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Abstract
We define gauge transformations of Jacobi structures on a manifold. This is related
to gauge transformations of Poisson structures via the Poissonization. Finally, we
discuss how the contact structure of a contact groupoid is effected by a gauge
transformation of the Jacobi structure on its base.
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1 Introduction

The notion of gauge transformations of Poisson structures associated with certain
closed 2-forms was introduced by Ševera and Weinstein in connection with Poisson-
sigma models [23]. Gauge transformations of Poisson structures also arise in some
quantization problems [14]. Roughly, a gauge transformation of a given Poisson
structure modify its leafwise symplectic forms by means of the pullback of a globally
defined 2-form. Gauge equivalent Poisson structures share many important proper-
ties, namely, they give rise to same singular foliation on the manifold, and correspond
to isomorphic Lie algebroid structures on the cotangent bundle. Gauge transforma-
tions of Poisson structures was further studied by Bursztyn and Radko from the
perspective of symplectic groupoids [2, 3]. They also provide a relationship between
gauge transformations and Xu’s Morita equivalence of Poisson manifolds.

The most natural framework to study gauge transformations of Poisson structures
is that of Dirac structure. Gauge transformations have also been studied in the context
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of multiplicative Poisson and Dirac structures on a Lie groupoid [2, 22]. Recently, the
present author introduced gauge transformations of Nambu-Poisson structures and
showed that these transformations commute with the reduction procedure [7].

Our main objective in this paper is the notion of Jacobi manifold introduced by
Lichnerowicz [18]. A Jacobi structure on a smooth manifold M consists of a pair
(π, E) of a bivector field π ∈ �(∧2

T M) and a vector field E ∈ �(T M) satisfy-
ing certain conditions. We remark that Jacobi structure in the sense of Lichnerowicz
is a special case of the notion of local Lie algebra structure (with one dimensional
fiber) introduced by Kirillov [16]. In Lichnerowicz’s terminology, local Lie algebras
with one dimensional fibers are called conformal Jacobi structures. Despite Kirillov’s
approach being more general, we restrict our attention to Lichnerowicz’s defini-
tion. However, the results of the present paper can also be discussed with Kirillov’s
definition. See the remark at the end of the introduction. Jacobi structures include
symplectic, Poisson, contact and locally conformal symplectic (l.c.s.) structures [17].
A Jacobi structure (π, E) on M defines a bundle map

(π, E)� : T ∗M × R → T M × R, (α, g) �→ (π�α + gE, − 〈α, E〉),
for (α, g) ∈ �(T ∗M × R). One might expect that the natural framework to study
gauge transformations of Jacobi structures is the notion of Dirac-Jacobi structure
(also called E1(M)-Dirac structure) introduced by Wade [27]. A Dirac-Jacobi struc-
ture on M consists of a subbundle L ⊂ E1(M) = (T M × R) ⊕ (T ∗M × R)

satisfying certain maximally isotropic and integrability condition (Definition 2.5).
Then L inherits the structure of a Lie algebroid and there is a distinguished 1-cocycle
of this Lie algebroid. The graph of the bundle map (π, E)� associated to a Jacobi
structure defines a Dirac-Jacobi structure. Hence, the 1-jet bundle T ∗M × R of a
Jacobi manifold M carries a Lie algebroid structure by identifying this bundle with
the graph of (π, E)�.

In Section 3, we define an action τ : �1(M) × DJ(M) → DJ(M), (B, L) �→
τB(L) of the abelian group �1(M) on the spaceDJ(M) of all Dirac-Jacobi structures
on M . When the Dirac-Jacobi structure L comes from the graph of a Jacobi structure
(π, E), then for any B, the Dirac-Jacobi structure τB(L) need not be the graph of
another Jacobi structure. This amounts to the invertibility of a certain map and in this
case, the new Jacobi structure (denoted by (πB, EB) or τB(π, E)) on M is called
the gauge transformation of (π, E) associated to the 1-form B. We prove that gauge
equivalent Jacobi structures on M give rise to isomorphic Lie algebroid structures
on T ∗M × R (cf. Proposition 3.4). As a remark, we get that gauge equivalent Jacobi
structures have isomorphic Lichnerowicz-Jacobi cohomology. We show that gauge
transformations of contact structures are contact and gauge transformations of l.c.s.
structures are l.c.s. (cf. Remarks 3.6, 3.7). Moreover, any two contact structures on a
manifold are gauge equivalent (cf. Remark 3.8).

In Section 4, we show that our gauge transformations of Dirac-Jacobi structures
are related to gauge transformations of Dirac structures via the Diracization process
(cf. Proposition 4.1). In the particular case, it shows the relation between gauge trans-
formations of Jacobi structures and gauge transformations of Poisson structures (cf.
Proposition 4.3).
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A contact groupoid is a Lie groupoid G ⇒ M together with a contact 1-form
η ∈ �1(G) and a multiplicative function σ ∈ C∞(G) that satisfies certain multi-
plicativity condition. Contact groupoids correspond to Jacobi structures on their base.
In Section 5, we discuss how the contact structure of a contact groupoid is effected
by a gauge transformation of the Jacobi structure on its base (cf. Theorem 5.6).

Multiplicative Jacobi structures on Lie groupoids and their infinitesimal counter-
part generalized Lie bialgebroids have been studied in [11]. In Section 6, we define
gauge transformations of these objects and show that they are related by the Lie func-
tor (cf. Theorem 6.5). In a particular case, this theorem recovers Theorem 5.6 of the
previous section.

Remark 1.1 A line bundle approach of Jacobi structure was introduced by Kirillov
[16] (see also [1, 20]). More precisely, a local Lie algebra structure on M consists of
a line bundle L over M together with a Lie bracket

{−, −} : �L × �L → �L

on the space of sections ofL, which is local in the sense that, for u, v ∈ �L supported
in some open set U ⊂ M , the bracket {u, v} is supported in U as well. Kirillov’s
local Lie algebras are same as Jacobi structures when the line bundle L is trivial. We
refer [1, 4, 25] for more details on the line bundle approach of contact structures,
contact groupoids and Dirac-Jacobi structures. Finally, we remark that the contents
of the present paper can also be discussed in the line bundle framework. In such
case, the bundle T M × R is replaced by the gauge algebroid DL of L and the 1-
jet bundle T ∗M × R is replaced by the jet bundle J 1L of L. The Jacobi bracket
{−, −} : �L × �L → �L then induces a bundle map J � : J 1L → DL. The 1-form
B by which we transform the Jacobi structure is replaced by a closed 2-form of the
Lie algebroid DL with values in the tautological representation in L. In the case of
the trivial line bundle L, we exactly get the results of the present paper.

We assume that the reader is familiar with some basics of Lie groupoids and Lie
algebroids. See [19] for details. Given a Lie groupoid G ⇒ M , the source map and
the target map are denoted by α and β, respectively. The space of composable arrows
is defined by G(2) = {(g, h) ∈ G × G | α(g) = β(h)}. We denote the de Rham
differential of a manifold by d .

2 Jacobi Structures

In this section, we recall some basic preliminaries on Jacobi and Dirac-Jacobi
structures on a manifold [9, 16, 17, 21, 27].

Definition 2.1 Let M be a smooth manifold. A Jacobi structure on M consists of a
pair (π, E) of a bivector field π ∈ �(∧2

T M) and a vector field E ∈ �(T M) such
that

[π, π ] = 2E ∧ π and [E, π ] = 0,
where [ , ] denotes the Schouten bracket on multivector fields.
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A Jacobi manifold is a manifold equipped with a Jacobi structure as above. If
E = 0 then a Jacobi structure is nothing but a Poisson structure. Moreover, given a
Jacobi structure (π, E) on M the product manifold M ×R carries a Poisson structure
whose Poisson bivector is given by

(̃π, E) = e−t
(
π + ∂

∂t
∧ E

)
. (1)

This is called the Poissonization of the Jacobi structure (π, E) on M .
It is important to note that given a Jacobi structure (π, E) on M , there is a bundle

map (π, E)� : T ∗M × R → T M × R given by

(π, E)�(α, g) = (π�α + gE, −〈α, E〉), for (α, g) ∈ �(T ∗M × R). (2)

The set of all hamiltonian vector fields Xh := pr1 ◦ (π, E)�(dh, h) = π�(dh) +
hE, h ∈ C∞(M), generates a distribution D on M , called the characteristic dis-
tribution. Here pr1 : T M × R → T M denotes the projection onto the first
factor.

Example 2.2 A contact manifold is a smooth manifold M2n+1 together with a 1-
form η ∈ �1(M) such that η ∧ (dη)n = 0 at every point.

