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Abstract
The main result of this paper is a sharp upper bound on the first positive eigenvalue
of Dirac operators in two dimensional simply connected C3-domains with infinite
mass boundary conditions. This bound is given in terms of a conformal variation,
explicit geometric quantities and of the first eigenvalue for the disk. Its proof relies
on the min-max principle applied to the squares of these Dirac operators. A suit-
able test function is constructed by means of a conformal map. This general upper
bound involves the norm of the derivative of the underlying conformal map in the
Hardy spaceH2(D). Then, we apply known estimates of this norm for convex and for
nearly circular, star-shaped domains in order to get explicit geometric upper bounds
on the eigenvalue. These bounds can be re-interpreted as reverse Faber-Krahn-type
inequalities under adequate geometric constraints.
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public grant as part of the Investissement d’avenir project, reference ANR-11-LABX-0056-LMH,
LabEx LMH.
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1 Introduction

1.1 Motivations and Statement of theMain Result

The Dirac operator defined on a bounded domain of the Euclidean space R2 attracted
a lot of attention in the recent few years. Motivated by the unique properties of low
energy charge carriers in graphene, various mathematical questions related to these
Dirac operators have arisen, and some of them have been dealt with very recently.

The question of self-adjointness is addressed, for instance, for a large class of local
boundary conditions in [8] and it covers the particular boundary conditions com-
monly used in the physics literature [2]: the so-called zigzag, armchair, and infinite
mass boundary conditions.

The next step is to investigate the spectral properties of these models. For instance,
the spectrum of the massless Dirac operator in a bounded domain with zigzag bound-
ary conditions is studied in [33]. It turns out that this spectrum exhibits an interesting
behaviour: it consists of the eigenvalue 0, being of infinite multiplicity, and of a
sequence of discrete eigenvalues related to the one of the Dirichlet Laplacian in the
same domain.

The structure of the spectrum of the massless Dirac operator on a bounded domain
with infinite mass boundary conditions has a different flavour. Indeed, the model is
now invariant under charge conjugation, which implies the symmetry of the spectrum
with respect to the origin (moreover, this spectrum is discrete).

Note that infinite mass boundary conditions for the Dirac operator arise when one
considers the Dirac operator on the whole Euclidean planeR2 with an “infinite mass”
outside a bounded domain and zero mass inside it. This is mathematically justified
in [5, 34] (see also [4] for a three-dimensional version and [24] for a generalization
to any dimension). For this reason, these boundary conditions can be viewed as the
relativistic counterpart of Dirichlet boundary conditions for the Laplacian.

It is well known that for partial differential operators defined on domains the shape
of the domain manifests in the spectrum. In particular, bounds on the eigenvalues can
be given in terms of various geometrical quantities. In many cases, it is also known
that the ball (the disk, in two dimensions) optimizes the lowest eigenvalue under
reasonable geometric constraints. For example, the famous Faber-Krahn inequality
for Dirichlet Laplacians (formulated in two dimensions) states that

λ1(�) � λ1(D) (1)

for all Lipschitz domains � ⊂ R
2 of the same area as the unit disk D (see [11]

and [20]); here λ1(�) denotes the first eigenvalue of the Dirichlet Laplacian on �.
In the same spirit, for any convex domain � ⊂ R

2, it is proven in [28, §5.6] and
in [12, Theorem 2] that a reverse Faber-Krahn-type inequality with a geometric pre-
factor

λ1(�) � |∂�|
2ρi|�|λ1(D), (2)

holds where ρi > 0 is the inradius of �, |�| denotes the area of � and |∂�| stands for
its perimeter. Related upper bounds for the lowest Dirichlet eigenvalue are obtained
e.g. in [26, 27], see also the numerical study [3]. Further spectral optimization results
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for the Dirichlet Laplacian can be found in the monographs [16, 17]; see also the
references therein.

For the two-dimensional massless Dirac operator D� with infinite mass boundary
conditions on a bounded, simply connected, C2-domain � a lower bound on the
principal eigenvalue is given in [9] and reads in the case of infinite mass boundary
conditions as

μ1(�) >

√
2π

|�| , (3)

where μ1(�) is the first non-negative eigenvalue of D�. This bound is easy to com-
pute and it yields an estimate on the size of the spectral gap. However, it is not
intrinsically Euclidean, because the equality in (3) is not attained on any � ⊂ R

2.
It is not yet known whether for D� a direct analogue of the lower bound as in the
Faber-Krahn inequality (1) holds.

One should also mention numerous results in the differential geometry literature,
where lower and upper bounds have been found for Dirac operators on two-
dimensional manifolds without boundary (see for instance [6] and [1, 7]). In [30],
manifolds with boundaries are investigated and note that the mentioned CHI (chi-
ral) boundary conditions correspond to our infinite mass boundary conditions. For
two-dimensional manifolds, the author of [30] provides a lower bound on the first
eigenvalue which is actually (3). We remark that upon passing to the more general
setting of manifolds the equality in (3) is attained on hemispheres.

Using the min-max principle and the estimate (2) one can easily show the
following upper bound

μ1(�) ≤ √λ1(�) ≤
( |∂�|
2ρi|�|λ1(D)

)1/2
; (4)

cf. Proposition 10. This bound has a concise form, but it is not tight in particular
cases. Especially, for domains that are close to a disk the bound (4) is not sharp, since
μ1(D) ≈ 1.4347 and

√
λ1(D) ≈ 1.5508.

To our knowledge, there is no upper bound onμ1(�) expressed in terms of explicit
geometric quantities, which is tight for domains being close to a disk. This is the
question we tackle in this paper for the case of C3-domains. The inequalities that we
obtain can be viewed as natural counterparts of (2) in this new setting and our results
roughly read as follows (see Theorems 23 and 29 for rigorous statements).

Main result for convex domains Let � ⊂ R
2 be a bounded, convex, C3-domain

with 0 ∈ � and let μ1(�) be the first non-negative eigenvalue of the massless Dirac
operator D� with infinite mass boundary conditions. Then, there is an explicitly given
geometric functional Fc(·) such that

Fc(�)μ1(�) � Fc(Dr )μ1(Dr ), (5)

where Dr is the disk of radius r > 0 centered at the origin and Fc(Dr ) = r holds.
Moreover, the inequality (5) is strict unless � = Dr ′ for some r ′ > 0.
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Definition 1 A bounded, C3-domain � ⊂ R
2, which is star-shaped with respect to

the origin and which is parametrized in polar coordinates by ρ = ρ(φ), is called
nearly circular if

ρ� = ρ�(�) := sup

( |ρ′|
ρ

)
< 1. (6)

Main result for nearly circular domains Let � ⊂ R
2 be a bounded C3-domain,

which is nearly circular in the sense of Definition 1. Let μ1(�) be the first non-
negative eigenvalue of the massless Dirac operator D� with infinite mass boundary
conditions. Then, there is an explicitly given geometric functional Fs(·) such that

Fs(�)μ1(�) � Fs(Dr )μ1(Dr ), (7)

where Dr is the disk of radius r > 0 centered at the origin and Fs(Dr ) = r holds.
Moreover, the inequality (5) is strict unless � = Dr ′ for some r ′ > 0.

The Dirac operator D� and the functionals Fc, Fs appearing in (5), (7) are rigor-
ously defined further on, namely, in Definition 4 and Eqs. 25, 26, respectively. The
main results are then precisely formulated in Theorems 23, 29. Before going any
further, let us comment on the assumptions and inequalities (5), (7).

Remark 2 Even though for convex polygonal domains the Dirac operator D� can be
defined in a similar fashion as for C3-domains (see [22]), it will be clear from the
proof that certain smoothness assumption on the domain � seems to be crucial for
our results to hold. However, we expect that the smoothness hypothesis on � can be
relaxed from C3 to C2-smoothness with additional efforts.

Remark 3 The strategy relying on a so-called invertible double discussed in [9, §2]
(see also [10, Chapter 9]) might also yield new upper bounds using the known ones
for two-dimensional manifolds without boundary. We do not discuss it here, first in
order to keep a self-contained and elementary proof and, second, to obtain a result in
terms of explicit geometric quantities: the area |�|, the maximal (non-signed) curva-
ture κ� of ∂� and of the radii ri = minx∈∂� |x|, ro = maxx∈∂� |x|. Namely, Fc is a
function of all these parameters and the parameter ρ� introduced in (6) plays a role
in the definition of Fs.

