator. A boundary triple for the adjoint oper-

ator is a triple h 0 1 , where h is a separable Hilbert space over while
0 1 h are two linear maps satisfying

1) For every it holds

1 0 h 0 1 h (48)
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2) The map h h defined by 0 1 is surjective.

One of the key advantages of this framework is encoded in the following
proposition, see [31]

Proposition 5.1 Let be a linear, closed and symmetric operator on . Then an
associated boundary triple h 0 1 exists if and only if has equal deficiency
indices. In addition, if h h is a closed and densely defined linear
operator, then

.
1 0 is a closed extension of with domain

.
0 and 1 0

The map is one-to-one and . In other word there is a one-to-one
correspondence between self-adjoint operators on h and self-adjoint extensions of
.

Noteworthy is the application of this framework to the case where the rôle of
is played by a second order elliptic partial differential operator . Observe that this
symbol is employed having in mind the subsequent application to (45). To construct
a boundary triple associated with , let be the unit, outward pointing, normal of

and let

0
2 3 2

1
2 1 2

where indicates the Sobolev space associated to the Riemannian manifold

introduced at the end of Section 2.1. Here
1
2 , 1

2 is
the continuous surjective extension of the restriction map from 0 to 0 ,
cf. [25, Th. 4.10 & Cor. 4.12]. In addition, since the inner product 2 on

2 2 , , extends continuously to a pairing
on 1 2 1 2 as well as on 3 2 3 2 , there exist
isomorphisms

1 2 2 3 2 2

such that, for all 1 2 1 2 and for all 3 2

3 2 ,

1 2 1 2 2 3 2 3 2 2

where 1 2 1 2 and 3 2 3 2 stand for the duality pairings between the
associated Sobolev spaces.

Remark 5.2 Note that in the massless case, the two trace operators 0 and 1 coin-
cide respectively with the restriction to 2 of the traces and introduced in
Theorem 3.1 and in Lemma 3.2.

Gathering all the above ingredients, we can state the following proposition, cf.
[10, Prop. 24 & Rmk 26]:
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Proposition 5.2 Let be the adjoint of a second order, elliptic, partial differential
operator on a Riemannian manifold with boundary and of bounded geometry.
Let

0
2

0
2 (49)

1
2

1
2 (50)

Then 2
0 1 is a boundary triple for .

Combining all data together, particularly Proposition 5.1 and Proposition 5.2 we
can state the following theorem, whose proof can be found in [10, Thm 30].

Theorem 5.1 Let be a static, globally hyperbolic, asymptotically AdS space-
time as per Definition 5.1. Let 0 1

2 be the boundary triple as in
Proposition 5.2 associated with , the adjoint of the elliptic operator defined in (45)
and let be a densely defined self-adjoint operator on 2 which individuates
a static and physically admissible boundary condition as per Definition 4.2. Let
be the self-adjoint extension of defined as per Proposition 5.1 by

.
,

where
.

ker 1 0 . Furthermore, let assume that the spectrum of
is bounded from below.
Then, calling the associated boundary condition, the advanced and retarded
Green’s operators G associated to the wave operator 2 exist and they are

unique. They are completely determined in terms of ˚ ˚ . These are

bidistributions such that and where
˚ ˚ is such that, for all ˚

1 2
.

2
d d 1

1
2 sin

1
2 2 (51)

where 2 denotes the evaluation of , regarded as an element of

c and
1
2 sin

1
2 is defined exploiting the functional

calculus for . Moreover it holds that

G ˚

where
.

0 . In particular,

1 G 0 G 0
˚ . (52)

Remark 5.3 Observe that, in Theorem 5.1 we have constructed the advanced and
retarded fundamental solutions as elements of ˚ ˚ . Yet we can com-
bine this result with Theorem 4.1 to conclude that there must exist unique advanced
retarded propagators on the whole whose restriction to ˚ coincides with .
With a slight abuse of notation we shall refer to these extended fundamental solutions
with the same symbol.
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5.2 Existence of Hadamard States on Static Spacetimes

In this section, we discuss the existence of Hadamard two-point functions. We stress
that the so-called Hadamard condition and its connection to microlocal analysis have
been first studied and formulated under the assumption that the underlying spacetime
is without boundary and globally hyperbolic. We shall not enter into the details and
we refer an interested reader to the survey in [30].

As outlined in the introduction, if the underlying background possesses a timelike
boundary, the notion of Hadamard two-point function needs to be modified accord-
ingly. Here we follow the same rationale advocated in [11, 12] and also in [17,
37].