Given a contact manifold (M, η) there exists an isomorphism of C∞(M)-modules

�η : �(T M) → �(T ∗M), X �→ iXdη + η(X)η.

The corresponding Jacobi structure (π, E) is given by

π(α, β) = dη (�−1
η (α), �−1

η (β)) and E = �−1
η (η), for α, β ∈ �1(M).

In this case, the induced bundle map (π, E)� : T ∗M × R → T M × R is invertible
with inverse

((π, E)�)−1(X, f ) = (−iXdη − f η, η(X)), for (X, f ) ∈ �(T M × R). (3)

Conversely, a Jacobi structure (π, E) on M is induced from a contact structure on
M if the bundle map (π, E)� is invertible.

The Poissonization of a contact structure η onM is given by a symplectic structure
η̃ = et (pr∗

1dη + dt ∧ pr∗
1η) on M × R.

Example 2.3 A locally conformal symplectic (l.c.s.) manifold is a smooth manifold
M2n together with a non-degenerate 2-form ω ∈ �2(M) with the property that for
each x ∈ M there is an open neighbourhood Ux of x and a function f ∈ C∞(Ux)

such that (Ux, e−f ω) is a symplectic manifold. Alternatively, a l.c.s. manifold is
a manifold M2n together with a non-degenerate 2-form ω ∈ �2(M) and a closed
1-form θ ∈ �1(M) such that

dω = θ ∧ ω

(see [24] for more details). Given a l.c.s. manifold (M2n, ω, θ), one can define a
Jacobi structure (π, E) on M by

π(α, β) = ω(�−1(α), �−1(β)) and E = �−1(θ),

where � : �(T M) → �(T ∗M), X �→ iXω is the isomorphism of C∞(M)-modules.
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If (ω, θ) defines a l.c.s. structure on M2n, then around every point x in M there is
a local chart (Ux; q1, . . . , qn, p1, . . . , pn) and a function f on Ux such that

ω = ef
∑

i

dqi ∧ dpi and θ = df =
∑

i

( ∂f

∂qi
dqi + ∂f

∂pi

dpi

)
.

Therefore, the induced Jacobi structure (π, E) on M is given by

π = e−f
∑

i

∂

∂qi
∧ ∂

∂pi

and E = e−f
∑

i

( ∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi

)
.

Hence, around the local chart (q1, . . . , qn, p1, . . . , pn, t) on M ×R, the Poissoniza-
tion is given by the formula (1) where (π, E) is defined above.

A Jacobi structure (π, E) on M is called ‘transitive’ if the map

pr1 ◦ (π, E)� : T ∗M × R → T M, (α, g) �→ π�α + gE

is surjective. The only transitive Jacobi structures are given by contact structures on
odd dimensional manifolds and locally conformal symplectic (l.c.s.) structures on
even dimensional manifolds [16]. More generally, if (π, E) is an arbitrary Jacobi
structure, the leaves of its characteristic distribution D inherit transitive Jacobi
structures.

A conformal change of a Jacobi structure (π, E) on M by a nowhere vanishing
smooth function σ is given by (πσ , Eσ ) where πσ = σπ and Eσ = π�(dσ) + σE.

Definition 2.4 A Jacobi map between two Jacobi manifolds (M ′, π ′, E′) and
(M, π, E) is a smooth map φ : M ′ → M which preserves the corresponding
bivector fields and vector fields, that is, φ∗π ′ = π and φ∗E′ = E. The map
φ is called a conformal Jacobi map with respect to a nowhere vanishing function
σ ′ ∈ C∞(M ′) if φ : M ′ → M is a Jacobi map when M ′ is equipped with the
conformal Jacobi structure (π ′

σ ′ , E′
σ ′). We denote a conformal Jacobi map simply by

(φ, σ ′) : M ′ → M .

Next we recall Dirac-Jacobi structure (or E1(M)-Dirac structure) on a manifold
studied by Wade [27]. A line bundle approach of this notion was further studied in
[25]. First observe that for any smooth manifold M , the bundle T M × R → M has
a Lie algebroid structure whose bracket and anchor are given by

[(X, f ), (Y, h)] = ([X, Y ], X(h) − Y (f )) and ρ(X, f ) = X,

for (X, f ), (Y, h) ∈ �(T M × R) ∼= �(T M) × C∞(M). Moreover, for any k � 0,
there is a square zero map d̃ : �k(M)×�k−1(M) → �k+1(M)×�k(M) defined by

d̃(α, β) = (dα, α − dβ), for (α, β) ∈ �k(M) × �k−1(M).

For any (X, f ) ∈ �(T M) × C∞(M), there is also a contraction map i(X,f ) :
�k(M) × �k−1(M) → �k−1(M) × �k−2(M) defined by

i(X,f )(α, β) = (iXα + fβ, −iXβ), for (α, β) ∈ �k(M) × �k−1(M).

Page 5 of 24 11Math Phys Anal Geom (2019) 22: 11



Therefore, for any (X, f ) ∈ �(T M) × C∞(M), one can define an operator L̃(X,f ) :
�k(M) × �k−1(M) → �k(M) × �k−1(M) by the following Cartan like formula

L̃(X,f ) := i(X,f ) ◦ d̃ + d̃ ◦ i(X,f ).

Then one can verify that the following identity holds

L̃(X,f )◦i(Y,h)−i(Y,h)◦L̃(X,f ) = i[(X,f ),(Y,h)], for (X, f ), (Y, h) ∈ �(T M)×C∞(M).

Hence, we can define a non-degenerate pairing 〈〈−, −〉〉 on the space of sections
of the bundle E1(M) := (T M × R) ⊕ (T ∗M × R) by the following

〈〈(X, f ) ⊕ (α, g), (Y, h) ⊕ (β, k)〉〉 = 1

2
(i(X,f )(β, k) + i(Y,h)(α, g)) (4)

and a generalized Dorfman bracket �−, −� on the space of sections of E1(M) by

�(X, f )⊕(α, g), (Y, h)⊕(β, k)� = ([(X, f ), (Y, h)]⊕L̃(X,f )(β, k)− i(Y,h)d̃(α, g)),

for (X, f ) ⊕ (α, g), (Y, h) ⊕ (β, k) ∈ �(E1(M)).

Definition 2.5 A Dirac-Jacobi structure on a manifold M is a subbundle

L ⊂ (T M × R) ⊕ (T ∗M × R)

which is maximally isotropic with respect to the pairing 〈〈−, −〉〉 and such that �L

is closed under the generalized Dorfman bracket �−, −�.

The kernel of a Dirac-Jacobi structure L is defined as ker(L) := L∩((T M ×R)⊕
{0}). Given a Dirac-Jacobi structure L, its opposite Dirac-Jacobi structure is given by

L− := {(−X, −f ) ⊕ (α, g) | (X, f ) ⊕ (α, g) ∈ L}.

Remark 2.6 Note that if L is a Dirac-Jacobi subbundle then it is equipped with a Lie
algebroid structure over M . The Lie bracket on �L is given by the restriction of the
generalized Dorfman bracket �−, −� and the anchor is given by the projection on
T M . Moreover, there is a distinguished Lie algebroid 1-cocycle given by

(X, f ) ⊕ (α, g) �→ f, for (X, f ) ⊕ (α, g) ∈ �L.

A characterization of Jacobi structures is given by the following [21, 27].

Proposition 2.7 Let M be a smooth manifold and (π, E) be a pair of a bivector field
and a vector field on M . Then (π, E) defines a Jacobi structure on M if and only if

L(π,E) := Graph((π, E)�) = {(π�α + gE, −〈α, E〉) ⊕ (α, g)| (α, g) ∈ T ∗M × R}
is a Dirac-Jacobi structure on M .

Given a Dirac-Jacobi structure L ⊂ (T M × R) ⊕ (T ∗M × R) on M , one can
define a Dirac structure L̃ on M × R by the following Diracization [10] process

L̃ = {(X + f
∂

∂t
) ⊕ et (α + gdt)| (X, f ) ⊕ (α, g) ∈ L}.
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Remark 2.8 Let (π, E) be a Jacobi structure on M with the corresponding Dirac-
Jacobi structure L(π,E). By identifying T ∗M ×R with L(π,E), we get a Lie algebroid
structure on T ∗M × R with bracket

[(α, g), (β, k)](π,E) = L̃(π,E)�(α,g)(β, k)− i(π,E)�(β,k)d̃(α, g), for (α, g), (β, k) ∈ �(T ∗M ×R),

and the anchor ρ := pr1 ◦ (π, E)� : T ∗M ×R → T M . Moreover, the distinguished
1-cocycle of this Lie algebroid is given by (α, g) �→ −〈α, E〉. Hence, it is given by
(−E, 0) ∈ �(T M × R). With this Lie algebroid structure on T ∗M × R, the bundle
map (π, E)� : T ∗M × R → T M × R defined in (2) is a Lie algebroid morphism.