Our main results imply two reverse Faber-Krahn-type inequalities for the Dirac
operator D�. Indeed, let us denote by Ec the set of bounded, convex C3-domains �

containing the origin and by Es the set of bounded, nearly circular C3-domains. Then,
the following holds.

Reverse Faber-Krahn Let 
 ∈ {c, s} and � ∈ E
 such that F
(�) = r > 0 with
� �= Dr . Then the following inequality holds

μ1(�) < μ1(Dr ).
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All the geometric bounds we obtain are consequences of the following estimate
which holds for any bounded, simply connected, C3-domain � ⊂ R

2 with 0 ∈ �:

μ1(�) ≤
(

2π

|�| + πr2i

)1/2
κ�‖f ′‖H2(D)μ1(D), (8)

where f : D → � is a conformal map with f (0) = 0 and ‖f ′‖H2(D) is the norm of
its derivative in the Hardy space H2(D). The equality in (8) occurs if, and only if,
� = Dr ′ for some r ′ > 0. This abstract bound is obtained in Theorem 22.

1.2 Strategy of the Proof

The proof is decomposed into four steps. First, thanks to the symmetry of the spec-
trum for the Dirac operator D� we compute the quadratic form of its square and
characterize the squares of its eigenvalues via the min-max principle.

Second, following the strategy of [35], we use a conformal map from the unit disk
D onto the domain � in order to reformulate the min-max principle characterizing
the first non-negative eigenvalue.

Third, we evaluate the corresponding Rayleigh quotient for a special test function
that we construct by means of the first mode of the Dirac operator DD on the unit
disk D.

Finally, it remains to estimate each term in this Rayleigh quotient in terms of
suitable geometrical quantities. However, as the structure of the Dirac operator D�

is more sophisticated than the one of the Neumann Laplacian investigated in [35],
we have to control several additional terms. One of them involves the norm in the
Hardy space H2(D) of the derivative of the employed conformal map. We handle
this term using available geometric estimates for convex domains [19] and for nearly
circular domains [13]. In fact, other ways to control geometrically this Hardy norm
are expected to yield new inequalities.

1.3 Structure of the Paper

In Section 2 we rigorously define the Dirac operator D� and recall known results
about it. Section 3 is devoted to the derivation of a variational characterization for the
eigenvalues of D�. After precisely stating the main result in Theorem 23, we prove it
in Section 4.

The paper is complemented by two appendices, which are provided for complete-
ness and convenience of the reader. Appendix A is about the eigenstructure of the
disk and Appendix B deals with a geometric result regarding the functional Fc on
domains with symmetries.
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2 TheMassless Dirac Operator with Infinite Mass Boundary
Conditions

This section is decomposed as follows. In Section 2.1 we introduce a few notation
that will be used all along this paper and Section 2.2 contains the rigorous definition
of the massless Dirac operator with infinite mass boundary conditions as well as its
basic properties that are of importance in the following.

2.1 Setting of the Problem and Notations

Let us introduce a few notation that will help us to set correctly the problem we are
interested in.

2.1.1 The Geometric Setting

Throughout this paper � ⊂ R
2 is a bounded, simply connected, C3-smooth domain.

The boundary of � is denoted by ∂� and for x ∈ ∂� the vector

ν(x) = (ν1(x), ν2(x))� ∈ R
2

denotes the outer unit normal to � at the point x ∈ ∂�. We also introduce the unit
tangential vector τ(x) = (ν2(x), −ν1(x))� at x ∈ ∂� chosen so that

(
τ(x), ν(x)

)
is

a positively-oriented orthonormal basis of R2.
We remark that the normal vector field ∂� � x → ν(x) induces a scalar, complex-

valued function on the boundary

n : ∂� → T, n(x) := ν1(x) + iν2(x),

where T := {z ∈ C : |z| = 1}.
Let L > 0 denote the length of ∂� and consider the arc-length parametrization of

∂� defined as γ : [0, L) → R
2 such that for all s ∈ [0, L) we have γ ′(s) = τ

(
γ (s)
)
.

In particular, it means that the parametrization γ is clockwise.
Furthermore, we denote by

κ : ∂� → R

the signed curvature of ∂�, which satisfies for all s ∈ [0, L) the Frenet formula

γ ′′(s) = κ
(
γ (s)
)
ν
(
γ (s)
)
. (9)

As � is a C3-domain, the signed curvature is a C1-function on ∂� and we set

κ� := sup
x∈∂�

|κ(x)| > 0, (10)

where the last inequality holds, because ∂� can not be a line segment. We will also
make use of the minimal radius of curvature defined by

rc := 1

κ�

. (11)

Within our convention, the curvature of a convex domain is a non-positive function.
Finally, d� denotes the 1-dimensional Hausdorff measure of ∂�.
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2.1.2 Norms and Function Spaces

The standard norm of a vector ξ ∈ C
n is defined as |ξ |2

Cn :=∑n
k=1 |ξk|2.

The L2-space and the L2-based Sobolev space of order k ∈ N of Cn-valued
functions (n ∈ N) on the domain � are denoted by L2(�,Cn) and Hk(�,Cn),
respectively. The L2-space and the L2-based Sobolev space of order s ∈ R of Cn-
valued functions (n ∈ N) on the boundary ∂� of � are denoted by L2(∂�,Cn)

and Hs(∂�,Cn), respectively. We use the shorthand notation L2(�) := L2(�,C1),
L2(∂�) := L2(∂�,C1), Hk(�) := Hk(�,C1), and Hs(∂�) := Hs(∂�,C1).

We denote by (·, ·)� and by ‖ · ‖� the standard inner product and the respective
norm in L2(�,Cn). The inner product (·, ·)∂� and the norm ‖ · ‖∂� in L2(∂�,Cn)

are introduced via the surface measure on ∂�. A conventional norm in the Sobolev
spaces H 1(�,Cn) is defined by ‖u‖21,� := ‖∇u‖2� + ‖u‖2�.

2.1.3 Self-Adjoint Operators & the Min-Max Principle

Let T be a self-adjoint operator in a Hilbert space (H, (·, ·)H). If T is, in addition,
bounded from below then let us denote by t the associated quadratic form.

We denote by Spess (T) and Spd (T) the essential and the discrete spectrum of
T, respectively. By Sp (T), we denote the spectrum of T (i.e. Sp (T) = Spess (T) ∪
Spd (T)).

We say that the spectrum of T is discrete if Spess (T) = ∅. Let T be a semi-bounded
operator with discrete spectrum. For k ∈ N, λk(T) denotes the k-th eigenvalue
of T. These eigenvalues are ordered non-decreasingly with multiplicities taken into
account. According to the min-max principle the k-th eigenvalue of T is characterised
by

λk(T) = min
L⊂dom(t)

dimL=k

max
u∈L\{0}

t[u, u]
‖u‖2H

.

In particular, the lowest eigenvalue of T can be characterised as

λ1(T) = min
u∈dom(t)\{0}

t[u, u]
‖u‖2H

. (12)

2.1.4 Pauli Matrices

Recall that the 2 × 2 Hermitian Pauli matrices σ1, σ2, σ3 are given by

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0
0 −1

)
.

For i, j ∈ {1, 2, 3}, they satisfy the anti-commutation relation

σjσi + σiσj = 2δij ,

where δij is the Kronecker symbol. For the sake of convenience, we define σ :=
(σ1, σ2) and for x = (x1, x2)

� ∈ R
2 we set

σ · x := x1σ1 + x2σ2 =
(

0 x1 − ix2
x1 + ix2 0

)
.
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2.2 The Dirac Operator with Infinite Mass Boundary Conditions

In this paragraph we introduce the massless Dirac operator with infinite mass
boundary conditions on ∂�, following the lines of [8].

Definition 4 The massless Dirac operator with infinite mass boundary conditions is
the operator D� that acts in the Hilbert space L2(�,C2) and is defined as

D�u := −i(σ · ∇)u = −i
(
σ1∂1u + σ2∂2u

) =
(

0 −2i∂z

−2i∂z 0

)
u,

dom (D�) := {u = (u1, u2)
� ∈ H 1(�,C2) : u2|∂� = (in)u1|∂�

}
,

(13)

where ∂z = 1
2

(
∂1 − i∂2

)
and ∂z = 1

2

(
∂1 + i∂2

)
are the Cauchy-Riemann operators.

