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Abstract
We study a 3D Ginzburg-Landau model in a half-space which is expected to capture
the key features of surface superconductivity for applied magnetic fields between the
second critical field HC2 and the third critical field HC3 . For the magnetic field in
this regime, it is known from physics that superconductivity should be essentially
restricted to a thin layer along the boundary of the sample. This leads to the intro-
duction of a Ginzburg-Landau model on a half-space. We prove that the non-linear
Ginzburg-Landau energy on the half-space with constant magnetic field is a decreas-
ing function of the angle ν that the magnetic field makes with the boundary. In the
case when the magnetic field is tangent to the boundary (ν = 0), we show that the
energy is determined to leading order by the minimization of a simplified 1D func-
tional in the direction perpendicular to the boundary. For non-parallel applied fields,
we also construct a periodic problem with vortex lattice minimizers reproducing the
effective energy, which suggests that the order parameter of the full Ginzburg-Landau
model will exhibit 3 dimensional vortex structure near the surface of the sample.
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1 Introduction

1.1 The Ginzburg-LandauModel

The Ginzburg-Landau (GL) theory of superconductivity was first introduced in the
’50s as a phenomenological macroscopic model [14]. It successfully describes the
behavior of a superconductor subject to an external magnetic field and was later jus-
tified by Gor’kov [15] as emerging from the microscopic Bardeen-Cooper-Schrieffer
(BCS) theory. This has recently been proved rigorously [13]. It has been widely
used in the physics literature, for instance for successfully predicting the response
of superconducting materials to an external magnetic field. Also, in the celebrated
work of Abrikosov [1], this theory predicted the existence of type II superconduc-
tors - in particular, of vortex lattices - before they had been experimentally realized.
We refer to [8] for a review of this topic for which A. Abrikosov was awarded the
Nobel Prize, and the first discussion by Saint-James and de Gennes of the surface
superconductivity phenomenon that is the subject of this paper.

In the GL theory, the superconducting state of a sample occupying a domain �

in R
3 is described by a complex-valued wave function ψ : � → C (the order

parameter) and a vector field (magnetic potential) A : R3 → R
3 such that the pair

(ψ,A) is a critical point of a specific energy functional. We shall use notation curlA
to denote ∇ × A for 3d vector fields. In a particular case where � is a cylinder of
infinite height and with a cross section D ⊂ R

2, then one may consider restriction of
ψ on D and A on R

2, and call the reduced model as 2D superconductivity. For this
reason, the model in 3D is called 3D superconductivity.

The interpretation of ψ and A is explained by the BCS theory as follows: |ψ |2 is
proportional to the relative density of superconducting particles (the so-called Cooper
pairs) and κHcurlA measures the induced magnetic field inside the sample, with
κ > 0 a physical characteristic of the material, and H measuring the intensity of the
external magnetic field, that we assume to be constant throughout the sample. We
shall be concerned with type-II superconductors, characterized by κ > 1√

2
, and more

precisely with the limit κ → ∞ (extreme type-II).
The modulus of the order parameter |ψ | varies between 0 and 1: the vanishing

of ψ in a certain region or point implies a loss of superconductivity there, due to
the absence of Cooper pairs, whereas if |ψ | = 1 somewhere all the electrons are
arranged in Cooper pairs and thus superconducting. The cases |ψ | = 1 and |ψ | = 0
everywhere in � correspond to the so-called perfectly superconducting and normal
states, known to be preferred for small and large applied field respectively. When |ψ |
is not identically 0 nor 1, for intermediate values of the applied field, one says that
the system is in a mixed state.

The behavior of a type-II superconductor is distinguished by three critical values
of the intensity of the applied magnetic field which we denote by HC1 , HC2 and HC3 .
These critical fields may be described in terms of the wave function ψ as follows.
When the external magnetic field strength H satisfies H < HC1 , the material is in
the superconducting phase, which corresponds to |ψ | > 0 everywhere. The sample
stays in the superconducting state until the first critical field is reached. When HC1 <

H < HC2 , the magnetic field penetrates the sample in quantized vortices. These
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vortices correspond to zeros of ψ . In the 2D case, vortices are isolated points and
their number increases with the increase of the strength of the external field κH . As
H increases and gets close to HC2 , vortices arrange themselves on a triangular lattice,
the famous Abrikosov lattice, that survives until a second critical value of the field
is reached. When HC2 < H < HC3 superconductivity is confined to (part of) the
surface of the sample. This means that |ψ | is very small in the bulk. More precisely
the GLorder parameter is exponentially decaying far from the boundary. This is the
surface superconductivity regime. Finally, when H > HC3 , superconductivity is lost,
which is reflected by ψ = 0 everywhere, and the normal state becomes the global
minimizer of the GLenergy.

In the last decades, much progress has been made towards establishing the afore-
mentioned behavior of type-II superconductors by studying minimizers of the GLen-
ergy. The monograph [24] and references therein contains an analysis of vortices and
the critical field HC1 . Concerning the analysis of the critical fields HC2 and HC3 we
mention [9, 11] (and references therein). As one can see in [9, 24], the GLmodel
has a rich mathematical structure whose analysis requires a diversity of techniques,
many of which have been developed especially for the study of the model. While
a detailed study of the GLmodel in a two dimensional domain has been the subject
of numerous papers, the study of the model in a three dimensional domain is much
less complete. We refer to [3, 9, 11, 12, 21] for some of the available results in 3D.

In order to state our results we briefly introduce the GL functional on a domain
� ⊂ R

3 and in an external magnetic field of strength κH pointing in the direction e3
of the third coordinate axis.

Gκ,H [ψ,A] =
∫

�

{
|(−i∇ + κHA)ψ |2 − κ2|ψ |2 + κ2

2
|ψ |4

}
dx

+(κH)2
∫
R3

|curlA − e3|2 dx. (1.1)

The ground state energy is the infimum of the functional over all order parameters ψ

and all induced magnetic vector potentials A.

EGL(κ, H) := inf
(ψ,A)

Gκ,H [ψ,A]. (1.2)

In the regime where the H is between the second and the third critical fields, i.e. HC2

and HC3 mentioned above, superconductivity is essentially localized to the boundary.
This corresponds essentially to the parameters bH = κ for b ∈]�0, 1[, where �0 ≈
0.59 is a spectral constant which will be defined in Remark 1.1 below. In this regime
the energy is known (see [12]) to behave to leading order in the limit κ → ∞ as

EGL(κ, H) ≈ −κ2

2

∫
�

|ψ |4 dx ≈ √
κH

∫
∂�

e(b, ν(x)) dσ, (1.3)

where ν(x) denotes the angle between the tangent plane at x ∈ ∂� and e3 (the
magnetic field). Here e(b, ν) is an explicitly constructed boundary energy density.
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In the same paper also local versions are proved, so that one can think of e(b, ν) as
measuring both the energy density and—through the connection to |ψ |4—the density
of superconductivity. Our aim in the present paper is to study in more detail the
function e(b, ν).

