
https://doi.org/10.1007/s11040-020-09334-6

The Induced Semigroup of Schwarz Maps
to the Space of Hilbert-Schmidt Operators

George Androulakis1 ·Alexander Wiedemann1,2 ·Matthew Ziemke3

Received: 25 September 2019 / Accepted: 17 February 2020 /
© Springer Nature B.V. 2020

Abstract
We prove that for every semigroup of Schwarz maps on the von Neumann algebra
of all bounded linear operators on a Hilbert space which has a subinvariant faith-
ful normal state there exists an associated semigroup of contractions on the space
of Hilbert-Schmidt operators of the Hilbert space. Moreover, we show that if the
original semigroup is weak∗ continuous then the associated semigroup is strongly
continuous. We introduce the notion of the extended generator of a semigroup on
the bounded operators of a Hilbert space with respect to an orthonormal basis of the
Hilbert space. We describe the form of the generator of a quantum Markov semi-
group on the von Neumann algebra of all bounded linear operators on a Hilbert space
which has an invariant faithful normal state under the assumption that the generator
of the associated semigroup has compact resolvent.
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1 Introduction

It is known that, under certain assumptions, semigroups on von Neumann algebras
or their preduals give rise to associated semigroups on Hilbert spaces. Moreover,
these associated semigroups often have stronger continuity properties than the orig-
inal semigroups. For example, in [35, Equation (2.1)] it is stated that if (Tt )t�0 is a
quantum Markov semigroup on a von Neumann algebra A which has an invariant
faithful normal state, and if (K, π, Ω) is the GNS triple associated to that state, then
there exists a strongly continuous semigroup (Tt )t�0 of contractions on K such that

Tt (π(A)Ω) = π(Tt (A))Ω for all A ∈ A and t � 0. (1)

Since the proof of this statement is not included in [35] we provide a proof here (see
Remarks 2 and 9). Other results which give rise to semigroups on Hilbert spaces
starting from semigroups defined on spaces of operators can be found in literature.
For example, in [34, Footnote of Theorem 6] it is proved that every strongly continu-
ous semigroup (Tt )t�0 of positive isometries on the real Banach space of self-adjoint
trace-class operators on a Hilbert space gives rise to a strongly continuous semigroup
(Vt )t�0 of isometries on the Hilbert space such that Tt is given as a conjugation by
Vt for all t � 0. In [19, Theorem 3] it is proved that, under appropriate assumptions,
weakly continuous semigroups on B(H) (whereH is a separable Hilbert space) give
rise to corresponding semigroups of unitaries on some associated Hilbert space. In
[31, Theorem 3.3.7] the author produces a strongly continuous group of unitaries
associated with a norm continuous semigroup on the space of trace-class operators
on a related Hilbert space.

In this work we prove a result similar to the result stated above in (1) (Theorem 2).
More precisely, we prove that every semigroup of Schwarz maps on B(H) (where
H is a Hilbert space) which has an invariant faithful state gives rise to an associated
semigroup (˜Tt )t�0 of contractions on the space of Hilbert-Schmidt operators on H.
Our map is “more symmetric” than the one provided by (1) (see the comments fol-
lowing Remark 2). We introduce the notion of the extended generator of a semigroup
on bounded operators on a Hilbert space with respect to an orthonormal basis of the
Hilbert space, and we explicitly describe how the generators of (Tt )t�0 and (˜Tt )t�0
and the extended generator of (Tt )t�0 are related. We apply these descriptions to a
quantum Markov semigroup (Tt )t�0 having an invariant faithful normal state under
the assumption that the generator of (˜Tt )t�0 has compact resolvent, which allows
us to describe the form of the extended generator (and thereby the generator) of the
semigroup (Tt )t�0 with respect to an orthonormal basis, and thereby the generator
itself (see Theorem 4).

1.1 Structure

• In Section 2 we establish formal notation and definitions, and give some
historical notes on the terminology.

• In Section 3 we consider several constructions arising from faithful, positive, nor-
mal functionals. In particular, in Section 3.1 we prove that every faithful positive
normal functional on B(H) induces a canonical bounded linear map from B(H)
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to S2(H). This map is used in Theorem 1 to prove that for every bounded lin-
ear Schwarz map on B(H), which has a subinvariant faithful positive functional,
there exists a corresponding contraction on S2(H). In Section 3.2 we consider
an alternate construction for such induced maps using the GNS construction, and
then compare and contrast the two methods.

• In Section 4 we recall the basic notions of continuity for semigroups, as well as
formalize the definition of a semigroup’s generator and its generator’s domain.
In Section 4.1 we introduce the notion of an extended generator, which can be
defined on a larger domain while still agreeing with the usual generator on all
finite subspaces. Theorem 2 relates the domains and actions of the generator, the
extended generator, and the generator of the semigroup induced on S2(H).

• In Section 5 we investigate the applications of Theorem 2 in the study of quantum
Markov semigroups (QMSs), for which the exact form of the generator is known
if the generator is bounded (see [28] and [36]). In Section 5.1, we describe the
form of a QMS generator in the case that the generator of the semigroup induced
on S2(H) has compact resolvent.

2 Preliminaries

We first fix some notation. IfH is a Hilbert space, let (B(H), ‖·‖∞) denote the space
of all bounded linear operators on H. For 1 � p < ∞, let (Sp(H), ‖ · ‖p) denote
the Schatten-p space of operators. In particular, (S2(H), ‖ · ‖2) denotes the space of
Hilbert-Schmidt operators on H and (S1(H), ‖ · ‖1) denotes the space of trace-class
operators on H. Let 〈·, ·〉S2(H) denote the inner product in S2(H). If L is a linear
operator which is not necessarily bounded, then D(L) will denote the domain of L.

We adopt the convention that functional will always mean bounded linear func-
tional. Usually the functionals that we will consider will be faithful, positive, and
normal, so this convention will help us to cut down the number of adjectives.

We would like to recall the Schwarz inequality and define the Schwarz maps. The
classical Cauchy-Schwarz inequality states that |〈y, x〉| � ‖y‖‖x‖ for all vectors
x, y in a Hilbert space. This inequality is extended to |φ(y∗x)| � √

φ(y∗y)
√

φ(x∗x)

for all x, y in a C∗-algebra A, where φ is a positive functional on A (see [33, The-
orem 4.3.1]). The last inequality can be further extended to (T (y∗x))∗T (y∗x) �
‖T (y∗y)‖T (x∗x) if T is a completely positive map from a C∗-algebra A to the C∗-
algebra B(H) of all bounded operators on a Hilbert spaceH (see [5, Lemma 2.6]). If
in the last inequality one assumes that A is unital and T is unital, then by replacing
y by the unit we obtain

T (x)∗T (x) � T (x∗x) for all x ∈ A. (2)

A similar inequality was proved by Choi [11, Corollary 2.8] who proved that if A is
a unital C∗-algebra and T is a 2-positive unital map from A to A then T (x∗)T (x) �
T (x∗x) for all x ∈ A. Choi calls the last inequality “Schwarz inequality”. Similar
inequalities appear in [32, Theorem 1] and [40, Theorem 7.4]. Since a positive linear
map T on a C∗-algebra A satisfies T (x∗) = T (x)∗ for all x ∈ A, the last inequality
is equivalent to (2). Following [41, page 14], we say that a bounded linear operator T
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on a C∗-algebra A is a Schwarz map if Inequality (2) is satisfied. The advantage of
Inequality (2), versus the inequality proved by Choi, is that Inequality (2) implies that
T is positive. Be warned that Inequality (2) is not homogeneous for T , and therefore
by scaling the operator T by a positive constant the above inequality is affected.

Next we recall the definition of invariant functionals and we define the notion of
subinvariant positive functionals on aC∗-algebra. IfX is a Banach space, T : X → X

is a bounded linear operator, and ω is a functional on X, then ω is called invariant
for T if

ω(T x) = ω(x) for all x ∈ X.

If A is a C∗-algebra, T : A → A is a positive bounded linear operator, and ω is a
positive functional on A, then we will say that ω is subinvariant for T if

ω(T a) � ω(a) for all a ∈ A with a � 0.

IfH is a Hilbert space, then a functional ω on B(H) is called normal if and only if it
is positive and continuous in the w∗ topology. This is equivalent to the fact that there
exists a unique positive operator ρ ∈ S1(H) such that

ω(x) = Tr(ρx) for all x ∈ B(H) (3)

where Tr denotes the trace. The positive functional ω associated to the positive trace-
class operator ρ via (3) is denoted by ωρ . If ω is a state (i.e. unital positive functional)
on B(H) then ω is normal if and only if the positive trace-class operator ρ which
satisfies (3) has trace equal to 1. Note that if H is a Hilbert space and T : B(H) →
B(H) is a bounded linear operator, then a normal positive functional ωρ (for some
positive trace-class operator ρ) is invariant for T if and only if

T †(ρ) = ρ,

where T † denotes the Banach dual operator of T restricted to S1(H) (viewed as a
subspace of the dual of B(H)). Also, if H is a Hilbert space and T : B(H) → B(H)

is a positive bounded linear operator, then a normal positive functional ωρ (for some
positive trace-class operator ρ) is subinvariant for T if and only if

T †(ρ) � ρ.