Remark 5 The operator D� defined in (13) coincides with the operator Dη intro-
duced in [8, §1.] where one chooses η to be a constant function on the boundary
η := η(s) = π . Note that we implicitly used the convention that (τ (x), ν(x)) is a
positively-oriented orthonormal basis of R2 for all x ∈ ∂�.

The following proposition is essentially known, we recall its proof for the sake of
completeness.

Proposition 6 The linear operator D� defined in (13) satisfies the following
properties.

(i) D� is self-adjoint.
(ii) The spectrum of D� is discrete and symmetric with respect to zero.
(iii) 0 /∈ σ(D�).

Proof (i) The self-adjointness of D� is a consequence of [8, Theorem 1.1] where one
chooses η = π (see Remark 5).
(ii) The discreteness of the spectrum for D� follows from compactness of the embed-
ding H 1(�,C2) ↪→ L2(�,C2). Regarding the symmetry of the spectrum, one can
consider the charge conjugation operator

C := u ∈ C
2 → σ1u (14)

and notice that dom (D�) is left invariant by C. Hence, a basic computation yields

D�C = −CD�,

which implies that if u ∈ dom (D�) is an eigenfunction of D� associated with
an eigenvalue μ then Cu ∈ dom (D�) is an eigenfunction of D� associated with
the eigenvalue −μ, which proves the symmetry of the spectrum. In particular the
spectrum of D� consists of eigenvalues of finite multiplicity accumulating at ±∞.
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(iii) This statement is a consequence of [9, Theorem 1] where we picked η = π ; cf.
Remark 5.

Our main interest concerns the principal eigenvalue of D� defined as

μ� = μ1(�) := inf
(
Sp (D�) ∩ R+

)
> 0.

We emphasize that the value μ� completely describes the size of the spectral gap of
D� around zero and that (5) and (7) provide upper bounds on its length for convex
and nearly circular domains, respectively.

Remark 7 In [9, §3], keeping the notations of [8, §1.], the massless Dirac operator
with infinite mass boundary conditions is defined as a block operator D0 ⊕ Dπ and
acts on L2(�,C4) = L2(�,C2) ⊕ L2(�,C2). One easily checks that σ3D�σ3 =
−D0. Hence, Dπ = D� is unitarily equivalent to −D0. Thanks to the symmetry of
the spectrum stated in Proposition 6 (ii), we know that D0 ⊕ Dπ has also symmetric
spectrum and that if μ1(D0 ⊕Dπ) denotes the first non-negative eigenvalue of D0 ⊕
Dπ we have μ1(D0 ⊕ Dπ) = μ1(�).

In addition, the authors of [9, §3], discuss the case of the so-called armchair
boundary conditions. This operator acts in L2(�,C4) and up to a proper unitary
transform, they show that it rewrites as

M� :=
(

0 −D�

−D� 0

)

on the domain dom (D�) ⊕ dom (D�). One can check that Sp
(
M2

�

) = Sp
(
D2

�

)
and

thus, our results also apply to armchair boundary conditions.

Let us conclude this paragraph by mentioning the following essentially known
proposition in the special case of � = D. For the sake of completeness, its proof is
provided in Appendix A.

Proposition 8 The principal eigenvalue μD := μ1(D) of DD is the smallest non-
negative solution of the following scalar equation

J0(μ) = J1(μ),

where J0 and J1 are the Bessel functions of the first kind of orders 0 and 1, respec-
tively. Moreover, in polar coordinates x = (

r cos(θ), r sin(θ)
)
, an eigenfunction

associated with μD is

v
(
r, θ
) :=

(
J0(μDr)

ieiθJ1(μDr)

)
,

where r ∈ [0, 1) and θ ∈ [0, 2π).

Remark 9 An approximate numerical value of μD is μD ≈ 1.434696.
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3 A Variational Characterization ofμ1(�)

In this section we obtain a characterization for μ� = μ1(�). Let us briefly outline
the strategy that we follow. First, we compute the quadratic form for the square of
the operator D�. The self-adjoint operator D2

� is positive and its lowest eigenvalue
is equal to μ2

�. Therefore, it can be characterised via the min-max principle, which
gives a variational characterization of μ�.

Proposition 10 The square of the principal eigenvalue μ� of D� can be charac-
terised as

μ2
� = inf

u∈dom(D�)\{0}

∫
�

|∇u|2
R2⊗C2dx − 1

2

∫
∂�

(
κ|u|2

C2

)
d�∫

�

|u|2
C2dx

.

In particular, μ2
� ≤ λ�, where λ� is the lowest eigenvalue of the Dirichlet Laplacian

on �.

Remark 11 With the conventions chosen in Section 2.1.1, if� is a convex domain we
have κ � 0 and the boundary term in the variational characterization is non-negative.

In order to prove Proposition 10 we state and prove a few auxiliary lemmata. The
first lemma involves the notion of tangential derivatives. Remark that by the trace
theorem [23, Theorem 3.37] there exists a constant C = C(�) > 0 such that

‖v|∂�‖H 3/2(∂�) ≤ C‖v‖H 2(�)

for all v ∈ H 2(�). Thus, the tangential derivative given by

∂τ : H 2(�) → H 1/2(∂�), ∂τ v := d

ds
(v ◦ γ ),

is a well-defined, continuous linear operator. Hence, we define the tangential
derivative of u = (u1, u2)

� ∈ H 2(�,C2) by

∂τu := (∂τu1, ∂τ u2
)� ∈ H 1/2(∂�,C2).

The tangential derivative is related to the square of the Dirac operator via the next
lemma, which is reminiscent of [18, Eq. (13)]. However, we provide here a simple
proof for convenience of the reader.

Lemma 12 For any u ∈ H 2(�,C2), one has

‖ − i(σ · ∇)u‖2� = ‖∇u‖2� − (iσ3∂τu, u
)
∂�

.
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Proof Using an integration by parts (see [15, Theorem 1.5.3.1]) we get for any
function v ∈ H 2(�),∫

�

∂1v∂2vdx = −
∫

�

v∂12vdx +
∫

∂�

(
v∂1v

)
ν2d�,∫

�

∂1v∂2vdx = −
∫

�

v∂12vdx +
∫

∂�

(
v∂2v

)
ν1d�.

Dividing the difference of the above two equations by 2i we obtain

�
(∫

�

∂1v∂2vdx

)
= 1

2i

∫
∂�

v
(
(∂1v)ν2 − (∂2v)ν1

)
d�

= 1

2i

∫
∂�

v
(
τ · ∇v

)
d� = 1

2i

∫
∂�

v∂τ vd�.
(15)

Let u ∈ H 2(�,C2). Using the explicit expression of i(σ · ∇) and performing
elementary Hilbert-space computations we get

‖i(σ · ∇)u‖2� = ‖∂1u2 − i∂2u2‖2� + ‖∂1u1 + i∂2u1‖2�
= ‖∇u1‖2� + ‖∇u2‖2� + 2�[(∂1u1, i∂2u1)∂� − (∂1u2, i∂2u2)∂�

]
= ‖∇u‖2� + 2�[(∂1u1, ∂2u1)∂� − (∂1u2, ∂2u2)∂�

]
.

Employing identity (15) we obtain

‖i(σ · ∇)u‖2� = ‖∇u‖2� − (iσ3∂τu, u
)
∂�

,

which proves the claim.

To obtain a convenient expression for the quadratic form of the operator D2
�, we

will make use of the following density lemma.

Lemma 13 dom (D�) ∩ H 2(�,C2) is dense in dom (D�) with respect to the norm
‖ · ‖1,�.

Proof Thanks to [15, Theorems 1.5.1.2, 2.4.2.5, and Lemma 2.4.2.1] we know that
there exists a bounded linear operator E : H 1/2(∂�,C2) → H 1(�,C2) such that for
any v ∈ H 1/2(∂�,C2) one has (Ev)|∂� = v and E

(
H 3/2(�,C2)

) ⊂ H 2(�,C2).
Let u ∈ dom (D�). Since H 2(�,C2) is dense in H 1(�,C2) with respect to the

norm ‖ · ‖1,�, there exists a one-parametric family of functions (uε)ε ∈ H 2(�,C2)

satisfying limε→0 ‖uε − u‖1,� = 0. In particular, one has

lim
ε→0

‖uε|∂� − u|∂�‖H 1/2(∂�,C2) = 0.

