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Abstract

The two-time distribution gives the limiting joint distribution of the heights at two
different times of a local 1D random growth model in the curved geometry. This
distribution has been computed in a specific model but is expected to be universal
in the KPZ universality class. Its marginals are the GUE Tracy-Widom distribution.
In this paper we study two limits of the two-time distribution. The first, is the limit
of long time separation when the quotient of the two times goes to infinity, and the
second, is the short time limit when the quotient goes to zero.
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1 Introduction and Results
1.1 Introduction

In this paper we will consider the short and long time separation limits of the
asymptotic two-time distribution in a polynuclear growth model or, equivalently in
a directed last-passage percolation model. For background on these models which
belong to the so called KPZ universality class, we refer to [3] and [22]. Let us recall
the result on the two-time distribution from [18]. Let (w(i, j)); j> be independent
geometric random variables with parameter ¢,

Plw(i, j) =kl = (1 — q)¢*, k>0.
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Consider the last-passage times
G(@m,n) = max 7)), 1
.1 m:(1,1) /' (m,n) Z wlh, j) W
(i, j)en

where the maximum is over all up/right paths from (1, 1) to (m, n), see [15]. It
follows from (1) that we have stochastic recursion formula

G(m,n) =max(G(m — 1,n), Gm,n — 1)) + w(m, n). 2)

We can relate this to a random growth model with an evolving height function as
follows. Let G(m, n) = 0 if (m, n) ¢ Z>, and define the height function A (x, t) by

t+x+1 t—x+1>

) 3
> 5 3)
for x 4+ ¢ odd, and extend it to all x € R by linear interpolation. Then (2) leads to
a growth rule for i (x, ¢) and this is the discrete time and space polynuclear growth
model. We think of x — h(x, r) as the height above x at time ¢, and we get a random
one-dimensional interface. Let the constants ¢; be given by

2.9 g+ '

h(x,t) = G(

— g 1/6 2/3 —
a=q PA+J97", a= . = “)
- va 1-vq
Consider the rescaled height function
hQein(T)?3,2tT) — cat T
A, 1) = ; )

c3(tT)'/3
as a process in 7 € R and r > 0. It follows from [16] that for a fixed r > 0, the

process converges, as T — 00, to @ (1)) — n°, where % (1) is the Airy-2-process.
In particular, for any fixed 7, t,

Jim PLAT (1, 1) < & = 0’1 = Fa(§) = det( = Kai)12(g 00,

where F; is the Tracy-Widom distribution, and

Kai(x, y) :/ Al (x + s)Ai(y + s)ds, 6)
0

is the Airy kernel.

It is proved in [18] that we have the following limit theorem for the joint distribu-
tion of two height functions at different times. For 0 < #; < #, and any fixed real
numbers 11, 12, &1 and &,

Tlimwp[%(ﬂl, 1) <&, 907, 1) < &) = Fiié1,n1; 8, 1 o), @)

where
d ®)
o= ,
h—1

and Fj; is the two-time distribution function. This two-time distribution is expected
to be universal in the KPZ universality class and should be the two-time limit in many
models. For example it is also the limit in Brownian directed last-passage percolation,
see [17]. In [18], different formulas for F;, are given. We will use the one given in
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(63) below. If we let h(z, n) be the limiting height function at rescaled time ¢ and
rescaled position 7, i.e. the limit of the random variable J¢7 (1, t) as T — o0, then

Fii (61, m15 &2, m2; o) = PlA(t1, m) < &1, h(t2, m2) < &2]. 9)

We are interested in the limits « — O (long time limit) and ¢ — oo (short time
limit) of the two-time distribution. The first limit corresponds to the limit of large
time separation, and the second limit to the case of short time separation.

We will show that, as « — 0, we have the asymptotic formula,

Fu(E1,m; 82,125 @) = Fa (&1 + 1) Fa(& + n3) (1 + e1a + e2a?) + 0(a®), (10)

where ¢1 and e; are explicit but complicated functions of &1, n1, &2, n2, see Theorem
1 below. Write iy = h(t1, &) and hy = h(t2, &). An application of FKG inequality
yields Fy (€1, n1; &2, n2; ) = Fa(€1 + n%)Fz(Sz + n%), but this is not obvious from
the formula (10).
For the limit « — oo, we will show that, if we define the rescaled height increment
by
h=1+a>"hy —ahy,

then

lim B%Mhl <ELh<El=FE + n%)%(Fz(E +¥Em). (D
with an explicit function ¥ (£, n), see Theorem 2. Here 11, &1, n and & are fixed and
related to 12, & by (46) below. If n = 0, then %(Fg(é )Y (€, 0)) in the right side of
(11) is the Baik-Rains distribution Fy(§), see e.g. [10]. Intuitively, we can understand
this from the fact that we can think of 4 as the evolved height starting from a sta-
tionary initial condition. Recall that the Airy process at time ¢1 is locally Brownian,
[4, 14]. For a more precise version of this heuristic argument, the ergodicity of the
KPZ fixed point, see [23]. The limit of Fy; (&1, n1; &2, n2; ) with fixed n1, 12, &1, &
as o — oo can also be investigated and leads to the two-point distribution in the
Priahofer-Spohn form. This result is not immediate and we will not discuss it here.

These kinds of results have also been derived non-rigorously using the replica
method by de Nardis and Le Doussal, [5], in the limit 1/t — 1,i.e. ¢ — 00, and by
Le Doussal in [8] for the limit #; /> — 0, which means « — 0, to give conjecturally
exact formulas. We have checked that the a-coefficient e; in (10) for n; = n, = 0,
see (36), agrees with the result in [8]. It remains to check that e; also agrees, and that
the formulas agree when 7y, 12 # 0. Another comparison between results obtained
using the replica method and the exact formula, in the limit when A(#1, 1) is large,
is given in [7]. The result in [5] agrees with (11). Continuing earlier work in [11],
the long and short time limits are also analyzed rigorously in [12] using a variational
approach. The object investigated in these papers is not the two-time distribution but
rather the two-time correlation function of the the heights. See also [2] for another
paper on two-time correlations. Furthermore, there are very interesting experimental
and numerical results on the two-time problem by K. A. Takeuchi and collaborators,
see [24, 25] and [6].

The two-time problem, and more generally the multi-time problem, have also been
studied recently in another, related model by J. Baik and Z. Liu, [1]. Very recently,
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the multi-time, and a more general problem where the starting points in the last-
passage percolation problem can also be varied, called the directed landscape, has
been investigated in the paper [9]. This is closely related to the recent work on the
KPZ fixed point, see [21]. The multi-time problem in the present setting is studied in
[19, 20].

Notation Throughout the paper 1(-) denotes an indicator function, y,(a) is a posi-
tively oriented circle of radius r around the point a, and y, = ;- (0). Also, I'; is the
upward oriented straight line through the point ¢, t — ¢ +it,t € R.