If H is a Hilbert space, recall that a positive functional ω on B(H) is faithful
provided that ω(x) > 0 for all x > 0. It is worth noting that B(H) has a faithful
normal functional if and only ifH is separable (see [6, Example 2.5.5]).

3 Constructions Using Faithful, Positive, Normal Functionals

We extensively use the next proposition, so we want to give it along with a proof.

Proposition 1 Let H be a Hilbert space and ρ ∈ S1(H) be positive. Then the
following are equivalent:

(i) the positive normal functional ωρ is faithful,
(ii) the operator ρ is injective,
(iii) the operator ρ has dense range.
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Proof [(i) ⇒ (ii)]. Suppose ωρ is faithful. Let h be a nonzero element of H and
Ph be the orthogonal projection onto the span of h. Then Ph is a positive non-zero
operator on H. Hence, since ωρ is faithful,

0 < ωρ(Ph) = Tr(ρPh) = Tr(ρ1/2PhPhρ
1/2) = ‖Phρ

1/2‖22 = 1

‖h‖2 ‖ρ1/2h‖2,

and so ρ1/2h �= 0. By using the same argument with h replaced by ρ1/2h, we have
that ρh �= 0. Thus, ρ is injective.

[(i) ⇒ (iii)]. Assume that ρ does not have dense range and let P be the orthog-
onal projection to Range(ρ)⊥. Then P is a positive non-zero operator on H, and so
ωρ(P ) > 0. However, Pρ = 0, and so

ωρ(P ) = Tr(ρP ) = Tr(Pρ) = Tr(0) = 0

which is a contradiction. Thus, ρ has dense range.
[(iii) ⇒ (i)]. Let A ∈ B(H) and suppose ωρ(A∗A) = 0. Then

0 = ωρ(A∗A) = Tr(ρA∗A) = Tr(ρ1/2A∗Aρ1/2) = ‖Aρ1/2‖22. (4)

Hence Aρ1/2 = 0, and therefore Aρ = 0. Since ρ has dense range, this implies
A = 0. Thus, ωρ is faithful.

[(ii) ⇒ (i)]. Assume that ρ is injective and letA ∈ B(H) such that ωρ(A∗A) = 0.
Equation (4) implies that Aρ1/2 = 0 and hence ρ1/2A∗ = 0, thus ρA∗ = 0. This
implies ρA∗x = 0 for any x ∈ H, and since ρ is injective we have that A∗x = 0 for
all x ∈ H, and so A = 0. Thus, ρ is faithful.

Remark 1 Note that in the proof of [(i) ⇒ (ii)] of the above proposition, we proved
that (i) implies that ρ1/2 is injective. Since ρ1/2 = ρ1/4ρ1/4 we immediately obtain
that ρ1/4 is injective. Since ρ3/4 = ρ1/2ρ1/4 we obtain that ρ3/4 is injective as it is a
composition of two injective maps. Further, since an operator is injective if and only
if its adjoint has dense range, and ρ1/4, ρ1/2, and ρ3/4 are self-adjoint, we have that
ρ1/4, ρ1/2, and ρ3/4 have dense range.

3.1 InducingMaps on S2(H)

Let H be a Hilbert space and fix ρ ∈ S1(H) which is positive. Define

iρ : B(H) → B(H) by iρ(x) = ρ1/4xρ1/4.

The next proposition summarizes the properties of the map iρ . It is useful to first
recall that for any Hilbert spaceH the following set inclusions hold:

S1(H) ⊆ S2(H) ⊆ B(H).

Proposition 2 Let ρ ∈ S1(H) be positive such that ωρ is a faithful positive
functional. Then the following statements are valid:

(a) The map iρ is injective.
(b) The map iρ preserves positivity.
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(c) The restriction iρ |S2(H) of iρ to S2(H) is a contraction from S2(H) into S1(H).
(d) The map iρ is a contraction from B(H) onto a dense subset of S2(H).

Proof To prove (a), let x ∈ B(H) and suppose iρ(x) = 0. By Remark 1 we have that
ρ1/4 is injective. Therefore, since ρ1/4xρ1/4 = 0, we obtain that xρ1/4 = 0. Further,
since ρ1/4 has dense range, (by Remark 1 again), we obtain that x = 0. Thus iρ is
injective.

To prove (b), let x ∈ B(H) where x � 0. Let h ∈ H. Then

〈h, iρ(x)h〉 = 〈h, ρ1/4xρ1/4h〉 = 〈ρ1/4h, xρ1/4h〉 � 0

since x � 0. Thus iρ maps positive operators to positive operators.
To prove (c), first note that for p, q, r � 1 with 1

p
+ 1

q
+ 1

r
= 1 and for x ∈

Sp(H), y ∈ Sq(H), and z ∈ Sr (H), two applications of Holder’s inequality give that
‖xyz‖1 � ‖x‖p‖y‖q‖z‖r . From this we obtain that for y ∈ S2(H) with ‖y‖2 � 1
we have

‖iρ(y)‖1 = ‖ρ1/4yρ1/4‖1 � ‖ρ1/4‖4‖y‖2‖ρ1/4‖4 = ‖ρ‖1/41 ‖y‖2‖ρ‖1/41 � ‖ρ‖1/41 .

To prove (d), first notice that iρ(x) ∈ S2(H) for all x ∈ B(H) since

‖iρ(x)‖22 = ‖ρ1/4xρ1/4‖22 = Tr
(

ρ1/2x∗ρ1/2x
)

� ‖ρ1/2x∗ρ1/2x‖1 � ‖ρ1/2x∗‖2‖ρ1/2x‖2
= Tr

(

(ρ1/2x∗)∗(ρ1/2x∗)
)1/2

Tr
(

(ρ1/2x)∗(ρ1/2x)
)1/2

= Tr
(

xρx∗)1/2 Tr
(

x∗ρx
)1/2

< ∞.

Let y ∈ S2(H) such that y ⊥ iρ(x) for all x ∈ B(H), (where the orthogonality is
taken with respect to the Hilbert-Schmidt inner product). Then, for all x ∈ B(H), we
have

0 = 〈iρ(x), y〉S2(H) = 〈ρ1/4xρ1/4, y〉S2(H)

= Tr(ρ1/4x∗ρ1/4y) = 〈x, ρ1/4yρ1/4〉S2(H).

Therefore ρ1/4yρ1/4 = 0. Since ρ1/4 is injective, we have that yρ1/4 = 0 and, since
ρ1/4 has dense range, we have that y = 0. Therefore iρ has dense range.

To see that ‖iρ : B(H) → S2(H)‖ � 1, let x ∈ B(H) and notice that

‖iρ(x)‖2 = sup
y∈S2(H)
‖y‖2�1

|〈iρ(x), y〉S2(H)| = sup
y∈S2(H)
‖y‖2�1

|Tr(iρ(x)∗y)|

= sup
y∈S2(H)
‖y‖2�1

|Tr(ρ1/4yρ1/4x∗)| � sup
y∈S2(H)
‖y‖2�1

‖ρ1/4yρ1/4‖1‖x‖∞

= ‖iρ |S2(H) : S2(H) → S1(H)‖‖x‖∞ � ‖x‖∞,

where we used part (c) for the last inequality.
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Definition 1 Let H be a Hilbert space and ρ ∈ S1(H) be a positive operator. If T :
B(H) → B(H) is a bounded linear operator, we define the operator ˜T : iρ(B(H)) →
iρ(B(H)) by

˜T (ρ1/4xρ1/4) = ρ1/4T (x)ρ1/4 for all x ∈ B(H).

Note that ˜T depends on ρ but, for simplicity, we chose notation which does not
reflect this dependence.

The following theorem was first proven in [7]. For the convenience of the reader
we provide a proof of it here.

Theorem 1 Suppose H is a Hilbert space and ρ ∈ S1(H) be a positive operator
such that ωρ is a faithful positive functional on B(H). Let T : B(H) → B(H) be
a bounded linear operator which is a Schwarz map such that ωρ is a subinvariant
functional for T . Then the corresponding operator ˜T can be extended to all of S2(H)

as a contraction from S2(H) to S2(H).

Proof Since ωρ is a faithful normal functional on B(H), we have that H must be
separable (see the comment above Proposition 1), so let (ek)k�0 be an orthonormal
basis for H which diagonalizes ρ and let Pn = ∑n

k=0 |ek〉〈ek|. Note that ρ and its
positive powers commute with each Pn. Define the linear subspaceA = {xρ1/2 : x ∈
B(H)} and the map ̂T : A → A by ̂T (xρ1/2) = T (x)ρ1/2. Further, for n ∈ N, define
the map Δn : S2(H) → S2(H) by

Δn(x) = Pnρ
1/2xρ−1/2Pn for all x ∈ S2(H)

(note that ρ1/2 is not invertible but ρ−1/2Pn is a bounded operator). Then, for any
x ∈ B(H), we have

‖˜T (iρ(x))‖22 = ‖ρ1/4T (x)ρ1/4‖22 = Tr
(

ρ1/4T (x)∗ρ1/2T (x)ρ1/4
)

= lim
n→∞Tr

(

ρ1/2T (x)∗Pnρ
1/2T (x)ρ1/2ρ−1/2Pn

)

= lim
n→∞

〈

T (x)ρ1/2, Δn(T (x)ρ1/2)
〉

S2(H)

= lim
n→∞

〈

̂T (xρ1/2), Δn
̂T (xρ1/2)

〉

S2(H)

= lim
n→∞

〈

xρ1/2, ̂T ∗Δn
̂T (xρ1/2)

〉

S2(H)
(5)

where we will see later on why ̂T ∗ is well-defined.
Define Δ : A → A by Δ(xρ1/2) = ρ1/2x, which is well-defined since ρ1/2 has

dense range (hence, for x, y ∈ B(H), xρ1/2 = yρ1/2 implies x = y). Let B = {xρ :
x ∈ B(H)}. We make the following three claims:

(i) ̂T is a contraction on A. Therefore ̂T can be extended to a contraction on
S2(H) since A is dense in S2(H)).
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(ii) Δ2
n is positive. Therefore, by [37, Lemma 1.2], we have

̂T ∗Δn
̂T �

(

̂T ∗Δ2
n
̂T

)1/2
. (6)

(iii) ̂T ∗Δ2
n
̂T � Δ2 on B. Thus,

(

̂T ∗Δ2
n
̂T

)1/2
� (Δ2)1/2 = Δ. (7)

Hence, by combining (6) and (7), we obtain ̂T ∗Δn
̂T � Δ on B.