Now, consider the functions

vε := uε − E

(
1

2
(12 + iσ3σ · ν)uε|∂�

)
.
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Note that as defined vε ∈ dom (D�) ∩ H 2(�,C2). Hence, we have

‖u − vε‖1,� � ‖u − uε‖1,� +
∥∥∥∥E
(
1

2
(12 + iσ3σ · ν)uε|∂�

)∥∥∥∥
1,�

= ‖u − uε‖1,� +
∥∥∥∥E
(
1

2
(12 + iσ3σ · ν)(uε|∂� − u|∂�)

)∥∥∥∥
1,�

,

where we have used that 1
2 (12 + iσ3σ · ν)u = 0 on ∂� as u ∈ dom (D�). Finally,

using the continuity of E : H 1/2(∂�,C2) → H 1(�,C2) and the fact that the mul-
tiplication operator by the matrix-valued function ∂� � x → 1

2 (12 + iσ3σ · ν)

is bounded in H 1/2(∂�,C2) we obtain that limε→0 ‖u − vε‖1,� = 0 and as by
definition vε ∈ dom (D�) ∩ H 2(�,C2), we obtain the lemma.

Finally, we simplify the expression of ‖ − i(σ · ∇)u‖2� obtained in Lemma 12 for
the special case of functions satisfying infinite mass boundary conditions.

Proposition 14 The identity

‖D�u‖2� = ‖∇u‖2� − 1

2
(κu, u)∂�

holds for all u ∈ dom (D�).

Proof Let u ∈ dom (D�) ∩ H 2(�,C2) be arbitrary. By Lemma 12 we get,

b[u] := ‖D�u‖2� − ‖∇u‖2� = −(iσ3∂τu, u
)
∂�

= i
(
∂τu2, u2

)
∂�

− i
(
∂τu1, u1

)
∂�

.

The boundary condition u2|∂� = (in)u1|∂� and the chain rule for the tangential
derivative yield

b[u] = i
(
n′u1 + n∂τu1,nu1

)
∂�

− i
(
∂τu1, u1

)
∂�

= i
(
(ν′

1 + iν′
2)u1,nu1

)
∂�

.

The Frenet formula (9) implies ν′
2 = κν1 and ν′

1 = −κν2. Plugging these identities
into the above expression for b[u] we arrive at

b[u] = −(κ(ν1 + iν2)u1,nu1
)
∂�

= −(κnu1,nu1
)
∂�

= −(κu1, u1
)
∂�

= −1

2
(κu, u)∂�,

and the claim follows using the density of dom (D�) ∩ H 2(�,C2) in dom (D�) with
respect to the ‖ · ‖1,�-norm (see Lemma 13).

Proposition 14 yields the following characterization of μD.

Corollary 15 The square of the principal eigenvalue μD of DD satisfies

μ2
D

=
μ2
D

∫ 1

0

(
J ′
0(μDr)2 + J ′

1(μDr)2
)

rdr +
∫ 1

0

J1(μDr)2

r
dr + J0(μD)2∫ 1

0

(
J0(μDr)2 + J1(μDr)2

)
rdr

.
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Proof Let v be as in Proposition 8. By definition we have DDv = μDv, which implies

μ2
D

= ‖DDv‖2
D

‖v‖2
D

.

Using the representation of ‖DDv‖2
D
following from Proposition 14 and the explicit

expression of v in polar coordinates given in Proposition 8, one gets the claim.

Proof of Proposition 10 By Proposition 14 the quadratic form of D2
� is given by

q�[u] = ‖∇u‖2� − 1

2
(κu, u)∂�, dom (q�) = dom (D�) .

The spectral theorem implies that Sp
(
D2

�

) = {μ2 : μ ∈ Sp (D�)}. Hence, the low-
est eigenvalue of D2

� is μ2
�. Finally, the min-max principle (12) yields the sought

variational characterization. The inequality μ2
� ≤ λ� follows from both varia-

tional characterizations for μ� and λ�, combined with the inclusion H 1
0 (�,C2) ⊂

dom (D�).

4 Main Result and its Proof

The method of the proof is inspired by a trick of G. Szegő presented in [35]. His
aim was to show a reversed analogue of the Faber-Krahn inequality for the first non-
trivial Neumann eigenvalue in two dimensions and to do so, he used a suitably chosen
conformal map between the unit disk and a generic simply connected domain.

Throughout this section, we identify the Euclidean plane R
2 and the complex

plane C. Recall that � ⊂ R
2 stands for a bounded, simply connected, C3-domain.

In the following, we consider a conformal map f : D → �. Up to a proper trans-
lation of � if needed and without loss of generality, we can assume that f (0) = 0.
Remark also that f ′(z) �= 0 for all z ∈ D.

As � is C3-smooth, the Kellogg-Warschawski theorem (see [14, Chapter II, The-
orem 4.3] and [29, Theorem 3.5]) yields that f can be extended up to a function in
C2(D) denoted again by f with a slight abuse of notation. This extension satisfies
the following natural condition f (T) = ∂� and the mapping

[0, 2π) � θ → η(θ) := f (eiθ )

is a parametrization of ∂� (see [14, Chapter II, §4.])

4.1 A Transplantation Formula

The first step in order to obtain the desired inequality is the following proposition
that provides an upper bound on the principal eigenvalue μ�.

Proposition 16 Let � ⊂ R
2 be a bounded, simply connected C3-domain and let

f : D → � be a conformal map such that f (0) = 0. Then one has

μ2
� � N1 + N2 + N3

D ,
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where N3 := 2πJ0(μD)2 and

N1 := 2πμ2
D

∫ 1

0

(
J ′
0(rμD)2 + J ′

1(rμD)2
)
rdr,

N2 :=
(∫ 1

0

J1(rμD)2

r
dr

)(∫ 2π

0
κ
(
η(θ)
)2|η′(θ)|2dθ

)
,

D :=
∫ 1

0

((
J0(rμD)2 + J1(rμD)2

) ∫ 2π

0
|f ′(reiθ )|2dθ

)
rdr .

Proof First of all, note that each term Nj (for j = 1, . . . , 3) as well as D are well
defined. In particular, the first integral appearing in N2 is finite because

J1(r) ∼ r

2
, when r → 0;

see [25, Equation (10.7.3)].
Second, observe that the composition map

Vf : H 1(�,C2) → H 1(D,C2), Vf u := u ◦ f,

defines an isomorphism from dom (D�) onto the space

L� := Vf

(
dom (D�)

)
= {v = (v1,v2)

� ∈ H 1(D,C2) : v2(e
iθ ) = in

(
η(θ)
)
v1(e

iθ )
}
.

(16)

Indeed, as f is a conformal map, it is clear that Vf

(
H 1(�,C2)

) = H 1(D,C2). Now,
let u ∈ dom (D�). The boundary conditions read as follows

u2(η(θ)) = in
(
η(θ)
)
u1
(
η(θ)
) ⇐⇒ (u2 ◦ f )(eiθ ) = in

(
η(θ)
)
(u1 ◦ f )(eiθ )

⇐⇒ (Vf u)2(e
iθ ) = in

(
η(θ)
)
(Vf u)1(e

iθ ).

This implies the inclusion of the set on the right-hand side of (16) into L�.
The reverse inclusion is proved in the same fashion. Thus, using the variational
characterization of Proposition 10 we obtain

μ2
� = inf

u∈dom(D�)\{0}

∫
�

|∇u|2
R2⊗C2dx − 1

2

∫
∂�

κ|u|2
C2d�∫

�

|u|2
C2dx

= inf
v∈L�\{0}

∫
D

|∇v|2
R2⊗C2dx − 1

2

∫ 2π

0
κ
(
η(θ)
)∣∣v(η(θ)

)∣∣2
C2 |η′(θ)|dθ∫

D

|v(x1 + ix2)|2C2 |f ′(x1 + ix2)|2dx1dx2
,

(17)

where we used that the L2-norm of the gradient is invariant under conformal
transformations.

Now, consider the test function v� ∈ L� defined in polar coordinates as

v�

(
r, θ
) :=

(
J0(rμD)

in
(
η(θ)
)
J1(rμD)

)
.
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Plugging this test function into the variational characterisation (17) of μ2
� we get

μ2
� �

∫
D

|∇v�|2
R2⊗C2dx − 1

2

∫ 2π

0
κ
(
η(θ)
)|v�

(
η(θ)
)|2
C2 |η′(θ)|dθ∫

D

|v�(x1, x2)|2|f ′(x1 + ix2)|2dx1dx2
.