1.2 Results for the Long Time Limit

Before we can state our results we introduce some notation. Given a sufficiently
regular function A(v) on R, we write

k
AP @) = (—1)"%, (12)
00 )\'k—l
A () = /0 i AC R i, (13)

for k > 1, and AQ(v) = A(v). To the function A we associate the operator A on
L?>(R,) with kernel

A(vi, v2) = A(v1 + v2). (14)

For two functions A, B on Ry, A ® B is the rank one operator with kernel
A(v1)B(vp). Given an operator K with kernel K(vy, v3), we write

oo k—1
(=k) —
K v) = /O = 1)!K(v, A)dA. (15)

Note that, if K = A is given by (14) this is consistent with (13).
The basic functions that we will use are

Ai () = Al (& + 1} + v)e=CGrromE2/3, (16)
i = 1, 2. Define the operators K;,i = 1, 2, on L2(R+) by
Ki=A; ;A _. 17

Note that, unless n; = 0, the operator K; is not symmetric, in fact
Kf=Ai A, (18)

with kernel K?‘ (v1, v2) = K;(v2, v1). Recall the definition of the Airy kernel (6).
When n; = 0, then K is the operator with kernel

Kai g (v, v2) = Kai (& +v1, & +v2), (19)

i.e. we have the Airy kernel shifted by &;. If n; # 0, then K; is a conjugation of the
Airy kernel shifted by &; + 171.2,

Ki(vi, v2) = e"OTK o (v, ). (20)
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We will now define the quantities that will appear in our theorem. Let

ri=riELn) =uwd-K) 'K, 1)
ao = ao(&,m) =t I—K5)'Ay_ ® Ay, (22)
ar=aE.m) =trA-K) AL @Ay, (23)
Let F> denote the GUE Tracy-Widom distribution,
From (20), we see that
det(I — Ki)2r,) = Fa(& + 7). (25)
Furthermore, for €1, &2 € {0, 1}, r, s > 0, and (e1, &2) # (0, 0), we define
A‘S
brs(e1, &) = / AT _T—K)D AL ) (A, A) =2 d%h (26)
R2 ’ s!
and if (g1, &2) = (0, 0), we set
)\'S
bys(0,0) = / L= K) 7K (A1, ho) 2 d% 27)
R S
We will write
br(81»82) = br,0(81’€2)’ (28)

forr > 0, e1, &2 € {0, 1}. Note that b, ; is a function of &1, n;. If we want to indicate
this we write b, s(¢1, €2) (&1, 111). Define,

Y1 m) = & —bi(1,1) = b1(0,0) + b1 (1,0) + b1 (0, 1),
Y281, m) = bi(1,0) +b1(0, 1) = b1(0,0) + b2(1, 1) + 52(0, 0)
—by(1,0) — b2(0, 1), (29)

o161, m) = —b1,1(1,1) —by,1(1,0) + b1,1(0, 0) — bo,1(1,0) + bo,1 (0, 1)
2
+£1[b1(0, 1) — b (1, )] + %1 -1, (30
and

$2661,m) = b2 1(1,1) +b2,1(1,0) — b2,1(0, 1) — b2, 1(0,0) — b1,1(1,0)
+b1,1(0, 1) + b1,1(0, 0) 31
— bo,1(1,0) — bg,1(0, 1) + &[b2(1,1) — b2(0, 1) + b1 (0, 1)].

We can now state our result for the long time limit.

Theorem 1 We have the asymptotic formula,

Fi (€1, 115 €2, 12; @) = Fa (&1 + 1) Fa(&2 + n3) (1 + era + e20?) + 0(@®)  (32)
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as o — 0. Here,

er = e1(&1, M, &2, m2) = ao(€2, m2)Blr1 €1, nV 1, m) +v2(81, nD], (33)

ex=ex(E1. 1. &2, m) = ri (&1, n)[a1 G2, m) 1 (€1, —n1) + a1 (&2, —m2) 1 (€1, ) |
+a1(&2, m)p2(é1, —m) +a1(&2, =221, m1). (34)

The theorem will be proved in Section 2. It is possible to compute higher order
terms using the same approach but the computations become rather cumbersome so
we stopped at the second order.

Remark 1 In the case n1 = n; = 0, the formulas for e; and e; can be simplified.

When n; = n = 0, we write

brs (0) = bys(0,0)(61,0) = bys (1, D(E1L0),  bys(1) = bys (1, 0)(E1, 0)
= by, (0, (€1, 0),

and r1(&1) = r1 (&1, 0). Then,

Y& = Y1(61,0) =& —2b1(0) 4+ 2b1(1), (35)
Ya(&1) = ¥2(81,0) = 2b1(1) — b1(0) + 2b2(0) — 2bx(1),

and
F/
e1(61,62) = 2(52) [riEDY1E) + Y2 (5D (36)
F2(52)
Also, with
a1(&2) = a1(62,0), (37
and
1
¢1(61) = ¢1(61,0) = —b11(1) +&1[b1(1) — b1(0)] + 5512, (38)
$2(81) = ¢2(81,0) = —b1,1(0) + &1[b1(1) + b2(0) — b2 (1)],
we get

e2(&1, &) = 2a1(5)[r1 (6D ¢1(861) + d2(861)]. (39)

It is possible to give express ag(&2, n2) and ag (&2, 0) in terms of the Tracy-Widom
distribution. The following Lemma will be proved in Section 4.

Lemma 1 We have the formulas,

F3(& +n3)

, = , 40
ap(&2, m2) XCEE) (40)
and
F) (&)
,0) = ——2>=" 41
a1(82,0) 2 E) 41
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1.3 Results for the Short Time Limit

Next, we consider the short time limit &« — oo. In the limit « — oo we consider /i
together with the random variable

h=da'hy —ah, 42)
where, as above, h; = h;(#;, &), and
1/3
t
o =(+ad) = (—2 ) . 43)
h—1

Note that o’ = o + 2 +...,s0 we could write h = a(hy —hy) in (42). Asa — 00
the difference iy — h1 goes to zero and multiplying by « turns out to be the right
scaling to see a non-trivial limit. The fact that we use o’ in (42) is more technical. It
is related to the fact that &’ appears naturally in the convolution equation

. . 1 . (a+ab
Ai(a+ax)Ai(b—x)dx = —/Al , .
o

o o
We want to investigate the distribution function P[h; < &1, h < €] as o — oo. From
(9), we see that

Plhy < &, h <&] = Plhy < &1, 0'hy —ahy < €] (44)

/ 3 Fy
£/ <818 <(at]+8) /o) 081082
We can do the &)-integration and this gives the formula

1 9F, ¢
Ot et s EE8 - oy, (45)
o

(51 ni; ‘527 n2; @) dé:ldéz

&
P[h1<sl,h<51=/ -

To get a limit we also need to rescale 17 as @ — oo appropriately. Thus, we set

& + af n 4 a?n
> M=
o

& = (46)
o

with &1, &€, n1 and 5 fixed as « — oo. The first equation in (46) comes from (45)
and the second gives the rescaling we have to do in 7, to get a good limit. To avoid
analyzing the integration in (45), we choose to study

9 dF, §+ag n+aim
Jg Elhn < &1h <€)= ?”@1, e LU
We make some definitions in analogy with (16) and (17),
Ao+ (v) = Al (5 + 17 + v)eETonE, (48)
and
Ko =Ap +Ap —. (49)
Furthermore,
by(e1, 2) = / (AG_(T—Ko) "AG )G, 22) dA (50)
R ’ ’
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for (1, £2) # (0,0),r > 0, and
b:(0.0) = / L T—K) " Ko(h1, d2) d*h, (51)
]R+

which are functions of &, 5. Let,
(&, ) =& +b1(0,1) + by (1,0) — b1 (0,0) — by (1, 1). (52)

We can now formulate our theorem which will be proved in Section 3.

Theorem 2 We have the following limit,

i S ”*a“ T 0) = FyEn + i) (Fa(& + i)W &, ).

9§
(53)

oa—> 00

Remark 2 It is possible with more effort to not just compute the limit but also
compute further terms in an 1/« expansion, see (191) below.
Remark 3 We do of course expect that

§ +aé 77+Ot Uy
—, @) = P& +n))—
o Ol

Jim Fu (& (& + 1)y (E, ),

& (

but to prove this rigorously would require further estimates.