Assume for the moment that the above claims (i), (ii), and (iii) are true. By replacing
x by xρ1/2, in (5) we obtain that

‖˜T (iρ(xρ1/2))‖22 = lim
n→∞

〈

xρ, ̂T ∗Δn
̂T (xρ)

〉

S2(H)

� 〈xρ, Δ(xρ)〉S2(H) =
〈

xρ, ρ1/2xρ1/2
〉

S2(H)

= Tr
(

ρx∗ρ1/2xρ1/2
)

= Tr
(

ρ3/4x∗ρ1/4ρ1/4xρ3/4
)

=
〈

ρ1/4xρ3/4, ρ1/4xρ3/4
〉

S2(H)
= ‖iρ(xρ1/2)‖22

and so ˜T is a contraction on iρ(B(H)ρ1/2). We now show that iρ(B(H)ρ1/2) is dense
in S2(H). Let y ∈ S2(H) such that y ⊥ iρ(B(H)ρ1/2). Then, for any x ∈ B(H) we
have that

0 = 〈iρ(xρ1/2), y〉S2(H) = Tr(iρ(xρ1/2)∗y)

= Tr(ρ1/4ρ1/2x∗ρ1/4y) = 〈x, ρ1/4yρ3/4〉S2(H)

and hence ρ1/4yρ3/4 = 0. Since ρ1/4 is injective, we then have that yρ3/4 = 0 and,
since ρ3/4 has dense range, we obtain that y = 0. Therefore iρ(B(H)ρ1/2) is dense
in S2(H). Since ˜T is a contraction on iρ(B(H)ρ1/2), we can extend it to a contraction
on S2(H). This finishes the proof of the theorem pending verification of claims (i),
(ii), and (iii), as well as the fact that ̂T ∗ is well-defined.

First, we prove claim (i), i.e., that ̂T is a contraction on A. Let x ∈ B(H). Then

‖̂T (xρ1/2)‖22 = ‖T (x)ρ1/2‖22 = 〈T (x)ρ1/2, T (x)ρ1/2〉S2(H)

= Tr(ρ1/2T (x)∗T (x)ρ1/2) � Tr(ρ1/2T (x∗x)ρ1/2)

since T is a Schwarz map. Further,

Tr(ρ1/2T (x∗x)ρ1/2) = Tr(ρT (x∗x)) � Tr(ρx∗x) = Tr(ρ1/2x∗xρ1/2)

= 〈xρ1/2, xρ1/2〉S2(H) = ‖xρ1/2‖22.
Therefore ‖̂T (xρ1/2)‖22 � ‖xρ1/2‖22, and so ̂T is a contraction on A. Hence, ̂T can
be extended to a contraction on S2(H) since A is dense in S2(H) (this also shows
that ̂T ∗ is well-defined).

For claim (ii), i.e., that Δ2
n is positive, first note that since ρ commutes with Pn we

have
Δ2

nx = PnρxPnρ
−1Pn for all x ∈ S2(H)
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(note that ρ is not invertible but ρ−1Pn is a bounded operator). Indeed, if x ∈ S2(H)

then

〈

x, Δ2
nx

〉

S2(H)
=

〈

x, PnρxPnρ
−1Pn

〉

S2(H)
= Tr

(

x∗PnρxPnρ
−1Pn

)

= Tr
(

ρ1/2PnxPnρ
−1/2PnPnρ

−1/2Pnx
∗Pnρ

1/2
)

= Tr
(

(ρ1/2PnxPnρ
−1/2Pn)(ρ

1/2PnxPnρ
−1/2Pn)

∗) � 0,

and so Δ2
n is positive. By [37, Lemma 1.2], we then have that

̂T ∗Δn
̂T � (̂T ∗Δ2

n
̂T )1/2. (8)

It is left to prove claim (iii), i.e., that ̂T ∗Δ2
n
̂T � Δ2 on B. Indeed,

〈

xρ, ̂T ∗Δ2
n
̂T (xρ)

〉

S2(H)
=

〈

T (xρ1/2)ρ1/2, Δ2
nT (xρ1/2)ρ1/2

〉

S2(H)

=
〈

T (xρ1/2)ρ1/2, PnρT (xρ1/2)ρ1/2Pnρ
−1Pn

〉

S2(H)

= Tr
(

ρ1/2T (xρ1/2)∗PnρT (xρ1/2)ρ1/2Pnρ
−1Pn

)

= Tr
(

ρT (xρ1/2)PnT (xρ1/2)∗Pn

)

� Tr
(

ρT (xρ1/2)T (xρ1/2)∗
)

(see below) (9)

� Tr
(

ρT
(

(xρ1/2)(xρ1/2)∗
))

(T is a Schwarz map)

� Tr
(

ρ(xρ1/2)(xρ1/2)∗
)

(ωρ is subinvariant for T )

= Tr
(

ρxρx∗) = Tr
(

ρx(xρ)∗
) = Tr

(

(xρ)∗ρx
)

= Tr
(

(xρ)∗Δ2(xρ)
)

(since Δ2(xρ) = ρx)

=
〈

xρ, Δ2(xρ)
〉

S2(H)
.

This completes the proof as long as we justify the inequality (9). Indeed, we have that
the inequality Tr(PnA

∗PnA) � Tr(A∗A) holds in general for any A ∈ S2(H), since
if (ek)k�1 is the orthonormal basis ofH used to define each Pn, then

Tr(PnA
∗PnA) =

∞
∑

k=1

〈

ek, PnA
∗P 2

n Aek

〉

=
∞
∑

k=1

〈PnAPnek, PnAek〉 =
n

∑

k=1

〈PnAek, PnAek〉 ,
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and further
n

∑

k=1

〈PnAek, PnAek〉 =
n

∑

k=1

‖PnAek‖2 �
n

∑

k=1

‖Pn‖2‖Aek‖2

�
∞
∑

k=1

‖Aek‖2 = Tr(A∗A).

3.2 An Alternate Construction

There is another situation where a bounded operator on a C∗-algebra gives rise to a
corresponding operator on a Hilbert space, and we would like to mention this in the
next remark.

Remark 2 Let A be a unital C∗-algebra and ω be a faithful state on A. Consider the
GNS construction ofA associated with ω. LetK be the Hilbert space associated with
the GNS construction, π : A → B(K) be the ∗-representation of A into the C∗-
algebra of all bounded operators onK, andΩ denote the cyclic element of the Hilbert
spaceK for the representation π , (i.e. the subspace {π(a)(Ω) : a ∈ A} is norm dense
in K) which is equal to the unit of A viewed as an element of K. Let T be a bounded
operator on A which is a Schwarz map. Assume that ω is subinvariant for T . Define
an operator T on the dense subspace {π(a)(Ω) : a ∈ A} of K with values in K by

T (π(a)(Ω)) = π(T (a))(Ω) for all a ∈ A.

Then T is a contraction (hence it extends to K).

Proof Since ω is faithful, the quotient that is usually associated with the GNS con-
struction does not take place, and the elements of A belong to K. Let 〈·, ·〉ω denote
the inner product in K and ‖ · ‖ω denote the norm of K. Then since ω is faithful, we
have that for a, b ∈ A, 〈a, b〉ω = ω(a∗b) and hence ‖(π(a))(Ω)‖2ω = ω(a∗a).

For every a ∈ A we have

‖T (π(a)(Ω))‖2ω = ‖π(T (a))(Ω)‖2ω = ω(T (a)∗T (a)) � ω(T (a∗a))

(since ω is positive and T is a Schwarz map)

� ω(a∗a) (T � 0 is a Schwarz map; ω is subinvariant for T )

= ‖π(a)(Ω)‖2ω,

which finishes the proof.