1.2 Objective of the Paper

Our study is motivated by the mathematical theory of the surface superconductivity
of 3D samples. It is well understood [12, 20, 21] that in a suitable range of mag-
netic field strengths the solutions to the GLequations are localized near the boundary.
We want to improve the understanding of this boundary layer. For this purpose, we
examine the energy contribution of the order parameter in the vicinity of the domain
boundary. We believe that in the surface superconducting state, the order parameters
will exhibit a certain lattice structure in the vicinity of the domain boundary similar
to the Abrikosov lattices of 2D samples. Understanding the lattice structure near the
boundary will help us to understand the vortex lattices of superconductivity when the
applied magnetic field decreases and approaches the second critical field HC2 .

After rescaling and taking limits, the behavior of the solutions to the GLequations
in a boundary layer can be understood from the limiting equations in R3+. So we con-
sider only the problem in R3+. Notice, in particular, that this means that the boundary
curvature has disappeared. This might appear surprising, but it turns out (see [11,
12]) that the curvature does not affect the energy to leading order—one might expect
curvature effects to appear in more precise descriptions of the the surface supercon-
ductivity, as in the two-dimensional case [6, 7], however this is not the subject of the
present paper. Furthermore, in this boundary layer the magnetic field can be consid-
ered constant. Again this is valid to leading order and follows from [11, 12]. One
should merely see this as the fact that on short length scales any sufficiently smooth
function is well approximated by a constant.

The important constant �0, often called the de Gennes constant, has already been
mentioned in §1.1 and will appear in the statements. We refer to [9, 16, 18] for the
mathematical analysis of �0.

Definition 1.1 (The spectral quantity �0)
Consider the shifted harmonic oscillator H(ξ) defined for all ξ ∈ R on the half-axis
R+ as follows:

H(ξ) = − d2

dt2
+ (t − ξ)2 in L2(R+), (1.4)

with Neumann boundary condition u′(0) = 0. This operator has compact resolvent
and it follows from Sturm-Liouville theory that its eigenvalues are simple. Let μ1(ξ)

denote the lowest eigenvalue of H(ξ). The constant �0 is defined as:

�0 = inf
ξ∈R μ1(ξ). (1.5)
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1.3 The 3D Surface Energy

In this paper, for all m ∈ {1, 2, 3}, we denote by x1, · · · , xm the coordinates of
x ∈ R

m. We define Rm+ = {x ∈ R
m : x1 > 0} and ∂Rm+ = {x ∈ R

m : x1 = 0} the
boundary of Rm+.

Let ν ∈ [0, π
2 ], and � > 0. We introduce the set:

D� = (0, ∞) × (−�, �) × (−�, �), (1.6)

and the magnetic potential Aν defined on R3+ by

A = Aν =
⎛
⎝ 0

0
−x1 cos ν + x2 sin ν

⎞
⎠ , (1.7)

for which the associated magnetic field is the constant unit vector that makes an angle
ν with the x2x3 plane:

B = Bν = ∇ × Aν =
⎛
⎝ sin ν

cos ν

0

⎞
⎠ . (1.8)

Remark 1.2 By the standard gauge invariance arguments our energy (in particular,
the energy functional Eb,ν,� defined below) depends on the magnetic field Bν but not
on the specific choice of vector potential Aν with ∇ × Aν = Bν . We only fix this
choice for concreteness.

Definition 1.3 We consider the following reduced GLtype energy functional:

Eb,ν,�(ϕ) =
∫
D�

{
|(−i∇ + Aν)ϕ|2 − b|ϕ|2 + b

2
|ϕ|4

}
dx, (1.9)

for ϕ in the space:

S� =
{
ϕ ∈ L2(D�) : (−i∇ + Aν)ϕ ∈ L2(D�,C

3), ϕ = 0 on ∂D�\{x1 = 0}
}
.

(1.10)
Note that the Dirichlet boundary condition for the functions in S� is given on the
lateral sides |x2| = � and |x3| = �, which is convenient for us to study the limit of
the minimizers as � → ∞. Furthermore, we define:

E(b, ν, �) = inf
ϕ∈S�

Eb,ν,�(ϕ), (1.11)

and, for those values of b where the limit exists,

e(b, ν) = lim
�→∞

1

4�2
E(b, ν, �). (1.12)

Remark 1.4 The existence of the limit (1.12) was proved under the restriction b ∈
[�0, 1] in [12]. More precisely, it has been proved that (see [12, Theorem 3.13]) for
all ν ∈ [

0, π
2

]
, the function b 
→ e(b, ν) is continuous and monotone decreasing,

and that for all b ∈ [�0, ν], the function ν 
→ e(b, ν) is continuous. For b ≤ �0 it is
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clear that e(b, ν) = 0 and for b > 1 there is no boundary concentration so the limit
in (1.12) does not exist. It is not stated explicitly in [12] but one can easily show that
for all ν ∈ [

0, π
2

]
, the function b 
→ e(b, ν) is also concave (as an infimum and a

limit over affine functions).

1.4 Statement of the Results

For ν = 0, we have a complete understanding of the limit e(b, 0) in (1.12). For the
similar problem in 2D it was proposed in [20] and proved in [5–7] that an Ansatz
with separation of variables is correct for the ground state. We will see that the 3D
case is completely analogous (with essentially the same proof).

Theorem 1.5 For ν = 0 and b ∈ (�0, 1] we have

e(b, ν = 0) = E1D
0 , (1.13)

where E1D
0 is defined by

E1D
0 = inf

ξ∈R

(
inf

f ∈H 1(R+)
E 1D
b,ξ (f )

)
, (1.14)

and where

E 1D
b,ξ (f ) :=

∫ ∞

0

{
|f ′(t)|2 + (t − ξ)2|f (t)|2 − b|f (t)|2 + b

2
|f (t)|4

}
dt . (1.15)

We note that the infimum is both taken with respect to the function f and the
real number ξ . Minimizing the 1D-functional (1.15) with respect to f , we obtain an
energy E1D

b,ξ
and a minimizer fb,ξ = fξ . Then, minimizing E1D

b,ξ
with respect to ξ

gives a minimal energy E1D
b,ξ0

= E1D
0 and a minimizer ξ0 > 0. The proof of Theorem

1.5 is similar to the 2D-case and is given in Section 3.

Theorem 1.6 For all b ∈ (�0, 1], the function [0, π
2 ] � ν 
→ e(b, ν) is monotone

non-decreasing.

The proof of this statement is given in Section 4. Theorem 1.6 complements the
result [12, Theorem 3.13].