Moreover, we remark that the corresponding Diracization L̃(π,E) on M × R is

given by the graph of the Poissonization. In other words, L̃(π,E) = L
˜(π,E)

.

Remark 2.9 Let L be a Dirac-Jacobi structure on M such that its Diracization L̃ is
given by a Poisson structure on M ×R. Then it follows from the definition of L̃ that
it must be of the following form

L̃ = Le−t (π+ ∂
∂t

∧E)

for some bivector field π onM and a vector fieldE onM . The Dirac-Jacobi structure
L is then given by L = L(π,E). Therefore, it is given by a Jacobi structure on M (by
Proposition 2.7).

Another example of Dirac-Jacobi structure is given by a precontact 1-form. The
term ‘precontact’ is just a terminology and this is nothing but a usual 1-form. Given
a 1-form η on M , one can define a Dirac-Jacobi structure on M given by

Lη = {
(X, f )⊕(iXdη+f η, −iXη)| (X, f ) ∈ T M×R

} ⊂ (T M×R)⊕(T ∗M×R).
(5)

The next theorem suggests when a Dirac-Jacobi structure L comes from a contact
1-form η [12].

Theorem 2.10 A Dirac-Jacobi structure L on an odd dimensional manifold M is
given by a contact 1-form η if and only if it satisfies

Lx ∩ ((TxM × R) ⊕ {0}) = {0},
Lx ∩ ({0} ⊕ (T ∗

x M × R)) = {0},
for all x ∈ M .

3 Gauge Transformations

In this section, we introduce gauge transformations of Dirac-Jacobi and Jacobi struc-
tures on a manifold. The results of this section extend the corresponding results
proven for Dirac and Poisson structures by Ševera and Weinstein [23].

Page 7 of 24 11Math Phys Anal Geom (2019) 22: 11



Let L ⊂ (T M × R) ⊕ (T ∗M × R) be a Dirac-Jacobi structure on M and take
(B1, B) ∈ �2(M) × �1(M) be a pair of a 2-form and a 1-form. Consider the
subbundle

τ(B1,B)(L) := {(X, f ) ⊕ (α, g) + i(X,f )(B1, B) | (X, f ) ⊕ (α, g) ∈ L}
= {(X, f ) ⊕ (α + iXB1 + f B , g − 〈X, B〉) | (X, f ) ⊕ (α, g) ∈ L}.

It is easy to see that the bundle τ(B1,B)(L) ⊂ (T M × R) ⊕ (T ∗M × R) is also
maximally isotropic with respect to the pairing 〈〈 , 〉〉. Moreover, we have the
following.

Lemma 3.1 For any 1-form B, the space of sections of the bundle τ(dB,B)(L) is
closed under the generalized Dorfman bracket.

Proof For any (X, f ) ⊕ (α, g) , (Y, h) ⊕ (β, k) ∈ �L, we have
�(X, f ) ⊕ (α, g) + i(X,f )(dB, B) , (Y, h) ⊕ (β, k) + i(Y,h)(dB, B)�

= [(X, f ), (Y, h)] ⊕ (L̃(X,f )(β, k) + L̃(X,f )i(Y,h)(dB, B) − i(Y,h)d̃(α, g) − i(Y,h)d̃i(X,f )(dB, B))

= [(X, f ), (Y, h)] ⊕ (L̃(X,f )(β, k) − i(Y,h)d̃(α, g) + L̃(X,f )i(Y,h)(dB, B) − i(Y,h)L̃(X,f )(dB, B)

+i(Y,h)i(X,f )d̃(dB, B))

= [(X, f ), (Y, h)] ⊕ (L̃(X,f )(β, k) − i(Y,h)d̃(α, g) + i[(X,f ),(Y,h)](dB, B) + i(Y,h)i(X,f )d̃(dB, B)).

Since d̃(dB, B) = 0, it follows that �(τ(dB,B)(L)) is closed under the generalized
Dorfman bracket.

Therefore, for any 1-form B ∈ �1(M), the transformation τ(dB,B)(L) defines a
Dirac-Jacobi structure on M . We denote this Dirac-Jacobi structure simply by τB(L)

and is called the gauge transformation of L associated to the 1-form B. The Dirac-
Jacobi structure L and τB(L) are called gauge equivalent. We remark that when L =
Lη, the gauge transformation τB(L) is given by Lη+B .

The proof of the following is obvious.

Proposition 3.2 Gauge transformations of Dirac-Jacobi structures satisfy the fol-
lowing properties.

(i) τ0(L) = L and τB ′(τB(L)) = τB(τB ′(L)) = τB+B ′(L), hence, gauge transfor-
mations defines an action of the abelian group �1(M) on the space DJ(M) of
all Dirac-Jacobi structures on M .

(ii) The map τB : L → τB(L) defined by (X, f ) ⊕ (α, g) �→ (X, f ) ⊕ (α, g) +
i(X,f )(dB, B) defines an isomorphism between Lie algebroid structures and
under this isomorphism, the distinguished 1-cocycles are same.

Next, we consider Dirac-Jacobi structures on M which are graph of Jacobi struc-
tures. Let (π, E) be a Jacobi structure on M . Take any B ∈ �1(M). Consider the
Dirac-Jacobi structure τB(L(π,E)) gauge equivalent to L(π,E),

τB(L(π,E))={(π�α+gE, −〈α, E〉) ⊕ (α, g) + i(π,E)�(α,g)(dB, B)) | (α, g) ∈ T ∗M×R}.
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Let (dB, B)� : T M ×R → T ∗M ×R, (X, f ) �→ i(X,f )(dB, B) be the bundle map
induced by (dB, B). If the bundle map

(
Id + (dB, B)� ◦ (π, E)�

) : T ∗M × R −→ T ∗M × R (6)

is invertible, then τB(L(π,E)) is the graph of the map

(π, E)�
(
Id + (dB, B)� ◦ (π, E)�

)−1 : T ∗M × R −→ T M × R. (7)

In this case, the 1-form B is called (π, E)-admissible. Moreover, the map defined in
(7) is skew-symmetric, thus, given by a pair (πB, EB) of a bivector field πB and a
vector field EB on M . The pair (πB, EB) is completely determined by

(πB, EB)� = (π, E)�(Id + (dB, B)� ◦ (π, E)�)−1,

and, in this case,

τB(L(π,E)) = Graph ((πB, EB)�) = L(πB,EB).

Therefore, it follows from Proposition 2.7 that (πB, EB) defines a Jacobi structure
on M . The Jacobi structure (πB, EB) which is also denoted by τB(π, E), is called the
gauge transformation of (π, E) associated with the 1-form B. The Jacobi structures
(π, E), (πB, EB) are called gauge equivalent. This notion of gauge transformations
of Jacobi structures extends the notion of gauge transformations of Poisson structures
introduced in [23].

Remark 3.3 Since the map (6) is an isomorphism, it follows that Im(pr1◦(π, E)�) =
Im(pr1 ◦ (πB, EB)�). Therefore, gauge equivalent Jacobi structures give rise to same
characteristic distribution.

More generally, gauge equivalent Jacobi structures on M correspond to isomor-
phic Lie algebroids on T ∗M ×R. This is analogous to the fact that gauge equivalent
Poisson structures correspond to isomorphic Lie algebroid structures on the cotangent
bundle [23].

Proposition 3.4 Let (π, E) be a Jacobi structure on M , and (πB, EB) be a gauge
equivalent Jacobi structure associated with the 1-form B. Then the Lie algebroid
structures on T ∗M × R associated to (π, E) and (πB, EB) are isomorphic.

Proof Consider the bundle isomorphism � := (Id + (dB, B)� ◦ (π, E)�) : T ∗M ×
R → T ∗M ×R, given by (α, g) �→ (α, g)+ i(π,E)�(α,g)(dB, B), for (α, g) ∈ T ∗M ×
R. This map commute with the corresponding anchors, as

(π, E)� = (πB, EB)� ◦ (Id + (dB, B)� ◦ (π, E)�) = (πB, EB)� ◦ �.