Notice the similarities between Theorem 1 and Remark 2. Both refer to a bounded
operator on someC∗-algebra where a positive linear functional is fixed, and they each
conclude the existence of an associated contraction on some Hilbert space. But there
are three key differences between Theorem 1 and Remark 2. First, Theorem 1 refers
to an operator on B(H) for some Hilbert space H (which is necessarily separable
since B(H) is assumed to admit a faithful normal state), while Remark 2 assumes
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that the operator is defined on a general C∗-algebra. Second, the state ωρ which is
mentioned in Theorem 1 is normal since it is defined via the trace-class operator
ρ, while there is no such assumption in Remark 2 (the normality of the state ω in
Remark 2 does not make sense in general since A is simply assumed to be a C∗-
algebra and not a von Neumann algebra as it is assumed in [35, Equation (2.1)]).
Third, the Hilbert space that is used in Theorem 1 is the space S2(H) which does
not depend on the positive linear functional, while the map iρ which maps B(H) to
S2(H), does depend on the positive linear functional. On the other hand, the Hilbert
space that is used in Remark 2 (i.e. the GNS construction associated to the faithful
state ω of the C∗-algebra A) depends on the state, while the ∗-representation π of
the von Neumann algebra which is associated with the GNS construction does not
depend on the state. Notice also that the combinations of the Hilbert spaces with
the representations in Theorem 1 and Remark 2 are very similar. More precisely, for
a, b ∈ B(H) we have that iρ(a), iρ(b) ∈ S2(H) hence

〈iρ(a), iρ(b)〉S2(H) = Tr(iρ(a)∗iρ(b))

= Tr(ρ1/4a∗ρ1/4ρ1/4bρ1/4) = Tr(a∗ρ1/2bρ1/2).

On the other hand, if we assume for the moment that the C∗-algebra A that appears
in Remark 2 is equal to B(H) for some Hilbert space H, and the faithful state ω on
the C∗-algebra A is given by ω(a) = Tr(ρa) for some positive trace-class operator
ρ onH, then the inner product of two elements a, b ∈ A via the GNS construction is
given by

〈a, b〉ω = ω(a∗b) = Tr(ρa∗b).

Thus the combination of the inner product with the representation that is used in
Theorem 1 is slightly more “symmetric” than the combination of the inner product
with the representation that is used in Remark 2. The reader of course will notice the
difference between the complexity of the proof of Theorem 1 and that of Remark 2.
The extra intricacies in the proof of Theorem 1 is the price we pay in order to achieve
the extra symmetry in the combination of the inner product and the representation as
discussed above.

Remark 3 The assumption that “ω is subinvariant for T ” cannot be omitted in
Remark 2.

An example where ω is not a subinvariant functional for T but all the other
assumptions of Remark 2 are valid is presented in Remark 11.7 of [43].

Remark 4 Note that if H is a Hilbert space, T : B(H) → B(H) is a bounded pos-
itive linear operator, and ω is a subinvariant positive faithful functional for T , then
ω/ω(1) is a subinvariant faithful state for T (here 1 denotes the identity operator on
H). Thus, instead of assuming the existence of subinvariant positive faithful function-
als, we henceforth simply assume the existence of subinvariant faithful states. Our
subsequent results thus remain valid if the assumptions of the existence of subinvari-
ant faithful states are replaced by the assumptions of the existence of subinvariant
positive faithful functionals.
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4 Semigroups of Schwarz Maps

We first recall some basic definitions about semigroups.

Definition 2 Let X be a Banach space. A one-parameter family (Tt )t�0 of bounded
operators on X is a semigroup on X if Tt+s = TtTs for all t, s � 0, and T0 = I

where I is the identity operator on X. We say the semigroup (Tt )t�0 on a Banach
space X is

– uniformly continuous if the map t �→ Tt is continuous with respect to the
operator norm.

– strongly continuous if for all x ∈ X the map t �→ Ttx is continuous with respect
to the norm on X.

– weakly continuous if for all x ∈ X and all x∗ ∈ X∗ the map t �→ x∗(Ttx) is
continuous.

– weak∗ continuous if X is a dual Banach space X = Y ∗ and for all y ∈ Y and
x ∈ X the map t �→ (Tt (x))(y) is continuous.

If H is a Hilbert space and X = B(H) then the semigroup (Tt )t�0 on the Banach
space X is WOT continuous (where this acronym stands as usually for the weak
operator topology) if for all h1, h2 ∈ H and x ∈ B(H) we have that the map t �→
〈h1, Tt (x)h2〉 is continuous.

It can be shown that a semigroup on a Banach space is strongly continuous if
and only if it is weakly continuous (see [4, Thm. 3.31]). If (Tt )t�0 is a uniformly
continuous semigroup on a Banach space X then its generator is defined as the
operator norm limit

L = lim
t→0

Tt − I

t
.

This limit exists and it defines a bounded operator on X. If we do not assume the
uniform continuity of the semigroup, then the definition of the generator is given
next:

Definition 3 Let (Tt )t�0 be a strongly continuous semigroup (resp. weakly continu-
ous, resp. weak∗ continuous), on a Banach space X (of course, when we assume that
the semigroup is weak∗ continuous we assume that X is a dual Banach space). We
say an element x ∈ X belongs to the domain D(L) of the generator L of (Tt )t�0, if

lim
t→0

Tt (x) − x

t
(10)

converges in norm (resp. weakly, resp. weak∗) and, in this case, define the generator
to be the generally unbounded operator L such that

L(x) = lim
t→0

Tt (x) − x

t
for all x ∈ D(L) (11)

where the last limit is taken in the norm (resp. weak, resp. weak∗) topology of X.
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Since a semigroup on a Banach space is strongly continuous if and only if it is
weakly continuous, it is natural to ask whether the limits (10) and (11) can be replaced
by weak limits and end up with the same D(L) and L. It turns out that this is indeed
the case (see [4, Proposition 3.36]). We will make use of this fact in the proof of
Theorem 2.

4.1 The Extended Generator L(hn) of (Tt)t�0

We now wish to extend the definition of the generator to include some cases where
the limit (11) does not exist. We first require the following notation:

Definition 4 LetH be a Hilbert space and (hn)n∈N be an (countable or uncountable)
orthonormal basis of H. We let M(hn)

N denote the set of all complex N × N matrices

with rows and columns indexed by N . We view a matrix L ∈ M
(hn)
N as a linear map

L : D(L) → C
N acting on H as follows: denote L = (Ln,m)n,m∈ N , and define

D(L) ⊂ H as the set of all vectors h = ∑

m∈N 〈hm, h〉hm ∈ H such that the series
∑

m∈N Ln,m〈hm, h〉 converges for all n ∈ N . Then

L(h) =
(

∑

m∈N

Ln,m〈hm, h〉
)

n∈N

.

This is in particular the natural matrix multiplication of L against h written as a
column vector.

The following definition is given as the minimal requirements for the outputs of
L to be considered as linear maps in the sense given above for a fixed orthonormal
basis (hn)n∈N ofH.

Definition 5 Let H be a Hilbert space and (hn)n∈N be a (countable or uncountable)
orthonormal basis of H. Let (Tt )t�0 be a semigroup of bounded operators on B(H).
To define the extended generator L(hn) of (Tt )t�0 with respect to the basis (hn)n∈N

we first define its domain as the linear subspace of all x ∈ B(H) such that the
function

[0, ∞) � t �→ 〈hn, Tt (x)hm〉

is differentiable at 0 for every n, m ∈ N ; that is, D(L(hn)) is the linear subspace of
all x ∈ B(H) such that the limit

lim
t→0

〈hn,
Tt (x) − x

t
hm〉

exists for every n, m ∈ N . In general D(L(hn)) can be the zero subspace, but if
the semigroup is WOT continuous then D(L(hn)) is WOT dense in B(H). Define
the extended generator L(hn) of (Tt)t�0 (with respect to the orthonormal basis
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(hn)n∈N) to be the map with domain D(L(hn)) whose range elements are matrices

L(hi)(x) ∈ M
(hn)
N with entries given by

[L(hi)(x)]n,m = lim
t→0

〈

hn,
Tt (x) − x

t
hm

〉

.

Next we want to compare the generator of a semigroup on B(H) with respect to an
orthonormal basis of H to the usual generator. Since the definition of the generator
depends on the continuity of the semigroup, in the next remark we will consider a
weak∗ continuous semigroup on B(H) for some Hilbert space H. The reason that
we choose the weak∗ continuity versus any other continuity assumption is because it
is the weakest and the most natural among all continuity assumptions that appear in
Definition 2.

Remark 5 Let H be a Hilbert space, (Tt )t�0 be a weak∗ continuous semigroup of
bounded operators on B(H), and let L denote its generator. Let (hn)n∈N be a (count-
able or uncountable) orthonormal basis of H, and let L(hn) denote the generator of
(Tt )t�0 with respect to (hn)n∈N . Then D(L) ⊆ D(L(hn)), and for every x ∈ D(L)

we have L(x) = L(hn)(x), by which we mean the matrix of L(x) with respect to
(hn)n∈N and the matrix L(hn)(x) are equal.

Indeed, for fixed x ∈ D(L) and every h, h′ ∈ H we have that
〈

h,
Tt (x) − x

t
h′

〉

→ 〈h, L(x)h′〉 as t → 0. (12)

In particular,

lim
t→0

〈

hn,
Tt (x) − x

t
hm

〉

= 〈hn, L(x)hm〉

for every n, m ∈ N . Thus x ∈ D(L(hn)).

Notation: If N is a nonempty set, then we denote by �fin(N) the set of all finite
subsets of N .

