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Abstract
The Kahan discretization of the Lotka-Volterra system, associated with any skew-
symmetric graph , leads to a family of rational maps, parametrized by the step size.
When these maps are Poisson maps with respect to the quadratic Poisson structure of
the Lotka-Volterra system, we say that the graph has the Kahan-Poisson property.
We show that if is connected, it has the Kahan-Poisson property if and only if it is a
cloning of a graph with vertices 1 2 , with an arc precisely when ,
and with all arcs having the same value. We also prove a similar result for augmented
graphs, which correspond with deformed Lotka-Volterra systems and show that the
obtained Lotka-Volterra systems and their Kahan discretizations are superintegrable
as well as Liouville integrable.
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1 Introduction

With any complex skew-symmetric matrix is associated a (skew-
symmetric) Lotka-Volterra system, which is the Hamiltonian system, described in
terms of the standard coordinates 1 of by the following system of
differential equations:

1

1 2 . (1.1)

The Hamiltonian structure, which is also determined by , is defined by the basic
Poisson brackets , for 1 , with Hamiltonian
1 2 . The matrix may be viewed as the adjacency matrix of a (skew-

symmetric) graph , having the integers 1 2 as vertices and with an arc from
to with value when 0 and . We often think of the Lotka-

Volterra system as being associated with and denote it by LV . Notice that is
determined, up to isomorphism, by LV , as was shown in [4]. When the entries of
are all real, one may also consider (1.1) on , so in what follows we suppose that

the entries of belong to , where stands for or and we consider (1.1) on .
For a system of quadratic differential equations, such as (1.1), a natural discretiza-

tion has been constructed by Kahan [3], leading to a rational map, called its Kahan
map (see also [1, 2]). Applied to (1.1), the Kahan map with step size is
the rational map, corresponding to the field automorphism 1

1 , defined by the following formulas, where the right hand side has been
obtained from (1.1) by polarization:

1

1 2 .

From the point of view of discrete integrability, a natural question is whether the
Kahan map is a Poisson map with respect to the above Poisson structure. In formulas,
this means that , for 1 . When this is the case,
we say that has the Kahan-Poisson property. A general skew-symmetric graph
does not have the Kahan-Poisson property. In order to give a more precise answer, let
us denote by the skew-symmetric graph with vertices 1 , and with an arc

, with value 1, for any ; for we denote by the graph with the
same vertices and arcs as , but where the value of every arc is .

Theorem 1.1 Let be a connected skew-symmetric graph. Then has the Kahan-
Poisson property if and only if is isomorphic to for some , some

and some weight vector for .

For a skew-symmetric graph which is not connected, Theorem 1.1 applies to each
one of its connected components.

The notions of cloning and decloning of skew-symmetric graphs and Lotka-Volterra
systems were introduced in [4] in the study of morphisms and automorphisms of
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graphs and Lotka-Volterra systems. For a graph, decloning amounts to identifying
two (or more) vertices when they have the same neighborhood (which means that
the corresponding lines of its adjacency matrix are identical); the quotient graph is
then said to be irreducible. With this terminology, the theorem can also be stated by
saying that the only connected, irreducible skew-symmetric graphs which have the
Kahan-Poisson property are the graphs , where and .

The fact that (and hence , for all ) has the Kahan-Poisson property has
already been shown in [7, Prop. 3.8]. We show in Proposition 2.3 that the Kahan-
Poisson property is preserved by cloning and decloning. This proves the easier,
inverse implication in Theorem 1.1. The main result which we prove in this paper is
the direct implication, which we first show in dimension 3 (Section 3), then in dimen-
sion 4, using the result in dimension 3 (Section 4.2), and finally in dimension 4,
using the result in dimension 4 (Section 4.3).

In Section 5, we prove the following generalization of Theorem 1.1 to augmented
graphs, which correspond to deformed Lotka-Volterra systems (see Section 5 for the
definition of an augmented graph and the KP property for such graphs):

Theorem 1.2 Let be an augmented graph of a connected skew-symmetric graph .
Then has the Kahan-Poisson property if and only if is isomorphic to an aug-
mented graph of for some , some and some weight vector for

.

We show in Section 6 that the (deformed) Lotka-Volterra systems, correspond-
ing to the (augmented) graphs which appear in Theorems 1.1 and 1.2, have a
discretization with good integrability properties, namely the Kahan discretization,
which is in these cases a Poisson map with respect to the original Poisson struc-
ture, is both superintegrable and Liouville integrable. It follows that the (deformed)
Lotka-Volterra systems whose Kahan discretization is integrable with respect to their
original Poisson structure are characterized by the Kahan-Poisson property.

2 The Kahan-Poisson Property

In this section we introduce the Kahan-Poisson property for skew-symmetric graphs
and establish it for a particular family of such graphs. We first recall the basic facts
which we will use about the Kahan discretization of systems of quadratic differ-
ential equations and about skew-symmetric Lotka-Volterra systems; see [3, 4] for
details.

2.1 The Kahan Discretization

Consider a system of differential equations on :

1 2 . (2.1)
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Here, 1 and is assumed to be a quadratic form, whose corre-
sponding symmetric bilinear form is denoted by , so that . The
Kahan discretization of (2.1) is by definition given by

2
1 2 (2.2)

where is a non-zero parameter, the step size. When (linearly!) solved for
1 , one gets a family of birational maps from to itself, parametrized by

. Thinking of as being fixed, it is called the Kahan map. We will mostly work
with the corresponding endomorphism of the field of rational functions

1 2 , defined by , for 1 ; we call it the Kahan
morphism.

2.2 Lotka-Volterra Systems

We are interested in the Kahan discretization of skew-symmetric Lotka-Volterra sys-
tems. As recalled in the introduction, a Lotka-Volterra system is associated with any
skew-symmetric matrix ; we also view as the adjacency matrix of
a skew-symmetric graph , with vertex set 1 2 , and think of
the Lotka-Volterra system as being associated with the graph , denoted LV . The
Poisson structure of LV , which we consider here as a Poisson bracket on , is
the quadratic bracket, given by , for 1 2 . It makes

into a Poisson field. The Hamiltonian vector field on ,
associated with the Hamiltonian 1 2 , is given by the following
quadratic differential equations:

1

1 2 .