The monotonicity of the quantity e(b, ν) with respect to the angle ν has an inter-
est in the theory of superconductivity. Indeed, the ground state energy is a function
of the inclination of the magnetic field and the result gives that the energy den-
sity increases when the magnetic field tends to be perpendicular to the surface of
the sample. This complements results from the linear analysis: It is well-known that
superconductivity survives longest—when the exterior magnetic field is increased—
in the boundary region where the magnetic field is parallel. Theorem 1.6 shows that
also before this happens superconductivity is strongest where the magnetic field is
parallel and monotonically decreases as the angle increases. This interpretation of
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Theorem 1.6 follows from the correspondence between e(b, ν) and the density of
superconductivity illustrated in (1.3).

Finally, in Section 5, we construct solutions with lattice structure to the (5.11), in
the case when ν = 0.

Proposition 1.7 When ν = 0, (5.11) has solutions with 3D lattice structure.

This proposition will be proved (see the proof of Theorem 5.5) in Section 5. Propo-
sition 1.7) suggests that, a bounded superconductor subjected to an applied magnetic
field with strength between the second critical field HC2 and the third critical field
HC3 , will be in a surface superconducting state, and vortex lattices will appear along
some surface layers where the applied magnetic field is not tangential to the surface.

The construction of the lattice solutions is completely analogous to the Abrikosov
solutions in 2D. The result we prove – Theorem 5.5, stated in Section 5.2 – implies
an upper bound on the energies (1.11) and (1.12) defined in the first section. This
situation complements Theorem 1.5: For ν = 0 we have a separation of variables
implying that the modulus of a minimizer is constant along the boundary. As soon as
ν = 0 we expect—still in analogy with the 2D-case—this continuous symmetry to be
broken and be replaced by the discrete (lattice) symmetry. In particular, for ν = 0 we
expect minimizers to display a vortex lattice structure. However, just as this remains
unproven in 2D, we also cannot give a rigorous proof of this expectation in the present
3D setting. The above discussion is also very much related to the Open Problem 3
in [9] considering the structure of general bounded solutions of the Euler-Lagrange
equations of the Ginzburg-Landau functional.

In conclusion, the results of this paper demonstrate how the surface superconduc-
tivity varies along the boundary of a finite sample when the external magnetic field
is between HC2 and HC3 . Superconductivity is strongest where the external magnetic
field is parallel to the boundary and decreases monotonically with the angle. Also,
where the field is parallel, the structure is precisely given in terms of a 1D-model
by separation of variables. For non-zero angles this separation of variables seems to
fail and is probably replaces by a lattice-type structure similar to the 2D-situation of
Abrikosov lattices.

2 The Linear Problem

Before starting the analysis of the non-linear Ginzburg-Landau functional Eb,ν,�, we
describe some of the linear spectral results that are needed.

In all of the paper, we will denote by σ(L) the spectrum of any given operator L.
First we consider the magnetic Schrödinger operator associated with a constant

magnetic field in R3.

Proposition 2.1 Let the magnetic Schrödinger operator (−i∇ + Aν)
2 be defined as

a self-adjoint operator on L2(R3) with form domain{
ψ ∈ L2(R3) : (−i∇ + Aν)ψ ∈ L2(R3,C3)

}
.
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For all ν ∈ [
0, π

2

]
we have

inf σ {(−i∇ + Aν)
2} = 1.

Proof This is just the well known structure of the Landau bands for constant
magnetic field in R3.

Consider the Schrödinger operator of a particle moving in a 3-dimensional half-
space R3+, subject to a constant magnetic field of unit strength having an angle ν to
the boundary-plane ∂R3+,

L(ν) = (−i∇ + Aν)
2 in L2(R3+) , (2.1)

with domain

D(L(ν)) = {u ∈ L2(R3+) : (−i∇ + Aν)u ∈ L2(R3+,C3) ,

(−i∇ + Aν)
2u ∈ L2(R3+), ∂x1u = 0 on ∂R3+} . (2.2)

The spectrum of the Schrödinger operator with (magnetic) Neumann boundary con-
dition introduced in (2.1) has been the object of study of several works and is by now
well understood. We denote by ζ(ν) the lowest point in the spectrum of L(ν),

ζ(ν) = inf σ
(
L(ν)

)
. (2.3)

We collect below some properties concerning the quantity ζ(ν) (see e.g. [9, Lemmas
7.2.1 & 7.2.2]).

In connection with the analysis of the operator L(ν), we introduce the two-
dimensional operator

L(ν) = −∂2x1 − ∂2x2 + (−x1 cos ν + x2 sin ν)2 in H 2(R2+) ,

whose domain D(L(ν)) is

D(L(ν)) = {
u ∈ H 2(R2+) : (−x1 cos ν + x2 sin ν)ju ∈ L2(R2+), j = 1, 2,

∂x1u = 0 on ∂R2+
}
.

Remark 2.2 It is elementary to verify that for ν = 0, L(ν) is closely related to L(ν).
Indeed, one can carry out a partial Fourier transform in the third variable and—for
ν = 0—make a translation in x2 to absorb the Fourier parameter. The resulting
operator is exactly L(ν).

Lemma 2.3 Let �0 be the universal constant introduced in (1.5). The function
[0, π/2] � ν 
→ ζ(ν) is continuous, monotonically non-decreasing, and we have that
ζ(0) = �0 and ζ(π/2) = 1. Furthermore, for all ν ∈ (0, π/2) we have

(1) σ(L(ν)) = σ(L(ν)) ;
(2) σess(L(ν)) = [1, ∞) .

Conclusion (2) remains true for ν = 0, π/2. The results of Lemma 2.3 (concern-
ing the spectrum of L(ν)) have been obtained in [19, Theorem 3.1], before being
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improved in [17]. Notice that the dimensional reduction in conclusion (2.3) in Lemma
2.3 is only valid for ν > 0.

Remark 2.4 Suppose that ν ∈ (0, π/2). It results from Lemma 2.3 that ζ(ν) is
the lowest eigenvalue of L(ν). It is a simple eigenvalue by a positivity argument.
Consequently, we can select a unique non-negative eigenfunction φ2D

ν ∈ L2(R2+),
normalized and such that∫

R
2+

{
|∇φ2D

ν |2 + |(−x1 cos ν + x2 sin ν)φ2D
ν |2

}
dx = ζ(ν) . (2.4)

The next result concerns the decay of the function φ2D
ν that we will need. We refer

to [23] for a stronger statement.

Proposition 2.5 [See [23]] Let ν ∈ (0, π
2 ). The ground state φ2D

ν of the operator

L(ν) belongs to the Schwartz class S (R2+).

For completeness, let us mention that other decay properties of the eigenfunction
φ2D

ν are established in [4, Theorem 1.1].
In [19, Theorem 4.2], it is proved that for all ν ∈ (0, π

2 ), the dimension of the
eigenspace associated with the lowest eigenvalue ζ(ν) for the operator L(ν) is infi-
nite. Thus, we have that ζ(ν) is not a discrete eigenvalue but belongs to the essential
spectrum of the operator L(ν). The following result gives the form of the L2(R3+)

eigenfunctions.

