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Abstract
We consider the asymmetric simple exclusion process (ASEP) with open boundary
condition at the left boundary, where particles exit at rate γ and enter at rate α = γ τ 2,
and where τ is the asymmetry parameter in the bulk. At the right boundary, parti-
cles neither enter nor exit. By mapping the generator to the Hamiltonian of an XXZ
quantum spin chain with reflection matrices, and using previously known results, we
show algebraic symmetry and self–duality for the model.

1 Introduction

The asymmetric simple exclusion process (ASEP) is an interacting particle system
on a one dimensional lattice, introduced in [1] and [2]. Particles jump one step to the
right at rate p and one step to the left at rate q, and the jump is blocked if the site is
already occupied. As first observed in [3], the generator of ASEP can be mapped to
the Hamiltonian of the XXZ quantum spin chain, which (with closed boundary con-
ditions) possesses a quantum group symmetry [4]. Using this symmetry, [5] proves
a Markov self–duality for the ASEP with closed boundary conditions. Various
modifications and generalizations of this self–duality have since been found [6–12].

A natural extension is to consider open boundary conditions, where particles may
enter or exit the lattice. Let α, γ denote the entry and exit rates at the left boundary,
and let β, δ denote the entry and exit rates at the right boundary. With open bound-
ary conditions, the quantum group symmetry is broken. However, it turns out that for
α/γ = p/q, β = δ = 0, a specific algebra element still commutes with the Hamil-
tonian [13]. Here, we use this algebra element to show a self–duality for this open
ASEP.
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2 Preliminaries

2.1 Spin Chain Notation

Recall that σx, σ y, σ z are the Pauli matrices

σx =
(
0 1
1 0

)
σy =

(
0 −i

i 0

)
σz =

(
1 0
0 −1

)
,

which are a basis for sl2, the traceless 2 × 2 matrices. Also define

σ+ = σx+iσ y

2 =
(
0 1
0 0

)
,

σ− = σx−iσ y

2 =
(
0 0
1 0

)
,

n = 1−σz

2 =
(
0 0
0 1

)
.

The subscripts j indicates that a matrix acts at lattice site j . For example, σx
j acts on

(C2)⊗L as 1⊗j−1σx · · · 1⊗L−j . The –ket vector

(
0
1

)
corresponds to a particle and(

1
0

)
corresponds to a hole. The operators σ−

j and σ+
j are creation and annihilation

operators, respectively.
Recall the Yang–Baxter equation

R12(λ1 − λ2)R13(λ1 − λ3)R23(λ2 − λ3) = R23(λ)R12(λ1)R12(λ1 − λ2)

and the reflection equation [14]

R12(λ1−λ2)K1(λ1)R21(λ1+λ2)K2(λ2) = K2(λ2)R12(λ1+λ2)K1(λ1)R21(λ1−λ2)

The R–matrix of the XXZ model is a one–parameter solution to the Yang–Baxter
equation, with the parameter denoted by μ (in addition to λ). A solution to the
reflection equation is given in [13], which has three parameters, denoted μ, m, ζ (in
addition to λ). In the most general setting, these parameters may be arbitrary com-
plex numbers. For the probabilistic applications considered in this paper, we restrict
to μ ∈ iR and m, λ, ζ ∈ R.

The transfer matrix constructed from R,K leads to a Hamiltonian [15], which is
stated as (1.3) from [13]:

H = −1

4

L−1∑
i=1

(
σx

i σ x
i+1 + σ

y
i σ

y

i+1 + cosh iμ σ z
i σ z

i+1

) − 1

4
sinh iμ

(
σz

L − σz
1

)

−L + 1

4
cosh iμ

+ sinh iμ

4 sinh iμ
(

m
2 + ζ

)
cosh iμ

(
m
2 − ζ

) (− sinh(imμ)σ z
1 + σx

1

) + c1 + c2σ
z
L, .
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where c1 = (q + q−1)−1/2, c2 = 0. This Hamiltonian is integrable, in the sense that
it commutes with a family of transfer matrices: see (2.30) and (4.28) of [13].