Definition 5.3 Let be a globally hyperbolic, asymptotically AdS spacetime
as per Definition 2.2. A bi-distribution 2 is called of Hadamard form
if its restriction to ˚ has the following wavefront set

2 0 and 0
(53)

where entails that and are connected by a generalized broken bichar-
actersitic, while 0 means that the co-vector at is future-pointing.
Furthermore we call 2 a Hadamard two-point function associated
to , if, in addition to (53), it satisfies

2 2 0

and, for all ,

2 0 and 2 2 (54)

where is the Klein-Gordon operator as in (20), while is the associated causal
propagator, cf. Remark 4.2.

Remark 5.4 To make contact with the terminology often used in theoretical physics,
given a Hadamard two-point function 2 , we can identify the following associated
bidistributions:

the bulk-to-bulk two-point function ˚ 2 ˚ ˚ such that ˚ 2
.

2 ˚

is the restriction of the Hadamard two-point function to ˚ ˚ .
the boundary-to-bulk two-point function 2

˚ such that 2
.

res ˚ 2 where is the embedding map of the boundary in
, while res ˚ is the restriction map to ˚ .

the boundary-to-boundary two-point function 2 such that
2

.
2 where is the embedding map of the

boundary in .

Observe that both 2 and 2 are well-defined on account of (53) and of [28,
Thm. 8.2.4].
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The existence of Hadamard two-point functions is not a priori obvious and it
represents an important question at the level of applications. Here we address it in
two steps. First we focus on static, globally hyperbolic, asymptotically anti-de Sitter
spacetimes and subsequently we drop the assumption that the underlying background
is static, proving existence of Hadamard two-point functions via a deformation
argument.

Let us focus on the first step. To this end, on the one hand we need the boundary
condition to abide to Hypothesis 4.1, while, on the other hand we make use of some
auxiliary results from [37], specialized to the case in hand. In the next statements it
is understood that to any Hadamard two-point function 2 , it corresponds

0 , with 1. Recalling Definition 3.3 and 4.3, the
following lemma holds true, cf. [37, Lem. 5.3]:

Lemma 5.1 For any 1 2 , 1 2 if and only if there
exist neighbourhoods of , 1 2, such that for all 0 elliptic at

satisfying , 1 2 .

Observe that this lemma entails in particular that, given any , 1 2
such that supp ˚ then 1 2 has a smooth kernel over ˚ ˚ . In addition
the following also holds true, cf. [37, Lemma 5.6]:

Proposition 5.3 Let identify an Hadamard two-point function. If 1 2

for 1 2 0 , then 1 1 or 2 2

.

Given any two points 1 and 2 in the cosphere bundle , cf. (4) we shall
write 1 2 if both 1 and 2 lie in the compressed characteristic bundle and they
are connected by a generalized broken bicharacteristic, cf. Definition 3.8. With these
data and using [37, Prop. 5.9] together with Hypothesis 4.1 and with Theorems 3.2
and 3.3, we can establish the following operator counterpart of the propagation of
singularities theorem:

Proposition 5.4 Let 1
0

1 and suppose that 1 2

. If 0, then 1 and 1 2 for every 1

such that 1 1. Similarly, if 0, then 2 and 1 2
for all 2 such that 2 2.

Our next step consists of refining Theorem 4.2 in ˚ , cf. for similarities with [14,
Cor. 4.5].

Corollary 5.1 Let 1 ˚ 1 ˚ be the restriction to ˚ of the
causal propagator as per Remark 4.2 . Then

1 2 ˚ ˚ 1 2 .
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Proof A direct application of Theorem 4.2 yields

1 2 ˚ ˚ 1 2

From this inclusion, it descends that every pair of points in the singular support of
is connected by a generalized broken bicharacteristic completely contained in ˚ .

Since ˚ ˚ , we can apply [7, Ch.4, Thm. 16] and the sought statement is
proven.

With these data, we are ready to address the main question of this section. Suppose
that is a static, globally hyperbolic, asymptotically AdS spacetime, cf. Defi-
nition 2.2 and 5.1. Let be the Klein-Gordon operator as per (20) and let
be a static boundary condition as per Theorem 5.1. For simplicity we also assume
that the spectrum of is contained in the positive real axis. Then the following key
result holds true:

Proposition 5.5 Let be a static, globally hyperbolic asymptotically AdS
spacetime and let be the Klein-Gordon operator with a static and physically
admissible boundary condition as per Definition 4.2 Then there exists a Hadamard
two-point function associated to , 2 such that, for all

1 2

2 1 2
.