Lemma 2.6 Let ν ∈ (0, π
2 ). For all f ∈ L2(R), the function φ3D

ν defined by

φ3D
ν (x) = F−1

(
ξ3 
→ f (ξ3)φ

2D
ν (x1, x2 − ξ3

sin ν
)

)
, (2.5)

(where F−1 is the inverse Fourier transform in the ξ3 variable) is an L2(R3+) eigen-
function associated with the eigenvalue ζ(ν) of the operator L(ν) (in particular,
the Neumann condition at the boundary of R3+ is satisfied), and all the L2(R3+)

eigenfunctions associated with the eigenvalue ζ(ν) are of this form.
What is more, for every f ∈ C ∞

c (R) (the set of smooth functions with compact
support), we have that the function φ3D

ν defined by (2.5) belongs to the Schwartz

class S (R3+).

Proof To prove the first part of the statement, we note that the fact that the function
φ3D

ν is an eigenfunction associated with the eigenvalue ζ(ν) of the operator L(ν)

comes from the fact that the function φ2D
ν is an eigenfunction associated with the

eigenvalue ζ(ν) of the operator L(ν). We refer to the proof of Lemma 4.5 in [19] for
the details.

We prove here the last assertion of the lemma. We will only prove the decay of
φ3D

ν since the same decay properties of the derivatives can be obtained in the same

way, using that φ2D
ν ∈ S (R2+) and f ∈ C ∞

c (R).
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Since φ2D
ν ∈ S (R2+) and f belongs to C ∞

c (R), we easily have that the function
φ3D

ν defined by (2.5) belongs to C ∞(R3).
It suffices to establish the decay in each variable individually. The decay in the x1

variable (uniformly in x2) is obvious since the function φ2D
ν belongs to S (R2+) (in

the x1 and x2 variables, see Proposition 2.5). The good estimate in the x3 variable is
also straightforward since the Fourier transform of a function in L1 is bounded. We
now deal with the decay in the x2 variable. Let k ∈ N. We are going to give an upper
bound on the term

∣∣∣∣∣xk
2

∫
Rξ3

φ2D
ν

(
x1, x2 − ξ3

sin ν

)
eix3ξ3f (ξ3) dξ3

∣∣∣∣∣ .

Let supp f ⊂ [−M, M]. For convenience, we perform a change of variable in the
integral (η3 = x2 − ξ3

sin ν
) and estimate

∣∣∣∣∣xk
2e

ix3x2 sin ν

∫
Rη3

φ2D
ν (x1, η3)e

−ix3η3 sin νf ((x2 − η3) sin ν) dη3

∣∣∣∣∣
� |x2|k‖f ‖∞

∫ x2+M/ sin ν

x2−M/ sin ν

|φ2D
ν (x1, η3)| dη3

� 2M

sin ν
‖f ‖∞

|x2|k
(1 + |x2 − M/ sin ν|2)N sup

R
2+

(
(1 + η2)N |φ2D

ν (x1, η)|
)

,

which gives the desired bound upon choosing N � k.

3 Parallel Field

In this section we study the case when ν = 0 and prove Theorem 1.5. We will
prove that the ‘thermodynamic’ limit—the limit in (1.12)—can be expressed through
the 1D functional E 1D

b,ξ
given in (1.15). The principal properties of the functional

E 1D
b,ξ

are well known (see [20, Section 3 and Appendix], [9, Section 14.2] and the
references therein, and also [10]). For understanding and completeness, we recall in
the following lemmas the underlying results that we will need.

Lemma 3.1 For all ξ ∈ R and all b ∈ R+, the functional E 1D
b,ξ

admits a non-negative
minimizer fb,ξ , in the space

B1(R+) =
{
f ∈ L2(R+,R) : tpf (q)(t) ∈ L2(R+,R), ∀p, q ∈ N, p + q ≤ 1

}
.

The minimizers satisfy the Euler-Lagrange equations

{ −f ′′
b,ξ + (t − ξ)2fb,ξ = b(1 − f 2

b,ξ )fb,ξ , t > 0,

f ′
b,ξ (0) = 0.

(3.1)
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Moreover, we have

inf
f ∈B1(R+)

E 1D
b,ξ (f ) = −b

2
‖fb,ξ‖4L4(R+)

, (3.2)

and the inequality:

‖fb,ξ‖L∞(R+) ≤ 1.

What is more, the equation:{
−f ′′ + (t − ξ)2f = b(1 − f 2)f, t > 0,

f ′(0) = 0.
(3.3)

admits non-trivial bounded solutions if and only if μ1(ξ) < b (see Section 1.1
(above) for the definition of μ1), and if f ∈ L∞(R+) satisfies (3.3), then we have
that

‖f ‖L∞(R+) ≤ 1 and f ∈ L2(R+).

If we have μ1(ξ) < b < 1, the non-negative minimizer fb,ξ = fξ of the functional
E 1D
b,ξ

is unique and strictly positive.

We should notice that our conventions are slightly different from the ones consid-
ered in [9] (see for instance (3.9) in [9] and (1.4) in the present paper) and the ones
considered in [5] (see for instance the choice of (∇ + iA) for the linear part of the
Ginzburg-Landau functional instead of the expression (−i∇ +A) we consider). The
statements we give here have been adapted to our choices.

Notation 3.2 We recall that fξ0 is defined above Theorem 1.6 and we denote f0 =
fξ0 .

The proof of Theorem 1.5 directly follows the approach presented in [5] and is
made in two steps consisting in obtaining an upper and a lower bound.

Proof of Theorem 1.5 We will only prove Theorem 1.5 for b ∈ (�0, 1)—the exten-
sion to b = 1 following by continuity on both sides. The continuity of the map
[0, π

2 ] � ν 
→ e(b, ν) is given in [12, Theorem 3.13] for all ν ∈ [0, π
2 ]. The

continuity of E1D
0 is easier and is left to the reader.

Upper Bound For ν = 0 and b ∈ (�0, 1] (here the endpoint b = 1 can easily be
included), the estimate

E(b, ν = 0, �) ≤ 4�2E1D
0 + o(�) (3.4)

is obtained by considering the following trial state

ϕ(x) = ϕ(x1, x2, x3) = f0(x1)e
iξ0x3 , (3.5)

(defined for any x ∈ R
3+) suitably localized in order to satisfy the Dirichlet boundary

condition. This trial state has been used in [5]. We omit the details.
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Lower bound The lower bound results from an energy decoupling through a ground
state representation. It relies on some preliminary results related to the 1D-functional
E1D
b,ξ0

. In the following lemma we gather the preliminary properties that we need, see
[20, Section 3], [9, Section 14.2] and [5, Section 3.2] for details.

Lemma 3.3 For all b ∈ (�0, 1), the following properties hold.

(i) The function f0 (introduced in Notation 3.2) is strictly positive everywhere in
R+.

(ii) The function F0 defined by

F0(x1) = 2
∫ x1

0
(y − ξ0)f

2
0 (y) dy, (3.6)

satisfies F0(+∞) = 0 and is negative for all x1 > 0.
(iii) The ‘cost function’ K0 defined as:

K0(x1) = f 2
0 (x1) + F0(x1), (3.7)

is positive on R+.