Notation: Let H and K be Hilbert spaces with H ⊆ K and let A ∈ B(H) and
B ∈ B(K). We shall denote by

A = prH(B)

the fact that

A = PHB|H
where |H denotes the restriction to H and PH : K → H denotes the orthogonal
projection from K onto H. The operator B is called a dilation of the operator A

and the operator A is called a compression of the operator B.

Remark 6 Let H be a Hilbert space with (countable or uncountable) dimension
N , (hn)n∈N be an orthonormal basis of H, (Tt )t�0 be a semigroup of bounded
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operators on B(H), and let L(hn) denote its generator with respect to (hn)n∈N . For
x ∈ D(L(hn)) and F ∈ �fin(N) there exists a unique operator

L(hn)(x)F : Span(hn)n∈F → Span(hn)n∈F

satisfying

lim
t→0

〈

h,
Tt (x) − x

t
h′

〉

= 〈h, L(hn)(x)F h′〉 for all h, h′ ∈ Span(hn)n∈F , (13)

or equivalently
∥

∥

∥

∥

prSpan(hn)n∈F

(

Tt (x) − x

t

)

− L(hn)(x)F

∥

∥

∥

∥

B(Span(hn)n∈F )

→ 0 as t → 0. (14)

Indeed, fix F ∈ �fin(N). From Definition 5, L(hn)(x)F : Span(xn)n∈F →
Span(xn)n∈F is uniquely defined by

[L(hi)(x)F ](h) =
∑

n,m∈F

lim
t→0

〈hn,
Tt (x) − x

t
hm〉〈hm, h〉hn if h =

∑

m∈F

〈hm, h〉hm.

(15)
Then (13) is obvious from Definition 5 and (15). The equivalence of (13) and

(14) then follows for any finite subset F of N , since all linear Hausdorff topologies
on the space of linear operators on Span(hn)n∈F are equivalent. Thus the WOT on
Span(hn)n∈F in (13) can be replaced by the B(Span(hn)n∈F ) topology.

Remark 7 Let H be a Hilbert space with (countable or uncountable) dimension N ,
(hn)n∈N be an orthonormal basis of H, (Tt )t�0 be a semigroup of bounded opera-
tors on B(H), and let L(hn)n denote its generator with respect to (hn)n∈N . Fix x ∈
D(L(hn)). Then the family (L(hn)(x)F )F∈�fin(N) is compatible in the following sense:
If G ⊂ F are two finite subsets of N then prSpan(hn)n∈G

(L(hn)(x)F ) = L(hn)(x)G.

Indeed, this is obvious from (15).

Remark 8 The generator of a semigroup with respect to an orthonormal basis that
we defined above is related to the form generator which was defined by Davies [13]
and was further studied in [3, 9, 10, 20, 29, 30, 39], and [38]. If (Tt )t�0 is a weak∗
continuous semigroup on B(H) for some Hilbert space H, then a form generator is
the map φ : K×B(H)×K → CwhereK is a dense linear subspace ofH, defined by

φ(h, x, h′) =
〈

h, lim
t→0

Tt (x) − x

t
h′

〉

for every h, h′ ∈ K and every x ∈ B(H).

Note that if (hn)n∈N is an orthonormal basis of H and K denotes the linear span of
(hn)n∈N then the form generator coincides with the generator with respect to (hn)n∈N

if the domain of the generator with respect to (hn)n∈N is equal to B(H). Here we
assume that the domain of the generator with respect to an orthonormal basis is a
linear subspace of B(H), not necessarily equal to B(H).

We require a few more definitions in order to state the next result.
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Definition 6 Let H be a Hilbert space, ω be a state on B(H) and (Tt )t�0 be a semi-
group of positive operators on B(H). We say that ω is a subinvariant state for the
semigroup (Tt )t�0, if and only if ω is subinvariant for Tt for every t � 0.

Definition 7 The Moore-Penrose inverse or pseudoinverse x(−1) of x ∈ B(H) is
defined as the unique linear extension of (x|N (x)⊥)−1, the inverse as a function, to

D(x(−1)) := R(x) + R(x)⊥

with N (x(−1)) = R(x)⊥, where N (x) and R(x) denote the nullspace and range of
x, respectively. Letting P and Q denote the orthogonal projections onto N (x) and
R(x), respectively, it can be shown (see e.g. [17]) that x(−1) is uniquely determined
by the relations

x(−1)x = I − P and xx(−1) = Q|D(x(−1)).

Notation By iρ(−1) we mean the map from B(H) to the space of linear maps on H
defined via

iρ(−1) (x) = (ρ1/4)(−1)x(ρ1/4)(−1).

Now we are ready to state the next result.

Theorem 2 Let H be a Hilbert space, (Tt )t�0 be a semigroup of Schwarz maps
on B(H), and let ρ ∈ S1(H) be such that ωρ is a faithful state on B(H) which is
subinvariant for the semigroup (Tt )t�0. Then there exists a unique semigroup (˜Tt )t�0
of contractions on S2(H) such that

˜Tt (iρ(x)) = iρ(Tt (x)) for all x ∈ B(H). (16)

Moreover, if (Tt )t�0 is weak∗-continuous then (˜Tt )t�0 is strongly continuous. Let
L denote the generator of (Tt )t�0, let ˜L denote the generator of (˜Tt )t�0, and let
L(hn) denote the generator of (Tt )t�0 with respect to (hn)n∈N, where (hn)n∈N is an
orthonormal basis of H consisting of eigenvectors of ρ. Then x ∈ D(L) implies
iρ(x) ∈ D(˜L), and moreover

˜L(iρ(x)) = iρ(L(x));
conversely, iρ(x) ∈ D(˜L) implies x ∈ D(L(hn)), and moreover

L(hn)(x) = iρ(−1) (˜L(iρ(x))). (17)

Proof The operators ˜Tt are well-defined by Theorem 1. Uniqueness comes from (16)
and the fact that iρ(B(H)) is dense in S2(H). It is easy to see that ˜Tt+s = ˜Tt

˜Ts and
that ˜T0 = 1 on iρ(B(H)), and the density of iρ(B(H)) implies these hold on all of
S2(H).
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For the continuity statement, it suffices to assume that (Tt )t�0 is weak∗-
continuous and show (˜Tt )t�0 is strongly continuous on iρ(B(H)), since iρ(B(H))

is dense in S2(H) and ˜Tt is a contraction on S2(H) for all t � 0. To this end, let
x ∈ B(H). Then

‖˜Tt (iρ(x)) − iρ(x)‖22 = ‖ρ1/4Tt (x)ρ1/4 − ρ1/4xρ1/4‖22
= ‖ρ1/4Tt (x)ρ1/4‖22 + ‖ρ1/4xρ1/4‖22

−〈ρ1/4xρ1/4, ρ1/4Tt (x)ρ1/4〉S2(H)

−〈ρ1/4Tt (x)ρ1/4, ρ1/4xρ1/4〉S2(H)

= ‖˜Tt (iρ(x))‖22 + ‖iρ(x)‖22
−2�〈ρ1/4xρ1/4, ρ1/4Tt (x)ρ1/4〉S2(H)

� 2‖iρ(x)‖22 − 2�
(

tr(ρ1/4x∗ρ1/4ρ1/4Tt (x)ρ1/4)
)

= 2�
(

tr(ρ1/4x∗ρ1/4ρ1/4xρ1/4−ρ1/4x∗ρ1/4ρ1/4Tt (x)ρ1/4)
)

= 2�
(

tr
(

ρ1/2x∗ρ1/2(x − Tt (x))
))

→ 0

since ρ1/2x∗ρ1/2 is trace-class. Therefore (˜Tt )t�0 is a strongly continuous semigroup
of contractions on S2(H).

To prove the final statement, first assume that x ∈ D(L). Then

weak∗ − lim
t→0

Tt (x) − x

t
= L(x). (18)

Notice that for every y ∈ S2(H) we obtain, by Proposition 2(c), that
ρ1/4y∗ρ1/4 ∈ S1(H) and therefore the map B(H) � z �→ Tr(zρ1/4y∗ρ1/4) ∈ C is
weak∗ continuous. Thus (18) implies

Tr

(

ρ1/4y∗ρ1/4 Tt (x) − x

t

)

t→0−−→ Tr
(

ρ1/4y∗ρ1/4L(x)
)

;
that is,

〈

y, ρ1/4 Tt (x) − x

t
ρ1/4

〉

S2(H)

t→0−−→
〈

y, ρ1/4L(x)ρ1/4
〉

S2(H)
,

and hence,
〈

y,
˜Tt (ρ

1/4xρ1/4) − ρ1/4xρ1/4

t

〉

S2(H)

t→0−−→
〈

y, ρ1/4L(x)ρ1/4
〉

S2(H)
. (19)

By [4, Proposition 3.36], we obtain that ρ1/4xρ1/4 ∈ D(˜L) and ˜L(ρ1/4xρ1/4) =
ρ1/4L(x)ρ1/4.