Remark 4 If n =0, then Ag + = Ag,— := Ap and Kp = A% = Kaj ¢, and hence
b (0) :=b,(0,0) = b,(1,1), b(1) :=b,(1,0) = b, (0, 1),

where

B0 = [ A=Ku0) Kaielor, 1) i, (54
¥

bi(1) = fR (= Kai )~ Ag(h1, A) dA.
+

Thus, we see that

() =Y (E,0) =&+ 2bi(1) — 25 (0), (55)
and

E (F2()y (§)) = Fo(é),

is the Baik-Rains distribution.
1.4 A Formula for the Two-Time Distribution

We now recall some formulas from Section 6 in [18] which we will use to prove our
results. First, recall the notation

GEJI(Z) — e%Z3+nz2,§Z' (56)
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and
A& =o'ty — ok, An=d"n—a’n. (57)
Let I'p denote the vertical contour # — D + it,t € R. Note that if d, D > 0, then
1 k *)
ﬁ r Z GS,‘—{-U,nl‘ (Z) dZ = Al"+(v)v (58)
and .
1 4 _ k 4 (k)
At = (=D"A;(v), (59

271 Jr_y Gerpons (O)

for all k € Z. This explains the appearance of A?ki. The formula (58) is straightfor-
ward to show from the integral formula

1 ;
— | &= AiE), (60)
27i Jrp
for D > 0, by differentiation. Then, (59) follows by setting { = —z.
On the space

Y = L*(Ry) ® L*(Ry), (61)

we consider the matrix operator kernel Q = Q(u) given by

Q(u):((2—u—u*1)k1+(u—1)(k2+k5)+(u—1)M3—uM2 (u+u’1—2)k3+(l—u)k4>

(1—u=Hke — k7 @ '=DM;y
(62)

where k; and M; are given below. By Proposition 6.1 in [18], we then have the
formula
1 du
Fie(Gr,mi &2, ) = i det(I+ Qu))y —, (63)

u—1

T

where y, is a circle around the origin with radius r > 1.

Remark 5 Below all Fredholm determinants of matrix operators will be on the space
Y and all scalar Fredholm determinants will be on the space L(R,.). We will not
always indicate the dependence on the space.

Let d, D > 0. Then the kernels appearing in (62) are given by the following
formulas. Let

d(vi—v2)

e G z

M (vi, v12) = / dz/ dc g+vm (2) (64)
FD r*d

(Q2ri)? Gt )z =8
1 G /
MZ(UI, v2) — 7/‘ dZ/ dé. &H+vy/a »772(2) i (65)
Qri)*a’ Jr, ry  Gervjap@@—=210)
and | G
M3(l)1, vz) = —2 / dZ/ dé. AE‘FUZ,A”(Z) ) (66)
2mi)* Jrp ry Gagtv,an(@)z =)
Assume the following condition on the horizontal positions of the contours,
0<d <ady<d;, 0< D <aD; < Ds. 67)
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Define,

kl(vl,vz)=%/ dzf dw/ dt
@iy Jr,, e, e e,

G 0y ()G Ag vy, an (W)
Gsl m (OG At vy, an(@)(z — Oz — aw)(aw — )’

G G
ky (v, vo) = a. 3/ dz/ dw/ dw s () Af+v2’An(w) ,
@ri)? Jrp, I'p, rg, Gatvjep@(@z—aw)(z—aw)

(63)

(69)
—51}2 1
k3(vi, v2) = / /
(2 1)2 Ir_ d3 r— dy G§1+Uz m(é.)GAS-HJl An((,())(l)la) Z)
(70)
ki ) ae‘s“2/ dw 71
4(V1, V) = - ’
o'2mi g, Gyt (v +avy) /.y (@)
Ks(vy, v12) = L/ dw/ d¢
(27i)3 Tp, | Ty,
G§2+v2/ﬂl 772(w) (72)
Gsl m ()G At vy, ap(@)(@w — ') (0w — §)’
e(sv]
ko(vi, v2) = .4/ dmf dzz/ dw/
@r)* Jrp, I'p, T'p, Iy,
Gey ny (21) Gy vy, (22) G Ag vy, A (W) (73)

Gem ()21 — (22 — Oz —aw)

and

et Gy +v1m @Gty tsjar (W)
Kk i — d d d 1+v1,m1 2+vp/a’ (74
1) = G /r Z/FDZ w./rdl SGam©ew—ane-0 Y

2 Proof of the Long Time Expansion

In this section we will prove Theorem 1. In this case &1, n1, & and 1, are fixed and
A&, An are given by (57). The operators M; and k; given by (64)-(66) and (68)-(74)
can be expanded in powers of «,
1 -
M; =M; o+ M; 1o+ EMi,20l2 +M; 30’ (75)
and

1 -
ki =kio+ki o+ 5ki,zoﬂ + ki 30, (76)

Yvhere M, ; and k; ; are trace class operators that do not depend on «, and 1\7[1-,3 and
k; 3 are bounded as ¢ — 0. We will not discuss this in any detail. It follows by
analyzing the a-expansion of the formulas in the right sides of (64)-(74). We show
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in Lemma Sthat M; 5, 1 < s < 2ank;,, 0 < s < 2, are finite rank operators.
The fact that the remainder parts of (75) and (76), 1\7[,-)30(3 " l~(i,3a3, have the desired
properties also follows by analyzing the right sides of (64)-(74). Note that they can
all be expressed in terms of Airy functions or integrals of Airy functions, see [18].
See also [13] for a discussion of perturbation theory of Fredholm determinants. We
see that

aS aS
Miy=—| M, Kkisz=_— k;. (77)
da a=0 dar a=0
It follows from (62), (75) and (76) that
1 -
Q= Qo+ Qi+ 5Q” + Qser’, (78)

where Q; are finite rank operators that do not depend on « and Q3 is bounded as
o — 0. From (62), we see that

Q= ((2 u—u l)klr+(u_1)(k2r+k5r)+(u_1)M'ir_uM2r (u+u*1—2)k3r+(1 u)k4r)

(1—u"Hke, — kg, @ '=1)M,,,
(79)
forr =0,1,2.
In order to give a formula for Q,, we need to compute the derivatives in (77). Write
cs(v) = e, (80)
where § > 0. Note that, by (58) and (59),
M; (v1, v2) = c—s(v)Ki(v1, v2)cs(v2). (1)

Differentiation gives

2 det(I + Q) = det(I + Q)tr 1+ Q)" @,
dox o

and

2 2
837 detI+ Q) = det(I+ Q) (tr IT+Q! @)

—detd+ Q)tr I+ Q) ! Q(I+Q) 1%
2Q
+detd+ QI+ Q) ' — 92

Using (78), we see that

det(I 4+ Q) = det(I + Qo)tr (I + Qo) ~'Qy,
a=0

Ja

and

2
902

det + Q) = det(I + Qo) [(u a+ Qo)_lQl)z —tr(I+ Qo)

a=0

QI +Q)'Q + tr(I+ Qo)_]Qz} :

@ Springer



43 Page 12 0f 34 Math Phys Anal Geom (2020) 23: 43

Consequently,
1
det(I+ Q) = det(I+ Qo) [(tr I+Q) Qe+ 3 [@d+Q7'Q)? ()

—r I+ Q0 QA+ Q) Q +r 1+ Q0! Qe]o? + 0(0#)} :