Page 9 of 24 11Math Phys Anal Geom (2019) 22: 11



For any (α, g), (β, k) ∈ �(T ∗M × R), we also have

[�(α, g), �(β, k)](πB,EB)

= L̃(πB,EB)��(α,g)�(β, k) − i(πB,EB)��(β,k)d̃(�(α, g))

= L̃(π,E)�(α,g)(β, k) + L̃(π,E)�(α,g)i(π,E)�(β,k)(dB, B) − i(π,E)�(β.k)d̃(α, g)

−i(π,E)�(β.k)d̃i(π,E)�(α,g)(dB, B)

= [(α, g), (β, k)](π,E) + i[(π,E)�(α,g),(π,E)�(β,k)](dB, B)=�([(α, g), (β, k)](π,E)).

Hence the proof.

Note that the isomorphism � pulls back the cocycle (−EB, 0) to the cocy-
cle (−E, 0). This can be shown by considering the distinguished cocycles of the
corresponding Dirac-Jacobi structures.

Next we collect few remarks about gauge transformations of Jacobi structures.

Remark 3.5 Gauge equivalent Jacobi structures on M gives rise to isomorphic
Lie algebroid cohomology of T ∗M × R. In other words, they have isomorphic
Lichnerowicz-Jacobi cohomology.

Remark 3.6 Let (π, E) be a transitive Jacobi structure on M . Let B ∈ �1(M) be
such that the gauge transformation τB(L(π,E)) defines a Jacobi structure (πB, EB)

on M . Then we have

(πB, EB)� = (π, E)�(Id + (dB, B)� ◦ (π, E)�)−1.

Therefore,

pr1 ◦ (πB, EB)� = pr1 ◦ (π, E)� ◦ (Id + (dB, B)� ◦ (π, E)�)−1.

Since the map
(
Id+(dB, B)�◦(π, E)�

)
is invertible and pr1◦(π, E)� : T ∗M×R →

T M is surjective, it follows that pr1 ◦ (πB, EB)� is also surjective. Therefore, gauge
transformations of transitive Jacobi structures are transitive. Thus, gauge transforma-
tions of contact structures are contact and gauge transformations of l.c.s. structures
are l.c.s. In the next remark we give an alternative argument of this fact for contact
structures. Since a gauge transformation of a Jacobi structure preserves the character-
istic distribution, it only transform the contact or l.c.s. structures on the characteristic
leaves by the pullback of the 1-form B.

Remark 3.7 Let η be a contact 1-form on M with associated Jacobi structure (π, E).
Let (πB, EB) be its gauge transformation associated with the (π, E)-admissible 1-
form B. As we have

(πB, EB)� = (π, E)�(Id + (dB, B)� ◦ (π, E)�)−1,

the map (πB, EB)� is also invertible and the inverse is given by

((πE, EB)�)−1 = ((π, E)�)−1 + (dB, B)�. (8)

Therefore, gauge transformations of contact structures are contact.
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If ηB denotes the gauge transformation of η associated with B, then it follows
from (3) and (8) that

(ηB, 0) = ((πB, EB)�)−1(0, −1) = ((π, E)�)−1(0, −1)+ i(0,−1)(dB, B) = (η, 0) + (−B, 0) = (η−B, 0).

Therefore, we have ηB = η − B.

Remark 3.8 Let η and η′ be any two contact structures on M with associated Jacobi
structures (π, E) and (π ′, E′), respectively. Define a map θ : T M ×R → T ∗M ×R

by
((π ′, E′)�)−1 = ((π, E)�)−1 + θ .

It follows from (3) that the bundle map ((π, E)�)−1 : T M ×R → T ∗M ×R is given
by (−dη, −η)�. Similarly, for the bundle map ((π ′, E′)�)−1. This shows that the map
θ : T M × R → T ∗M × R is skew-symmetric and is given by (dB, B)�, where
B = η−η′. It also follows from the construction that the map

(
Id+(dB, B)�◦(π, E)�

)

is invertible. This shows that any two contact structures on M are gauge equivalent.

Remark 3.9 A generalization of contact structure in the realm of generalized geom-
etry is given by a generalized contact structure [12]. They are odd dimensional
analogue of generalized complex structures. Let M be a manifold of dimension
2n+1. A generalized contact structure on M is a bundle map I : E1(M) −→ E1(M)

satisfying
I2 = Id, I∗ = −I and NI = 0.

Here I∗ denote the adjoint of I with respect to non-degenerate pairing 〈〈−, −〉〉
defined in (4) and NI denote the Nijenhuis torsion of I with respect to the gen-
eralized Dorfman bracket �−, −�. A manifold equipped with a generalized contact
structure is called a generalized contact manifold. Any contact manifold is a gen-
eralized contact manifold. In particular, if η is a contact 1-form on M with Jacobi
structure (π, E), then as a matrix block

I =
(

0 (π, E)�

(dη, η)� 0

)
(9)

is a generalized contact structure onM . A line bundle approach of generalized contact
structure has been studied in [26].

There is a symmetry of generalized contact structures given by B-field transfor-
mations. Let I be a generalized contact structure on M . For any 1-form B, consider
the orthogonal automorphism exp(B) of the bundle E1(M) by

exp(B) =
(

Id 0
(dB, B)� Id

)
.

Then it is straightforward to verify that τB(I) = exp(B) ◦ I ◦ exp(−B) is another
generalized contact structure on M . This follows from the fact that exp(B) preserves
the generalized Dorfman bracket on E1(M). The generalized contact structure τB(I)

is called the B-field transformation of I. When the generalized contact structure I is
given by a contact form η as in (9), the B-field transformation τB(I) is given by

τB(I) =
( −(π, E)� ◦ (dB, B)� (π, E)�

(dη, η)� − (dB, B)� ◦ (π, E)� ◦ (dB, B)� (dB, B)� ◦ (π, E)�

)
.
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Obviously, this is not given by any contact form. This holds if and only if B = 0.
Therefore, B-field transformations of contact structures (considered as generalized
contact structures) are different than gauge transformations of contact structures.

Next, we discuss the effect of gauge transformations on l.c.s. structures. Let (ω, θ)

be a l.c.s. structure on M with associated Jacobi structure (π, E). See Example 2.3
for details. The corresponding Dirac-Jacobi structure is given by

L(π,E) = {(π�α + gE, −〈α, E〉) ⊕ (α, g) | (α, g) ∈ T ∗M × R}
= {(−�−1(α) + g �−1(θ), −〈α, �−1(θ)〉 ) ⊕ (α, g) | (α, g) ∈ T ∗M × R}
= {(−�−1(α − gθ), − 〈α, �−1(θ)〉 ) ⊕ (α, g) | (α, g) ∈ T ∗M × R}
= {(−�−1(α), −〈α + gθ, �−1(θ)〉 ) ⊕ (α + gθ, g) | (α, g) ∈ T ∗M × R}
= {(−X, θ(X)) ⊕ (iXω + gθ, g) | (X, g) ∈ T M × R}. (10)

For any 1-form B ∈ �1(M), we have from (10) that

(
Id + (dB, B)� ◦ (π, E)�

)(
iXω − B(X)θ, − B(X)

)

= (iXω − B(X)θ, − B(X)) + i(−X,θ(X))(dB, B)

= (iXω − B(X)θ, − B(X)) + (−iXdB + θ(X)B, B(X))

= (iXω − iXdB − B(X)θ + θ(X)B, 0)

= (iX(ω − dB − B ∧ θ), 0). (11)

If B is (π, E)-admissible, that is, the map (Id+(dB, B)� ◦(π, E)�) is invertible, then
it follows from (11) that the two form (ω − dB − B ∧ θ) is non-degenerate. In this
case, the pair (ω − dB − B ∧ θ, θ) defines a l.c.s. structure on M . Moreover,

τB(L(π,E)) = {(−X, θ(X)) ⊕ (iXω + gθ, g) + i(−X,θ(X))(dB,B) | (X, g) ∈ T M × R}
= {(−X, θ(X)) ⊕ (iXω + gθ − iXdB + θ(X)B, g + B(X)) | (X, g) ∈ T M × R}
= {(−X, θ(X)) ⊕ (

iX(ω − dB − B ∧ θ) + gθ, g
) | (X, g) ∈ T M × R}

is the Dirac-Jacobi structure induced from the l.c.s. structure (ω − dB − B ∧ θ, θ).
Hence, the gauge transformation of the l.c.s. structure (ω, θ) is given by (ω − dB −
B ∧ θ, θ).

4 Gauge Transformations Commute with the Poissonization

In this section, we prove that gauge transformations of Jacobi structures on a
manifold commute with the Poissonization process. We first observe that gauge
transformations of Dirac-Jacobi structures commute with the Diracization.