Conversely, by the Spectral Theorem there exists an orthonormal basis (hn)n∈N of
H formed by eigenvectors of ρ. LetL(hn) denote the generator of (Tt )t�0 with respect
to (hn)n∈N. Let x ∈ B(H) and assume that ρ1/4xρ1/4 ∈ D(˜L). Then we have that

˜Tt (ρ
1/4xρ1/4) − ρ1/4xρ1/4

t

t→0−−→ ˜L(ρ1/4xρ1/4) in S2(H),
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and hence

ρ1/4 Tt (x) − x

t
ρ1/4 t→0−−→ ˜L(ρ1/4xρ1/4) in S2(H). (20)

We will prove that x ∈ D(L(hn)). Indeed, we have that
〈

h, ρ1/4 Tt (x) − x

t
ρ1/4h′

〉

t→0−−→ 〈h, ˜L(ρ1/4xρ1/4)h′〉

for all h, h′ ∈ H, so for any n, m ∈ N we may set h = (ρ1/4)(−1)hn and h′ =
(ρ1/4)(−1)hm to obtain

〈

(ρ1/4)(−1)hn, ρ
1/4 Tt (x) − x

t
ρ1/4(ρ1/4)(−1)hm

〉

t→0−−→ 〈(ρ1/4)(−1)hn, ˜L(ρ1/4xρ1/4)(ρ1/4)(−1)hm〉.
Noting that (ρ1/4)∗ = ρ1/4, ((ρ1/4)(−1))∗ = (ρ1/4)(−1), and ρ1/4(ρ1/4)(−1)hk = hk

for all k ∈ N, this implies
〈

hn,
Tt (x) − x

t
hm

〉

t→0−−→ 〈hn, (ρ
1/4)(−1)

˜L(ρ1/4xρ1/4)(ρ1/4)(−1)hm〉.
Because this limit exists for all n, m ∈ N we have x ∈ D(L(hn)), and moreover

L(hn)(x) = (ρ1/4)(−1)
˜L(ρ1/4xρ1/4)(ρ1/4)(−1).

Remark 9 Since the proof of (1) is not included in [35], we want to mention that its
proof follows from our Remark 2 in a similar way that our Theorem 2 followed from
our Theorem 1 (even the proof of the strong continuity of the semigroup (Tt )t�0 fol-
lows the exact same argument as the proof of the strong continuity of the semigroup
(˜Tt )t�0 that appeared in Theorem 2). Moreover, the assumptions that the faithful state
is normal and invariant for the semigroup and that the operators of the semigroup are
completely positive that are mentioned in [35] for (1) are not needed for its proof,
because such assumptions were not used in Remark 2. Instead, for the validity of (1),
one merely needs to assume that the faithful state is subinvariant for the semigroup
of Schwarz maps. Note also that, unlike (1), Theorem 2 relates the generators of the
two semigroups.

5 Applications to QuantumMarkov Semigroups
and Their Generators

Since quantum Markov semigroups (QMSs) are semigroups of completely positive
maps on von Neumann algebras (and hence 2-positive maps and hence Schwarz
maps), we naturally obtain applications of Theorem 2 in the study of QMSs. The
existence of invariant normal states for QMSs has been discussed in [22] and [24].
Sufficient conditions for a semigroup to be decomposable into a sequence of irre-
ducible semigroups each of them having an invariant normal state are given in [42]
(see top half of page 608, Theorem 5 on page 608, and Proposition 5 on page 609).
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There are many results in the literature of semigroups which depend on the existence
of invariant faithful normal states (for example, see [21, 25–27], and [8]) and this
assumption is often taken for granted as being physically reasonable. QMSs have
been extensively studied since the 1970s with the exact form for the generators being
one of the topics which has garnered a fair amount of attention. See for example [1, 3,
12, 14, 28, 30, 36], and [38]. The generator of a QMS is a generally unbounded oper-
ator defined on a weak∗ dense linear subspace of B(H). If the generator is bounded
then the semigroup is uniformly continuous and the exact form of the generator was
found in [28] and [36]. In this section, given a Hilbert space H and a QMS on B(H)

having an invariant faithful normal state we study the associated semigroup of con-
tractions on S2(H). In particular, in Theorem 4 we describe the extended generator
(and hence generator) of such a QMS under the assumption that the generator of the
associated semigroup on S2(H) has compact resolvent.

Definition 8 A quantum Markov semigroup (QMS) on B(H), (for some Hilbert
space H), is a weak∗-continuous one-parameter semigroup of bounded linear opera-
tors acting on B(H), such that each member of the semigroup is completely positive
and identity preserving.

Remark 10 If H is a Hilbert space and (Tt )t�0 is a QMS on B(H) which has a
subinvariant normal state ωρ for some ρ ∈ S1(H), then ωρ is in fact an invariant
state for (Tt )t�0. Indeed for every t � 0,

Tr(T †
t (ρ)) = Tr(T †

t (ρ)1) = Tr(ρTt (1)) = Tr(ρ1) = Tr(ρ),

which together with T
†
t (ρ) � ρ implies that T †

t (ρ) = ρ.

Usually the notion of complete positivity applies to maps on C∗-algebras. In par-
ticular, if the C∗-algebra is equal to B(H) for some Hilbert space H, then the notion
of complete positivity becomes equivalent to the following: A map T : B(H) →
B(H) is completely positive if and only if for every n ∈ N, x1, . . . , xn ∈ B(H) and
h1, . . . , hn ∈ H,

n
∑

i,j=1

〈hi, T (x∗
i xj )hj 〉 � 0. (21)

Note that (21) makes perfect sense even if the map T is not defined on a C∗-algebra,
as long as T is defined on a Banach ∗-algebra S of operators on a Hilbert space
H. For example, S can be equal to S2(H) and T can be a bounded linear operator
from S to S. We make this extension of the notion of complete positivity in the next
definition.

Definition 9 Let H be a Hilbert space and S be a Banach ∗-algebra of bounded
linear operators on H. A bounded linear map T : S → S will be called completely
positive if for every n ∈ N, x1, . . . , xn ∈ S and h1, . . . , hn ∈ H, (21) holds.

This terminology will be used in the next result.
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Proposition 3 Let (Tt )t�0 be a weak∗-continuous semigroup of Schwarz maps on
B(H) for some Hilbert space H which possesses an invariant faithful normal state
ωρ for some ρ ∈ S1(H). Then the operators Tt are completely positive for all t � 0
if and only if the operators ˜Tt constructed in Theorem 2 are completely positive for
all t � 0.

Proof First, assume Tt is completely positive for t � 0, and let x1, x2, . . . , xn ∈
B(H) and h1, h2, . . . , hn ∈ H. Then

n
∑

i,j=1

〈

hi, ˜Tt

(

(ρ1/4xiρ
1/4)∗(ρ1/4xjρ

1/4)
)

hj

〉

=
n

∑

i,j=1

〈

ρ1/4hi, Tt

(

(ρ1/4xi)
∗(ρ1/4xj )

)

ρ1/4hj

〉

� 0

since Tt is completely positive. Further, since the map iρ from Proposition 2 has
dense range, ˜Tt is completely positive on S2(H).

Conversely, assume ˜Tt is completely positive for t � 0, and let t � 0,
x1, x2, . . . , xn ∈ B(H) and h1, h2, . . . , hn ∈ H. Then

n
∑

i,j=1

〈

ρ1/4hi, Tt (x
∗
i xj )ρ

1/4hj

〉

=
n

∑

i,j=1

〈

hj , ˜Tt ((xiρ
1/4)∗(xjρ

1/4))hj

〉

� 0

since ˜Tt is completely positive. Because the map ρ1/4 has dense range, this is
sufficient to show Tt is completely positive.

For the next result, recall the notion of conditionally completely positive maps
introduced by Lindblad in [36]. A linear operator L : D(L)(⊆ B(H)) → B(H) is
called conditionally completely positive if for all n ∈ N, for all a1, a2, . . . , an ∈
B(H) such that a∗

i aj ∈ D(L) for all i, j = 1, 2, . . . , n, that for all h1, h2, . . . hn ∈ H
with

∑n
i=1 ai(hi) = 0, we have that

n
∑

i,j=1

〈hi, L(a∗
i aj )hj 〉 � 0.

The next result is known for uniformly continuous semigroups. For example, see [20,
Proposition 3.12 and Lemma 3.13], or see [18, Proposition 2.9]. In fact the known
proof works for a more general setting as the next result indicates.

Theorem 3 Let S be a Banach ∗-algebra of operators acting on a Hilbert space H.

1. Let (Tt )t�0 be a WOT continuous semigroup on S and let L be its generator. If
Tt is completely positive for all t � 0 then L(a∗) = L(a)∗ for all a ∈ D(L) and
L is conditionally completely positive.
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2. Let (Tt )t�0 be a uniformly continuous semigroup on S with generator L. If
L(a∗) = L(a)∗ for all a ∈ S and L is conditionally completely positive, then Tt

is completely positive for all t � 0.

Proof The proof of (2) immediately follows from [20, Proposition 3.12 and Lemma
3.13]. To prove (1), suppose a1, a2, . . . , an ∈ S such that a∗

i aj ∈ D(L) for all
i, j = 1, . . . , n and h1, h2, . . . , hn ∈ H such that

∑n
i=1 ai(hi) = 0. Then,

n
∑

i,j=1

〈hi,L(a∗
i aj )hj 〉 = lim

t→0+

n
∑

i,j=1

1

t
〈hi, (Tt − 1)(a∗

i aj )hj 〉

= lim
t→0+

n
∑

i,j=1

1

t
〈hi, Tt (a

∗
i aj )hj 〉

(

since
n

∑

i=1

ai(hi) = 0

)

� 0

since Tt is completely positive for all t � 0.