Fori = 1, 2 we write

L=I-K)', Li=d-K) " Li=0-M)™", (83)
and
R=(1-M; 'M,. (84)
We also write,
Li=I-M) " (85)
Note that,
Li(v1, v2) = c_s(vDKi(v1, v2)c5(v2). (86)
Lemma 2 We have that
det(I+ Qo) = Fa(&1 + nD) Fa(&r + n3) det(I + u™'R). (87)
If |u| is sufficiently large, then
x
det(/ +u"'"R) =14 ra*, (88)
k=1

where ry is given by (21). Furthermore, for |u| sufficiently large,

o0
I+Qo) " =) Qotu, (89)
k=0
where
L 0
0) = |( -~ 2 2, 90
Q© <L1 (k7.0 — ke0)L3 L1> ©0)
and
. 0 0
QU= | ket (R ik oLs — R (kr0 — ko o)L3 ) (~DFRVE |
91)
fork > 1.
Proof See Section 4. O
From (79), we see that we can write
Q = Q (—Du+Q,(0) + Q- (Du~", (92)
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where
Q,(—1) ( k1r+k2r+k5r+M3r k?rak4r>7 (93)
2kl r k2 r— kS r M3,r _2k3,r + k4,r
Qr (O) < k6 , k7 - O ) )
Kk
Q (1) ( o ) :
Define P, and P, (k), k > —1, by
oo
=A+Q)'Q = > P(u, (94)
k=—1
for r =1, 2. It follows from (89) and (94) that
P.(=1) = Qo(0)Q,(—1), 95)
P.(0) = Qo(0)Q/(0) + Qo(1)Q-(—1),
P, (k) = Qotk — DQ,(1) + Qo(k)Q-(0) + Qo(k + DQ, (1),
forr = 1,2,k > 1. Define,
ok, t) =tr Py (k)P (&) — tr P (k)tr Py (), (96)
k, > —
We can now give expressions for e; and e; in Theorem 1.
Lemma 3 We have the following formulas for e and e in (32),
el =ritrPi(—=1) 4+ trPy(—1) + tr P1(0), 97

and
1 | |
er=—ro(—=1,-1)+nr <§trP2(—1)—Ea(—l,—l)—o(—l, 0))—50(—1, -1

—o(—1,0) — %O’(O, 0)—o(-1,1)+ %ter(—l) + %ter(O), (98)

with r1 and ry given by (88).

We will prove the Lemma in Section 4.

In order to prove Theorem 1 we have to compute the expressions in (97) and (98).
To write our formulas, it will be convenient to introduce some more notation. In
analogy with (26), we define

)\‘S
by (61, 62) = /R , o AL A= KDTAE )0, 22) (99)

+

for (g1, &2) # (0,0). If (e1,2) = (0,0) and r, s > 0, we let

)\’S
by (0,0) = /2 —}(I — K1) 7K (1, A2) d? (100)
” R2 S

+
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Also, in analogy with (23), we define
af = af(E.m) =t A - K5 'A_ @Al (101)

The quantities b;’i s and a’f can be related to b, s and a;. In fact, we have the following
Lemma which we will prove in Section 4.

Lemma 4 We have the formulas

b} (g1, €2) (&1, m) = brs(e2, £1) (51, —11), (102)
by (0, 1) = by (0, 1), b5 (1,0) = by(1,0), (103)
by o(e1, €2) = bro(er, €2), (104)
ay(é1,n) = a1, —n), (105)
and
ri&r, —n) = rigr, m). (106)

The next Lemma gives expressions for the quantities we will need. In some
formulas, we will use the convention that

)\'S

AP0 = (107)
Lemma 5 We have the following formulas,
Mio=Mi, M1 =M, =0, (108)
Myo=K;, My; =M, =0, (109)
Mso =K3, Mz =§A4_® Ay, (110)

Mso = (62 +2004% @ Asy + E2 — 2n) A - @ A

kl,() =0, kl,l = bp(0, O)Az,_ [ A2’+, (111)
k1o = 2(b% (1, 1) + £b0(0, 0) A5 ® Az 4 +2(bo,1 (1, 1)
+E1b0(0,0) Az~ ® AYY,

koo =0, Kko1=>5bo0,1)A2_® A4, (112)
koo = —4bo.1(0, DAY ® Ax i+ (dbo.1 (1, 1) +281b0(0, 1) Az— ® A5,

kso=0. ksi=A_®A Vo5, ksp=245) @AY +64 e, (113)
kio=0, ky1=Ar_®(A) ) Vs, kun=-24r_®(A) )5, (114)

ks0 =0, Ks1=>5bo(1,0)A2_® A 4,
ks = (4bo(1,0) + 2£1bo(1, 0) A ® Ay 4, (115)
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koo = c_s(K1A1 1)V ® Ay 4,
ko1 = cos((K1A1L0) P +&1(K1A10))) @AY (116)
Koo = c_s(2(K1A1, )Y + 281 (K141 )2

+(512 - 2771)(K1A1’+)(_1)) ® Ag:-’

-1 ) 1 - 2
k7,0=C—st )®A2,+, k7 1 =—C—3K1( )®A;’l, k7,2=—2C—3K1( 3)®A§7)+.
(117)

The Lemma will be proved below in Section 4.
It will be convenient to use the following expressions which occur in the
computations. For g1, g2, r > 1, s > 0, we define

grs(er &) = r M- K 'K EKAP )T @ A )Y, (118)
and
gry(er.e2) = r (I— KD T'K T KAP )P @ AT )T (119)

The quantities (118) can be expressed in terms of b, ;. This is stated in the next
Lemma, which is proved in Section 4.

Lemma 6 Forr > 1,s > 0and (¢1, &3) # (0, 0), we have the formula,

r

grser,e2) =Y (=1)* (Z)bk,s(el, £2). (120)

k=0
If (1, €2) = (0, 0), we have instead,

. -1
8rs(0,0) = Y (1) (,Z B l)bk,xo, 0). (121)
k=1

There are completely analogous statements for g (, with b}’ | instead of b, s in the
right side.

Proof of Theorem I The proof is a lengthy but straightforward computation. We will
explain how the computation can be done, but we will not give all the details. In
order not to get too long formulas, we need to introduce some shorthand notation for
objects that occur in the computations. Define the functions,

C1(v) = cs(KiA ) (), (122)
C2(v) = cs(ET () — KAL) W),

C3(v) = —c_s(W(KIAL DT ) + & KAL) TP ),

Ca(v) = AP W)esw),

Cs(v) = (247 ") + (A% )V )es(v),
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Co(v) = cs(W)((K1A1H) TP W) + 6 KA DT ) + KV ),
Cr(v) = (AT ) — (A H TP W)es(w),
Cs(v) = (—4AT 2 () — 4£1(A1 )TV () — 2(A H T2 W))es(w),
Co(v) = c—s() QKAL) TV (V) + 286 (K1A1 )72 (v)

+EE - 20D KiA L) TP ) + 2KV (),

Cro() = QA2 (W) +261(A10) V() +2(A7 D)2 @)es (v),
Ci1(v) = C1(v) — (RC)(v),
Cia(v) = —(RC1)(v) = —(RC () + (R2C2)(v).

We also define the functions

where

By = b1Ay—, By=0bA_, B3= b3Ag)_, By = b4As _,
Bs = bsAg),, Bs =bgAr_, B7=05b7A>_,

by = —bo(1, 1) +bo(1,0) + bo(0, 1) + &1,

by = 2bo(1, 1) — bo(1,0) — bo(0, 1) — &,

by = 4b% (1, 1) + 4&1bo(1, 1) — 2bo,1 (1, 0) — 2£1bo(1, 0)
+2b0,1(0, 1) — & — 211,

by = 4bo,1 (1, 1) +4&1bo(1, 1) + 2bp,1 (1, 0) — 2bg,1(0, 1)
—2&1b9(0, 1) — & + 211,

bs = —2b3,1(1, 1) —2&1bo(1, 1) +4bp,1(1, 0) + 2&1bp(1, 0)
—4bo,1(0, 1) + & + 201,

be = —2bo 1(1,1) —2&1bo(1,1) —4bo 1(1,0) +4bo.1(0, 1)
+2£1b0(0, 1) + & — 211,

b7 = —bo(1,1).

We will also write,

ske =trLiCr @ Co, S,Elz =trRL;C; ® Cy.