In the particular case when ν = 0, the functional Eb,ν,� defined through (1.9) has
the following form:

Eb,ν=0,�(ϕ) =
∫

[−�,�]2

(∫ +∞

0

{
|(−i∇ − x1e3)ϕ|2 − b|ϕ|2 + b

2
|ϕ|4

}
dx1

)
dx2dx3,

(3.8)
where e3 is the unit vector in the x3 direction. Thanks to the property (i) of Lemma
(ii), to any function ϕ we may associate a function v with the Ansatz:

ϕ(x1, x2, x3) = f0(x1)e
iξ0x3v(x1, x2, x3). (3.9)

By density of the set of functions with compact support in S�, it suffices to work with
functions satisfying

ϕ(x1, x2, x3) = 0, for x1 sufficiently large. (3.10)

Considering (3.10) and using the variational (3.2) for f0, integration by parts yields,

Eb,ν=0,�(ϕ) = 4�2E1D
0 + E0(v), (3.11)

where E0(v) is defined as

E0(v) =
∫
D�

f 2
0 (x1)

{
|∇v|2 − 2(x1 − ξ0)e3 · j(v) + b

2
f 2
0 (x1)(1 − |v|2)2

}
dx,

(3.12)
and where j(v) = (j1, j2, j3) is given by

j(v) = i

2
(v∇v − v∇v). (3.13)

The boundary terms vanish because the function f0 satisfies the Neumann boundary
condition at x1 = 0 (and using (3.10)).
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Therefore, it suffices to prove the positivity of the reduced functional E0 given in
(3.12). We define the following field F0 = (0, F0, 0), with F0 from (3.6). We notice
that (

2(x1 − ξ0)f
2
0

)
e3 · j(v) = (∂x1F0)(v∂x3v − v∂x3v).

An integration by parts in the x1 variable on the term involving j(v) (using (3.10)),
yields ∫

D�

−2(x1 − ξ0)f
2
0 (x1)e3 · j(v) dx =

∫
D�

F0∂x1j3(v) dx.

An integration by parts in the x3 variable gives, for each fixed x1 and x2 (and using
the Dirichlet boundary condition),

1

2

∫ �

−�

∂x1(v∂x3v − v∂x3v) dx3 = −i

∫ �

−�

curl j(v) · e2 dx3.

Therefore, we have finally obtained

E0(v) =
∫
D�

{
f 2
0 (x1)|∇v(x)|2 + F0(x1)μ(v(x)) + b

2
f 4
0 (x1)(1 − |v(x)|2)2

}
dx,

where μ(v) = curl j(v) · e2. Using that F0 is negative (by Lemma 3.3, 3.3), and
|μ(v)| ≤ |curl j(v)| ≤ |∇v|2, we get

E0(v) �
∫
D�

(
f 2
0 (x1)|∇v(x)|2 + F0(x1)|μ(v(x))|

)
dx

�
∫
D�

(
f 2
0 (x1) + F0(x1)

)
|∇v(x)|2 dx

� 0, (3.14)

where the last inequality follows from (iii) in Lemma 3.3. This finishes the proof of
Theorem 1.5.

4 Ground State Energy for General Direction of theMagnetic Field

In this section we will prove Theorem 1.6. As stated in Lemma 2.3 in Section 2, a
similar monotonicity result is valid for the linear problem, i.e. for the spectral quantity
ζ(ν). The proof of the monotonicity of ν 
→ ζ(ν) is rather easy once a clever change
of variables is implemented. Our proof of Theorem 1.6 is very much inspired by the
analysis of the linear problem and uses the same change of variables performed in the
proof of the monotonicity of the lowest eigenvalue (see [19, Theorem 3.1] and [17]).

Let us briefly explain the strategy of the proof. Directly differentiating the func-
tional in the angle ν leads to terms that are not easy to understand. The change of
variables from [17, 19] leads to the new functional Ẽb,ν,α,L,L3 given in (4.34) below.
Here the parameter dependence is elementary, however the domain is changed. The
change of variables replaces effectively the ‘cylinder’ D� by a tilted cylinder, i.e. a
cylinder having an axis which is not perpendicular to the boundary plane and also
with a cross section being non-quadratic. However, from general experience with
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‘thermodynamic’ limits, this slight change of geometry should not affect the bound-
ary energy. That this is the case is the content of Lemma 4.4 below. Once this is
established, the variation of the functional with respect to the angle becomes similar
to the Feynman-Hellmann theorem from perturbation theory.

4.1 Generalization of the Initial Problem in 3D

Let ν ∈ [0, π
2 ], � > 0 and �3 > 0. For β ∈ [0, π

2 ), we introduce the set

D�,�3,β = {
x = (x1, x2, x3) ∈ R

3 : x1 > 0, |x2 − x1 tanβ| < �, |x3| < �3
}
,

for which we have the following correspondence with the set defined in (1.6)

D� = D�,�,0.

We consider the magnetic potential Aν defined on R
3+ by (1.7), for which we recall

that the associated magnetic field is the constant unit vector that makes an angle ν

with the x2x3 plane (see (1.8)).

Definition 4.1 We consider the following reduced Ginzburg-Landau type energy
functional

Eb,ν,β,�,�3(ϕ) =
∫
D�,�3,β

{
|(−i∇ + Aν)ϕ|2 − b|ϕ|2 + b

2
|ϕ|4

}
dx, (4.1)

for ϕ in the space

S�,�3,β =
{
ϕ ∈ L2(D�,�3,β) : (−i∇ + Aν)ϕ ∈ L2(D�,�3,β ,C3),

ϕ = 0 on ∂(D�,�3,β)\{x1 = 0}
}
.

Furthermore, we define

E(b, ν, β, �, �3) = inf
ϕ∈S�,�3,β

Eb,ν,β,�,�3(ϕ). (4.2)

Remark 4.2 We recall what we mentioned in Remark 1.4. The existence of the limit

lim
�→∞

1

4�2
E(b, ν, β = 0, �, �) = e(b, ν, β = 0), (4.3)

was proved in [2] and [12] (see in particular [12, Theorem 3.9] with [11]). Following
exactly the same steps of the proof of Theorem 3.9 in [12], we can actually easily
show that for all sequence {(�(n), �

(n)
3 )}n satisfying

0 < �(n) −→
n→+∞ +∞, and C−1 <

�(n)

�
(n)
3

< C ∀n, (4.4)

with a fixed constant C > 0, we have that the following limit

e(b, ν, β = 0) := lim
n→+∞

1

4�(n)�
(n)
3

E(b, ν, β = 0, �(n), �
(n)
3 ) (4.5)
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exists, and is independent of the choice of sequence {(�(n), �
(n)
3 )}n.