Corollary 1 Let H be a Hilbert space and (Tt )t�0 be a QMS on B(H) which pos-
sesses an invariant faithful normal state ωρ for some ρ ∈ S1(H). Let ˜L be the
generator of the strongly continuous semigroup (˜Tt )t�0 of contractions on S2(H)

defined in Theorem 2. Then ˜L(a∗) = ˜L(a)∗ for all a ∈ D(˜L) and ˜L is conditionally
completely positive.

Proof The proof follows immediately from Proposition 3 and Theorem 3(1).

5.1 The Form of L(hn) when the Resolvent of ˜L is Compact

In this subsection we consider the form of the extended generator L(hn) when the
resolvent of ˜L is compact, by which we mean that (˜L − λ)−1 is compact for some
λ in the resolvent set of ˜L (equivalently all λ in the resolvent set, by the resolvent
identity). Notably, this assumption implies ˜L is necessarily unbounded ifH is infinite
dimensional, since the composition of bounded with compact is compact but I =
(˜L − λ)(˜L − λ)−1 is not compact. More information about operators on a Hilbert
space with compact resolvent can be found in Theorems XIII.4.1 and XIII.4.2 of [15].
Examples of such operators are the diagonal operator with eigenvalues 1, 2, 3, . . ., or
the Laplacian on a bounded domain of Rd .

We will make use of the following two notations:

Notation: Let H be a Hilbert space and w, z ∈ S2(H). Define Mw ⊗ z : S2(H) ⊗
H → S2(H) ⊗ H by

Mw ⊗ z

(

k
∑

i=1

xi ⊗ hi

)

=
k

∑

i=1

xiw ⊗ z(hi).
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Notation: Let H be a Hilbert space and e ∈ H such that ‖e‖ = 1. Define Te :
S2(H) ⊗ H → S2(H) ⊗ H by

Te

(

k
∑

i=1

xi ⊗ hi

)

=
k

∑

i=1

|xi(hi)〉〈e| ⊗ e.

We are now ready to state the main result:

Theorem 4 LetH be a Hilbert space, (Tt )t�0 be a QMS on B(H) having an invari-
ant faithful normal state ωρ for some ρ ∈ S1(H), and L be the generator of (Tt )t�0.
Let (˜Tt )t�0 be the strongly continuous semigroup of contractions on S2(H) defined
in Theorem 2 and let ˜L be its generator. Assume that the generator ˜L has compact
resolvent. Then the following assertions are valid:

(a) There exist complete orthonormal families (an)n∈N and (bn)n∈N of self-adjoint
elements in S2(H) and a sequence of positive scalars (λn)n∈N with λn → ∞
as n → ∞ (ifH is infinite dimensional) such that

˜L = I +
∞
∑

n=1

λn|an〉〈bn| (22)

where the sum converges in the SOT (if it is infinite), i.e. for every x ∈ D(˜L)

we have that ˜L(x) = x + ∑∞
n=1 λn〈bn, x〉an with

∑

n |λn〈bn, x〉|2 < ∞.
(b) By the Spectral Theorem there is an orthonormal basis (hn)n∈N of H which

consists of eigenvectors of ρ. Let L(hn) denote the generator of (Tt )t�0 with
respect to (hn)n∈N. Then

L(hn) = I +
∞
∑

n=1

λn|iρ(−1) (an)〉〈iρ(bn)| (23)

where the sum converges in the SOT (if it is infinite). We note that
|iρ(−1) (an)〉〈iρ(bn)| has domain B(H) for all n, since

|iρ(−1) (an)〉〈iρ(bn)|x = 〈iρ(bn), x〉iρ(−1) (an) = 〈bn, iρ(x)〉iρ(−1) (an)

and bn, iρ(x) ∈ S2(H). Explicitly, for every x ∈ D(L(hn)) and every i, j ∈ N

we have that

〈hi, [L(hn)(x)]hj 〉 = 〈hi, xhj 〉 +
∞
∑

n=1

λn〈bn, iρ(x)〉〈hi, iρ(−1) (an)hj 〉.

(c) We have

I = −
∞
∑

n=1

λn〈bn, ρ
1/2〉iρ(−1) (an),

where the sum converges in the SOT (if it is infinite).
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(d) For all e ∈ H with ‖e‖ = 1 we have that the operator ˜L⊗,e : S2(H) ⊗ H →
S2(H) ⊗ H is positive, where the operator ˜L⊗,e is defined by

˜L⊗,e = (Id + T ∗
e )

( ∞
∑

n=1

λnMbn ⊗ an

)

(Id + Te) (24)

where Id stands for the identity operator on S2(H)⊗H and the sum converges
in the SOT (if it is infinite).

We note that the sum in (22) is finite if and only ifH is finite dimensional. Indeed,
if ˜L is bounded with compact resolvent then H is finite dimensional, as remarked
in the preamble of this subsection. The proof of Theorem 4 is at the end of this
subsection, after the following three results:

Lemma 1 LetH be a separable Hilbert space and A be an invertible linear operator
on S2(H) with dense domain which is closed under adjoints. If A satisfies A(a∗) =
(A(a))∗ for all a ∈ D(A), then D(A†) and D(A−1) are closed under adjoints,
A†(b∗) = (A†(b))∗ for all b ∈ D(A†), and A−1(c∗) = (A−1(c))∗ for all c ∈
D(A−1).

Proof Let a ∈ D(A) and b ∈ D(A†). Then

|〈A(a), b∗〉| = |〈(A(a∗))∗, b∗〉| = |〈b, A(a∗)〉|
= |〈A†(b), a∗〉| = |〈a, (A†(b))∗〉| � ||a||||(A†(b))∗||,

and so b∗ ∈ D(A†) by definition. As before,

〈a, A†(b∗)〉 = 〈A(a), b∗〉 = 〈a, (A†(b))∗〉,
and since D(A) is dense this implies A†(b∗) = (A†(b))∗ for all b ∈ D(A†). Further,
for every c ∈ D(A−1) there exists an a ∈ D(A) such that A(a) = c. Since A is
star-preserving we have that A(a∗) = c∗. Then, by definition, (A−1(c))∗ = a∗ =
A−1(c∗).

Lemma 2 Let H be a Hilbert space and A be a compact and self-adjoint linear
operator on S2(H). Then A satisfies A(a∗) = (A(a))∗ for all a ∈ S2(H) if and
only if

A =
∞
∑

n=1

λn|xn〉〈xn|

with (λn)
∞
n=1 ⊆ R and (xn)

∞
n=1 an orthonormal basis of S2(H) consisting of self-

adjoint operators.
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Proof If A is compact and self-adjoint, then the Spectral Theorem implies there is an
eigensystem decomposition

A =
∞
∑

n=1

λn|yn〉〈yn|,

with (λn)
∞
n=1 ⊆ R and (yn)

∞
n=1 an orthonormal basis of S2(H). Because A is self-

adjoint and star-preserving, we have thatA(yn) = λnyn impliesA(y∗
n) = λny

∗
n . Thus,

every eigenspace of A is self-adjoint. Let E be an eigenspace of A corresponding
to a fixed eigenvalues, and consider the orthonormal basis (ynj

)Nj=1 ⊆ (yn)
∞
n=1 of

E. Because E is self-adjoint, from 〈ynj
, ynk

〉 = 〈y∗
nj

, y∗
nk

〉 = δjk it follows that

(y∗
nj

)Nj=1 is an orthonormal basis of E. Define self-adjoint operators aj = ynj
+ y∗

nj

and aN+j = i(ynj
− y∗

nj
) for each 1 � j � N so that E = Span(aj )

2N
j=1. We follow

the Gram-Schmidt process and set b1 = a1 and recursively define

bk = ak −
k−1
∑

j=1

〈bj , ak〉
〈bj , bj 〉bj

to produce a sequence of N many orthogonal operators which span E (the remaining
N many operators produced by the Gram-Schmidt process become zero). Straight
forward calculation reveals that 〈aj , ak〉 is real for every 1 � j, k � 2N , and hence
〈bj , ak〉 is real for every 1 � j, k � 2N . Each bk is thus self-adjoint as a real com-
bination of self-adjoint operators, and the set (bk)

N
k=1 can therefore be normalized to

a set of self-adjoint orthonormal operators (xj )
N
j=1 which span E. Replacing yn with

xn in the original eigensystem decomposition for each eigenspace E, we have

A =
∞
∑

n=1

λn|xn〉〈xn|,

as desired.

Lemma 3 Let H be a Hilbert space and ˜L be a bounded linear operator on S2(H)

which has the form (22). Then ˜L is conditionally completely positive if and only if for
some (equivalently all) normalized vector e ∈ H, the operator ˜L⊗,e defined on the
Hilbert space S2(H) ⊗ H, by (24), is positive.