Its Kahan map is defined by the following specialisation of (2.2):

1 1

1 2 . (2.3)

An important example for this paper is the Lotka-Volterra system LV , whose
underlying graph has vertices 1 2 and has an arc from to with value 1
when (see Fig. 1).

2.3 The Kahan-Poisson Property

The property of the Kahan map in which we are interested in this paper is its preser-
vation of the Poisson structure of the associated Lotka-Volterra system, i.e., that the
Kahan map, which is a birational automorphism of , is also a Poisson map (and
hence a birational Poisson automorphism). Before giving the definition, let us clarify
the independence on : when the Kahan map is a Poisson map for some value of
then it is a Poisson map for all values of . Indeed, (2.3) is homogeneous when is
given weight 1, while giving a weight 1 to all ; the claim then follows from the
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Fig. 1 The graph
corresponds to the
skew-symmetric matrix
whose upper-trangular entries
are all equal to 1. The pictured
graph is 6

fact that homotheties of quadratic Poisson structures are Poisson maps (see [8, Propo-
sition 8.16]). It also shows that if the Kahan map of a Lotka-Volterra system LV
is a Poisson map then the Kahan map of the Lotka-Volterra system LV , where

is with all of its values scaled by , is also a Poisson map. We therefore
set 1 and when we speak of the Kahan map or the Kahan morphism of a Lotka-
Volterra system, it is implictly assumed that 1. Notice that when 1, then

is the graph with the direction of all its arcs reversed.

Definition 2.1 Let be a skew-symmetric graph. Then is said to have the Kahan-
Poisson property (or KP property) if the Kahan map of its associated Lotka-Volterra
system LV is a Poisson map.

In algebraic terms, this means that the Kahan morphism is an automorphism of
Poisson fields, i.e., , for all 1 , which can

also be written as .
A first family of skew-symmetric graphs which have the KP property is given by

the following proposition:

Proposition 2.2 [7] For any , the graph has the KP property.

Proof For the proof, we refer to [7, Proposition 3.8]. Yet, we point out the crucial
fact that makes the computation feasible. In terms of the variables 1 , and
1 , defined by 1 2 , and 1 2 , the

Kahan map (with 1) takes the simple separated form

1

1 2
1 2 (2.4)

while the Poisson bracket takes the form

for 1 . (2.5)
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It therefore suffices to verify that , for 1 ,
with given by (2.4), which is easily done by direct computation, using (2.5).

As we mentioned earlier, if we multiply the adjacency matrix of by any non-
zero scalar, the property for the corresponding graph of having the KP property is not
affected. In particular, Proposition 2.2 implies that has the KP property for any

and for any .

2.4 Cloning and decloning

The cloning of Lotka-Volterra systems, which was introduced in [4], is the inverse
operation to decloning, which we already recalled in the introduction. Let
be a skew-symmetric graph with vertex set 1 2 . Let be a weight
vector for , i.e., is a function . The cloning of is
the skew-symmetric graph , constructed as follows: on the one
hand, every vertex gives rise to vertices in , which we denote by

1 2 . On the other hand, the entries of the (skew-
symmetric) adjacency matrix of are defined by , for

and 1 , 1 . By definition, the cloning of
LV is LV . We will denote the linear coordinates corresponding to the
vertices by and write, as above, for the field of rational functions

1 1 1 2 . The Poisson bracket on associated with is given
by , as follows from the definition of . For 1
and 1 the functions are Casimir functions of : they
belong to the center of the Poisson bracket. As Hamiltonian, we again take the sum
of all variables, 1 1 . The Hamiltonian vector field of
LV is then given by the following differential equations:

1 1

1 1 .

Its Kahan discretization is implicitly defined, as in (2.3), by the following
equations:

1 1 1 1

1 1 . (2.6)

The corresponding automorphism of is defined by , for
1 and 1 . We view as a field extension of using

the decloning morphism , defined by

1

. (2.7)
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We show in the following proposition that the decloning morphism commutes
with the Kahan morphism and that the KP property is preserved under cloning and
decloning:

Proposition 2.3 With the above definitions and notations, the following diagram of
fields and field morphisms is commutative:

(2.8)

The vertical arrow is a Poisson morphism, while is a Poisson morphism if and
only if is a Poisson morphism.

Proof We first show that the diagram is commutative. Let us set 1, as before.
Using , (2.6) can be rewritten as

1 1

. (2.9)

For fixed , summing up (2.9) for 1 , we get

1 1

. (2.10)

Recall that 1 is the unique solution to (2.3); if we write this solution by
making explicit its dependency on 1 as 1 , then it follows
from comparing (2.3) and (2.10) that 1 . Since is an
algebra homomorphism and is a rational function of its arguments,

1 1

showing the commutativity of the diagram. For 1 we have

1 1 1 1

as follows from the definitions of the Poisson brackets and of . As a consequence,
the vertical arrows in the diagram (2.8) are morphisms of Poisson fields. In order to
show that the two horizontal arrows in that diagram are at the same time morphisms
of Poisson fields, we first show that

is a Casimir of and is an invariant of (2.11)

for 1 and 1 . The first statement in (2.11) follows at once from
the fact that is for any 1 a Casimir function of , as
we already recalled. The second statement means that . To
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prove the latter, divide (2.9) by , to see that is independent of ; then
, for and as above, so that is an invariant, and

hence also 1 . We can therefore write

and . (2.12)

In the second formula above, 1 and 1 . Then,

2.12 2.11

2.12 2.8

(2.13)

where we have used in the last step that is a Poisson morphism. It follows that

is a Poisson morphism

for all 1
2.13

for all 1 1

1

is a Poisson morphism.

Propositions 2.2 and 2.3 lead at once to the following corollary, which is the
inverse implication in Theorem 1.1.