2.2 QuantumGroups

Let A be the Cartan matrix of the affine Lie algebra ŝl2

A =
(

2 −2
−2 2

)

with entries denoted aij . The Drinfeld–Jimbo quantum group Uτ (ŝl2) is the bi–
algebra generated by {ei, fi, ki}i=1,2 with relations

kikj = kj ki, kiej = τ
1
2 aij ej ki, kifj = τ− 1

2 aij fj ki

[
ei, fj

] = δij

k2i − k−2
i

τ − τ−1
, i, j = 1, 2,

and

χ3
i χj − (τ 2 + 1 + τ−2)χ2

i χjχi + (τ 2 + 1 + τ−2)χiχjχ
2
i

− χjχ
3
i = 0, χi = ei, fi, i �= j .

The co–product is defined by

�(χi) = ki ⊗ χi + χi ⊗ k−1
i , χi = ei, fi, �(k±

i ) = k±
i ⊗ k±

i ,

and satisfies the co–associativity

�(L) = (�(L−1) ⊗ id) ◦ � = (id ⊗ �(L−1)) ◦ �.

The evaluation module ρλ : Uτ (ŝl2) → End(C2) is given by

ρλ(k1) = τσz/2, ρλ(e1) = σ+, ρλ(f1) = σ−

ρλ(k2) = τ−σz/2, ρλ(e2) = e−2λσ−, ρλ(f2) = e2λσ+.

2.3 Duality

Two Markov processes X(t) and Y (t) on state spaces X andY, respectively, are dual
with respect to a function D(·, ·) on X × Y if

Ex[D(X(t), y)] = Ey[D(x, Y (t))]
for all initial conditions x ∈ X, y ∈ Y and all times t ≥ 0. An equivalent definition
for duality on discrete state spaces X and Y can be given in terms of intertwining
of generators. Namely, view the generator1 LX of X(t) as a matrix with rows and
columns indexed by X. Similarly, view the generator LY of Y (t) as a matrix with

1Here, we use the mathematical physics convention that a stochastic matrix has columns that add up to 1,
rather than its rows. Accordingly, the generator has columns that add up 1, rather than its rows.
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rows and columns indexed by Y. Letting D be the matrix with rows indexed by X,
columns indexed byY, and entries D(x, y), the duality can be stated as

L∗
XD = DLY .

Here the ∗ denotes transposition.

3 Main Results

Suppose that an ASEP on L lattice sites evolves with right jump rates p and left jump
rates q (without assuming p + q = 1). Particles enter from the left at rate α, exit at
the right at rate β, exit at the left at rate γ , and enter from the right at rate δ. Define
the asymmetry parameter

τ =
√

p

q
.

We will assume that τ �= 0, 1, so that we are not considering the totally asymmetric
case or the symmetric case. More precisely, define the generator of ASEP to be the
operator

L = −√
pq

L∑
j=1

(
τ−1(σ−

j σ+
j+1 − (1 − nj )nj+1) + τ(σ−

j+1σ
+
j − nj (1 − nj+1))

)

−α(σ−
1 − 1 + n1) − γ (σ+

1 − n1) − δ(σ−
L − 1 + nL) − β(σ+

L − nL).

In the ASEP to XXZ change of basis [3], the generator of ASEP becomes the XXZ
Hamiltonian (see also e.g. Equations (2.12)–(2.14) of [16]). More specifically, let V

denote the operator

V = τ
− ∑L

j=1 jnj .
Then

VLV −1 = −1

2
√

pq

L−1∑
j=1

[
σx

j σ x
j+1 + σ

y
j σ

y

j+1 + τ + τ−1

2
σz

j σ z
j+1 − τ + τ−1

2

]

−A+
1 σx

1 −iA−
1 σ

y

1 −B1σ
z
1 −A+

Lσx
L−iA−

Lσ
y
L−BLσz

L+ 1

2
(α+β+γ +δ),

where

A±
1 = 1

2
(γ τ ± ατ−1), B1 = 1

2
(γ − α) + 1

4
(τ − τ−1),

A±
L = 1

2
(βτL ± δτ−L), BL = 1

2
(β − δ) − 1

4
(τ − τ−1).

Note that

A−
1 = 0 if and only if

α

γ
= p

q
or α = γ = 0,

A−
L = 0 if and only if

δ

β
=

(
p

q

)L

or β = δ = 0.

Recall thatH depends on μ, m and ζ .
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Proposition 3.1 Fix m = −1, and let ζ denote the unique real solution of the
equation

γ τ = τ − τ−1

τ + (τ−2ζ − τ 2ζ ) − τ−1
.