Let L ⊂ (T M × R) ⊕ (T ∗M × R) be a Dirac-Jacobi structure on M . Take B ∈
�1(M). Then we have the following.
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Proposition 4.1 Gauge transformations of Dirac-Jacobi structures commute with
the Diracization process. In other words, the following diagram commute

(M, L)
τB ��

Dirac

��

(M, τB(L))

Dirac

��

(M × R, L̃)
τB̃

�� (M × R, τB̃ (L̃) = τ̃B(L)))

where B̃ = et (pr∗
1dB + dt ∧ pr∗

1B) is a closed 2-form on M × R.

Proof We have

τB(L) = {(X, f ) ⊕ ((α, g) + i(X,f )(dB, B)) | (X, f ) ⊕ (α, g) ∈ L}
= {(X, f ) ⊕ ((α, g) + (iXdB + f B, −〈B, X〉)) | (X, f ) ⊕ (α, g) ∈ L}
= {(X, f ) ⊕ (α + iXdB + f B, g − 〈B, X〉) | (X, f ) ⊕ (α, g) ∈ L}.

Hence,

τ̃B(L) = {(X+f
∂

∂t
)⊕et (α+iXdB+f B+gdt −〈B, X〉dt) | (X, f )⊕(α, g) ∈ L}.

On the other hand, from the definition of L̃ it follows that

τB̃ (L̃) = {(X + f
∂

∂t
) ⊕ et (α + gdt) + i

X+f ∂
∂t
et (pr∗

1 dB + dt ∧ pr∗
1B) | (X, f ) ⊕ (α, g) ∈ L}

= {(X + f
∂

∂t
) ⊕ et (α + gdt + iXdB − 〈B, X〉dt + f B) | (X, f ) ⊕ (α, g) ∈ L}

= τ̃B (L).

To prove that gauge transformations of Jacobi structures commute with the
Poissonization, we need the following lemma.

Lemma 4.2 Let (π, E) be a Jacobi structure on M and B ∈ �1(M) be a 1-form.

Then B is (π, E)-admissible if and only if B̃ is (̃π, E)-admissible.

Proof For any 1-form B, we have from Proposition 4.1 that

τB̃(L
˜(π,E)

) = τB̃(L̃(π,E)) = ˜τB(L(π,E)). (12)

If B is (π, E)-admissible, then ˜τB(L(π,E)) = L̃τB(π,E) = L
˜τB(π,E)

. Hence, we have

τB̃(L
˜(π,E)

) = L
˜τB(π,E)

.

Since (̃π, E) and ˜τB(π, E) are both Poisson structures on M ×R, the above equality

holds only when B̃ is (̃π, E)-admissible and τB̃ (̃π, E) = ˜τB(π, E).
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Conversely, if B̃ is (̃π, E)-admissible, then τB̃(L
˜(π,E)

) = L
τB̃

˜(π,E)
. Therefore, we

have from (12) that

L
τB̃

˜(π,E)
= ˜τB(L(π,E)).

Since τB̃ (̃π, E) defines a Poisson structure onM×R, it follows from Remark 2.9 that
the Dirac-Jacobi structure τB(L(π,E)) is given by a Jacobi structure. In other words,
B is (π, E)-admissible.

By Proposition 4.1 and Lemma 4.2 we have the following.

Proposition 4.3 Let (M, π, E) be a Jacobi manifold and B ∈ �1(M) be a (π, E)-

admissible 1-form on M . Then τB̃ (̃π, E) = ˜τB(π, E), where (̃π, E) and ˜τB(π, E)

denote the Poissonization of the Jacobi structures (π, E) and τB(π, E), respectively.

(M, π, E)
τB ��

Pois

��

(M, τB(π, E))

Pois

��

(M × R, (̃π, E))
τB̃

�� (M × R, τB̃ (̃π, E) = ˜τB(π, E))

Therefore, gauge transformations of Jacobi structures commute with the Poissoniza-
tion.

Remark 4.4 In the particular case of contact structure, the proof is more simple. This
follows from the fact that the Poissonization of a contact structure η on M is given
by the symplectic structure η̃ = et (pr∗

1dη + dt ∧ pr∗
1η) on M × R.

Hence, in this case,

(τB̃ ◦ Pois)(η) = τB̃

(
et (pr∗

1dη + dt ∧ pr∗
1η)

)

= et (pr∗
1dη + dt ∧ pr∗

1η) − B̃

= et (pr∗
1dη + dt ∧ pr∗

1η − pr∗
1dB − dt ∧ pr∗

1B)

= et
(
pr∗

1d(η − B) + dt ∧ pr∗
1 (η − B)

)

= Pois (η − B) = (Pois ◦ τB)(η).

5 Gauge Transformations and Contact Groupoids

The notion of contact groupoid was first introduced in [15]. See [4, 5] for recent
developments on contact groupoids and integrable Jacobi structures. In this section,
we describe how the contact structure of a contact groupoid is effected by a gauge
transformation of the Jacobi structure on its base.
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Definition 5.1 A contact groupoid is a Lie groupoid G ⇒ M together with a contact
1-form η ∈ �1(G) and a function σ ∈ C∞(G) such that

ηgh(Xg ⊕T G Yh) = ηg(Xg) + eσ(g)ηh(Yh), for (Xg, Yh) ∈ (T G)(2),

where ⊕T G denotes the groupoid (partial) multiplication on the tangent Lie groupoid
T G ⇒ T M .

It follows from the above condition that σ is a multiplicative function on G, that
is, σ(gh) = σ(g) + σ(h), for all (g, h) ∈ G(2). Given a contact groupoid (G ⇒
M, η, σ), the manifold M carries a unique Jacobi structure such that (α, eσ ) is a
conformal Jacobi map and β is an anti-Jacobi map (see [5, 11] for more details). In
this case, the contact groupoid (G ⇒ M, η, σ) is said to integrate the base Jacobi
structure. Alternatively, a Jacobi structure (π, E) on M is integrable if and only if
the corresponding Lie algebroid structure on T ∗M × R → M is integrable [5]. In
this case, the source-connected, simply connected Lie groupoid integrating T ∗M ×
R → M carries a unique contact form and a multiplicative function which makes
it a contact groupoid. Under this correspondence, the multiplicative function on the
groupoid differentiates to the distinguished 1-cocycle (−E, 0) of the Lie algebroid.

Let (M, π, E) be an integrable Jacobi manifold with contact groupoid (G ⇒
M, η, σ). Let B ∈ �1(M) be a (π, E)-admissible 1-form on M . Since the Jacobi
structures (π, E) and τB(π, E) correspond to isomorphic Lie algebroid structures
on T ∗M × R and also the distinguished 1-cocycles are same, the Jacobi structure
τB(π, E) and the corresponding distinguished 1-cocycle can be integrated by a Lie
groupoid isomorphic to G ⇒ M and by the multiplicative function σ (Proposition
3.4). Here we discuss the effect of the gauge transformation τB on the base Jacobi
manifold to the contact 1-form of the Lie groupoid G (Theorem 5.6).

We first observe that if η is a contact 1-form with the Jacobi structure (πη, Eη),
then the corresponding Dirac-Jacobi structures are related by L(πη,Eη) = (Lη)− =
L−η.

We recall the following definition from [13].

Definition 5.2 Let M ′ (resp. M) be a smooth manifold and LM ′ (resp. LM ) a Dirac-
Jacobi structure on M ′ (resp. M). A smooth map φ : M ′ → M is said to be a
(forward) Dirac-Jacobi map if LM = φ∗(LM ′), where

φ∗(LM ′) = {
(φ∗X′, f ) ⊕ (α, g)| (X′, f ◦ φ) ⊕ (φ∗α, g ◦ φ) ∈ LM ′

}
.

The map φ : M ′ → M is called anti-Dirac-Jacobi map if φ∗(LM ′) = (LM)−. In any
case, if (X′, f ◦ φ) ∈ ker(LM ′) then (φ∗(X′), f ) ∈ ker(LM).

We show that a smooth Jacobi map φ : M ′ → M between two Jacobi mani-
folds is same as forward Dirac-Jacobi map when the manifolds are equipped with
corresponding Dirac-Jacobi structures. This follows from the following observation.