Corollary 2.4 For any weight vector for and for any , the graph
has the KP property.

3 The 3-dimensional Case

In this section we prove the direct implication of Theorem 1.1 in case the skew-
symmetric graph has 3 vertices. We do not need to prove this in case 2
because there is only one non-trivial skew-symmetric graph with two vertices, which
is the graph 2, with , for which we know from Proposition 2.2 that it has
the KP property.

3.1 The Known Cases

Let be any non-trivial skew-symmetric graph with three vertices,
1 2 3 . By assumption, it has at least one arc, which we may suppose to be an
arc between the vertices 1 and 2, that is 1 2 0. Since, as we have seen, the KP
property is preserved by a rescaling of , we may suppose that 1 2 1; let us denote
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1 3 and 2 3. We list in Table 1 the values of and for which we know
that the corresponding graph has the KP property, because it is isomorphic to 3 or
to a cloning of 2 (Corollary 2.4). The last three graphs are isomorphic, but it will
be convenient to consider them all. For future use (Section 4.2), notice also that these
graphs are characterized amongst all non-trivial 3-vertex graphs as follows: has

1. Either a single arc (in which case the graph is disconnected);
2. Or two arcs, both starting from – or ending in – the same vertex;
3. Or three arcs which do not form a circuit.

We will prove that there are no other three-vertex graphs , with
1 2 1, which have the KP property.

3.2 Computing Efficiently the Poisson Brackets

Since the Kahan map of a Lotka-Volterra system is given by rational functions, which
are already quite complicated in dimension 3, we explain here how the condition that
the Kahan morphism is a Poisson morphism leads to necessary conditions that are
computable by hand, and which will actually be sufficient for our purposes. Since we
will use our method also in dimension 4, we will explain it for any skew-symmetric
graph with 2 vertices. As before, the adjacency matrix of is denoted by .
We first write down the basic equations and introduce some notation. We write (2.3)
in two different ways (recall that we have set 1). On the one hand, we write it as
a linear system in 1 ,

. (3.1)

Notice that every entry of is an affine function of 1 . For a point
we denote by the evaluation of at and by the image of under the

Table 1 The six cases of
non-trivial three-vertex
graphs , with 1 2 1, which
we already know to have the
Kahan-Poisson property (0,0)

1

3

2 1

3

2

(1,1,1)

(0,-1)

1

3

2

1 2 (2,1)

(1,0)

1

3

2

1 2 (1,2)

(1,-1)

1

3

2 1

3

2

(1,1,1)

(1,1)

1

3

2 1

3

2

(1,1,1)

(-1,-1)

1

3

2 1

3

2

(1,1,1)

Every arc has value 1
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Kahan map, i.e., 1 2 3 . On the other hand, it is easy to see that
(2.3) can also be written as 0, for 1 2 , where is defined by

1

1
1

. (3.2)

Indeed, (3.2) is the -th entry of . We denote the column vector whose
-th entry is by and write for with the functions 1 evaluated

at . Each entry of is also an affine function of 1 .
We can now explain how to explicitly compute, for given and , the condition

. We do this in four different steps.

Step 1: The image point .
If is non-singular, i.e., det 0, the Kahan map is defined at and

its image is computed from

. (3.3)

Notice that det depends (linearly) on the entries of , so for a given
it may be zero for some values of these entries . The computations that follow are
then not valid for these values; as we will see, it is important to keep track of these
values. In the steps which follow, we assume that det 0.

Step 2: Computation of the Poisson brackets , 1 .
We compute the Poisson brackets for 1 . This can easily

be done directly from (3.1) without solving the latter for , as follows. Let us denote
by the matrix obtained by taking the Poisson bracket of every entry of
with , and similarly for the column vector . Then it follows from (3.1),
using the Leibniz rule, that so that, at ,

. (3.4)

This gives a linear system for the brackets , 1 . Notice that
the matrix governing the linear system is again , so that these brackets are
uniquely determined from (3.4) (recall that we have assumed that det 0).

Also, the right hand side of (3.4) is equal to , since is the -th

entry of (see (3.1)). It means that, in order to compute the right hand side
of (3.4), we can start from the (2.3) defining the Kahan map, evaluate the functions
1 at , and then take the Poisson bracket at of the remaining affine func-

tions in 1 with . Doing this for 1 and solving the resulting
linear system, we find the brackets for 1 . They are rational
functions of the entries of the adjacency matrix of .

Step 3: Computation of the Poisson brackets .
The Poisson brackets for 1 are computed in a quite simi-

lar way, using the Poisson brackets which were computed in Step 2 (recall that is
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fixed). In this step we take the Poisson bracket of (3.1) with at to obtain, as in
Step 2,

. (3.5)

Notice that, again, the defining matrix of the linear system is and that,
again, the right hand side can easily be computed from the equations defining the
Kahan map, where the functions 1 are evaluated at ; it is here that one
needs the Poisson brackets , for 1 2 , which were computed in
Step 2. Solving the resulting linear system, we find the brackets for

1 . Again, they are rational functions of the entries of the adjacency matrix
of .

Step 4: The Poisson morphism condition(s).
From the previous step we know and we can now write down

explicitly the condition that

which is a sufficient condition for the Kahan morphism to be a Poisson morphism.
Since the left hand side is a rational function of the entries of the adjacency matrix ,
we get a rational condition on these entries. If the condition is not satisfied, we can
conclude that the graph does not have the KP property. This is how we will use this
condition in what follows.

3.3 The 3-dimensional Case

We now prove the direct implication in Theorem 1.1 in the three-dimensional case.
We assume that is a three-vertex graph, with 1 2 1. We need to show
that when has the KP property, which is equivalent to saying that

for 1 3 (3.6)

then is one of the graphs in Table 1. We will do this by computing (3.6) at
some well-chosen points (and for some particular values of ), using the method of
the previous subsection.