We will need the following result which gives in particular the existence of a min-
imizer and that all the minimizers have a good decay at infinity in the transverse
variable x1.

Lemma 4.3 Suppose that b ∈ [�0, 1] and β ∈ [
0, π

2

)
are fixed given constants. For

all ν ∈ [
0, π

2

]
, � > 0 and �3 > 0, the functional Eb,ν,β,�,�3 in (4.1) has a minimizer,

and any minimizer ϕ = ϕb,ν,β,�,�3 satisfies

Eb,ν,β,�,�3(ϕ) = E(b, ν, β, �, �3), ‖ϕ‖L∞(D�,�3,β ) ≤ 1. (4.6)

and ∫
D�,�3,β

{
|(−i∇ + Aν)ϕ|2 − b|ϕ|2 + b

2
|ϕ|4

}
dx = −b

2

∫
D�,�3,β

|ϕ|4 dx. (4.7)

Furthermore, there exists a positive constant C(b, β) such that if ν ∈ [
0, π

2

]
,

� > 0 and �3 > 0, any minimizer ϕ satisfies

∫
D�,�3,β∩{x1>4}

x1

(ln x1)2

{
|(−i∇ + Aν)ϕ|2 + |ϕ|2 + x2

1 |ϕ|4
}
dx ≤ C(b, β)��3.

(4.8)

Proof This statement is proved in [12, Theorem 3.6] (see also [20]) for β = 0
and � = �3. The fact that we have a different domain Dβ,�,�3 depending on the two
additional parameters β and �3 does not change anything because they are both fixed
in the proof.

We omit the details.

The following result is a key lemma which generalizes Theorem 3.9 in [12]. The
proof of this result strongly relies on the generalized result presented in Remark 4.2.
We refer to [12] (and [11]) for the technical details.

Lemma 4.4 Let C > 0 and let {(�(n), �
(n)
3 )}n be a sequence satisfying (4.4). We have

that

e(b, ν, β) := lim
n→+∞

1

4�(n)�
(n)
3

E(b, ν, β, �(n), �
(n)
3 )

exists, is independent of the choice of sequence {(�(n), �
(n)
3 )}n and moreover is

independent of β.

Thanks to Lemma 4.4, e(b, ν, β) is independent of β. Hence we can omit β from
the notation and write

e(b, ν) = e(b, ν, β) = e(b, ν, 0). (4.9)
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Proof of Lemma 4.4 We fix C > 0 and choose a sequence {(�(n), �
(n)
3 )}n such that

(4.4) holds. For convenience, belowwe do not systematically indicate the dependence
on n in the notation.

For all �̃ > 0, we define the following box

D�̃
�,�3,β

= {x = (x1, x2, x3) ∈ D�,�3,β : x1 ∈ (0, �̃)},
and for all � > 0, �3 > 0, ν ∈ (

0, π
2

)
and β ∈ [

0, π
2

)
, we denote by

EDir
�̃

(b, ν, β, �, �3) the minimal energy of the functional Eb,ν,β,�,�3 for which the set
of test functions is given by all ϕ ∈ S�,�3,β , such that ϕ satisfies the following
Dirichlet condition

ϕ = 0 on ∂D�̃
�,�3,β

\{x1 = 0}, and ϕ extended by 0 outside of D�̃
�,�3,β

.

We are going to give upper bound and lower bounds on E(b, ν, β, �, �3) involving
the quantity EDir

�̃
(b, ν, β, �, �3).

The upper bound is obvious since, by inclusion of the variational spaces, we have

EDir
�̃

(b, ν, β, �, �3) � E(b, ν, β, �, �3). (4.10)

To obtain a lower bound on E(b, ν, β, �, �3), we start by choosing �̃ as follows

�̃ = ��, (4.11)

where � > 0 is a constant which will be chosen later on. We consider a real number
�̃− such that

4 ≤ �̃− < �̃ with |�̃ − �̃−| = R(�), (4.12)

where R(�) is a strictly positive quantity which can depend on � and which will
be given below. We consider two smooth functions χ1 and χ2 defined on R

3+ and
constituting a partition of unity such that for all x ∈ R

3+ ⊃ D�,�3,β :

χ1(x) = χ1(x1, x2, x3) =
{
1 if x1 ∈ [0, �̃−],
0 if x1 ∈ [�̃, +∞),

and

χ2(x) = χ2(x1, x2, x3) =
{
0 if x1 ∈ [0, �̃−],
1 if x1 ∈ [�̃, +∞),

with

χ2
1 + χ2

2 = 1 on R3+,

and

sup
x∈R3+

|∇χj (x)| ≤ C

R(�)
, for all j ∈ {1, 2}. (4.13)

For all ϕ ∈ S�,�3,β , using the fact that∫
D�,�3,β

(χ2
j (x) − χ4

j (x))|ϕ(x)|4 dx � 0
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for all j ∈ {1, 2} (since 0 ≤ χj (x) ≤ 1), we have the following standard ( e.g. IMS)
decomposition formula (see for instance [12, Section 5.1])

Eb,ν,β,�,�3(ϕ) � Eb,ν,β,�,�3(χ1ϕ) + Eb,ν,β,�,�3(χ2ϕ)

− ‖ϕ|∇χ1|‖2L2(R3+)
− ‖ϕ|∇χ2|‖2L2(R3+)

. (4.14)

To obtain a lower bound to E(b, ν, β, �, �3), we are going to use (4.14) by giving an
estimate on each term of the right hand side of the inequality.

On one hand we have, by definition and using the property of χ1, that for all
ϕ ∈ S�,�3,β∫

D�,�3,β

{
|(−i∇ + Aν)χ1ϕ|2 − b|χ1ϕ|2 + b

2
|χ1ϕ|4

}
dx � EDir

�̃
(b, ν, β, �, �3).

(4.15)
On the other hand, using Proposition 2.1 (where χ2ϕ is extended by zero to a regular
function on all of R3+ ⊃ D�,�3,β ), we have∫

D�,�3,β

{
|(−i∇ + Aν)χ2ϕ|2 − b|χ2ϕ|2 + b

2
|χ2ϕ|4

}
dx � 0, (4.16)

since b � 1.
It remains to give an estimate on the remainders of (4.14). Considering the support

of the functions |∇χj | (j ∈ {1, 2}), and using (4.13), we have the following inequality
∑

j∈{1,2}
‖ϕ|∇χj |‖2L2(R3+)

≤ C2

R(�)2

∫
�̃−≤x1≤�̃

|ϕ|2 dx. (4.17)

To estimate
∫

�̃−≤x1≤�̃

|ϕ|2 dx, we use Lemma 4.3 which gives in particular that for

any γ ∈ [1, 2) there exists a constant C(b, β, γ ) > 0 (which only depends on b, β

and γ ) such that: ∫
D�,�3,β∩{x1>4}

x
γ

1 |ϕ|2 dx ≤ C(b, β, γ )��3. (4.18)