LetM ′ (resp.M) be a Jacobi manifold with Jacobi structure (π ′, E′) (resp. (π, E))
and φ : M ′ → M be a Jacobi map. Therefore, we have

π� = φ∗ ◦ π ′� ◦ φ∗ and φ∗E′ = E.
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This implies that
L(π,E) = {

(π�α + gE, −〈α,E〉) ⊕ (α, g) | (α, g) ∈ T ∗M × R
}

= {
(φ∗ ◦ π ′� ◦ φ∗(α) + gφ∗E′ , − 〈α, φ∗E′〉) ⊕ (α, g) | (α, g) ∈ T ∗M × R

}

= {
(φ∗ ◦ π ′� ◦ φ∗(α) + φ∗((g ◦ φ)E′) , − 〈α, φ∗E′〉) ⊕ (α, g) | (α, g) ∈ T ∗M × R

}
.

Let X′ = π ′�(φ∗α)+(g◦φ)E′ and f = −〈α, φ∗E′〉. Then f ◦φ = −〈α, φ∗E′〉◦φ =
−〈φ∗α, E′〉 and moreover,

(X′, f ◦ φ) ⊕ (φ∗α, g ◦ φ) = (π ′�(φ∗α) + (g ◦ φ)E′ , − 〈φ∗α,E′〉) ⊕ (φ∗α, g ◦ φ) ∈ L(π ′,E′).

Therefore,
L(π,E) = {

(φ∗X′, f )⊕(α, g) | (α, g) ∈ T ∗M×R and (X′, f ◦φ)⊕(φ∗α, g◦φ) ∈ L(π ′,E′)
} = φ∗(L(π ′,E′)).

This shows that φ is a forward Dirac-Jacobi map. It is also easy to verify that if φ is
a Dirac-Jacobi map then φ is a Jacobi map.

The next lemma shows the relation between gauge transformations and push-
forward of Dirac-Jacobi structures.

Lemma 5.3 Let φ : M ′ → M be a smooth map and LM ′ be a Dirac-Jacobi structure
on M ′. Then for any B ∈ �1(M),

φ∗
(
τφ∗BLM ′

) = τB

(
φ∗(LM ′)

)
.

Proof We have
τφ∗BLM ′ = {

(X′, f ′) ⊕ (α′, g′) + i(X′,f ′)(dφ∗B, φ∗B) | (X′, f ′) ⊕ (α′, g′) ∈ LM ′
}

= {
(X′, f ′) ⊕ (α′ + iX′dφ∗B + f ′φ∗B , g′ − iX′φ∗B) | (X′, f ′) ⊕ (α′, g′) ∈ LM ′

}
.

Therefore,

φ∗
(
τφ∗BLM ′

)

= {
(φ∗X′, f ) ⊕ (α, g) | (X′, f ◦ φ) ⊕ (φ∗α, g ◦ φ) ∈ τφ∗BLM ′

}

= {
(φ∗X′, f ) ⊕ (α, g) | (X′, f ◦ φ) ⊕ (φ∗α − iX′dφ∗B − (f ◦ φ)φ∗B , g ◦ φ + iX′φ∗B) ∈ LM ′

}
.

On the other hand,
τB

(
φ∗(LM ′ )

)

= {
(φ∗X′, f ) ⊕ (α, g) + i(φ∗X′, f )(dB,B) | (X′, f ◦ φ) ⊕ (φ∗α, g ◦ φ) ∈ LM ′

}

= {
(φ∗X′, f ) ⊕ (α + iφ∗X′dB + f B , g − iφ∗X′B) | (X′, f ◦ φ) ⊕ (φ∗α, g ◦ φ) ∈ LM ′

}

= {
(φ∗X′, f ) ⊕ (ζ, h) | (X′, f ◦ φ) ⊕ (φ∗ζ − φ∗iφ∗X′dB − φ∗(f B) , h ◦ φ + (iφ∗X′B) ◦ φ) ∈ LM ′

}
.

Since iX′φ∗dB = φ∗iφ∗X′dB , φ∗(f B) = (f ◦ φ)φ∗B and iX′φ∗B = (iφ∗X′B) ◦ φ,
we have

φ∗
(
τφ∗BLM ′

) = τB

(
φ∗(LM ′)

)
.

Proposition 5.4 Let (G, η) be a contact manifold and φ : (G, η) → (M, π, E) be a
Jacobi map. If B ∈ �1(M) is a (π, E)-admissible 1-form on M then η̂ := η − φ∗B
is a contact 1-form on G. Moreover, in this case, φ : (G, η̂) → (M, τB(π, E)) is a
Jacobi map.
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Proof From the definition of L−η, we have τφ∗BL−η = L−η+φ∗B . Hence,

φ∗(L−η+φ∗B) = φ∗(τφ∗BL−η) = τB(φ∗(L−η)) = τB(L(π,E)). (13)

The second equality follows from Lemma 5.3 and the last equality follows since φ is
a Jacobi map.

Obviously, the Dirac-Jacobi structure L−η+φ∗B satisfies

L−η+φ∗B ∩ ({0} ⊕ (T ∗
x G × R)) = {0}, for all x ∈ G.

From (13) we also have

φ∗(L−η+φ∗B) = τB(L(π,E)) = LτB(π,E). (14)

For any x ∈ G, if (Xx, λ) ∈ ker(L−η+φ∗B)|x then (φ∗(Xx), λ) ∈
ker(LτB(π,E))|φ(x) = 0 as the Dirac-Jacobi structure LτB(π,E) is given by a Jacobi
structure. This implies that Xx ∈ ker φ∗ and λ = 0.

Let (Xx, 0) ∈ ker (L−η+φ∗B)|x . Then
(Xx, 0) ∈ ker φ∗ ∩ ker(L−η+φ∗B)|x = ker φ∗ ∩ ker(L−η)|x = 0.

Here the first equality follows since φ∗(Xx) = 0 and the last equality follows since
ker(L−η)|x = 0. Therefore, the Dirac-Jacobi structure L−η+φ∗B also satisfies

L−η+φ∗B ∩ ((TxG × R) ⊕ {0}) = {0}, for all x ∈ G.

Hence, by Theorem 2.10 the 1-form η − φ∗B defines a contact structure on G. The
second part follows from (14).

Remark 5.5 Similarly, one can prove the followings.

(i) If φ : (G, η) → (M, π, E) is an anti-Jacobi map, then η̂ = η + φ∗B is a
contact 1-form on G and φ : (G, η̂) → (M, τB(π, E)) is an anti-Jacobi map.
This follows from the following observation that

φ∗(L−η−φ∗B) = φ∗(τ−φ∗BL−η) = τ−B(φ∗(L−η)) = τ−B((L(π,E))−) = (τB(L(π,E)))−.

(ii) If (φ, σ ) : (G, η) → (M, π, E) is a conformal Jacobi map, then η̂ = η−σφ∗B
is a contact 1-form on G and (φ, σ ) : (G, η̂) → (M, τB(π, E)) is a conformal
Jacobi map.

Note that the conformal change of a contact form η by a nowhere vanishing
function σ is given by η

σ
. Hence, the assertion follows from the observation that

φ∗(L −η+σφ∗B
σ

) = φ∗(L− η
σ

+φ∗B) = φ∗(τφ∗BL− η
σ
) = τB(φ∗(L− η

σ
)) = τB(L(π,E)).

To prove the next theorem, we need the following property of a contact groupoid.
More precisely, if (G ⇒ M, η, σ) is a contact groupoid, the kernels of α∗ and β∗ are
given by
(ker α∗)|x = {Xβ∗f (x)| f ∈ C∞(M)}, (ker β∗)x = {Xeσ α∗f (x)| f ∈ C∞(M)}, for x ∈ G, (15)

where Xh is the hamiltonian vector field onG associated to the function h ∈ C∞(G).

Page 17 of 24 11Math Phys Anal Geom (2019) 22: 11



Theorem 5.6 Let (G ⇒ M, η, σ) be a contact groupoid integrating the Jacobi
structure (π, E) on M . Let B be a (π, E)-admissible 1-form on M . Then (G ⇒
M, η − eσ α∗B + β∗B, σ) is a contact groupoid integrating (M, τB(π, E)).