To do this, it is helpful to represent the six values from the first column in Table 1
as points in the plane, as indicated in Fig. 2. One sees from the figure that these six
points lie on (one or two of) the lines 1 1 . This will guide us
in the proof as follows: we will first show that for points on one of these three
lines, the corresponding graph can only have the KP property if it is one of the three
special points on that line. Secondly, we will show that for points not lying on
any of these lines, the corresponding graph cannot have the KP property.

We start with the line 1, so we suppose that 1 , and we take
1 1 1 . The condition which we will compute is 1 3 1 3 ,
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Fig. 2 Viewed as points in the plane, the six values for which we know that the corresponding
3-vertex graph has the KP property lie on three lines, each of which contains three of the points

so that 1 and 3. Since 1 2 1 3 1 and 2 3 , the Kahan map is in
this case defined by the following linear system:

1 1 1 2 3 1 2 3

2 2 2 3 1 2 3 1 (3.7)

3 3 3 1 2 3 1 2 .

Following Step 1 of the method, we write these equations as , where

1 2 3 1 1

2 1 1 3 2

3 3 1 1 2

.

Then

3 1 1
1 2
1 2

1 1

8

4 2 2
2 1 5 3 1 3
2 1 1 3 5 3

so that 1
2 0 1 1 . Note that det 8, so that is defined for

any value of . Evaluating 1 2 3 in (3.7) at , leads to

1

2

0
1 1 2 2 3 1
1 1 2 2 3 1

.

It follows that is, for 1 2 3, respectively given by

0
1
1

1

2

0
1 2

1 2 2
and

1

2

0
2 1 2

1 2
.
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According to Step 2, we get the Poisson brackets by multiplying these
three vectors with the inverse of . We display only the brackets 1

since they are the only ones needed to compute 1 and to finish the

computation:

1 1
1

2
2 1

1

4
3 1

1

4
.

Using these values we get

1

2 1

4

0
1
1

.

According to Step 3, we get the Poisson brackets 1 by multiplying this
vector with the inverse of . The only bracket we need is 1 3 , which is
found to be equal to 1

8 1 2 . Since 1 0 the condition that 1 3

1 3 reduces to the condition on that 1 1 0. We have
therefore shown that if is on the line 1, the corresponding graph can only
have the KP property if 1 0 1 , which corresponds precisely to the three
values for which we know that the corresponding graph has the KP property.

We next consider the line 1 and we take 1 1 1 . We have that

2 1
1 3 1

1 2
so that

1

2

1
0

1
.

Again, det 8 and is defined for any value of . The computations of
the brackets are very similar to the previous case and lead to a similar result: since

1 2 8 1 2 and 2 0, we may conclude as in the first case from
the equality 1 2 1 2 that if is on the line 1, the
corresponding graph can only have the KP property if 1 0 1 , which corre-
sponds again precisely to the three values for which we know that the corresponding
graph has the KP property.

We move to the case that is on the line . We choose 1
2 1 1

2 .
A new phenomenon is now that det depends on , since

1

2

1
2 1 2

2
det

1

2
1 .

It means that what follows is not valid for 1, but that is not a problem since
1 1 is precisely one of the cases for which we know that the corresponding

graph has the KP property. Thus, under this assumption, we may continue as before
and compute the Poisson brackets to find that 1 2

1
4 1 2 5 .

The equality 1 2 1 2 then evaluates to 2 1 0, showing
that if , with 1, then the graph corresponding to can only have
the KP property if 0 or 1, as was to be shown.

We finally consider the case where does not belong to any of the three lines
of Fig. 2, i.e., we suppose that , that 1 and that 1. We show that

Page 13 of 28    26Math Phys Anal Geom (2021) 24: 26



the corresponding graph cannot have the KP property. As in the previous cases we
use the method of Section 3.2. The formulas are slightly more complicated, so we
present the computation in some more detail.

We choose the point 1 1 1 . Then

1 2 1 1 3 2 3 .

Also,

1
1

1
with det 1 1

and

1 1 1 1 1 1
1 1 1

1 1 1
.

It follows that 1 1 1 1 1 1 1 so that

1 1 2 3
1 1 2 3

1 1 2 1 3

and
1 2 1 2

1 2 1 2

1 1 2 2
.

Multiplying the latter matrix with 1 we obtain the matrix of Poisson brack-
ets of which we only need the first line, which yields the following
Poisson brackets:

1 1
2

1
1 2 1 1 3

2 2

1
.

Indeed, they are sufficient to compute the Poisson bracket 1 , which

is given by

1
1

1

1
1

1

2
1
2 2

1 2 2

2 1
2 1

. (3.8)

We can now compute 3 1 as the third entry of 1
1

1 , i.e., as the product of the third line of 1 and (3.8). After some

simplifications, we get

3 1
1

1 1 2 2
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so that
3 1 1 3 2 0

since it was supposed that . This shows our claim.

4 The Higher-dimensional Case

In this section we prove Theorem 1.1 when has at least four vertices. To do this, we
will use reduction, which amounts to removing vertices from the graph. In Section 4.1
we recall reduction and show that the KP property is preserved by reduction. This is
used in Section 4.2 to prove Theorem 1.1 when has four vertices, and in Section 4.3
to prove Theorem 1.1 when has more than four vertices.

4.1 Reduction

Lotka-Volterra systems admit a class of natural reductions, which we first recall.
Let be a graph with vertex set 1 2 , where 1. Let

be a proper, non-empty subset and denote # . We denote by
the induced subgraph of . The natural inclusion map is a graph

morphism, hence induces a morphism of Lotka-Volterra systems LV LV
(see [4, Prop. 3.2]). If we denote the natural coordinates on these Lotka-Volterra
systems respectively by 1 and 1 , then the induced
morphism is an injective Poisson morphism; if we denote by the
unique strictly increasing function 1 1 which takes values
in , then , for 1 . Let us denote by and
by the Kahan morphisms of LV , respectively of LV . Then

is the restriction of to , i.e., the following diagram is commutative:

(4.1)

To see this, it suffices to consider (2.3) which defines and notice that upon
setting 0 for all , only the equations corresponding to
remain and are the equations which define the Kahan morphism .