Let us compute each term in the right-hand side of the previous inequality. First, we
have∫

D

|∇v�|2R2⊗C2dx = 2πμ2
D

∫ 1

0

(
J ′
0(rμD)2 + J ′

1(rμD)2
)
rdr

+
(∫ 1

0

J1(rμD)2

r
dr

)(∫ 2π

0
|n′(η(θ))|2|η′(θ)|2dθ

)
= N1 + N2.

Second, we obtain

−1

2

∫ 2π

0
κ
(
η(θ)
)|v�

(
η(θ)
)|2
C2 |η′(θ)|dθ = −J0(rμD)2

∫
∂�

κd� = −2πJ0(rμD)2Wγ ,

where Wγ is the winding number of γ . As γ is an arc-length clockwise parametriza-
tion of ∂�, we have Wγ = −1. It implies

−1

2

∫ 2π

0
κ
(
η(θ)
)|v�

(
η(θ)
)|2|η′(θ)|dθ = N3.

Finally, a straightforward computation yields∫
D

|v�(x1 + ix2)|2|f ′(x1 + ix2)|2dx1dx2 = D.

4.2 The Faber-Krahn-Type Inequality: Rigorous Statement & Proof

4.2.1 Hardy spaces, Conformal maps and Related Geometric Bounds

Recall that for any holomorphic function g : D → C one defines its norm in the
Hardy space H2(D) as follows

‖g‖H2(D) = sup
0≤r<1

(
1

2π

∫ 2π

0
|g(reiθ )|2dθ

)1/2
.

By definition, g ∈ H2(D) means that ‖g‖H2(D) < ∞. If the holomorphic function

g : D → C extends up to a continuous function on D, then g ∈ H2(D) and

‖g‖H2(D) =
(

1

2π

∫ 2π

0
|g(eiθ )|2dθ

)1/2
.
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Further details on Hardy spaces can be found in [32, Chapter 17].
Recall that any conformal map f : D → � with f (0) = 0 can be written as a

power series

f (z) =
∑
n∈N

cnz
n, (18)

for some sequence of complex coefficients cn ∈ C, n ∈ N.
The following proposition can be found, e.g., in [21, §3.10.2].

Proposition 17 (Area formula) The area of � is expressed through the coefficients
cn ∈ C of the conformal map f as

|�| = π

∞∑
n=1

n|cn|2.

Recall that the origin is inside � (i.e. 0 ∈ �) and that the radii ri, ro, and rc are
defined as

ri := min
x∈∂�

|x|, ro := max
x∈∂�

|x|, rc = 1

κ�

. (19)

It is obvious that ro ≥ ri and it can also be checked that ro ≥ rc. In general there is
no relation of this kind between ri and rc.

The next proposition is a consequence of the Schwarz lemma (see Koebe’s
estimate in [14, Chapter I, Theorem 4.3]).

Proposition 18 The derivative of the conformal map f at 0 and the radius ri defined
in (19) satisfy

|f ′(0)| = |c1| � ri.

Next, we provide the geometric bound on ‖f ′‖H2(D) that is a consequence of [19,
Theorem 1]. To this aim, we define for a, b ∈ (0, +∞) the function � as

�(a, b) :=
{

ln(a)−ln(b)
a−b

, if a �= b;
1
a
, if a = b.

(20)

Proposition 19 (Kovalev’s bound) Let � ⊂ R
2 be a bounded, convex, C3-domain

and let f : D → � be a conformal map such that f (0) = 0. Then one has

‖f ′‖H2(D) ≤ sup
z∈D

|f ′(z)| � rc exp (2(ro − rc)�(ri, rc)) ,

with � defined as in (20).

Remark 20 To recover Kovalev’s bound in Proposition 19 from [19, Theorem 1], set
λ := (rc)

−1 exp (−2(ro − rc)�(ri, rc)) and remark that for the rescaled domain λ�

the radii Ri = minx∈∂(λ�) |x| and Ro = maxx∈∂(λ�) |x| as well as Rc, the minimal
radius of curvature of λ�, satisfy

Ri = λri, Rc = λrc, Rc = λrc.
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Hence, with our choice of λ we obtain

(Ro − Rc)�(Ri, Rc) + 1

2
log(Rc) = (ro − rc)�(ri, rc) + 1

2
log(rc) + 1

2
log(λ) = 0.

Thus, by [19, Theorem 1], there exists a conformal map g : D → λ� with g(0) = 0
and supz∈D |g′(z)| � 1. Because any conformal map from D to λ� that fixes 0 is
a composition of g with a rotation, any conformal map h from D to λ� such that
h(0) = 0 also satisfies supz∈D |h′(z)| � 1.

Now, consider h(z) := λf (z) for all z ∈ D. As defined h is a conformal map from
D to λ� and h(0) = 0. Thus, we have

1 � sup
z∈D

|h′(z)| = λ sup
z∈D

|f ′(z)|.

Finally, we provide a bound on ‖f ′‖H2(D) for nearly circular domains that follows
from [13, Equation 2.9] with p = 2.

Proposition 21 (Gaier’s bound) Let � ⊂ R
2 be a bounded, C3 and nearly circular

domain in the sense of Definition 1 with ρ� ∈ [0, 1). Let f : D → � be a conformal
map such that f (0) = 0. Then one has

‖f ′‖H2(D) ≤ ro

(
1 + ρ2

�

1 − ρ2
�

)1/2
.

4.2.2 An Abstract Upper Bound

First, we formulate our main result for general simply connected domains. This
estimate involves the norm ‖f ′‖H2(D) of the conformal map f : D → �.

Theorem 22 Let � ⊂ R
2 be a bounded, simply connected, C3-domain with 0 ∈ �.

Then the following inequality holds

μ1(�) �
(

2π

|�| + πr2i

)1/2
κ�‖f ′‖H2(D)μ1(D),

where μ1(�) and μ1(D) are the principal eigenvalues of the massless Dirac opera-
tors D� and DD, respectively. Moreover, the above inequality is strict unless � is a
disk centred at the origin.

Proof Throughout the proof we set μ = μ1(D) > 0 for the principal eigenvalue of
DD. The proof relies on the analysis of each term appearing in Proposition 16.

The denominator D Let us start by analysing the denominator D. To do so, we will
need the following claim, whose proof is postponed until the end of this paragraph.
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Claim A The function r → H(r) := r
[
J0(μr)2 + J1(μr)2

]
is monotonously

increasing on the interval (0, 1).
Recall that

D =
∫ 1

0

((
J0(rμ)2 + J1(rμ)2

) ∫ 2π

0
|f ′(reiθ )|2dθ

)
rdr .

Parseval’s identity gives∫ 2π

0
|f ′(reiθ )|2dθ = 2π

∑
n∈N

n2|cn|2r2n−2 = 2π |c1|2 + 2π
∑
n�2

n2|cn|2r2n−2.

The denominator D rewrites as

D = 2π |c1|2
∫ 1

0
H(r)dr + 2π

∫ 1

0

∑
n�2

n2|cn|2H(r)r2n−2dr . (21)

First, we handle the term

I :=
∫ 1

0

∑
n�2

n2|cn|2H(r)r2n−2dr .

Remark that as n2|cn|2r2n−2 � 0 for all r ∈ (0, 1) we have

I =
∑
n�2

n2|cn|2
(∫ 1

0
H(r)fn(r)dr

)
, with fn(r) = r2n−2.

Now, as for all n � 2, fn is increasing on (0, 1) as well as H by Claim A, applying
Chebyshev’s inequality we get

I �

⎛
⎝∑

n�2

n2|cn|2
∫ 1

0
fn(r)dr

⎞
⎠(∫ 1

0
H(r)dr

)

=
⎛
⎝∑

n�2

n2

2n − 1
|cn|2

⎞
⎠(∫ 1

0
H(r)dr

)
� 1

2

⎛
⎝∑

n�2

n|cn|2
⎞
⎠(∫ 1

0
H(r)dr

)
.