Proof It follows from Remark 5.5(ii) that η̂ = η − eσ α∗B is a contact 1-form on G

for which (α, eσ ) : (G, η̂) → (M, τB(π, E)) is a conformal Jacobi map. Moreover,
it follows from (15) that

β∗(L−η̂) = β∗(L−η+eσ α∗B) = β∗(τeσ α∗BL−η) = β∗(L−η) = (L(π,E))−.
Therefore, β : (G, η̂) → (M, π, E) is an anti-Jacobi map. Hence, by Remark 5.5(i)
the 1-form ηB = η − eσ α∗B + β∗B is a contact 1-form on G and β : (G, ηB) →
(M, τB(π, E)) is an anti-Jacobi map. Similarly, (α, eσ ) : (G, ηB) → (M, τB(π, E))

is a conformal Jacobi map.
Moreover,
(ηB)gh(Xg ⊕T G Yh) = (η + eσ α∗B − β∗B)gh(Xg ⊕T G Yh)

= ηg(Xg) + eσ(g)ηh(Yh) + eσ(gh)B|α(gh)α∗(Yh) − B|β(gh)β∗(Xg),

and
(ηB)g(Xg) + eσ(g)(ηB)h(Yh) = ηg(Xg) +�������

eσ(g)B|α(g)α∗(Xg) − B|β(g)β∗(Xg)

+ eσ(g)ηh(Yh) + eσ(g)eσ(h)B|α(h)α∗(Yh) −�������
eσ(g)B|β(h)β∗(Yh),

for all (Xg, Yh) ∈ (T G)(2). It follows that

(ηB)gh(Xg ⊕T G Yh) = (ηB)g(Xg) + eσ(g)(ηB)h(Yh), for (Xg, Yh) ∈ (T G)(2).

Hence, (G ⇒ M, ηB, σ ) is a contact groupoid. Moreover, we have the map
(α, eσ ) : (G, ηB) → (M, τB(π, E)) is a conformal Jacobi map and β : (G, ηB) →
(M, τB(π, E)) is an anti-Jacobi map. It follows from the uniqueness of the Jacobi
structure on the base of a contact groupoid that (G ⇒ M, ηB, σ ) is a contact
groupoid integrating (M, τB(π, E)).

Remark 5.7 Let η be a contact 1-form on M considered as a Jacobi structure. Then
it is integrable and the corresponding contact groupoid is given by (M × R × M ⇒
M, η = eσ pr∗

3η − pr∗
1η, σ ). The source, target and the partial multiplication of the

groupoid structure are given by

α(x, t, y) = pr3(x, t, y) = y,

β(x, t, y) = pr1(x, t, y) = x,

(x, t, y)(y, s, z) = (x, t + s, z),

for (x, t, y), (y, s, z) ∈ M × R × M . The multiplicative function σ on this groupoid
is just the projection onto the second factor.

If B ∈ �1(M) is a 1-form on the base M such that the gauge transformation
defines a Jacobi structure (this is infact a contact structure), then we have τB(η) =
η−B. By Theorem 5.6 the corresponding contact 1-form on the groupoid is given by

η − eσ pr∗
3B + pr∗

1B = eσ pr∗
3 (η − B) − pr∗

1 (η − B).

This is precisely the global contact 1-form η − B on the groupoid associated to the
contact structure τB(η) = η − B on the base.
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In the next section we give an alternative proof of Theorem 5.6 using gauge trans-
formations of multiplicative Jacobi structures (see Theorem 6.5 and Remark 6.7).

6 Gauge Transformations of Jacobi Groupoids

In this section, we study gauge transformations of Jacobi groupoids and their
infinitesimal counterpart generalized Lie bialgebroids. We first describe gauge
transformations of the later one.

We recall that a Jacobi algebroid is a pair (A, φ0) of a Lie algebroid A together
with a 1-cocycle φ0 ∈ �A∗ of it [8, 9]. Given a Jacobi algebroid (A, φ0) the
differential dA of the Lie algebroidA can be twisted by φ0 to define a new differential

d
φ0
A : �(∧•

A∗) → �(∧•+1
A∗), α �→ dAα + φ0 ∧ α.

Moreover, the Gerstenhaber bracket [−, −] on the space of multisections of A can
be twisted by φ0 to define a new bracket (called Schouten-Jacobi bracket) [−, −]φ0 :
�(∧•

A) × �(∧•
A) → �(∧•

A) of degree −1 by the following

[P, Q]φ0 = [P, Q]+(−1)p+1(p−1)P ∧iφ0Q−(q−1)iφ0P ∧Q, for P ∈ �(∧p
A), Q ∈ �(∧q

A).

Here we fix the sign conventions of [9], which are different from those in [8].

Definition 6.1 [9] A generalized Lie bialgebroid ((A, φ0), (A
∗, X0)) consists of a

pair of Jacobi algebroids (A, φ0) and (A∗, X0) in duality satisfying

dX0∗ [P, Q]φ0 = [dX0∗ P , Q]φ0 + (−1)p+1[P , dX0∗ Q]φ0 ,

for P ∈ �(∧p
A) and Q ∈ �(∧•

A). Here d
X0∗ denote the differential of the

Jacobi algebroid (A∗, X0) and [−, −]φ0 denotes the Schouten-Jacobi bracket on the
multisections of A associated the Jacobi algebroid (A, φ0).

See [6, 8, 11] for more details. If φ0 = 0 and X0 = 0, one reduces the definition
of a Lie bialgebroid [19].

Example 6.2 If (M, π, E) is a Jacobi manifold, the pair
(
(T ∗M × R, (−E, 0)),

(T M × R, (0, 1))
)
is a generalized Lie bialgebroid [9].

Conversely, the base of a generalized Lie bialgebroid carries a Jacobi structure. Let
((A, φ0), (A

∗, X0)) be a generalized Lie bialgebroid over M . Suppose the bracket
and anchor of the Lie algebroidsA andA∗ are given by ([−, −], a) and ([−, −]∗, a∗),
respectively. Then the induced Jacobi structure (π, E) on M is given by

(π, E)� := (
a(−), φ0(−)

) ◦ (
a∗(−), X0(−)

)∗ : T ∗M × R −→ T M × R,

where the bundle maps (a(−), φ0(−)) : A −→ T M × R and (a∗(−), X0(−)) :
A∗ −→ T M × R are respectively given by X �→ (a(X), φ0(X)) and α �→
(a∗(α), X0(α)), for X ∈ �A, α ∈ �A∗ [9].
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Let B ∈ �1(M) be a (π, E)-admissible 1-form on M . One can easily check that
this condition is being equivalent to the invertibility of the map

ψB := Id + (
a(−), φ0(−)

)∗ ◦ (dB, B)� ◦ (
a∗(−), X0(−)

) : A∗ −→ A∗.

Hence, one can define a new Lie algebroid structure on A∗ whose bracket and anchor
are given by

[α, β]B∗ := ψB [ψ−1
B (α), ψ−1

B (β)]∗ , aB∗ := a∗ ◦ ψ−1
B .

We denote this Lie algebroid structure on A∗ by (A∗)B . Moreover, XB
0 (−) := X0 ◦

ψ−1
B (−) defines a 1-cocycle of this Lie algebroid. Actually, we have

(aB∗ (−), XB
0 (−)) = (a∗(−), X0(−)) ◦ ψ−1

B (−).

We denote the Jacobi algebroid ((A∗)B, XB
0 ) simply by (A∗, X0)B . Moreover, the

pair ((A, φ0), (A
∗, X0)B) is a generalized Lie bialgebroid. We call this generalized

Lie bialgebroid as a gauge transformation of the given one. Note that the bundle map
associated to the Jacobi structure on M induced from the generalized Lie bialgebroid
((A, φ0), (A

∗, X0)B) is given by
(
a(−), φ0(−)

) ◦ (
aB∗ (−), XB

0 (−)
)∗ = (

a(−), φ0(−)
) ◦ (ψ∗

B)−1 ◦ (a∗(−), X0(−))∗.

It is easy to show that this map coincides with (π, E)� ◦ (
Id+ (dB, B)� ◦ (π, E)�

)−1

which is same as (τB(π, E))�. Hence, the Jacobi structure on M induced from the
generalized Lie bialgebroid ((A, φ0), (A

∗, X0)B) is simply given by τB(π, E).

Remark 6.3 Let (π, E) be a Jacobi structure on M and consider the gen-
eralized Lie bialgebroid

(
(T ∗M × R, (−E, 0)), (T M × R, (0, 1))

)
. Then one

can check that the gauge transformed generalized Lie bialgebroid
(
(T ∗M ×

R, (−E, 0)), (T M × R, (0, 1))B
)
is isomorphic to the generalized Lie bialgebroid(

(T ∗M × R, (−EB, 0)), (T M × R, (0, 1))
)
associated to the transformed Jacobi

structure τB(π, E) = (πB, EB) on M .