Proof First note that I + A is conditionally completely positive if and only if
A is (as is easily verified), so for simplicity we may assume instead that ˜L =
∑∞

n=1 λn|an〉〈bn|.
We will start with the forward direction and suppose ˜L is conditionally completely

positive. Let e ∈ H with ‖e‖ = 1. Since W = {∑k
i=1 yi ⊗ h′

i : yi ∈ S2(H), h′
i ∈ H}

is dense in S2(H) ⊗ H, in order to verify that ˜L⊗,e � 0 it is enough to consider
an element w = ∑k

i=1 yi ⊗ h′
i ∈ W and verify that 〈w, ˜L⊗,ew〉⊗ � 0, where

〈·, ·〉⊗ will denote the inner product of S2(H) ⊗ H. (The reason that we chose h′
i to

denote a generic element ofH is because we have used hn to denote the orthonormal
eigenvectors of ρ in the statement of Theorem 4). We will denote the inner product
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of H by 〈·, ·〉H. Fix w = ∑k
i=1 yi ⊗ h′

i ∈ W and let v = − ∑k
i=1 yi(h

′
i ). Define

yk+1 = |v〉〈e| and h′
k+1 = e. Then

∑k+1
i=1 yi(h

′
i ) = 0 and, since ˜L is conditionally

completely positive, we have that

0 �
k+1
∑

i,j=1

〈h′
i ,

˜L(y∗
i yj )h

′
j 〉H

=
k+1
∑

i,j=1

∞
∑

n=1

λn Tr(y
∗
i yj bn)〈h′

i , an(h
′
j )〉H

=
k+1
∑

i,j=1

∞
∑

n=1

λn〈yi ⊗ h′
i , yj bn ⊗ an(h

′
j )〉⊗

=
k+1
∑

i,j=1

∞
∑

n=1

〈

yi ⊗ h′
i , λnMbn ⊗ an(yj ⊗ h′

j )
〉

⊗

=
〈

k+1
∑

i=1

yi ⊗ h′
i ,

( ∞
∑

n=1

λnMbn ⊗ an

)

⎛

⎝

k+1
∑

j=1

yj ⊗ h′
j

⎞

⎠

〉

⊗
.

Notice that

k+1
∑

i=1

yi ⊗ h′
i =

k
∑

i=1

yi ⊗ h′
i + yk+1 ⊗ h′

k+1 = w −
k

∑

i=1

|yi(h
′
i )〉〈e| ⊗ e

= w − Te

(

k
∑

i=1

yi ⊗ h′
i

)

= (Id − Te)(w)

where Id denotes the identity operator on S2(H) ⊗ H, which finishes the proof of
the forward direction.

For the other direction, suppose that ˜L⊗,e � 0 for some e ∈ H with ‖e‖ = 1.
Let k ∈ N, y1, . . . , yk ∈ S2(H) and h′

1, . . . , h
′
k ∈ H such that

∑k
i=1 yi(h

′
i ) = 0. Let

w = ∑k
i=1 yi ⊗ h′

i ∈ S2(H) ⊗ H. Then,

0 � 〈w, ˜L⊗,e(w)〉⊗ (25)

=
〈

w, (Id − Te)
∗
(

∑

n∈N

λnMbn ⊗ an

)

(Id − Te)(w)

〉

⊗

=
〈

(Id − Te)w,

(

∑

n∈N

λnMbn ⊗ an

)

(Id − Te)(w)

〉

⊗
. (26)

Notice that

Te(w) = Te

(

k
∑

i=1

yi ⊗ h′
i

)

=
∣

∣

∣

∣

∣

k
∑

i=1

yi(h
′
i )

〉

〈e| ⊗ e = |0〉〈e| ⊗ e = 0.
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Hence Inequality (25) gives

0 �
〈

Id(w),

(

∑

n∈N

λnMbn ⊗ an

)

Id(w)

〉

⊗

=
k

∑

i,j=1

∑

n∈N

〈

yi ⊗ h′
i , λnMbn ⊗ an(yj ⊗ h′

j )
〉

⊗

=
k

∑

i,j=1

∑

n∈N

λn〈yi ⊗ h′
i , yj bn ⊗ an(h

′
j )〉⊗

=
k

∑

i,j=1

∑

n∈N

λn Tr(y
∗
i yj bn)〈h′

i , an(h
′
j )〉H

=
k+1
∑

i,j=1

〈hi, ˜L(y∗
i yj )h

′
j 〉H.

Therefore ˜L is conditionally completely positive. This completes the proof.

The proof of Lemma 3 reveals the following:

Remark 11 Let A = {∑k
i=1 yi ⊗ h′

i ∈ B(H) ⊗ H : ∑k
i=1 yi(h

′
i ) = 0}. Then

– For every w = ∑k
i=1 yi ⊗ h′

i ∈ B(H) ⊗ H there exists yk+1 ∈ B(H) and

h′
k+1 ∈ H such that

∑k+1
i=1 yi ⊗ h′

i ∈ A and (Id − Th′
k+1

)(w) = ∑k+1
i=1 yi ⊗ h′

i .

– If a bounded operator ˜L onH has form (22) then ˜L is completely positive if and
only if the operator

∑∞
n=1 λnMbn ⊗ an : S2(H) ⊗ H → S2(H) ⊗ H is positive.

– For every e ∈ H we have A ⊆ ker Te.

We are now ready to present the

Proof of Theorem 4 Since ˜L generates a strongly continuous semigroup of contrac-
tions, we have that λ ∈ ρ(˜L) for all λ > 0 by the Hille-Yosida Generation Theorem
(e.g. Theorem 3.5 of [16]). Further, D(˜L) is dense in S2(H) by Theorem 3.1.16 of [6]
and ˜L is star-preserving by Corollary 1, and so K := (˜L − I )−1 is star-preserving
by Lemma 1 as the inverse of a star-preserving map with dense domain. Because ˜L

has compact resolvent by assumption, we have that K is furthermore compact. Thus,
K†K is compact, self-adjoint, and star-preserving, and so Lemma 2 implies

K†K =
∞
∑

n=1

σ 2
n |vn〉〈vn|,
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where {σ 2
n }n∈N are the nonzero eigenvalues of K†K corresponding to the system

{vn}n∈N of self-adjoint orthonormal eigenoperators. This notation is chosen so that,
following Section 2.2 of [17], the singular value expansion of K can be written

K =
∞
∑

n=1

σn|un〉〈vn|,

where {un}n∈N are self-adjoint orthonormal eigenoperators of KK† given by the
relation σnun := Kvn. By Theorem 2.8 of [17] we have that

˜L − I = K(−1) =
∞
∑

n=1

1

σn

|vn〉〈un|,

and hence

˜L = I +
∞
∑

n=1

1

σn

|vn〉〈un|,

proving (22). Equation (23) follows from (22) and (17). Part (c) is valid since L(I) =
0, hence L(hn)(I ) = 0, and hence

I +
∞
∑

n=1

λn〈hn, ρ
1/2〉iρ(−1) (an) = 0.

Part (d) follows from Lemma 3; indeed, (˜Tt )t�0 is a completely positive semigroup
by Proposition 3, and so ˜L is conditionally completely positive by Theorem 3.

Remark 12 LetH be a finite dimensional Hilbert space, and let (Tt )t�0 be a QMS on
B(H). Then (Tt )t�0 possesses an invariant faithful normal state [23, Theorem 4.2]
and so Theorem 4 applies. The sum in (23) is finite, and hence by linearity/conjugate
linearity we can write

L(hn) = I +
∑

n

λn|iρ(−1) (a
+
n − a−

n )〉〈iρ(b+
n − b−

n )|

= I +
∑

m

λ′
m|iρ(−1) (cm)〉〈iρ(dm)|,

where cm ∈ {a+
n , a−

n : n}, dm ∈ {b+
n , b−

n : n}, and λ′
m ∈ {±λn : n}. In particular,

cm, dm � 0 and λ′
m ∈ R. Thus, for every x ∈ B(H),

|iρ(−1) (cm)〉〈iρ(dm)|x = 〈iρ(dm), x〉iρ(−1) (cm)

= 〈ρ1/4dmρ1/4, x〉ρ−1/4cmρ−1/4

= ρ−1/4√cm Tr
(

ρ1/4dmρ1/4x
)√

cmρ−1/4

= ρ−1/4√cm Tr
(
√

dmρ1/4xρ1/4
√

dm

)√
cmρ−1/4.

Now, fix any orthonormal basis (Ek)k of B(H). Then for everyA ∈ B(H)we have

Tr(A) =
∑

k

EkAE∗
k .
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Thus,

Tr
(
√

dmρ1/4xρ1/4
√

dm

)

=
∑

k

Ek

√

dmρ1/4xρ1/4
√

dmE∗
k ,

and so

L(hn)(x) = x +
∑

m,k

λ′
mρ−1/4√cmEk

√

dmρ1/4xρ1/4
√

dmE∗
k

√
cmρ−1/4.

By defining y� = ρ−1/4√cmEk

√
dmρ1/4 and λ′

� to be the corresponding λ′
m, we

obtain
L(hn)(x) = x +

∑

�

λ′
�y�xy∗

� .

Moreover, since L(hn)(I ) = L(I) = 0 we obtain as in the proof of Theorem 4(c) that

I +
∑

�

λ�y�y
∗
� = 0.

Thus

L(hn)(x) = 1

2
Ix + 1

2
xI +

∑

�

λ′
�y�xy∗

� =
∑

�

λ′
�

(

y�xy∗
� − 1

2
{y�y

∗
� , x}

)

which resembles the standard GKSL form developed in [28] and [36], except with
Hamiltonian part zero and without the demand that the jump operators y� are trace-
less. A comparison of such GKSL form to the standard GKSL form, including
conversion between the two, is discussed in section 2.1 of [2].
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