Suppose now that has the KP property, so that is a Poisson morphism. Since
is an injective Poisson morphism, we may conclude as in the first part of the proof

of Proposition 2.3 that is also a Poisson morphism. We state this as the following
result.

Proposition 4.1 Suppose that is a skew-symmetric graph which has the KP
property. Then any induced subgraph of has the KP property.

One consequence of this proposition is immediate: if is a connected graph which
satisfies the KP property, then up to a sign all arcs have the same value.
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We will also use the following lemma, which characterizes the graphs . Recall
that a tournament is an (unvalued) graph having (precisely) one arc between any pair
of different vertices.

Lemma 4.2 Suppose that is a tournament with vertices, having the property that
none of its 3-vertex induced subgraphs (triangles) is a circuit. Then .

Proof Recall that, by definition, has vertices 1 2 and has an arc from
to (with value 1) when . For two vertices of , let us write

if there is an arc from to . Then is a total order relation on : skew-
symmetry is clear, as well as the fact that any pair of vertices is comparable (since
is a tournament), so we only need to prove transitivity. Let and suppose
that and . Then there is an arc from to and an arc from to , so
there cannot be an arc from to , since otherwise the subgraph induced by
would be a circuit. Therefore, there is an arc from to and . Since all total
orders on a set of elements are isomorphic, is isomorphic to (by a unique
isomorphism).

As an immediate corollary of the lemma, we find that if is a tournament which
has the KP property, then , where is the number of vertices of .

4.2 The 4-dimensional Case

We use Proposition 4.1 to prove Theorem 1.1 when the (connected) graph has four
vertices. In view of Proposition 2.3, we may suppose that is irreducible. Finally,
we may assume in view of the comment following Proposition 4.1 that all arcs of
have value 1, i.e., that is not valued. We show that the only such graph which has
the KP property property is 4.

We know from Proposition 4.1 that if we remove a vertex from then the remain-
ing graph should have the KP property, so according to Section 3.1 it is trivial or
it has either

(I) A single arc (in which case the graph is disconnected);
(II) Two arcs, both starting from – or ending in – the same vertex;
(III) Three arcs which do not form a circuit.

We first show that any connected irreducible 4-vertex graph having one of these
three properties is – up to a reversal of the direction of all arcs – isomorphic to one
of the three graphs in Fig. 3.

Since is connected, contains at least one vertex of degree two or three. More
precisely, there are the following three (disjoint) possibilities:

(i) All vertices of have degree three;
(ii) has a vertex of degree three and three vertices of degree one;
(iii) has a vertex of degree 2.

We first consider the case (i). Then is a tournament which does not contain a
circuit. According to Lemma 4.2, 4. It corresponds to the first graph in Fig. 3.
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Fig. 3 Up to isomorphism and modulo a reversal of all arcs, there are only three connected irreducible
4-vertex graphs for which every 3-vertex induced subgraph has the KP property. The first one pictured is 4

We next consider the case (ii), so has one vertex of degree three and three ver-
tices of degree one. If one removes any vertex of degree one, the resulting 3-vertex
graph must be of type (II), hence the three arcs must be pointing toward the vertex of
degree three, or away from it. In any case, is reducible.

We now consider the case (iii), in which we will need to consider several subcases.
By assumption, has a vertex of degree two. We call the graph obtained by
removing from (together with the arcs incident with ). Since is connected,

is non-trivial, so it is either of type (I), (II) or (III). We analyse each of them
separately. We start with type (III) and distinguish three cases, according to whether
or not is connected to the unique vertex with in and outdegree 1 (called in Fig. 4).
In each one of these cases, there is a unique way to add the other arc(s) incident to ;
the latter arcs are indicated as a dotted arc. It is clear from the figure that each one of
these cases is reducible: the two vertices which are not connected have the same (in
and out) neighbors. We now consider the case in which is of type (II). Modulo a
reversal of the direction of all arcs, we may assume that both arcs of are ending in
the same vertex . There are again three possible cases: if there is an arc between
and it must be from to , in view of (II), and we may assume by symmetry that
the other arc is between and ; the direction of the arc between and is irrelevant,
up to isomorphism. This gives the first case in Fig. 5. If there is no arc between and
, both arcs incident with must either start from or end in , which leads to the

other two cases in Fig. 5. The first case is the second graph in Fig. 3, while the other
two cases are reducible.

Fig. 4 When 3 and has order two, there are only three graphs satisfying (III). Each one of them
is reducible
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Fig. 5 When is of type (II) there are up to isomorphism and reversal of all arcs only three possibilities.
The second and third ones are reducible, while the first one is the second graph in Fig. 3

The final case to be considered is when is of type (I). Let us call the isolated
vertex in ; since is connected, there must be an arc between and , which by
reversing all arcs of may be assumed to be from to . Let the labeling of the other
vertices be such that the unique arc in is from to . Then, in view of (II), the
third arc of must be from to . Then is the third graph in Fig. 3.

We have now found all possible connected irreducible 4-vertex graphs for which
every 3-vertex induced subgraph has the KP property. To show that 4, which is the
first graph in Fig. 3, is the only one having the KP property, we need to show that
none of the other two graphs in Fig. 3 has the KP property. We do this by using the
method described in Section 3.2. We do this only for one of the graphs, as both graphs
are very similar, and hence also the computations to be done.

We consider the last graph in Fig. 3 and label the vertices as follows:

1 2 3 4
.

We choose the point 1 1 1 1 . Then and its inverse are given by

0 1 0 0
1 1 1 0
0 1 1 1
0 0 1 0

1

1 1 0 1
1 0 0 0
0 0 0 1
1 0 1 1

.

It follows that 1 1 1 1 . Evaluating 1 4 at we get

1 2
1 1 2 3
1 2 3 4

1 3

so that

1 1 1 3 0 1 2 3 1 4 2 .