Note that the above inequality is strict unless cn = 0 for all n ≥ 2, which occurs if,
and only if, � is a disk centred at the origin. Using the area formula of Proposition 17
this inequality turns into

I � |�| − π |c1|2
2π

∫ 1

0
H(r)dr . (22)

Plugging (22) into (21) and applying then Proposition 18, we get

D �
(
|�| + π |c1|2

) ∫ 1

0
H(r)dr �

(
|�| + πr2i

) ∫ 1

0
H(r)dr . (23)
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Again we stress that the above inequality is strict unless � is disk centred at the
origin. Thus, it only remains to show Claim A. Differentiating the function H and
using the identities

J ′
0(x) = −J1(x), J ′

1(x) = 1

2
(J0(x) − J2(x)), x(J0(x) + J2(x)) = 2J1(x),

we get

H ′(r) = J0(rμ)2 + J1(rμ)2 − rμ [J0(rμ)J1(rμ) + J1(rμ)J2(rμ)]

= J0(rμ)2 + J1(rμ)2 − 2J1(rμ)2 = J0(rμ)2 − J1(rμ)2.

Taking into account that J0(s) > J1(s) for all s ∈ (0, μ) we get the claim.

The numerator N2 Recall that

N2 =
(∫ 1

0

J1(rμ)2

r
dr

)(∫ 2π

0
κ2(η(θ)

)|η′(θ)|2dθ
)
.

By definition, for all θ ∈ (0, 2π) we have κ2
(
η(θ)
)
� κ2

� and moreover we get
|η′(θ)| = |f ′(eiθ )|. It yields

N2 � 2πκ2
� ‖f ′‖2H2(D)

(∫ 1

0

J1(rμ)2

r
dr

)
. (24)

Combining all the estimates together Thanks to Proposition 16 we know that(
μ1(�)

)2 � N1 + N2 + N3

D .

Using (23), (24) as well as the explicit expressions for N1 and N3 we obtain

(
μ1(�)

)2 � 2π max
{
1, κ2

� ‖f ′‖2H2(D)

}
|�| + πr2i

(
μ1(D)

)2.
Cauchy-Schwarz inequality and the total curvature identity yield

κ2
� ‖f ′‖2H2(D)

≥ 1

2π

∫ 2π

0
κ(f (eiθ ))2|f ′(eiθ )|2dθ

≥ 1

4π2

(∫ 2π

0
κ(f (eiθ ))|f ′(eiθ )|dθ

)2
= 1.

Hence, we end up with

(
μ1(�)

)2 � 2πκ2
� ‖f ′‖2H2(D)

|�| + πr2i

(
μ1(D)

)2.
By taking the square root on both hand sides of the previous equation we get the
claim. Note that the above inequality is strict unless � is a disk centred at the origin.

Math Phys Anal Geom (2019) 22: 13 Page 19 of 30 13



4.2.3 Bounds for Convex and for Nearly Circular Domains

Now we use available estimates on ‖f ′‖H2(D) to derive geometric bounds on μ1(�).
First, we define the functional Fc that appears in (5):

Fc(�) :=
(

|�| + πr2i

2π

) 1
2

exp
(− 2(ro − rc)�(ri, rc)

)
, (25)

where � is as in (20) and the radii ri, ro and rc are given in (19). In particular, when
ri �= rc the functional Fc simply rewrites as

Fc(�) =
(

|�| + πr2i

2π

) 1
2 (

rc

ri

)2 ro−rc
ri−rc

.

Remark that �(a, b) ≥ 0 for any a, b ∈ R+. Furthermore, the functional Fc has the
following properties.

(a) For any � and all α > 0 one has Fc(α�) = αFc(�).
(b) One has for any �

Fc(�) ≤
(

|�| + πr2i

2π

) 1
2

≤
√ |�|

π

and, in particular, Fc(Dr ) =
√

|Dr |
π

= r .
(c) Fc is not invariant under translations. Indeed, for � = D, we have ro = ri =

rc = 1 and Fc(�) = 1. However, if one picks � = D + ( 12 , 0), then one has
ri = 1

2 , ro = 3
2 , rc = 1 and

Fc(�) = 1

8

(
5

2

) 1
2 � 0.198.

Now, we have all the tools to rigorously formulate our main result for convex
domains. This result is just a simple consequence of Theorem 22, in which ‖f ′‖H2(D)

is estimated via Proposition 19 and the scaling property rμ1(Dr ) = μ1(D) is
employed.

Theorem 23 Let � ⊂ R
2 be a bounded, convex, C3-domain such that 0 ∈ � and let

the functional Fc(·) be as in (25). Then the following inequality holds
Fc(�)μ1(�) � Fc(Dr )μ1(Dr ),

where μ1(�) and μ1(Dr ) are the principal eigenvalues of the massless Dirac opera-
tors D� and DDr

, r > 0, respectively. Moreover, the above inequality is strict unless
� is a disk centred at the origin.

Remark 24 Condition (a) implies that the family

Ec(r) := {� is a bounded, convex C3-domain : Fc(�) = r
}
, r > 0.
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is non-empty and contains “many” domains.

Corollary 25 Let the assumptions be as in Theorem 23. Then the following inequal-
ity

μ1(�) < μ1(Dr )

holds provided that Fc(�) = r and that � �= Dr .

Note that thanks to property (c) we know that Fc is sensitive to the choice of
the origin. Stated as it is, Theorem 23 can still be slightly optimized, because the
principal eigenvalue itself is clearly insensitive to translations of �. Thanks to (b),
we have

Fc(� − y) �
√ |� − y|

π
=
√ |�|

π

and hence Theorem 23 immediately yields the following corollary.

Corollary 26 Let the assumptions be as in Theorem 23. Then the following inequal-
ity holds

μ1(�) � r

F�
c (�)

μ1(Dr ),

where F�
c (�) := supy∈� Fc(� − y).

Stated this way, the upper bound in the right hand side of the inequality in Corol-
lary 26 is translation invariant. However, the upper bound is no longer expressed
in term of simple geometric quantities. Nevertheless, if the domain � has some
extra symmetries, one can find explicitly y� ∈ �, which maximizes the function
y → Fc(� − y). This is the purpose of the following proposition, whose proof is
postponed to Appendix B.

Proposition 27 Let � be a bounded, convex C3-domain, which has two axes of sym-
metry �1 and �2 that intersect in a unique point y� ∈ �, then Fc(� − y�) =
F�
c (�).

Proposition 27 immediately yields the optimal bound that one can obtain in Corol-
lary 26 whenever � has two axes of symmetry. For example, let 0 < b < a and take
for � the ellipse of major axis 2a and minor axis 2b defined as

� :=
{

(x1, x2)
� ∈ R

2 : x2
1

a2
+ x2

2

b2
� 1

}
.

One easily finds rc = a−1b2 and by Proposition 27 the optimal choice of y ∈ � to
minimize F(� − y) is given by y = 0. Hence, ri = b and ro = a and we obtain

F�
c (�) = sup

y∈�

Fc(�−y) = Fc(�) =
(

ab + b2

2

) 1
2

exp

(
−2�(b, a−1b2)

a2 − b2

a

)
.

Remark that as a > b > 0 we have F�
c (�) <

√
ab.
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Remark 28 We also observe that for the ellipse �x ⊂ R
2 centred at the origin with

a = 1 + x and b = 1
1+x

for some x > 0 one has

Fc(�x) =
(

2 + 2x + x2

2 + 4x + 2x2

)1/2 (
1

1 + x

)8+8x+4x2

= 1− 17

2
x +O(x2), x → 0+.

Thus, the upper bound in Theorem 23 is reasonably precise if x > 0 is small, in
which case the ellipse �x is close to the unit disk. On the other hand, Fc(�x) decays
super-exponentially for x → ∞ and in that regime the obtained upper bound on
μ1(�) is very rough.

In what follows we assume that � is a nearly circular domain in the sense of
Definition 1. Now, we define the functional that appears in (7):

Fs(�) :=
(

|�| + πr2i

2π

) 1
2

rc

ro

(
1 − ρ�

1 + ρ�

)1/2
. (26)

The functional Fs shares common properties with Fc.

(a) For any nearly circular � and all α > 0 one has Fs(α�) = αFs(�).
(b) One has for any nearly circular �

Fs(�) ≤
(

|�| + πr2i

2π

) 1
2

≤
√ |�|

π

and, in particular, Fs(Dr ) =
√

|Dr |
π

= r .
(c) Fs is also not invariant under translations.