With this notation, we see that

L: 0
0) = (- 2 2,
Qo) (LlCz ® Ag 4L L1>

0 0
1) = ~ ~
Qo) <L1C1 ® Az L _RLI) ’

0 0
Q@) = <£1C12 ® Ay L R2I:1> '
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Using (93), Lemma 5, (122) and (123), we get

B1®Az 4 Ay - ®Cy
Qi(l) = (C ®A(l) 0 , (127)
By ® A2 4 A2—®C5>
0) = i :
QO <C6®A§f)+ 0
_ B ® A2,+ Az,f ® Cr7
Qi(—=1 = < 0 0 )
and
33®A2++B4®A(1) A(l) ® Cg
Q2(0) = Co ®A(2) 0 ) (128)

N BS®A2++BG®A(1) A(1)®Co
Q2(=1) = 0 0

If we look at the formulas (97) and (98), we see that for e; we need to compute
trPi(—1) and tr P{(0). For e;, we need to find P;(—1), P{(0), P (1), trP(—1),
trP>(0) and then o (—1, —1), o(—1, —1), 6(—1,0), 0(0,0) and o(—1, 1) defined
by (96). Note that (22) can be written

ap =trL3A> _ ® Ay 4,
and similarly for (23) and (101). It follows from (126), (127) and (128) that

L3B1 ® Az 4 L*A2_®C7>

0 -1) =
Qu(0)Q(=1) <a0b1L1C2 ® Az + agL1C2 ® C7

(129)

LiB® Aa 4 LiA> _ ®Cs
0 0 -
WOQO = (aob2L1C2 ® Azt +L1Ce ® Agl aoLi1C> ® C5>
0
1 1)
QM= (aObILlcll ® Az 4 a)LiCpy ® C7)
LiB; ® A, L*Az,— ® Cy4
Qo()Qi (1) N 2 :
aph1LiCr ® Ax + +LiC3 ® A a0L1C2 ® Cy
Qo(1H)Q1(0) = 0 0
0L a0b2L1C11®A2+_RL1C6®A apL1C11 ® Cs)’

0 0
2)Qi(—-1) = [ L '
Q@2)Qi (=D (aoszlclz ® A+ agLiCi2 ® C7>

From (95), (126) and (128), we obtain
trPy(—1) = rL3Bs ® Ay 4 +trLBe ® AS), +airLiC, ® Cio (130)
ay(bs + 52,10) + aybe,

and
trP>(0) =trL3B3 ® Ay 4 +trL)Bs ® Ag)++a1tri1c2 ® Cs +aitrLiC1; ® Cio
=ay(bs + 52,8+ 511,10) + ajbs. (131)
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From (95) and (129), we get the following expressions

LB ®Ay+ LiAy_®Cy
Pi(—1) = 2. ) 2 132
1=D <00b2L1C2®A2,+ agLliCr ® C7)° (132)
PL(0) = Lng ® As + LgAz,, ® Cs
P 7 ao(bali €2 + boLi €1 ) ® As 4+ LiCe ® Agl ayLiC2®C5 +L1C11 ®C7) )’
Pi(D) = ( . . LB @ Azy )
BT \ao(rLi € + bl €1y + 5iL1C12) ® Az + (L1 Cs — RL1 Co) © Agl
N Lih-@Co
a)L1C2 ®C4 +L1C11 ® Cs + LiC12®Cy) )
We can now use (97) to compute e;. We see that
trPy(—1) = rLiB; ® As 4 + aotr L1 C2 ® C7 = ap(by + 52.7) (133)

trP(0) = trLiBy ® Ay 1 4+ ap(trLiCa ® Cs 4+ trLiC1y ® C7)
= ao(by + 52,5 + 511,7),

trPi(1) = rLiB7 ® Ay 1 + ap(trLiCa ® C4 + trLiC1; ® Cs + trLiC12 ® C7)
= ag(b7 + s2,4 + s11,5 + S12,7),

and thus
er = aolr1(by +s527) + b1 + by + 525+ 52,7+ s11.7]- (134)
Now, by (122), (118) and (125),
27 = twr@d-Kp 'K = KA ) @ Al — @l Hh)
= g1(1,0) — g1(0,0) — g1(0,0) + g1 (0, 1),
and
5254927 = LG ® (Cs+C) = - KD~ K™Y — (K14, ) )
®(-A")
= gi(1, 1) — g1(1,0).

All computations of si ¢ are done in an analogous manner and below we will not give
the details in each case. We find,

s11,7=g1(1, 1) — g1(0, 1) + g2(1, 1) — g2(1, 0) — g2(0, 1) + g2(0, 0).
Using (120) and (124), we get

by +by+s25+s27+s11,7 = b2(1,1) +b1(1,0) — b2(1,0) + b1(0, 1)

and
bi+by+s27==8& —bi(1,1) = b51(0,0) + b1 (1,0) + b1 (0, 1). (136)
Combining (134), (135) and (136), we arrive at (33) with | and ¥, given by (29).
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Next, we turn to the computation of e,. First, we will compute o (—1, —1), 5 (0, 0),
o(—1,0) and o (—1, 1). From (132) and (133), we see that

trP(=1)* = tr (L3B1 ® Ay 1)(L3B1 ® Az 1)
+2a0b; (rLiCr ® A 4)(L3As - ® C7)
+aj(rLiCy ® C7)(L1C2 ® C7)

= aj(bj +2b1s2.7 + 53,) = (P (—1)%.

Thus,
o(=1,—1)=0. (137)
Similar computations give
0 (0,0) = 2afse s +2ai(bisi1,s — basi1,7 + 511,552,7 — 52,5511,7) (138)
0 (—1,0) = ajse,7, (139)

and
o(—=1,1) =aj(s37 — Sé}%) +ad(basi1,7 — bisis + s11,752,5 — 52,7511,5).  (140)
It follows from (98) and (137) that

ey =11 (%ter(—l) —o(—1, 0)) + %trPg(—l) + %ter(O) —o(—1,0)

1

—50(0, 0) —o(—1,1). (141)
From (130) and (139), we obtain

1 1 1

ztrPg(—l) —o(—1,0) = Eal(b5 + 52.10) + aT(Ebﬁ — 56.7)- (142)
We can now compute s2 19 and s¢ 7, which gives
1
5210 = by (1, 1) = b} 1 (1, 1) +&1bo(1, 1) — &1b1 (1, 1) — by 1 (1,0) + by1,1 (1, 0)

— &1bo(1,0) + £1b1(1,0) + b 1(0, 1) — b 1(0, 1) + b7 (0, 0),

and

—s6,7 = bo,1(1, 1) —b11(1, 1) + &1bo(1, 1) — &1b1(1, 1) + bo,1(1,0) — b1,1(1,0)
— bo,1(0,1) +b1,1(0, 1) — &1bo(0, 1) + &151(0, 1) + b1,1(0, 0).
Using, (30), (124) and Lemma 4, we see that

1 1 1
Ebs + 352,10 = o1(€1, —n1), §b6 —s6,7 = ¢1(61, n1). (143)

We see from (130), (131), (139), (138) and (140) that

%ter(—l) + %ter(O) —o(=1,0) — %0(0, 0) —o(—1,1) (144)

aq % 1 1 o)
=5 (b3+bs+s2,10+s2.8+511,10) + 4] §b4 + Eb6—s6,7—56,5_53,7 + 567
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A computation gives

1

5(52,8 + 52,10 + 511,100 = —bg (1, D) + 55 (1, 1) = &1bo(1, 1) + &1b2(1, 1)
+b7 1(1,0) = b3 (1, 0)
+&1b1(1,0) — &152(1,0) — b1 1(0, 1) + b5 (0, 1)
+b% 1(0,0) — b3 (0, 0).

By (124),

%(b3 +bs) = by (1, 1) + &1bo(1, 1) + bo,1 (1, 0) — bo,1(0, 1),
and using Lemma 4 and (31), we obtain,
b3 +bs + 52,10 + 52,8 + 511,10 = $2(51, —11). (145)
from (31). Next, a computation gives

—S6,7 = 86,5 — 537 + 54 = —bo.1(1, 1) + ba1(1, 1) — &1bo(1, 1) + &1bo(1, 1)
—b1,1(1,0) + b2,1(1,0)
D110, 1) — by, 1 (0, 1) 4+ £51 (0, 1) — £152(0, 1)
+b1,1(0,0) — b2,1(0,0),

and from (124), we find

1
§(b4 +be) = bo,1(1, 1) +&1bo(1, 1) — bo,1(1, 0) + bo,1(0, 1).