From these values we find that 1 2 3, so that 1 2

1 2 2, which proves that the last graph in Figure 3 does not have the KP
property.
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4.3 The higher-dimensional case

We are now ready to prove Theorem 1.1 for graphs with more than four vertices.
We proceed by contradiction: we assume that is a graph with 4 vertices

which is not a tournament, is connected, irreducible and has the KP property, and
show that this leads to a contradiction. First notice that has at least two vertices
at distance 2; this is easily seen by considering a shortest chain between any pair of
non-adjacent vertices: the first and third vertex of such a chain are at distance 2. Let
and be two vertices at distance 2 and let be any vertex adjacent to both and .

According to (II), the arcs between on the one hand and and on the other hand
must both be starting from or ending in . By reversing all arcs if needed, we may
assume that the subgraph of induced by the vertices and is given by

.
Since is irreducible, and cannot have the same neighbors. By the symmetry

in and , we may suppose that has an (in or out) neighbor, say , which is not an (in
or out) neighbor of . In fact, in either case, cannot be adjacent to because of (II),
applied to the subgraph induced by . This leads to three cases, depending on
the direction of the arc between and and on whether or not there is an arc between
and ; notice that if there is an arc between and , it must go from to , again

because of (II), applied to the subgraph induced by . The three cases are
displayed in Fig. 6.

The first graph in Fig. 6 is isomorphic to the third graph in Fig. 3, while the other
two are isomorphic to the second graph in that figure. We have shown that these
graphs do not have the KP property, leading to a contradiction. We have therefore
proven Theorem 1.1 for all .

5 Deformed Lotka-Volterra Systems

In this section we consider deformations of Lotka-Volterra systems, associated with
diagonal Poisson brackets which are deformed by constants. We first introduce and
study these deformed Poisson brackets, which are associated with augmented graphs,
and define the KP property for such graphs. We then characterize these graphs
showing that they are closely related to the graphs and their clonings.

Fig. 6 Under the above assumptions, must contain an induced subgraph of the above type
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5.1 Deformed Diagonal Poisson Brackets

We consider in this section deformations of diagonal Poisson brackets with constant
terms; they lead to Hamiltonian systems which are deformations of Lotka-Volterra
systems, see [5, 6]. We will study these in the next subsection.

Definition 5.1 A Poisson bracket on 1 is said to be a
diagonal Poisson bracket, deformed by constants, or simply, a deformed diagonal
Poisson bracket, if for all 1 , the Poisson brackets are of the form

, where . The matrix is called a
deformation matrix of (or of ).

The conditions on a matrix for it to be a deformation matrix of a diagonal
Poisson structure are given in the following proposition.

Proposition 5.2 Let and be two skew-symmetric
matrices. Then is a deformation matrix of if and only if

0 for all 1 with . (5.1)

Proof We define a biderivation of , by for
1 . By definition, is a deformation matrix of if and only if
satifies the Jacobi identity, i.e.,

0 for all 1

where means cyclic permutation of the indices . Using the fact that
is a biderivation and that is a Poisson bracket, this is equivalent to

0

which in turn amounts to the condition that 0 whenever the indices
are different, which is precisely (5.1).

Condition (5.1) can be stated equivalently by saying that the -th entry of
is zero whenever there exists an index , different from and , with 0.

It follows that, given , there are two types of pairs of distinct indices , depend-
ing on whether or not 0 for all , different from and ; in the positive
case, one can assign any value to , while that value must be zero in the negative
case, for the constants to define a deformation matrix of .

The condition that is a deformation matrix of can easily be read off from the
skew-symmetric graph , associated to . Given three different vertices

, we say that is an opposite neighbor of and if the arcs from to
and from to have opposite values, 0; the vertices and are said to
have opposite neighborhoods if every other vertex is an opposite neighbor of and
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. On a picture, representing , we will add a dashed arc from to when and
have opposite neighborhoods and, say, . By the above, this indicates that if one
puts any values at the positions in the -matrix which correspond to dashed arcs, and
zeros at all other positions, then is a deformation matrix of and all deformation
matrices of are obtained in this way. We call any triplet with
a deformation matrix of an augmentation of and refer to as an augmented
graph. A dashed arc from to may be labeled with the value but that will not
be needed in what follows.

Example 5.3 Recall that for the graph there is an arc from to if and only if
. The vertices 1 and have opposite neighborhoods and are the only vertices

with this property. Therefore, the only possible non-zero entries of the deformation
matrix are 1 1. See the first picture in Fig. 7 below for the case of 6.

Example 5.4 We denote by the graph with vertices 1 2 and an
arc of value 1 from to 1 mod for . When 3, any two vertices have
opposite neighborhoods; when 4, the vertices 1 and 3 have opposite neighbor-
hoods, as well as the vertices 2 and 4; when 4 no two vertices have opposite
neighborhoods. See the second picture in Fig. 7 for the case of 4.

We show in the next lemma how the augmentations of a graph and of its clonings
are related.

Lemma 5.5 Let be a skew-symmetric graph and let be a weight vector for .
Two vertices and of the cloned graph have opposite neighborhoods
if and only if the following two conditions are fulfilled:

(1) The vertices and have opposite neighborhoods in ;
(2) If there is an arc between and in , then 1.

Proof As before, we let with . Let be two vertices of
and let us assume that the above conditions (1) and (2) are satisfied. Let be a

Fig. 7 Augmented graphs of 6 and 4. The dashed arcs join vertices with opposite neighborhoods
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vertex of , which is different from some given distinct vertices and
of . Then

There is an arc in with value 0

There is an arc in with value 0

There is an arc in with value 0

There is an arc in with value 0

which means that is an opposite neighbor to and ; this shows that
and have opposite neighborhoods. The second equivalence is a direct

consequence of (1) when , but needs some explanation when or :
it is clearly valid when there is no arc between and , but when there is an arc
between and then according to (2), 1, so that in fact and

. This shows that the conditions (1) and (2) are sufficient.
We now show that these conditions are also necessary. If (1) does not hold, then

there exists a vertex of which is not an opposite neighbor of and . Then for any
, the vertex 1 is not an opposite neighbor of and , so that and
do not have opposite neighborhoods. If (2) does not hold, there is an arc from

to , with value 0, but 1, say 1. Let be a vertex
of , with . Then there is an arc from to with value 0, but
there is no arc between and . It follows again that and do not
have opposite neighborhoods.