Then there exists a constant C such that

2H = VLV −1 + CI

for the values m = −1, β = δ = 0, α/γ = p/q,
√

pq = 1, τ = e−iμ.

Proof First we establish that the equation

γ τ = τ − τ−1

τ + (τ−2ζ − τ 2ζ ) − τ−1
.

has a unique real solution in the parameter ζ . Let

fτ (ζ ) = τ − τ−1

τ + (τ−2ζ − τ 2ζ ) − τ−1

It suffices to snow that fτ is a bijection from R−{1/2} to R−{0}, because then ζ =
f −1

τ (γ τ) (recall that τ �= 0 by assumption). To do this, it is sufficient to show that

f ′
τ (ζ ) > 0 for all ζ �= 1/2,

lim
ζ→−∞ fτ (ζ ) = lim

ζ→∞ fτ (ζ ) = 0,

lim
ζ→ 1

2
− fτ (ζ ) = ∞,

lim
ζ→ 1

2
+ fτ (ζ ) = −∞.

More specifically, since fτ (0) = 1 and fτ (ζ ) �= 0 for all ζ (by the assumption that
τ �= 1), we have that fτ maps (−∞, 1/2) bijectively to (0, ∞) and maps (1/2, ∞)

bijectively to (−∞, 0). See the image below for the example of f2(ζ ).
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It is straightforward to verify that f ′
τ (ζ ) > 0 for all ζ �= 1/2, since

f ′
τ (ζ ) = −(τ − τ−1)(log(τ−2)τ−2ζ − log(τ 2)τ 2ζ )

(τ + (τ−2ζ − τ 2ζ ) − τ−1)2
,

which has non–negative numerator and denominator. The limits are likewise straight-
forward to verify.

Next, we need to match the coefficients of the operators in 2H and VLV −1. It is
immediate that the coefficients of σx

j σ x
j+1 and σ

y
j σ

y

j+1 match. Setting τ = e−iμ, we
have

cosh iμ = eiμ + e−iμ

2
= τ + τ−1

2
, sinh iμ = eiμ − e−iμ

2
= −τ − τ−1

2
,

showing that the coefficient of σz
j σ z

j+1 matches. If furthermore, β = δ = 0, then

A±
L = 0 and there is no σx

L, σ
y
L contribution, so the σx

L, σ
y
L coefficient matches. For

α = (p/q)γ = γ τ 2, the term A−
1 equals zero, so the σ

y

1 coefficient matches. Note
that when c2 = 0, the coefficient of σz

L in 2H becomes

−1

2
sinh iμ = 1

4
(τ − τ−1),

which equals −BL with β = δ. Thus the coefficient of σz
L matches.

To complete the proof, we next need to match the coefficients of σx
1 and σz

1 , mean-
ing that there are two equalities to show. So comparing the σz

1 terms, it remains to
show

−B1 = −1

2
(γ −α)− 1

4
(τ −τ−1) = 1

2
sinh iμ− sinh iμ sinh(imμ)

2 sinh iμ
(

m
2 + ζ

)
cosh iμ

(
m
2 − ζ

)

and comparing the σx
1 terms, it remains to show

−A+
1 = −1

2
(γ τ + ατ−1) = −γ τ = sinh iμ

2 sinh iμ
(

m
2 + ζ

)
cosh iμ

(
m
2 − ζ

) .

In the former equality, the term 1
2 sinh iμ cancels − 1

4 (τ −τ−1), so we are left to show

1

2
(γ − α) = sinh iμ sinh(imμ)

2 sinh iμ
(

m
2 + ζ

)
cosh iμ

(
m
2 − ζ

) .

Now, using that m = −1, we have

sinh(imμ) = −τm − τ−m

2
= −1 − τ 2

2τ
= −γ − α

2γ τ
,
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which means that the two equalities are equivalent to each other. So it just remains to
show that

γ τ = − τ − τ−1

(τ−1/2eiμζ − τ 1/2e−iμζ )(τ−1/2e−iμζ + τ 1/2eiμζ )

= − τ − τ−1

τ−1 + (e2iμζ − e−2iμζ ) − τ

= τ − τ−1

τ + (τ−2ζ − τ 2ζ ) − τ−1
,

which we have assumed to be true.

We make a few remarks about the boundary condition α/γ = p/q. In particular,
this boundary condition has appeared in a few previous papers.