Now, we have all the tools to rigorously formulate our main result for nearly cir-
cular domains. This result is also a simple consequence of Theorem 22, in which
‖f ′‖H2(D) is now estimated via Proposition 21.

Theorem 29 Let � ⊂ R
2 be a bounded, C3 and nearly circular domain in the sense

of Definition 1 with ρ� ∈ [0, 1) and let the functional Fs(·) be as in (26). Then the
following inequality holds

Fs(�)μ1(�) � Fs(Dr )μ1(Dr ),

where μ1(�) and μ1(Dr ) are the principal eigenvalues of the massless Dirac opera-
tors D� and DDr

, r > 0, respectively. Moreover, the above inequality is strict unless
� is a disk centred at the origin.

Remark 30 Condition (a) implies that the family

Es(r) := {� is a bounded, nearly circular C3-domain : Fs(�) = r
}
, r > 0.

is non-empty and contains “many” domains.
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Corollary 31 Let the assumptions be as in Theorem 29. Then the following inequal-
ity

μ1(�) < μ1(Dr )

holds provided that Fs(�) = r and that � �= Dr .
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Appendix: TheMassless Dirac Operator with Infinite Mass Boundary
Conditions on a Disk

The goal of this Appendix is to prove Proposition 8. Namely, we are aiming to
characterize the principal eigenvalue μD and the associated eigenfunctions for the
self-adjoint operator DD on the unit disk

D = {x ∈ R
2 : |x| < 1}.

The material of this appendix is essentially known (see for instance [36, App. D]).
However, we recall it here for the sake of completeness.

A.1 The Representation of the OperatorDD in Polar Coordinates

First, we introduce the polar coordinates (r, θ) on the disk D. They are related to the
Cartesian coordinates x = (x1, x2) via the identities

x(r, θ)=
(

x1(r, θ)

x2(r, θ)

)
, where x1=x1(r, θ)=r cos θ, x2=x2(r, θ)=r sin θ,

for all r ∈ I := (0, 1) and θ ∈ T. Further, we consider the moving frame (erad, eang)
associated with the polar coordinates

erad(θ) = dx

dr
=
(
cos θ

sin θ

)
and eang(θ) = derad

dθ
=
(− sin θ

cos θ

)
.

The Hilbert space L2
cyl(D,C2) := L2(I × T,C2; rdrdθ) can be viewed as the tensor

product L2
r (I) ⊗ L2(T,C2), where L2

r (I) = L2(I; rdr). Let us consider the unitary
transform

V : L2(D,C2) → L2
cyl(D,C2), (V v)(r, θ) = u (r cos θ, r sin θ) ,

and introduce the cylindrical Sobolev space by

H 1
cyl(D,C2) :=V

(
H 1(D,C2)

)
=
{
v∈L2

cyl(D,C2) : ∂rv, r−1(∂θv)∈L2
cyl(D,C2)

}
We consider the operator acting in the Hilbert space L2

cyl(D,C2) defined as

D̃D := VDDV −1, dom
(
D̃D

) = V (dom (DD)) . (27)
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Now, let us compute the action of D̃D on a function v ∈ dom
(
D̃D

)
. Notice that there

exists u ∈ dom (DD) such that v = V u and the partial derivatives of v with respect
to the polar variables (r, θ) can be expressed through those of u with respect to the
Cartesian variables (x1, x2) via the standard relations (for x = x(r, θ))

(∂rv)(r, θ) = sin θ(∂2u)(x) + cos θ(∂1u)(x),

r−1(∂θv)(r, θ) = cos θ(∂2u)(x) − sin θ(∂1u)(x),

and the other way round

(∂1u)(x) = cos θ(∂rv)(r, θ) − sin θ
(∂θ v)(r,θ)

r
,

(∂2u)(x) = sin θ(∂rv)(r, θ) + cos θ
(∂θ v)(r,θ)

r
.

Using the latter formulæ we can express the action of the differential expression
−i(σ · ∇) in polar coordinates as follows (for x = x(r, θ))

(−i(σ · ∇)u)(x) = −i

(
∂1u2(x) − i∂2u2(x)

∂1u1(x) + i∂2u1(x)

)

= −i

(
e−iθ (∂rv2)(r, θ) − ie−iθ r−1(∂θv2)(r, θ)

eiθ (∂rv1)(r, θ) + ieiθ r−1(∂θv1)(r, θ)

)
.

Note that a basic computation yields

σ · erad = cos θσ1 + sin θσ2 =
(

0 e−iθ

eiθ 0

)
. (28)

Hence, the operator D̃D acts as

D̃Dv = −i(σ · erad)
(

∂rv + v − σ3Kv

2r

)
,

dom
(
D̃D

) =
{
v ∈ H 1

cyl(D,C2) : v2(1, θ) = ieiθ v1(1, θ)
}

, (29)

where K is the spin-orbit operator in the Hilbert space L2(T;C2) defined as

K = −2i∂θ + σ3, dom (K) = H 1(T,C2). (30)

Let us investigate the spectral properties of the spin-orbit operator K.

Proposition 32 Let the operator K be as in (30). Then the following hold.

(i) K is self-adjoint and has a compact resolvent.
(ii) Sp (K) = {2k + 1}k∈Z and Fk := ker (K − (2k + 1)) = span (φ+

k , φ−
k ), where

φ+
k = 1√

2π

(
eikθ

0

)
and φ−

k = 1√
2π

(
0

ei(k+1)θ

)
.

(iii) (σ · erad)φ±
k = φ∓

k and σ3φ
±
k = ±φ±

k .

Proof (i) The operator K is clearly self-adjoint in L2(T,C2), because adding the
matrix σ3 can be viewed as a symmetric bounded perturbation of an unbounded self-
adjoint momentum operator H 1(T,C2) � φ → −iφ′ in the Hilbert space L2(T,C2).
As dom (K) = H 1(T,C2) is compactly embedded into L2(T,C2) the resolvent of K
is compact.
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(ii) Let φ = (φ+, φ−)� ∈ dom (K) and λ ∈ R be such that Kφ = λφ. The eigenvalue
equation on φ reads as follows

(φ±)′ = i

2
(λ ∓ 1) φ±.

The generic solution of the above system of differential equations is given by

φ±(θ) = A± exp
(
iλ∓1

2 θ
)

, A± ∈ C.

Hence, the periodic boundary condition φ±(0) = φ±(2π) implies that the eigenval-
ues of K are exhausted by λ = 2k + 1 for k ∈ Z and that {φ+

k , φ−
k } is a basis of

Fk .
(iii) These algebraic relations are obtained via basic matrix calculus using (28).

We are now ready to introduce subspaces of dom
(
D̃D

)
that are invariant under its

action. The analysis of D̃D reduces to the study of its restrictions to each invariant
subspace.

Proposition 33 There holds

L2
cyl

(
D,C2

)
� L2

r (I) ⊗ L2(T,C2) = ⊕k∈ZEk,

where Ek = L2
r (I) ⊗Fk and L2

r (I) := L2(I; rdr). Moreover, the following hold true.

(i) For any k ∈ Z,

dku := D̃Du, dom (dk) := dom
(
D̃D

) ∩ Ek

is a well-defined self-adjoint operator in the Hilbert space Ek .
(ii) For any k ∈ Z, the operator dk is unitarily equivalent to the operator dk in the

Hilbert space L2
r (I,C

2) defined as

dk=
(

0 −i ddr − i k+1
r−i ddr + i k

r
0

)
,

dom(dk)=
{
u=(u+,u−): u±,u′±,

ku+
r

,
(k+1)u−

r
∈L2

r (I),u−(1)= iu+(1)
}
. (31)

(iii) Sp (DD) = Sp
(
D̃D

) =⋃k∈Z Sp (dk).

Proof (i) Let us check that dk is well defined. Pick a function u ∈ dom
(
D̃D

) ∩ Ek .
By definition, u writes as

u(r, θ) = u+(r)φ+
k (θ) + u−(r)φ−

k (θ),

and, since u ∈ H 1
cyl(D,C2), we have u±, u′±, k

r
u+, k+1

r
u− ∈ L2

r (I). Applying the
differential expression obtained in (29), we get

(D̃Du)(r, θ) =−i(σ · erad)
(
∂rv + v−σ3Kv

2r

)
u(r, θ)

=
[
−iu′−(r)− i(k+1)

r
u−(r)

]
φ+

k (θ)+[−iu′+(r)+ ik
r
u+(r)

]
φ−

k (θ).
(32)
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It yields D̃D (dom (DD) ∩ Ek) ⊂ Ek . It is now an easy exercise to show that dk is
self-adjoint.
(ii) Let us introduce the unitary transform

Wk : Ek →L2
r (I,C

2), (Wku)(r)=((u(r, ·), φ+
k )L2(T,C2), (u(r, ·), φ−

k )L2(T,C2)

)�
.