Example 5.6 The previous lemma, applied to the weighted graph , shows
that can only have a pair of vertices with opposite neighborhoods when 1

1; in this case, 1 1 and 1 have opposite neighborhoods and is the only
pair of vertices with this property. See Fig. 8.

5.2 The Kahan-Poisson Property for Deformations of Lotka-Volterra Systems

We show in this subsection that the deformations with constant terms of the Lotka-
Volterra systems LV for which their Kahan map is a Poisson map with respect
to the corresponding deformed Poisson structure, are precisely those for which their

Fig. 8 When 1 1 the vertices 1 1 and 1 of are the only vertices with opposite
neighborhoods
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underlying graph has the KP property. According to Theorem 1.1, this means that
every connected component of is isomorphic to for some and .

We first recall from [3] the recipe of the Kahan discretization of a general class
of systems of differential equations which covers the deformations of Lotka-Volterra
systems that we consider. To this end, consider a system of differential equations on

of the form
1 2 (5.2)

where 1 2 is a quadratic form and . If we denote by
the bilinear form, corresponding to , so that , then the Kahan
discretization of (5.2) is given by

2
1 2 . (5.3)

Solving (5.3) linearly for 1 2 we get a family of birational maps on ,
parametrized by the step size . As in the undeformed case, for fixed we call the
corresponding map the Kahan map. The corresponding endomorphism of the field
of rational functions , defined for 1 by , is called the
Kahan morphism.

We now introduce the deformed Lotka-Volterra systems which we will study. Let
be an augmented graph, whose associated Poisson bracket on

is denoted by . Recall that it is defined by for
1 . Taking 1 2 as Hamiltonian, the Hamiltonian
vector field is given by the following system of differential equations:

1

1 2 (5.4)

where the parameters are related with by 1 . It is a defor-
mation of the Lotka-Volterra system (1.1) and is of the above form (5.2). Using (5.3),
the Kahan map of (5.4) is implicitly given by

1 1

2 1 2 . (5.5)

Definition 5.7 An augmented graph is said to have the KP property if the Kahan
map (5.5) with step size 1 is a Poisson map with respect to the Poisson bracket

.

We first prove an analog of Proposition 2.3 for augmented graphs. Let
be a connected skew-symmetric graph with vertex set 1 2 and let
be a weight vector for . Let be an augmented graph of
and let be the augmented graph of , defined for 1 by

1 1 ; notice that, according to Lemma 5.5, this defines
indeed an augmented graph of . The Poisson brackets on and associated
with and are denoted by and respectively. The Kahan maps on

and with 1 are denoted by and ; for and we
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also write for and for . The decloning map is, as before, denoted
by .

Proposition 5.8 With the above definitions and notations, the following diagram of
fields and field morphisms is commutative:

(5.6)

The vertical arrow is a Poisson morphism. If is a Poisson morphism, then
also; if is isomorphic to for some and some , so that is

a Poisson morphism, then is also a Poisson morphism.

Proof The commutativity of the diagram is shown in exactly the same way as in the
proof of Proposition 2.3. For 1 , we have that

1 1 1 1

which shows that is a Poisson morphism. Using the commutativity of (5.6) and the
fact that is a morphism of Poisson fields, we get

and
.

It follows that, if is a Poisson morphism, then

which implies, by the injectivity of , that . We have hereby
shown that if is a Poisson morphism, then also.

Suppose now that where and . It was shown in [5,
Theorem 5.8] that the Kahan map of is a Poisson map, so that is a Poisson
morphism. We show that is also a Poisson morphism. According to Example 5.6,
if 1 1 then the only deformation matrix of is the zero matrix, and
there is nothing to prove. We therefore suppose that 1 1 and denote

1 1 1 1 1 1 , which is the only entry of which is possibly
non-zero. We show as in the proof of Proposition 2.3 that, for any and for any
1 ,

is a Casimir of and an invariant of . (5.7)

For 1 or this is obvious because then 1 and 1 1 1
and 1. When 1 we have that and so

and are Casimirs of as well. The fact that , and
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hence , is an invariant of for 1 is shown in exactly the same
way as in the proof of Proposition 2.3. For 1 , 1 and
1 the computation of the Poisson brackets can therefore
be done as in (2.13), yielding formally the same result, to wit

. (5.8)

When 1 and , 1 1 1 and 1 1

1 and 1 since 1 1, so that (5.8) becomes

1 1 1 1 1 1 1 1 1 1

as wanted. Otherwise, , so that (5.8) becomes

which finishes the proof that is a Poisson morphism.

We use the above proposition and Theorem 1.1 to show that the KP property is
preserved under deformation.

Proposition 5.9 Let be a connected skew-symmetric graph. Then the following
statements are equivalent:

(i) has the KP property;
(ii) All augmented graphs of have the KP property;
(iii) Some augmented graph of has the KP property.

Proof We first prove that (i) implies (ii). If has the KP property, then we know
from Theorem 1.1 that is isomorphic to for some , some
and some weight vector on . Let be any augmented graph of . According to
Proposition 5.8, the Kahan morphism is also a Poisson morphism. This shows
that also has the KP property. The proof that (ii) implies (iii) is trivial, because any
graph can be considered as an augmented graph of itself with the zero deformation
matrix. Suppose now that is an augmented graph of a skew-symmetric
graph and that has the KP property. Let be the Kahan morphism of (with

1), which is a Poisson morphism. It is clear from (5.5) and (2.3) that by setting
0 for all in , we get the Kahan morphism of (with 1).

Since is a Poisson morphism,

for all .

Setting 0, the right hand side of the above becomes while
the left hand side becomes

0 0 .