Remark 1 In [17], it is shown that on the half–line, stationary measures exist when
α/p + γ /q = 1. A phase transition occurs at α/p = 1/2: for α/p < 1/2, there
exist stationary measures with i.i.d. Bernoulli random variables with parameter α/p,
and when α/p > 1/2 the stationary measures are spatially correlated. Under the
additional condition that α/p + γ /q = 1, the condition α/γ = p/q is equivalent to
α/p = γ /q = 1/2.

Remark 2 The condition α/γ = p/q had previously appeared in [18], which consid-
ered α/p = γ /q = 1/2. Note that a variant of the reflection equation is satisfied in
the stochastic vertex model of [18] – see Propositions 4.3 and 4.10 in that reference.

Remark 3 Note that duality can hold for other boundary conditions, such as those
considered in [19], which proves duality (but not self–duality) for the ASEP without
algebraic considerations.

Lemma 3.2 For the values β = δ = 0 and α/γ = p/q, we have the detailed
balance condition

V 2LV −2 = L∗,
where the ∗ denotes the transposition.

Proof Proof 1:
The HamiltonianH is Hermitian2, meaning that

H∗ = H.

Therefore, by Proposition 3.1,

L∗ + CI = 2VH∗V−1

= 2VHV −1

= V 2LV −2 + CI,

2Although this is not explicitly stated in [13], Hamiltonians in mathematical physics are always Hermitian.
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implying the lemma.
Proof 2:
Note that [20] gives the stationary measures for open ASEP with generic

α, β, γ, δ. For these generic parameters, the process is not reversible. However, for
our choice of parameters (τ 2 = α/γ ) the process does turn out to be reversible. The
goal is to show that

〈η|L|η̃〉 = 〈η|L∗|η̃〉 〈η|V −2|η〉
〈η̃|V −2|η̃〉

for any η, η̃. Since at most one particle may jump at a time, it suffices to consider
two cases: the first is when η, η̃ differ at the left boundary, and the second is when η̃

is obtained from η by one particle jump.
For the first case, let |η+〉 and |η−〉 be two basis vectors which only different at

the left boundary, where η+ has a particle and η− does not. Then

〈η−|L|η+〉 = γ = α

α/γ
= 〈η−|L∗|η+〉〈η

−|V −2|η−〉
〈η+|V −2|η+〉 ,

〈η+|L|η−〉 = α = γ

(α/γ )−1
= 〈η+|L∗|η−〉〈η

+|V −2|η+〉
〈η−|V −2|η−〉 ,

which shows the detailed balance equation at the boundary.
In the second case, the detailed balance equation reduces to the detailed balance

equation for ASEP with closed boundaries (because η and η̃ have the same number
of particles), which is known to hold.

Let Q1(s) ∈ Uτ (ŝl2) be the element from (4.1) of [13]

Q1(s) = s−1k1e1 + sk1f1 + x1k
2
1 − x1I.

For m = −1 the value of x1 = eiμξ

2κ sinh iμ
is simply equal to 1, by (2.17) of [13]. By

(4.30) of [13]3, there is the commutation[
H, ρ⊗L

0 (�(L)(Q1(τ−1/2)))
]

= 0.

For any value of λ, the evaluation representation ρλ maps Q1(τ−1/2) to(
τ−1 − 1 1

1 τ − 1

)
. (1)

By the relations in the quantum group Uτ (ŝl2),

Q1(sτ−1)k21 = k21Q1(s).

3The paper [13] uses a different co–product than the one here: the left and right tensor products are
reversed. This is due to the choice of the direction of asymmetry in the ASEP; here, we have an open
boundary at the left and a closed boundary at the right, whereas the choice of reflection matrices in [13]
would have a closed boundary at the left (diagonal reflection matrix) and an open boundary at the right
(non–diagonal reflection matrix). The examples in Section 4 will demonstrate that this is the correct choice
of co–product for our present case.
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One can see directly that

�(Q1(τ−1/2)) = k21 ⊗ Q1(τ−1/2) + Q1(τ−1/2) ⊗ 1, (2)

so by co–associativity

�(L)(Q1(τ−1/2)) =
L∑

x=1

k21 ⊗ · · · ⊗ k21︸ ︷︷ ︸
x−1

⊗Q1(τ−1/2) ⊗ 1 ⊗ · · · ⊗ 1︸ ︷︷ ︸
L−x

For N ≥ 1, let SN be the operator

SN := ρ⊗L
0 (�(L)(Q1(τ−1/2))N )

and let DN be the operator
DN = V SNV .