Next, we recall multiplicative Jacobi structures on Lie groupoids and study gauge
transformations of them in the multiplicative sense. First, let us recall few things. Let
G ⇒ M be a Lie groupoid and σ ∈ C∞(G) be a multiplicative function. Then the
tangent Lie groupoid T G ⇒ T M can be twisted by σ to define a new Lie groupoid
T G × R ⇒ T M × R [11]. The source, target and partial multiplication are given by

(α∗)σ (Xg, λ) = (α∗(Xg), Xg(σ ) + λ),

(β∗)σ (Yh, μ) = (β∗(Yh), μ),

(Xg, λ) ⊕T G×R
(Yh, μ) = (Xg ⊕T G Yh, λ),

for (Xg, λ) ∈ TgG × R, (Yh, μ) ∈ ThG × R and (α∗)σ (Xg, λ) = (β∗)σ (Yh, μ).
Let A → M be the Lie algebroid of G ⇒ M . One can also twist the usual cotan-

gent groupoid T ∗G ⇒ A∗ (whose source, target and multiplication are respectively
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given by α̃, β̃ and ⊕T ∗G) by the multiplicative function σ to define a new groupoid
T ∗G × R ⇒ A∗ with structure maps

(α̃)σ (ωg, γ ) = e−σ(g)α̃(ωg),

(β̃)σ (νh, ζ ) = β̃(νh) − ζ(dσ)|β̃(h),

(ωg, γ ) ⊕T ∗G×R
(νh, ζ ) = (

ωg + eσ(g)ζ(dσ )|g ⊕T ∗G eσ(g)νh , γ + eσ(g)ζ
)
,

for (ωg, γ ) ∈ T ∗
g G × R, (νh, ζ ) ∈ T ∗

h G × R and (α̃)σ (ωg, γ ) = (β̃)σ (νh, ζ ). This
Lie groupoid is called the 1-jet Lie groupoid of G twisted by σ [11].

Definition 6.4 [11] A Jacobi groupoid is a Lie groupoid G ⇒ M together with a
multiplicative function σ ∈ C∞(G) and a Jacobi structure (πG, EG) on G such that
the induced map (πG, EG)� : T ∗G × R → T G × R is a Lie groupoid morphism

T ∗G × R
(πG,EG)�

��

����

T G × R

����

A∗ �� T M × R

from the 1-jet Lie groupoid to the twisted tangent Lie groupoid defined above.

Let (G ⇒ M, πG, EG, σ) be a Jacobi groupoid as above with the Lie algebroid
A. Then by differentiating σ we get a 1-cocycle φ0 ∈ �A∗ of the Lie algebroid. Note
that, the dual bundle A∗ can be identified with the conormal bundle (T M)0 → M .
Using this identification, one gets a Lie algebroid structure on A∗ whose bracket
[−, −]∗ and the anchor a∗ are given by

[ς, ϑ]∗(x) = pr1
([(ς, 0), (ϑ, 0)](πG,EG)

)
(x) and a∗(ς)(x) = π

�
G(ς)(x), for ς, ϑ ∈ �A∗, x ∈ M,

where ς, ϑ be any extension of ς and ϑ to 1-forms on G. Moreover, there is a
distinguished 1-cocycle X0 ∈ �A of this Lie algebroid given by 〈X0(x), ς(x)〉 =
−〈ς(x), EG(x)〉, for x ∈ M and ς(x) ∈ A∗

x
∼= (TxM)0. The pair ((A, φ0), (A

∗, X0))

forms a generalized Lie bialgebroid [11]. Note that the structures on (A∗, X0)

depends only on the Jacobi structure (πG, EG) on G. It also turns out that the base
map of the Lie groupoid morphism (πG, EG)� : T ∗G × R → T G × R is given by
(a∗(−), X0(−)) : A∗ → T M × R.

Let (G ⇒ M, πG, EG, σ) be a Jacobi groupoid with generalized Lie bialgebroid
((A, φ0), (A

∗, X0)). Since a gauge transformation of the generalized Lie bialge-
broid ((A, φ0), (A

∗, X0)) effects only on (A∗, X0), its effect on the associated Jacobi
groupoid is only a change of the Jacobi structure. More precisely, we have the
following result.

Theorem 6.5 Let (G ⇒ M, πG, EG, σ) be a Jacobi groupoid with generalized Lie
bialgebroid ((A, φ0), (A

∗, X0)) and the induced Jacobi structure (π, E) on M . Let
B ∈ �1(M) and let BG = eσ α∗B − β∗B ∈ �1(G). If B is (π, E)-admissible then
BG is (πG, EG)-admissible and in this case, (G ⇒ M, τBG

(πG, EG), σ ) is a Jacobi
groupoid with its generalized Lie bialgebroid ((A, φ0), (A

∗, X0)B).
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To prove this theorem, we need the following lemma. The proof is straightforward.

Lemma 6.6 Let G ⇒ M be a Lie groupoid and σ ∈ C∞(G) a multiplicative func-
tion. Let B be any 1-form on M and take BG = eσ α∗B − β∗B ∈ �1(G). Then
(dBG, BG)� : T G × R → T ∗G × R is a Lie groupoid morphism.

Proof of Theorem 6.5 One can easily verify that the map

(β∗, Id) : ker(τBG
(L(πG,EG))

)|g → ker
(
τB(L(π,E))

)|β(g), (Xg, λ) �→ (β∗Xg, λ)

defines an isomorphism between the kernels of the respective Dirac-Jacobi struc-
tures. Since B is (π, E)-admissible, we have ker

(
τB(L(π,E))

) = 0. Therefore,
ker

(
τBG

(L(πG,EG))
) = 0. Hence, the Dirac-Jacobi structure τBG

(L(πG,EG)) is given
by the graph of a Jacobi structure. In other words, BG is (πG, EG)-admissible.

Since (πG, EG)� : T ∗G × R −→ T G × R and (dBG, BG)� : T G × R −→
T ∗G × R are groupoid morphisms, the composition

(
τBG

(πG,EG)
)� =(πG,EG)�

(
Id + (dBG,BG)�◦(πG,EG)�

)−1=(πG,EG)�◦�−1
G : T ∗G×R −→ T G×R

is also a Lie groupoid morphism, where �G = Id + (dBG, BG)� ◦ (πG, EG)� is
the invertible bundle map. Hence, (G ⇒ M, τBG

(πG, EG), σ ) is a Jacobi groupoid.

Moreover, it follows from the above expression of the map
(
τBG

(πG, EG)
)� that

(
τBG

(πG, EG)
)�|A∗ = (

a∗(−), X0(−)
)(
Id + (a(−), φ0(−))∗ ◦ (dB,B)� ◦ (

a∗(−), X0(−)
))−1

= (
a∗(−), X0(−)

) ◦ ψ−1
B = (aB∗ (−), XB

0 (−)).

Finally, the Lie bracket of ς, ϑ ∈ �A∗ induced from the Jacobi groupoid (G ⇒
M, τBG

(πG, EG), σ ) is given by

pr1
( [(ς, 0), (ϑ, 0)]τBG

(πG,EG)

)|M = pr1
(
�G[ �−1

G (ς, 0), �−1
G (ϑ, 0) ](πG,EG)

)∣∣
M

(by Prop 3.4)

= ψB

([�−1
G (ς, 0), �−1

G (ϑ, 0)](πG,EG)

)|M
= ψB

([ ( ψ−1
B (ς), 0), ( ψ−1

B (ϑ), 0) ](πG,EG)

)∣∣
M

= ψB [ ψ−1
B (ς), ψ−1

B (ϑ) ]∗ = [ς, ϑ]B∗ .

Hence, the result follows.

Remark 6.7 Note that Theorem 5.6 follows as a corollary of Theorem 6.5 and
Remark 6.3. Let (G ⇒ M, η, σ) be a contact groupoid with the Jacobi structure
(π, E) on M . Think the contact groupoid as a Jacobi groupoid with the Jacobi struc-
ture on G induced by η. Then its generalized Lie bialgebroid is given by

(
(T ∗M ×

R, (−E, 0)), (T M × R, (0, 1))
)
. Let B be a (π, E)-admissible 1-form on M with

transformed Jacobi structure τB(π, E) = (πB, EB). Then by Remark 6.3 the trans-
formed generalized Lie bialgebroid is isomorphic to

(
(T ∗M ×R, (−EB, 0)), (T M ×

R, (0, 1))
)
. Therefore, by Theorem 6.5 we have (G ⇒ M, τBG

(η), σ ) is a contact
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groupoid integrating the generalized Lie bialgebroid
(
(T ∗M ×R, (−EB, 0)), (T M ×

R, (0, 1))
)
. In other words, (G ⇒ M, η − BG, σ) is a contact groupoid integrating

the Jacobi structure τB(π, E). Hence Theorem 5.6 follows.
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