Therefore for all , which means that
has the KP property as well.
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In combination with Theorem 1.1, Proposition 5.9 leads at once to Theorem 1.2.
It also follows from the proposition (or from the theorem) by a simple rescaling

argument that an augmented graph has the KP property if and only if the Kahan map
of an augmented graph is a Poisson map for some value of . Indeed, when is
given weight 1, while giving a weight 1 to all and a weight 2 to the parameters
, the defining (5.5) of the Kahan map become homogeneous, and homotheties of

quadratic Poisson structures are Poisson maps, as we already recalled. In particular,
the Kahan map with step size of an augmented graph is a Poisson
map, if and only if the Kahan map with step size 1 of 2 is a Poisson map,
i.e., 2 has the KP property; in view of Proposition 5.9, this is equivalent to

having the KP property.
Another consequence of the proposition is that the final statement in Proposition

5.8 can be reformulated as an if and only if, so that Proposition 5.8 is a generaliza-
tion of Proposition 2.3. Indeed, when is a Poisson morphism, so that has the
KP property, then has the KP property (by Proposition 5.9), hence also (by
Proposition 2.3), and hence also (again by Proposition 5.9), so that is a Pois-
son morphism. It follows that, in the notations of Proposition 5.8, is a Poisson
morphism if and only is a Poisson morphism.

6 Liouville and Superintegrability

We have shown in the previous sections that the only connected skew-symmetric
graphs which have the KP property are of the form , where ,

and is a weight vector on ; also, that the only augmented graphs
which have the KP property are augmented graphs of . We now show that
the corresponding Lotka-Volterra systems LV and deformed Lotka-Volterra sys-
tems LV are both Liouville integrable and superintegrable, and that their Kahan
discretizations are both Liouville integrable and superintegrable as well. By a simple
rescaling argument, already used several times above, we may assume that 1, so
we will consider in what follows only and its augmentations.

We first fix the notation and the context. Let , let be a cloned graph
of , with 1 1, and let . We denote by the aug-
mented graph of , where the deformation matrix has as only possible non-zero
entries 1 1 . Similarly, denotes the augmented graph of ,
where the deformation matrix has as only possible non-zero entries 1 1 1

1 1 1 . We consider the fields and , where 1 and
1 1 2 1 2 2 1 , as before.

We consider on the Poisson bracket , associated with , and on
the Poisson bracket , associated with .

Since we will take in this section a more geometrical point of view, we view
and as the field of (rational) functions on , respectively on ; the Poisson
structure on and on corresponding to and will respectively
be denoted by and . The standard Lotka-Volterra Hamiltonians on and on

, which are always the sum of all coordinates, are denoted by and .
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In order to show the integrability of the Hamiltonian system and
of its Kahan discretization, we first recall from [5] the integrability of the deformed

Lotka-Volterra system and its Kahan discretization. For 1 1
2 ,

consider the following rational functions:

1 2 2 1
2 1 2 3

2 2 2 1
if is odd

1 2 2
2 2 2 4

2 1 2 3 1
if is even

(6.1)

and let , where is the involutive field automorphism,
defined by 1 , for 1 . Together with the Hamiltonian , this
yields exactly 1 different rational functions: for example, when is odd then all

and are different, except for 1 1. The following facts were obtained in [5]:

(1) The 1 rational functions , and are first integrals of ;
(2) They are independent, i.e., their differentials are independent on an open dense

subset of ;
(3) The rank Rk of the Poisson structure is when is even, otherwise it is

1;
(4) The first integrals are in involution, i.e., commute for the Poisson bracket;
(5) The first integrals and are invariants of the Kahan discretization of

.

Items (1) and (2) say that is superintegrable, i.e., has 1 indepen-
dent first integrals, where is the dimension of the ambient space. The items (1) –
(4) imply that the independent first integrals are in involution and that, with the
Hamiltonian, their number is 1

2Rk , which is exactly the number required for
the Liouville integrability of ; for example, when is odd, Rk 1
and we have 1 2 functions 1 1 2 which are in involution. Com-
bined with (5) and the fact that the Kahan map is a Poisson map one gets from it
that the Kahan discretization of is both superintegrable and Liouville
integrable, with as invariants the first integrals of the continuous system.

We use these five properties, the properties of the decloning map and of the Pois-
son structure to prove the integrability the Hamiltonian system
and its Kahan discretization. As we have already seen in the proof of Proposition 5.8,
for any 1 and 1 , 1 is a Casimir function of , yielding

different Casimir functions, which are clearly independent. The rank of
is therefore at most , i.e., at most 1 when is odd, and at most when is even.
In fact, we have equality. To see this, consider the decloning map
corresponding to decloning morphism , i.e., , which is a dominant (actually
surjective) Poisson map, since is an injective Poisson morphism. It follows that the
rank of is also bounded from below by the rank of , which is 1 when is
odd, and when is even, and so we have equality.

The cited properties of the decloning map also imply that the 1 functions
, and are independent first integrals of and that

they are in involution. Combined with the Casimir functions we get 1
1 different functions; from the simple form of the Casimir functions, it is
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clear that the former first integrals are independent from the Casimir functions, so
that we have 1 dim 1 independent first integrals, which shows that

is superintegrable.
Since is a Poisson map, the independent functions and are

in involution; together with the Casimir functions, we get 1 2
1
2Rk independent functions, including the Hamiltonian, in involution,

which shows that is Liouville integrable.
Moreover, the 1 independent first integrals are invariants of . For the

Casimir functions 1, we have already seen this in the proof of Proposition 5.8.

For 1 1
2 , the commutativity of (5.6) implies that

where we have used in the last step that is an invariant of , . Since
is linear, it is also an invariant of .

Summing up, and combined with the integrability results in the non-deformed
case, it leads to the following proposition.

Proposition 6.1 Let and let be any weight vector on . Suppose that
is any augmented graph of .

1. The Lotka-Volterra system LV and its Kahan discretization are superinte-
grable and Liouville integrable;

2. The deformed Lotka-Volterra system LV and its Kahan discretization are
superintegrable and Liouville integrable.

The Lotka-Volterra and deformed Lotka-Volterra systems having Kahan dis-
cretizations which are integrable with respect to the original Poisson structure are
therefore characterized by the KP property.
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