For u ∈ Ek it is clear that we have ‖Wku‖L2
r (I,C

2) = ‖u‖L2
cyl(D,C2) and we observe that

dk = WkdkW
−1
k , dom (dk) = Wk (dom (dk)) .

(iii) The first equality is a consequence of (27), while the second one is an application
of [31, Theorem XIII.85].

A.2 Eigenstructure of the Disk

Before describing the eigenstructure of the disk recall that C denotes the charge con-
jugation operator introduced in (14). It is not difficult to see that C is anti-unitary and
maps dom (dk) onto dom

(
d−(k+1)

)
for all k ∈ Z. Furthermore, a computation yields

Cd−(k+1)C = −dk . (33)

In particular, C2 = 12, which also reads C−1 = C. Combined with (33) and as the
spectrum of dk is discrete one immediately observes that

Sp (dk) = −Sp
(
d−(k+1)

)
. (34)

Hence, we can restrict ourselves to k � 0.

Lemma 34 Let k ∈ N0. Let dk be the self-adjoint operator defined in (31). Then for
all k ∈ N the following hold.

(i) dom (dk) ⊂ dom (d0)
(ii) ‖dku‖2

L2
r (I;C2)

� ‖d0u‖2
L2

r (I;C2)
for all u ∈ dom (dk).

Proof Let k ∈ N and u = (u+, u−)� ∈ dom (dk). It is clear that u ∈ dom (d0) and
that for integrability reasons u(0) = 0. Hence, we have

∥∥u′+ − k
r
u+
∥∥2

L2
r (I)

= ∥∥u′+
∥∥2

L2
r (I)

− 2k�
(
u′+, 1

r
u+
)

L2
r (I)

+ k2
∥∥∥ 1r u+

∥∥∥2
L2

r (I)

≥ ∥∥u′+
∥∥2

L2
r (I)

− 2k� ∫ 10 u′+u+dr

= ∥∥u′+
∥∥2

L2
r (I)

− k
∫ 1
0 (|u+|2)′dr

= ∥∥u′+
∥∥2

L2
r (I)

− k|u+(1)|2.

(35)
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Analogously, we get∥∥∥u′− + k+1
r

u−
∥∥∥2

L2
r (I)

≥
∥∥∥u′− + 1

r
u−
∥∥∥2

L2
r (I)

+ 2k�
(
u′−, 1

r
u−
)

L2
r (I)

=
∥∥∥u′− + 1

r
u−
∥∥∥2

L2
r (I)

+ k
∫ 1
0 (|u−|2)′dr

=
∥∥∥u′− + 1

r
u−
∥∥∥2

L2
r (I)

+ k|u−(1)|2
(36)

Combining (35) and (36) with the boundary condition u−(1) = iu+(1) we get

‖dku‖2
L2

r (I,C
2)

≥ ∥∥u′+
∥∥2

L2
r (I)

+
∥∥∥u′− + 1

r
u−
∥∥∥2

L2
r (I)

+ k
(|u−(1)|2 − |u+(1)|2)

= ‖d0u‖2
L2

r (I,C
2)

+ k
(|u−(1)|2 − |u+(1)|2) = ‖d0u‖2

L2
r (I,C

2)
.

Now, we have all the tools to prove Proposition 8.

Proof of Proposition 8 As a direct consequence of Lemma 34 and the min-max
principle, we obtain that

μ1(d2k) � μ1(d20) = μ2
D
.

Thus, by Proposition 33 (iii) and Eq. 34, in order to investigate the first eigenvalue of
DD, we only have to focus on the operator d0.

Let μ > 0 be an eigenvalue of d0 and u be an associated eigenfunction. In
particular, u = (u+, u−)� ∈ dom

(
d20
)
and we have

0 = (d0 + μ)(d0 − μ)u =
(

−u′′+ − u′+
r

− μ2

−u′′− − u′−
r

+ u−
r2

− μ2

)
.

Hence, we obtain

u+(r) = a+J0(μr) + b+Y0(μr) and u−(r) = a−J1(μr) + b−Y1(μr),

with some constants a±, b± ∈ C and where Jν and Yν (ν = 0, 1) denote the Bessel
function of the first kind of order ν and the Bessel function of the second kind of
order ν, respectively. Taking into account that

lim
r→0+ r2|Y ′

0(r)|2=
4

π2
, lim

r→0+ r4|Y ′
1(r)|2=

4

π2
,

(see [25, §10.7(i)]), the condition u ∈ dom (d0) implies b± = 0 or, in other words,

u+(r) = a+J0(μr) and u−(r) = a−J1(μr).

Now, as u satisfies the eigenvalue equation d0u = μu we get u′+ = iμu− and the
identity

a−μJ1(μr) = iμa+J1(μr)

holds for all r ∈ I. In particular, we obtain a− = ia+ which gives

u = a+
(

J0(μr)

iJ1(μr)

)
. (37)
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Now, the boundary condition u−(1) = iu+(1) reads as

J0(μ) = J1(μ), (38)

which gives the eigenvalue equation, whose first positive root is the principal eigen-
value of DD. An eigenfunction of D̃D corresponding to the eigenvalue μD is given in
polar coordinates by

w(r, θ) = u ⊗ φ−
0 = 1√

2π

(
J0(rμD)

ieiθJ1(rμD)

)

where φ−
0 is as in Proposition 32 (ii), u is as in (37) (with a+ = 1) and μD is the

smallest positive root of (38).

Appendix B: Proof of Proposition 27

Step 1. For any z ∈ ∂�, the map � � y → |y − z| is continuous. Hence, the maps
defined as

ri := � � y → inf
z∈∂�

|y − z|, ro := � � y → sup
z∈∂�

|y − z|,

are continuous on � as well and they attain their upper and lower bounds.
In particular, there exist yi, yo ∈ � such that

ri(yi) = max
y∈�

ri(y), ro(yo) = min
y∈�

ro(y).

Step 2. Assume that � has an axis of symmetry �. By Step 1 there exist yi, yo ∈ �

such that ri(yi) = supy∈� ri(y) and ro(yo) = infy∈� ro(y). Our aim is to
show that yi, yo can be both chosen in �. Let us suppose that yi, yo /∈ �

and define the reflection R� : � → � with respect to �. Remark that
R�yi and R�yo also satisfy ri(R�yi) = maxy∈� ri(y) and ro(R�yo) =
miny∈� ro(y). Set ỹi := 1

2yi + 1
2R�yi and ỹo := 1

2yo + 1
2R�yo. As � is

convex we have ỹi, ỹo ∈ �. Also by convexity of �, we get

1

2
Dri(yi)(yi) + 1

2
Dri(yi)(R�yi) = Dri(yi)(ỹi) ⊂ �, (39)

where Dr (y) denotes the disk of radius r > 0 centred at y ∈ R
2. Now, (39)

implies ri(ỹi) � ri(yi) and we obtain ri(ỹi) = maxy∈� ri(y).
Similarly, by convexity of �, we get

1

2
Dro(yo)(yo) + 1

2
Dro(yo)(R�yo) = Dro(yo)(ỹo) ⊃ �.

In particular, ro(ỹo) � miny∈� ro(y) and we have equality in this inequality.
Step 3. Suppose now that � has two axes of symmetry �1 and �2. Let y� ∈ � be

the unique point of intersection of these axes. Thanks to Steps 1 and 2 for
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all y ∈ � we necessarily have ri(y) � ri(y�) and ro(y) � ro(y�). Next,
define the function

G(r1, r2) :=
(

|�| + πr21

2π

) 1
2

exp (2(rc − r2)�(r1, rc)) , r1 < r2, rc < r2.

Remark that G is a non-decreasing function of r1 whereas it is a non-
increasing function of r2. Now, we have

Fc(� − y) = G (ri(y), ro(y)) � G (ri(yi), ro(yo)) = Fc(� − y�).

Hence, F�
c (�) = supy∈� Fc(� − y) = Fc(� − y�), by which the proof is

concluded.
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