Using (4.18) for γ in the form γ = 1 − ε with ε ∈ (0, 1), we have that, if R is
bounded uniformly in � and if ρ is fixed, then there exist a constant C(b, β) > 0
(also depending the choice of ε) such that∫

�̃−≤x1≤�̃

|ϕ|2 dx ≤ C(b, β)
��3

��(1−ε)
. (4.19)

We choose

0 < R(�) = R < 2 and � = 1

2
, (4.20)

where R is a fixed constant independent of � and where we recall that � is introduced
in (4.11). Thus, we are lead to consider

�̃ = �1/2. (4.21)
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With the choices given by (4.20), we have �̃− = �̃+o(�̃) = �1/2+o(�1/2). Therefore,
we have with (4.19) that∫

�̃−≤x1≤�̃

|ϕ|2 dx ≤ C(b, β)�1/2+ε/2�3, (4.22)

which finally gives ∑
j∈{1,2}

‖ϕ|∇χj |‖2L2(R3+)
≤ C(b, β)�1/2−ε/2�3, (4.23)

Using (4.14) with a minimizer ϕ = ϕb,ν,β,�,�3 of the functional Eb,ν,β,�,�3 , and the
estimates (4.15), (4.16) and (4.23), we obtain

EDir
�̃

(b, ν, β, �, �3) + o(��3) ≤ E(b, ν, β, �, �3). (4.24)

Relying on (4.10) and (4.24), we can deal with E(b, ν, β, �, �3) using
EDir

�̃
(b, ν, β, �, �3) up to a remainder in o(��3). We denote by �∗ the length of the

segment joining the two points (x1 = �̃, x2 = �, x3 = 0) and (x1 = �̃, x2 =
� + �̃ tanβ, x3 = 0). The value of �∗ is given by

�∗ = (tanβ) �̃ = (tanβ) �1/2. (4.25)

For � = � − �∗ and � = � + �∗, we have the following geometrical inclusions

D�̃
�,�3,0 ⊂ D�̃

�,�3,β
⊂ D�̃

�,�3,0
. (4.26)

Using the inclusions (4.26), we have the following inequalities:

1

4��3
EDir

�̃
(b, ν, β, �, �3) ≤ ��3

��3

(
1

4��3
EDir

�̃

(
b, ν, 0, �, �3

))
, (4.27)

and
��3

��3

(
1

4��3
EDir

�̃

(
b, ν, 0, �, �3

)) ≤ 1

4��3
EDir

�̃
(b, ν, β, �, �3). (4.28)

Therefore, using (4.10), (4.24), we can get rid of the Dirichlet energy and obtain from
(4.27) and (4.28) the following inequalities:

1

4��3
E(b, ν, β, �, �3) ≤ ��3

��3

(
1

4��3

(
E

(
b, ν, 0, �, �3

) + o(��3)
))

, (4.29)

and

��3

��3

(
1

4��3
E

(
b, ν, 0, �, �3

)) ≤ 1

4��3
(E(b, ν, β, �, �3) + o(��3)) . (4.30)

As � = � + o(�) and � = � + o(�) (see (4.25)), we finally obtain (using the result
given in Remark (4.2)) that

lim sup
n→+∞

1

4�(n)�
(n)
3

E(b, ν, β, �(n), �
(n)
3 ) ≤ lim

n→+∞
1

4�(n)�
(n)
3

E
(
b, ν, 0, �(n), �

(n)
3

)
,

(4.31)
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and

lim
n→+∞

1

4�(n)�
(n)
3

E
(
b, ν, 0, �(n), �

(n)
3

)
≤ lim inf

n→+∞
1

4�(n)�
(n)
3

E(b, ν, β, �(n), �
(n)
3 ).

(4.32)
The result is obtained using (4.31) and (4.32).

4.2 Proof of Theorem 1.6

In this subsection we will give the proof of Theorem 1.6 by comparing the energy of
the functional Eb,ν,� on D� to the energy of an auxiliary functional Ẽ on D̃, where
for L, L3 > 0 and α ∈ (0, π) we define

D̃ = D̃L,L3,α = D̃L,α × (−L3, L3),

with

D̃L,α =
{
(v1, v2) ∈ R

2 : v1 > −v2, |v2 − (tanα)v1| � L√
2
(1 + tanα)

}
.(4.33)

To emphasize the different domains, we keep the notation (x1, x2, x3) for the coordi-
nates in D� for the original problem, and use (v1, v2, v3) to denote the coordinates in
the set D̃ for the auxiliary problem.

Remark 4.5 Notice that the area of D̃L,L3,α ∩ {v1 = −v2} is 4LL3.

Define furthermore the functional

Ẽ (ϕ̃) = Ẽb,ν,α,L,L3 (ϕ̃) (4.34)

=
∫
D̃L,L3,α

{
|∂1ϕ̃|2 + tan2 ν|∂2ϕ̃|2 + |(−i∂3 + v1)ϕ̃|2−b|ϕ̃|2 + b

2
tan ν|ϕ̃|4

}
dv1dv2dv3,

for ϕ̃ in the space

S̃L,L3,α =
{
ϕ̃ ∈ L2(D̃L,L3,α) :(

|∂1ϕ̃|2 + tan2 ν|∂2ϕ̃|2 + |(−i∂3 + v1)ϕ̃|2
)

∈ L2(D̃L,L3,α),

ϕ̃ = 0 on ∂D̃L,L3,α\{v2 = −v1}
}
.

Also, introduce the following ground state energy,

Ẽ = Ẽ(b, ν, α, L, L3) = inf
ϕ̃∈S̃L,L3,α

Ẽ (ϕ̃). (4.35)
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In the following lemma, we collect the needed results about Ẽ .

Lemma 4.6 Suppose that b ∈ (�0, 1] and α ∈ (0, π). For all ν ∈ (
0, π

2

)
, L > 0

and L3 > 0, the functional Ẽb,ν,α,L,L3 defined in (4.34) has a minimizer, and any
minimizer ϕ̃ = ϕb,ν,α,L,L3 satisfies

Ẽb,ν,α,L,L3(ϕ̃) = Ẽ(b, ν, α, L, L3), ‖ϕ̃‖
L∞(D̃L,L3,α)

≤ 1. (4.36)

and the following Euler-Lagrange equation associated with the minimization prob-
lem (4.35)(

− ∂2v1 − tan2 ν∂2v2 + (−i∂v3 + v1)
2
)
ϕ̃ = b(1 − tan ν|ϕ̃|2)ϕ̃, (4.37)

and∫
D̃L,L3,α

{
|∂1ϕ̃|2 + tan2 ν|∂2ϕ̃|2 + |(−i∂3 + v1)ϕ̃|2 − b|ϕ̃|2 + b

2
tan ν|ϕ̃|4

}
dv

= −b

2
tan ν

∫
D̃L,L3,α

|ϕ̃|4 dv.(4.38)

Furthermore, we have the following conclusions,

(i) In the case when

α = arctan(tan2(ν)), L3 = �, L = √
2� sin(ν), (4.39)

we have the identity

Ẽ(b, ν, α, L, L3) = E(b, ν, �). (4.40)

In particular, still with this special relation between the parameters,

√
2 sin(ν)

Ẽ(b, ν, α, L, L3)

4LL3
= E(b, ν, �)

4�2
. (4.41)

(ii) Let C > 0 and let {(L(n), L
(n)
3 )}n be a sequence satisfying

0 < L(n) −→
n→+∞ +∞, and C−1 <

L(n)

L
(n)
3

< C ∀n, (4.42)

with a fixed constant C > 0. The limit

ẽ = ẽ(b, ν, α) = lim
n→+∞

1

4L(n)L
(n)
3

Ẽ(b, ν, α, L(n), L
(n)
3 )

is finite and is independent of C and of the sequence {(L(n), L
(n)
3 )}n.