Thus, by (31),

1 1

§b4+2b6—567—S65—S37+S67—¢2($1,n1) (146)
This completes the proof of Theorem 1. O

3 Proof of the Short Time Expansion

We turn now to the proof of Theorem 2. Note that if we insert (46) into (57), then
AfE = & and An = n. Let Q = Q(u, o, &1, An, n1, An, 8) be the kernel in (62).
From (6.26) in [18], we have the formula

1 d
FuEmis &2, m @) = 5 / det(1+ QU B, A, &1, Ay, )y -
Yr

-1
(147)
where r > 1 and
1
B=—. (148)
o
We will write
B =(1+p)". (149)
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Note that &1 and A&, and also 71, and Az have changed places in (147). The formulas
for Q contain & and 1, and they should be thought of as functions of &, A& and
n1, An respectively using (57), i.e.

1 1
£ = —(AE +aky), m=—5(An+a’n).
o a/z

Deform the contour y; in (147) to y1,,. This gives

Flt(gla 7711 $27 ’727 a) = det(l + Q(17 137 A$9 gla An7 nla 8))Y (150)
1 du
+o— | det@+ Q™" B, A& &1, An.n1.8))y :
2mi Vi u—1

We have the following Lemma that will be proved in Section 4.

Lemma 7 We have the formula,
det(I+ Q(1, B, A&, &1, An, 1, 8))y = Fa(&2). (151)

The change of variables 4 — 1/u in (150) gives

! d
F”(él’nli527772;G)=F2(§2)—2—m/ det@+Q(u, B, A&, &1, An, m,s))yu(uil),

Thus, if we write

Q = Q(u, B, A&, &1, Ay, 1, 8),

we see that
0 Fy 1 / d ~ du
i na) =—-— [ —det(d —_ 152
0%, (&1, m13 &2, m25 ) 2 ), g et( +Q)u(u_1) (152)
We write the total derivative w.r.t. £ since Q depends on & directly and through A§,
a A = 1
% B
Now,
d ~ < - _,dQ
—detI+ Q) = detd+ QuI+Q~'— (153)
d&; d§
~ ., 0Q 1 ~ -, 0Q
= detd+QuA+ Q= - —detd+ QuA+ Q' —.
& B 0AE
In this formula, we should substitute & and 71, given by
1 1
= HE B m=gmln+ Bn). (154)
Note that if we insert (154) into (57), then A§ = & and An = n. Write,
P=Q,B,§ &.n,m,9é). (155)
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After this substitution, which replaces A& with & and An with n, which are both
fixed, we see that

Q P
—u, B, & &,n,n,8) = —, 156
Bél(u B.§,81,1n,1m1,90) 9%, (156)
3Q 5 — P
aA%—[(u’ﬂ’E’El’ n, N1, ) — g

Hence, by (152)-(156), we get

8F,[(§ Etab 7l+a2§1.a)
851 l?nl’ a/ 9 a/z 9
1 P du
=—— [ detd+Prd+P) ' —— 157
2711/% R T TV (57
1 P du
— [ detd+P)rd+P) ' ———
+2niﬁ,/yr e+ P+ B =D
a1 du 10 du
=——— [ detd+P)——— + ——— [ detd +P)———.
8512ni/yr et + )u(u—1)+ﬂ852ni/yr B =D
Write
oF, E4+af] n+a’E
G=GB) =GB, &.n.&n) =~ —— L), (158)
081 o o
and
1 du
H=HE)=HEB.E.m.&n=5—| detd+P)——0-:. (159)
iy, u(u—1)
It follows from (157), (158) and (159) that
B 8H+18H (160)
9& B IE~
We can expand in powers of 3,
1
H(,B)=H0+H1/3+§H2,32+..., (161)
where
aS
H; = H. 162
7 (162)
Also, we expand
1
P=P0+P1,3+§P2;32+.... (163)

To proceed we need to get a formula for P;.
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If we replace & with &, Ag with &;, n| with , An with 51, « with 8 and o’ with
B’ in (64)-(66) and in (68)-(74), we obtain

- Si—2) G
M (v, v2) = / / SRR (164)
I'p )

“@ri? et G —0)
~ 1 Gertvy/pm (2)
My, v) = ———— | d d 165
201, 02) = g ./r Z/rd oo/ —0) (163)
Y 1 G$1+vzym(z)
Mi(vi, 1)) = —— d d , 166
301 v) = G /rD Z/rd  Cerrom (G —0) (166)

and

ki (vi,v2) = L“/ dzf dw/ d¢
@r)* Jrp, T'p, I, I,

Ge,y(2)Gg oy, (W)
Gs 1 (G vy (@) (2 — )z — Bw)(Bo — )’

_ B / f / GG tvym (W)
k , =——3 d d d '
2= G5 fr, C e, M e G g @ (B2 — ) — Bu)

(167)

(168)
5 ﬂ€76U2 1
ks (v, v2) = —/ & [ do . (169)
(27[1)2 F_d3 r dy G§+v2,n(§)G§1+v1,m(w)(/gw - ;)
Revr, o) = 22 f de , (170)
B'2mi Jr_y, Gertui+pv2)/p e (@)
- B
ks(vi, ) = ——= dw dc
Qri)* Jrp, Iy I,
G$2+U2/a Uz(w) (171)

Gs () Geyvy,m (@) (Bw — PO (B — &)’

Svg

~ e

kﬁ(vl,vz) = —4/ dZ]/ de/ dw/
@r)* Jrp, Ip, I'p, "

de Ge,y(21) G4, ,n(22) Gy vy, (W) (172)
Ge (D)1 — (22— Oz — Bw)’

and

5 Svp G G ,
K7 (vi,02) = ——— / dzf dw/ ap Sern@Geipn @) - 173
@3 Je, e, T I, T Gen OB = BOG )
where we still have the condition (67). In these formulas, & and 7, are given by (46),
s0 in particular,

082

252 — £, 174
% o~ ¢ (174)
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By (155) and (62), we obtain

Q= ((@—u—u " Dki+ =Dk +ks)+@— DMz —uMy u+u™" =2)ks+(1 -1k
(1—u"ke — Ky @' =DM '
(175)
We can expand the operators M j and k ;j in powers of B,
Mj = Mj,() +1\~/Ij,1,3 + ...
l~(j = l;j)()—i-f{j)]ﬂ—i—....
Then, using (163) and (175), we see that
Ps = u _f(l,s + l~(2,s + lN(S,s + M3,S - MZ,S l~(3,s - l~(4,s (176)
0 0
+ <2R1,s - l}Z,s - l:(S‘s - M?a,s _2123,{"' l~(4,s> + u—l <_l~(~1,s_ l:(3,s>
kﬁ,s - k7,s _Ml,s _ké,s Ml,s

= uPg(—1) + Py(0) + u~'Py(1).
Recall (48) and (49). In analogy with (81), we define the conjugated kernel,
Mo (vi, v2) = c—s(v1)Ko(v1, v2)cs(v2) (177)
and like (22), we write

Fy(1 +1n?)

ay=trd—K)D™'A_® A4 = , (178)
! P& +1])
where the last equality is (40). Recall (50) and (51). Define, for r > 1,
gr(e1.82) = tr (1 — Ko) 'Ky~ (KoAZ )TV @ (A5 ). (179)

Then, as in Lemma 6,

g1(e1, &) = —bo(e1, &2) + bi(e1,€2), (g1, ) # (0,0), (180)
£1(0,0) = —by(0, 0).