2
2

d d 1
exp

1
2

1
2

2 (55)

Proof Observe that, per construction 2 is a bi-solution of the Klein-Gordon equa-
tion associated to the operator and it abides to (54). We need to show that (53)
holds true. To this end it suffices to combine the following results. From [34] one
can infer that, the restriction of ˚ 2 , the bulk-to-bulk two-point distribution, to
every globally hyperbolic submanifold of not intersecting the boundary is consis-
tent with (53). At this point it suffices to invoke Proposition 5.3 and 5.5 to draw the
sought conclusion.

Remark 5.5 Observe that, from a physical viewpoint, in the preceding theorem, we
have individuated the two-point function of the so-called ground state with boundary
condition prescribed by .

5.3 A Deformation Argument

In order to prove the existence of Hadamard two-point functions on a generic asymp-
totically anti-de Sitter spacetime for a Klein-Gordon field with prescribed static
boundary condition, we shall employ a deformation argument akin to that first out-
lined in [20] on globally hyperbolic spacetimes with empty boundary. Yet, we need
to make an additional assumption, namely that the Cauchy surfaces are compact.

To this end we need the following lemma, see [37, Lem. 4.6], slightly adapted
to the case in hand. In anticipation, recalling (2), we say that a globally hyperbolic,
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asymptotically AdS spacetime is even modulo 3 close to if 0
2

1 where 1 is a symmetric two-tensor, see [37, Def. 4.3].

Lemma 5.2 Suppose is a globally hyperbolic, asymptotically anti-de Sitter
spacetime. For any 2 there a static, globally hyperbolic asymptotically AdS
spacetime as well as 0 1 with 0 1 2 such that if

1 , while, if 0 , is isometric to a standard static asymptotically AdS
spacetime which is even modulo 3 and in which 1 for
some 0, with as in (1).

Consider now a generic, globally hyperbolic, asymptotically anti-de Sitter space-
time and a deformation as per Lemma 5.2. Observe that, per construction, all
generalized broken bicharacteristics reach the region of with 1 2 . This
observation leads to the following result which is a direct consequence of the propa-
gation of singularities theorem 3.3 and 3.2. Mutatis mutandis, the proof is as that of
[37, Lem. 5.10] and, thus, we omit it.

Lemma 5.3 Suppose that is a bi-solution of the Klein-Gordon
equation ruled by abiding to (54) and with a wavefront set of Hadamard form in
the region of such that 1 2. Then is a Hadamard two-point function.

To conclude, employing Corollary 4.2 we can prove the sought result:

Theorem 5.2 Let be a globally hyperbolic, asymptotically anti-de Sitter
spacetime and let be its static deformation as per Lemma 5.2. Let be a
static and physically admissible boundary condition so that the Klein-Gordon oper-
ator on admits a Hadamard two-point function as per Proposition
5.5. Then there exists a Hadamard two point-function on for the associated
Klein-Gordon operator with boundary condition ruled by .

Proof Let be as per hypothesis and let be a static, globally
hyperbolic, asymptotically AdS spacetime such that there exists a third, globally
hyperbolic, asymptotically AdS spacetime interpolating between and

in the sense of Lemma 5.2. On account of Theorem 2.1, in all three cases
is isometric to .

On account of Proposition 5.5, on we can identify an Hadamard two-point
function as in (55) subordinated to the boundary condition . We indicate it with

2 omitting any reference to since it plays no explicit rôle in the analysis.
Focusing the attention on , Lemma 5.2 guarantees that, if 0, being

the time coordinate along , then therein is isometric to . Calling this
region 0, the restriction 2 0 0 identifies a two-point distribution of Hadamard
form. Notice that we have omitted to write explicitly the underlying isometries for
simplicity of notation.

Using the time-slice axiom in Corollary 4.2, for any pair of test-functions
such that for all supp supp , 0, we set
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and where is the causal propagator asso-
ciated to in , while is any smooth function such that there
exists 1 2 0 for which 0 if 1 while 1 if 2. We define

2 2 .

Observe that, although , one can infer that the right-hand side of the
last identity is well-defined using the same argument as in [37, Thm. 5.11], see in
particular Equation (5.41). In addition, since is continuous on , sequential
continuity entails that 2 . In addition, per construction, it is a solution
of the Klein-Gordon equation ruled by on and abiding to (54).

Furthermore Lemma 5.3 yields that 2 is of Hadamard form.
To conclude it suffices to focus on recalling that there exists 1 such

that, in the region 1 for which 1, is isometric to
. Hence,we can repeat the argument given above. More precisely we consider

2 and, using the time-slice axiom, see Corollary 4.2, we can identify 2
which is a solution of the Klein-Gordon equation ruled by and it

abides to (54). Lemma 5.3 entails also that it is of Hadamard form, hence proving the
sought result.