Theorem 3.3 For the values β = δ = 0 and α/γ = p/q, and for any N ≥ 1, we
have the duality result

L∗DN = DNL.

Proof Once Proposition 3.1 and Lemma 3.2 are proven, this is similar to the
argument made in [21]. We briefly recall the proof again for completeness.

Combine the two identities

2H = VLV −1 + CI

and
HSN = SNH,

to get that
VLV −1SN + CSN = SNVLV −1 + CSN .

Now, using that
V 2LV −2 = L∗,

we have
V 2LV −2V SN = V SNV LV −1

is equivalent to
L∗V SNV = V SNVL.

By applying additional symmetries, we obtain two more duality functions. Let �

be the particle hole involution, defined by

� =
(
0 1
1 0

)⊗L

.

Let L̃ be the generator for ASEP, where particles jump to the left at rate p and right
at rate q, particles exit at the left boundary at rate α and enter at the left boundary at
rate γ , with closed boundary conditions at the right boundary.
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Corollary 3.4 We have
L∗DN� = DN�L̃.

On the semi–infinite lattice Z>0, we have

L∗DNV −2 = DNV −2L̃.

Proof The holes of ASEP evolving under L have the same evolution as the parti-
cles of ASEP evolving under L̃. In other words, �L� = L∗. This implies the first
statement. It can be checked directly that on the semi–infinite lattice, V −2L̃V 2 = L,
implying the second statement.

We now proceed to an explicit expression for SN (and hence of DN ). For non–
negative integers a and b, let Qa,b be the element of Uτ (ŝl2) defined by

Qa,b =
∑

l1+...+la≤b

(k21)
bQ1(τ l1+...+la−1/2) · · ·Q1(τ l2+...+la−1/2) · · ·Q1(τ la−1/2)

For any set of integers m1, . . . , mL and 1 ≤ i ≤ j ≤ L, let m[i,j ] = mi + . . . + mj .

Proposition 3.5 The symmetry operator SN has the form

∑
m1+...+mL=N

L∑
j=1

ρ0(Q
mj ,m[j+1,L]
j )

Proof When expanding �(L)(Q1(τ−1/2))N , let mj denote the number of times that
Q1 acts on lattice site j for 1 ≤ j ≤ L. We must have that m1 + . . . + mL = N .
At lattice site x, the operator k21 acts m[j+1,L] times, corresponding to the m[j+1,L]
times that Q1 acts to the right of j . So the action at lattice site j is of the form

k21 · · · k21Q1(τ−1/2)k21 · · · · · · k21Q1(τ−1/2)k21 · · · k21Q1(τ−1/2)k21 · · · k21.
Let l0 denote the length of the first block of k21, and let l1 denote the length of the
second block, and so forth, up to lmj

. We must have l0 + . . . + lmj
= m[j+1,L]. By

repeated applications of (2), the result follows.

4 Simple Cases

Suppose that L = 1 and N is arbitrary. Let |1〉 denote the vector (0 1) and |0〉 denote
the vector (1 0). TakingM to be the matrix in (1), the identity 〈0|L∗D|1〉 = 〈0|DL|1〉
becomes

−γ (MN)12τ
−1 + γ (MN)11 = −α(MN)21τ

−1 + α(MN)22τ
−2.

For α = γ τ 2, one can check that both sides equal −γ for N odd and γ for N even.
Suppose that N = 1 and L is arbitrary. Let |x〉 denote the particle configuration

with a single particle at site x, and |∅〉 denote the particle configuration with no
particles. WhenQ1 is applied to lattice site y, the operator k21 acts on the y−1 sites to
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the left, as the constant τ on particles and τ−1 on holes. The operator V = τ
− ∑

j jnj

acts on all sites, but only has a nonzero contribution at particles. Thus 〈∅|L∗D|x〉 =
〈∅|DL|x〉 amounts to the identity

p(τ−1)x(τ−1)L−(x+1) + q(τ−1)x−2(τ−1)L−(x−1) − (p + q)(τ−1)x−1(τ−1)L−x = 0.

And indeed, for τ = √
p/q, the left–hand–side is

τ−(L−1)(p + q − p − q),

which equals 0.
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