Lemma 8 We have the following formulas
kio = koo =kso=kso=kso=0,
koo = c—s(Kodo )" ® A1+, kyo=c_sKp) " ®A4,
Mo =M, M;o=M;o=K],
ki = bo(0,00A; - ® A1+, ka1 =0o(0, DA _® Ay +
ks = bo(1,0)A;— ® Aj ¢
k3] = A_® A((),__l)cls, ki1 = A1 ®cs

M =M =0, My =—EA_Q®A+

Proof The proof is completely analogous to that of Lemma 5 starting from (164)-
(173). O
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We will use the notation

Lo=(I-Mg . (181)
It follows from (176) and Lemma 8, that
—K* 0
— 1 - -
Po= ((1 — u ko —Kro (! — 1)M0-> (152
Lemma9 For |u| large enough
o
det(I+Po) = Fa(&1 +m) Fa & + %) (1 +> fku—k> : (183)
k=1
and
o
A+Py)~" =) Jou™. (184)
k=0
In particular
—L* 0
O=|(-~ =~ 1 I 185
10 = (2,0, 04014 1) (18
where

Ci=c 5KV — (KoAg ) ). (186)

Proof This is completely analogous to the proof of Lemma 2. We have also used
Lemma 8. O

From (183) and the fact that

1 k 1 ifk>1
— [ ———au=1{_ (187)
27i J,, u(u —1) 0 ifk <O,
since r > 1, we see that
1 d
Hy = —/ det(I + Po)——_ — 0. (188)
27 Jy, u(u—1)
Thus, by (161),
1
Hl(,8)=H1,3+§H2,32+.... (189)
Using analyticity we get
oH 8H1ﬂ N 1 E)Hle2 n (190)
01 95 29&
oH oH 10H.
R S U
o0& 0& 2 0&
and inserting this into (160) we find
0H, 10H; J0H,
G = — - - — 191
® as+<2as asl)“ (oD
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From (159) and (162) we obtain

1 d
Hy = —/ det(I + Po)tr (1 + Pg) ™' Py — | (192)
27 Jy, u(u—1)
We will only compute G (0), i.e.
G(0) = OH, (193)
=9

The next term in the expansion in (191) can also be computed with more effort.

Proof of Theorem 2 1f we insert (183), (184) into (193) and use
Py = uP;(—1) + P (0) + u'Pi (1),

from (176), we see that

1 X
Hy = Fy(§ +7’/%)Fz(§+n2)2—mfr (1 —];rku ") (194)

X tr [(ZJ(k)u_k> (uPl(—l) +P,0) +u_1P1(1)):| %.
k=0

Using (187), it follows that
Hy = Fy(& + n) P2 + n)r JOP (—1). (195)
From Lemma 8, we obtain

—f(l,l +l~(2,1 +l~(5,1 +1\713,1 - I\712,1
= (=bo(0,0) + bo(0, 1) + bo(1,0) +£)A1, - ® A1+
=d1A1,- QA+,

and
ki —ki1=A1_® (Af),__l) —Des == A1,- ® Ca.
Thus, by (176),

diA—®A14+ A—®C
P1(0)=< 141, 0® 1,+ 1, O® 2>’

Combined with (185), this gives

J— * ~
r JO)P(—1) = tr ( L O) <d1A1’_®A1’+ Al’_®C2>

I:oél &® A1,+LT ]:0 0 0
= dirLjA| - ® A1 4 + (rLiA; - ® A; ) (rLoC) ® C)
= dy (d1 +trI:oC‘1 X éz) .

@ Springer



Math Phys Anal Geom (2020) 23: 43 Page 27 of 34 43

Now,
rLoCi ® €2 = tr (1 — Ko) ' (K§ ™" — (Koo ) ™) ® (A5 — (4 D)
= 21(1,0) — 1(0,0) — &1 (1, ) + 51 (0, 1)
= bo(1, 1) — bo(1,0) — by(0, 1) — b1 (0,0) — by (1, 1)
+b1(1,0) + b1 (0, 1),

by (179) and (180). Since bo(1, 1) = by(0, 0), we see that

Fy1 417 ~ ~
0P (-1) = 2—-1 b1(0,0) — by (1, 1) +b1(0, 1) + b1 (1,0)) .
wIOP(-) = 2 (5100 =B, D+ 510,10 +71(1,0)
and hence
Hy = FjE + 0D Fa(& + %) (& = 010,00 = 511, 1) +B1(0, D +51(1,0)).
(196)
Consequently, by (158), (193) and (196),
0 Fyt CEtad 7]+a2§§1 _ 2
Jim S @ S T ) = F2<sl+n)aé (P26 + D0 Em).
where

Y&, n) =& —b1(0,0) — by(1,1) + b1 (0, 1) + by (1, 0).

This completes the proof of the theorem. O

4 Proof of Some Lemmas

In this section we will give the proofs of some Lemmas from the previous sections.

Proof of Lemma 1 From (12) and (16), we see that

A =L i) =~ A, (197)
2.4 002 98,2
Thus, by (18) and (14),
0 0
—Ko(vi, 1) = — Az (v +v3)Az 4 (v3 +v2)ds
08, 0862 Jr,

d
/ — (A2, - (v +v3) A2 4 (v3 4+ 12)) dv3
R, 0U3
= —(A2,- ® A2 1)(v1, v2).

Consequently,

et — K3) = — det(I — K)tr (1 — K§) ™! OK;
& 082

= K& +mued-K) A ® Ayt = Fa(& + n3)ao,

0
95 (& +13)
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by (22), and we have proved (40). Furthermore, by (197),

dag _
pe == [ AP N K s )
982 R 7
sk —1 8K; #y—1 2
+ Az 4 (v1)d - K3) I = K5 (v1, 12)Az —(v2)d"v
]R?I— 8%_2
- /R A oD@ =KD 01,048 (02 d%0 = —a} — a —ar.
2

If n1 = 0, then a} = a; by (105), and hence

1 ( 2 3ao> . F®&)
a==z|—-agy——)=—- ,
2 0& 2F (&)

where we used (40) with 7, = 0. O]

Proof of Lemma 4 Changing n; to —n; interchanges A; _ and A 4, and hence
changes K; to Kj. Thus, by (26),

AS
bys(e1, €2) (1, —n1) =/ (Af‘+(I—KT)—’A?_)(M,)Q)_?dZ,\
RZ ’ s!

)\S
= /4 (AT O, A3 A = K)) ™" (A3, 2)AT ) (A, kz)s—% d*h.
R4 -
Interchanging A and Aj, and A3 and A4, gives

)\‘S
bro(e1, 2) (&1, — ) = A (AT G2 )T = K7 (ha, AAT ), ) 5 a2
; .

)\‘S
= /4 S—,l(Af(lz,M)(I— D7 (A3, )AL ) (A, 22) dPA

+

= by (e2, €1) (&1, M),

since A, and A 4 are symmetric. This proves (102).
Also, to prove (103), note that

AS A3
by (0.1) = / AL 40 2 = / AL Ga 22 d = B, 0.,
! R2 S

Ry

and analogously for bg (1, 0). The formula (104) follows immediately from the
definitions.
By (23),

ai(&2, —n) = (- KAL), @ Ay

[, A2 G- K G rAL 0 P

RY
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Interchanging A and A, shows that this equals,
1 -
/ AL ODA =K (1 A2) A2 - () 7 = a1 (B2, mo),
R+

since Kz (A2, A1) = K3 (A1, A2). This proves (105). The proof of (106) is analogous.
O

Proof of Lemma 5 We will only consider a few cases. The other are handled in a
completely analogous way.