As a final comment, we stress that the obstruction which forces us to require in
this last theorem that the Cauchy surfaces are compact is the lack in Theorem 4.1
of any statement on the support properties of . To the best of our knowledge the
analysis of supp is an open problem even when considering boundary condition
of Robin type and we hope to address this issue in a future work.

Acknowledgments We are grateful to Benito Juarez Aubry for the useful discussions which inspired the
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13. Dappiaggi, C., Ferreira, H.R., Juárez-Aubry, B.A.: Mode solutions for a Klein-Gordon field in anti–
de Sitter spacetime with dynamical boundary conditions of Wentzell type. Phys. Rev. D 97(8), 085022
[arXiv:1802.00283 [hep-th]] (2018)

14. Dappiaggi, C., Ferreira, H.R.: On the algebraic quantization of a massive scalar field in anti-de-Sitter
spacetime. Rev. Math. Phys. 30(2), 1850004, [arXiv:1701.07215 [math-ph]] (2018)

15. Dappiaggi, C., Ferreira, H.R., Marta, A.: Ground states of a Klein-Gordon field with Robin boundary
conditions in global anti–de Sitter spacetime. Phys. Rev. D 98, 025005. [arXiv:1805.03135 [hep-th]]
(2018)

16. Dappiaggi, C., Marta, A.: A generalization of the propagation of singularities theorem on asymptoti-
cally anti-de Sitter spacetimes. [arXiv:2006.00560 [math-ph]], to appear on Math Nach (2021)

17. Dybalski, W., Wrochna, M.: A mechanism for holography for non-interacting fields on anti-de Sitter
spacetimes. Class. Quant. Grav. 36(8), 085006 [arXiv:1809.05123 [math-ph]] (2019)

18. Enciso, A., Kamran, N.: A singular initial-boundary value problem for nonlinear wave equations and
holography in asymptotically anti-de Sitter spaces. J. Math. Pure. Appl. 103, 1053 [arXiv:1310.0158
[math.AP]] (2015)

19. Favini, A., Goldstein, G.R., Goldstein, J.A., Romanelli, S.: The heat equation with generalized
wentzell boundary condition. J. Evol. Equ. 2, 1 (2002)

20. Fulling, S.A., Narcowich, F.J., Wald, R.M.: Singularity Structure of the Two Point Function in
Quantum Field Theory in Curved Space-time. Ann. Phys. ( N.y.) 136, 243–272 (1981)

21. Gérard, C., Oulghazi, O., Wrochna, M.: Hadamard States for the Klein-Gordon equation on
Lorentzian manifolds of bonded geometry. Comm. Math. Phys. 352, 519 [arXiv:1602.00930 [math-
ph]] (2017)

22. Ginoux, N., Murro, S.: On the Cauchy problem for Friedrichs systems on globally hyperbolic
manifolds with timelike boundary. [arXiv:2007.02544]

23. Guillemin, V., Miranda, E., Pires, A.R.: Symplectic and Poisson geometry on b-manifolds. Adv. in
Math. 264, 864. arXiv:1206.2020 [math.SG] (2014)

24. Grubb, G.: A characterization of the non-local boundary value problems associated with an elliptic
operator. Ann. Sc. Norm. Sup. Pisa (3) 22, 425 (1968)

25. Große, N., Schneider, C.: Sobolev spaces on Riemannian manifolds with bounded geometry:General
coordinates and traces. Math. Nachr. 286, 1586 (2013)

26. Gannot, O., Wrochna, M.: Propagation of Singularities on AdS Spacetimes for General Bound-
ary Conditions ant the Holographic Hadamard Condition. to appear on J. Inst. Math. Juissieu,
arXiv:1812.06564 [math.AP] (2020)

Page 35 of 36    28Math Phys Anal Geom (2021) 24: 28

http://arxiv.org/abs/1808.04412
http://arxiv.org/abs/1611.00281
http://arxiv.org/abs/1010.1925
http://arxiv.org/abs/1804.03434
http://arxiv.org/abs/1610.01049
http://arxiv.org/abs/1802.00283
http://arxiv.org/abs/1701.07215
http://arxiv.org/abs/1805.03135
http://arxiv.org/abs/2006.00560
http://arxiv.org/abs/1809.05123
http://arxiv.org/abs/1310.0158
http://arxiv.org/abs/1602.00930
http://arxiv.org/abs/2007.02544
http://arxiv.org/abs/1206.2020
http://arxiv.org/abs/1812.06564


27. Holzegel, G.: Well-posedness for the massive wave equation on asymptotically anti-de Sitter
spacetimes. J. Hype. Diff. Eq. 9, 239 (2012)
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