Note that since o’ = 1 4+ O(a®) we can set o’ = 1 when computing a-derivatives
up to order 2 at « = 0. If f is a function of o, A& and An, we see from (57) that

ar i

= & —— , (198)
da a=0 do a=0 BAS a=0
d? 32 a2 3 a2
_J; = _J; _ 2%-1 f _ 2771 _f + é:]z _fz .
dOl a=0 30( a=0 8058AE a=0 aAn a=0 8AE a=0

From (66), we see that

1 G§2+U2J72 (2)
Msoi,v) = —= [ dz | d
30(v1, v2) (2ri)? v/l“D : /T‘_d ‘ Gt (§)(z = 8)

/0 Ao (01, ) Aot On, v2) d = K5 (01, 02).

Using (66), (58), (59) and (198), we get

G§2+U1,7]2 (é‘)(z - ;)

=S\ i) Gonw @) Geytvym () d
&1 (271i /Fd G§2+U1,n2(§)) (/1:[) E+va.m (2) Z)

= §142_ @ Ax 4+ (v1, 12),

— _ 1 Geytvynp (@) (€ — 2)
M3 1 (vy, v12) = —&; 22 /Fu dz /;d dc¢
1 d¢

and

1 Gertvy,m (Z)(Z2 — ;2)
3,2(v1, v2) m Q2ri)? ~/FD N /F—d ¢ Geyqom )z —20)

1 Gyt (2 —2)?
L g2 . / d/ d §r+va,m
T o, C L Garnm @@= 0

MUy
=S TN e, Gernm @) ) U, ST

(5 [ ) )
+ (=& —2m) (Zni . Garorm (@) " Gertvym(2) dz

= (& = 2n)A2— ® A, (v, v2) + (67 + 20D AY) ® Ag 4 (v1, v2),
by (58) and (59).
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It follows immediately from (68) that k; o = 0. Using (198), we see that

1
ki1(vi,02) = —— 4/ dz/ dw/ d¢
@r)* Jrp, Ip, T4y I,

o Ge i (2)Geypvy,m (W)
Gy (©) Gy (@)@ — £)2(=0)
= A2— DA VAT (0,0) A2 4 (v2) = (0, 0)A2,— ® Az 1. (v1, v2),

since, using the definitions,

ATVATY0.0) = / A0, DA (A1, 0)diyg
R4

= [ A+ a0+ a @ = [ KiGa k@
R} R2
= by(0, 0).
From (68) and (198), it follows that

k V1, U = —F

2

1
Sad NG (v1, v2)

a=0

_ 1. 4/ dZ/ dw/ dc do G 0y (2)Gyvy, i (W)
(2mi) R 'p, T Ty, Gél,m (g)G§2+v1,n2 (@) (z—¢)

|: 2w 2w a)—wj|

(v1, v2) — 28
=0

S e 1
2z ¢

=247 PATV0,00 42— ® AL, (v1, v2)+2A7 VAT 0,0 AL ® Ag 4 (v, 12)

128 A< ‘)A( 10,0 (A(l) ®Ass+Ar_® A§f+> (v1, v2).

We now use,

ATPATD0,00 =55, 1), AT VAT (0,0) = ko (1, 1),

We can now proceed with the other cases in an analogous way. For these computa-
tions, we also use

AP0 = bo(0. 1), AT2(0) = bo(1,0),
A< D) = 260101, AT (0) = bo.1(1,0). 0

Proof of Lemma 2 1t follows from (79) and Lemma 5 that

B 1- K3 0
I+ Qo= ((1 —uVkeo —kyo T+ ! — 1>M1> : (199)

The block-inverse formula
An 0\ Al—1 0
Ayl Ap A22 A21A11 A22
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then gives

(1+Qo) "= o °
T A+ @ =)Mo (! = kg o—k7,0)LE T+ (™' =M~
(200)
if |u| is sufficiently large. We can write

I+ ' =DM =d-M)DA+u"'d=M)™H =A-M)A+u"'R). (201)
Thus, (199) gives
det(I 4+ Qo) = det(I — K3) det(I — M;) det(I + u~'R)
= F2(& + 1) P26 +n3) detd +u” 'R).
This proves (87). The expansion (88) follows from

o —1
-1
(=D Ly

logdet(I+u~'R) = Z
=1

tr Rk,

if |u| is sufficiently large. From (201), we see that
I+ @ =DM~ =d+u R TA-Mp 7,

and using the fact that
o
@T+u" "R = (DA RE,
k=0

for |u| is sufficiently large, we get
oo
@+ @' =DM~ =) (=D REa-Mp T

k=0
Inserting this into (200) gives

o Ry 0o
T QO = oy (DR RALy (0! = ko —kr o)Ly T520(~ Db RAL, )
from which (89), (90) and (91) follow. O

Proof of Lemma 3 We see from (63), (82) and (94) that

Fii (&1, 15 &2, m25 ) (202)
1 1 d
=— [ det(+ Qo) |:(trP1)a + = ((trPI)Z_trP% + ter) oz2] 0@,
2mi " 2 u—1

From this formula, (87), (88) and (94), we obtain

1 ad ad du
- — 1 —k trPy(ku* | ——, 203
er=— yr< +k2:;rku ) D wPiut ) (203)

k=—1
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and

1 1 > = C
B Z —k Z —k Z —¢
2T w2 (1 +k=1rku ) o o

k=—1 t=—1

[ Y Piwut | | S Pi@u |+ Y aPaout udT“l. (204)

k=—1 l=—1 k=—1

We now use the fact that
1 1 0 ifk>1
— / ————du=1{ ! (205)
27i J,, uf(u—1) 1 ifk <0,
for all » > 1. Using (203) this gives (97), and from (204), we get (98) by (96). O

Proof of Lemma 6 'We have that

gr,s(SI, £2)
= /2 (/ A?_(M,M)dh) - KD 7K, 22)
R+

Ry
X ( (KIA?-{-)O‘Z’ A.4)A.i d)\4) dldiy

)\'S
:/ (AT (= K) KA )03, A 2 dsdha.
R%— ’ ’ S

From the identity,
I-K) 'Ki=@-K)~' -1,

we get
! n
I-K|) 'K, = —1)r*k I-K;)*
I-K) K[ =) (-1 <k>( D
k=0
Thus

p
n AS

gr,s(é‘l, 82) = Z(—l)r—k( ) f (A‘;l_(l — Kl)—kA512+)()\‘l’ )\2)_? d2)\’
R : s!

k=0 k

=y (-1 * (’Z)bk,s(sl, £2).
k=0
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Similarly,

0n 0.0 = [ A—K)“K G ) o)
¥

)\,S
= [ A=K TG 2 d
R%r s

r—1

_ kT —1 _ AS
ZAZ(I‘K” 'Ki | Y =D ”‘( L )(I—Kl) 10020 d%

k=0

= Z( - k( )f I-K;)~ kKl(xl,m
_ 1y —k r—1
= Z( D | )hes (0. 0).

k=1

Proof of Lemma 7 Tt follows from (62) that

det(T4+Q(1, B, AE, 1, An, 11, 8))y = det (I_Mz(ﬁ’ Agfl’ An, 1, ) (1)) (206)
Y

= det(I - M2(ﬁ7 A$7 %—19 Ans ni, 8))L2(R+)'
Now, using (65), we see that

1 Gy tvy/p 0p (2)
Ma(B, A&, &1, An, m,a)(vl,w):.—/ dz/ d¢ ’ .
Qmi)?p’ I'p ry  Gavu/pm(@@=0)
(207)
Recall that & in (65) is given by & = & (v, &1, AE) = (AE + a&y)/a/, s0 in (207),
we have instead

§1+BAE &1+ B(@'s —ab)
E2(. AL E) = Pl — &,
B’ B
so, in fact, we just get &, in (207). An analogous argument applies to 7,. From (207),
we obtain

My (B, A&, &1, An, 1, 8)(v1, v2) = ﬁKz(ﬁ ﬁ’)

from which we see that the right side of (206) is F»(& + ’72)- O
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