(iii) The quantity ẽ(b, ν, α) is independent of α.

Proof Obtaining the Euler-Lagrange (4.37) is rather standard. We use (4.37) to obtain
(4.38) by an integration by parts after multiplying by the conjugate of ϕ̃, and using the
fact that the minimizer satisfies the zero Dirichlet boundary condition at the boundary
portion where v2 = −v1, and satisfies the zero Neumann boundary condition at other
part of the boundary, thus all boundary terms in the integral vanish.
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The proof of the (i) is by a change of coordinates. Composing the two changes of
variables⎧⎨

⎩
x1 = −u1 cos ν − u2 sin ν

x2 = u1 sin ν − u2 cos ν

x3 = u3

and next

⎧⎨
⎩

u1 = −v1
u2 = v2− tan ν

u3 = v3

,

which are respectively a rotation and a dilatation in the second variable, changes the
functional expression and maps the domain D� onto the domain D̃�,ν , where D̃�,ν is
given by

D̃�,ν =
{
(v1, v2) ∈ R

2 : v1 > −v2, −� tan ν

cos ν
< v2 − v1 tan

2 ν <
� tan ν

cos ν

}
×(−�, �).

Combined with the change of function ϕ = √
tan ν ϕ̃ we get

Ẽ (ϕ̃) = Eb,ν,�(ϕ).

It is also clear that when α, L, L3 satisfy (4.39) we have

D̃L,L3,α = D̃�,ν .

Thus, (4.40) is proved. Furthermore, (4.41) follows immediately using Remark 4.5.
The second and the third assertions follow from the results of [12], as mentioned

in Remark 4.2.

Proof of Theorem 1.6 It suffices to prove the monotonicity of e(b, ν) in ν restricted
to ν ∈ (0, π

2 ) since e(b, ·) is continuous by [12, Theorem 3.13]. So in the remainder
of the proof we work under this restriction.

By Lemma 4.6, we can define

Ẽ(b, ν, L) = Ẽ(b, ν, α = π

4
, L, L),

and (as in (4.9))

ẽ(b, ν) = ẽ(b, ν, α = π

4
). (4.43)

Using the first point (i) of Lemma 4.6, we have the following correspondence

e(b, ν) = √
2 sin ν ẽ(b, ν). (4.44)

We consider
�b,ν(ε) = e(b, ν + ε) − e(b, ν).

Using (4.44) and Lemma 4.6, we can write

�b,ν(ε) = √
2 lim
L→+∞

(
sin(ν + ε)

Ẽ(b,ν+ε,L)

4L2 − sin(ν)
Ẽ(b,ν,L)

4L2

)
. (4.45)

We take ε > 0 and we are looking for a positive lower bound on �b,ν(ε) in order to
prove the monotonicity. We will use a minimizer of the functional

Ẽb,ν+ε,L = Ẽb,ν+ε,α= π
4 ,L,L.

This minimizer exists and will be denoted ϕ̃ = ϕ̃b,ν+ε,L. Therefore we have

Ẽb,ν,L(ϕ̃) � Ẽ(b, ν, L) and Ẽb,ν+ε,L(ϕ̃) = Ẽ(b, ν + ε, L).
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Upon inserting this in (4.45) we get

�b,ν(ε) �
√
2

4
lim

L→+∞
1

L2

(
sin(ν + ε)Ẽb,ν+ε,L(ϕ̃) − sin(ν)Ẽb,ν,L(ϕ̃)

)
.

Considering the integral expression given by (4.34) and writing

sin(ν + ε)Ẽb,ν+ε,L(ϕ̃) − sin(ν)Ẽb,ν,L(ϕ̃) = sin(ν + ε)Ẽb,ν+ε,L(ϕ̃)

− sin(ν)Ẽb,ν,L(ϕ̃)−sin(ν)Ẽb,ν+ε,L(ϕ̃)

+ sin(ν)Ẽb,ν+ε,L(ϕ̃), (4.46)

we have

�b,ν(ε) �
√
2
4 lim

L→+∞

(
1
L2 (sin(ν + ε) − sin(ν))Ẽ(b, ν + ε, L)

+ 1
L2 sin(ν)(tan2(ν + ε) − tan2(ν))

∫
D̃L,L, π

4

|∂2ϕ̃|2 dv

+ 1
L2 sin(ν)b2 (tan(ν + ε) − tan(ν))

∫
D̃L,L, π

4

|ϕ̃|4 dv
)
.

For ε � 0 small enough, we have that tan2(ν + ε) − tan2(ν) � 0, so that the term

lim
L→+∞

1

4L2

∫
D̃L,L, π

4

sin(ν)(tan2(ν + ε) − tan2(ν))|∂2ϕ̃|2 dv

is positive and we can discard it in the lower bound. Using the identity (4.38) of
Lemma 4.6 we have

Ẽ(b, ν + ε, L) = −b

2
tan(ν + ε)

∫
D̃L,L, π

4

|ϕ̃|4 dv.

Therefore, we get

�b,ν(ε) �
√
2

4

b

2

(
sin(ν)(tan(ν + ε) − tan(ν))

− (sin(ν + ε) − sin(ν)) tan(ν + ε)
)

lim
L→+∞

1

L2

∫
D̃L,L, π

4

|ϕ̃|4 dv.

To conclude, as ν ∈ (0, π
2 ), it is easy to see that there exists ε0 > 0 small enough

such that for all 0 < ε < ε0

− tan ν(sin(ν + ε) − sin(ν)) + sin(ν + ε)(tan(ν + ε) − tan ν) � 0.

Indeed, by differentiation, we have as ε → 0

− tan ν(sin(ν + ε) − sin(ν)) + sin(ν + ε)(tan(ν + ε) − tan ν)

= ε
(
− tan ν cos(ν) + sin(v)(1 + tan2 ν)

)
+ O(ε2)

= ε sin ν tan2 ν + O(ε2).

This finishes the proof.
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5 Abrikosov Structure on a Surface in 3D

In this section, we prove Theorem 5.5 stated in Section 5.2 below. We are interested
in constructing bounded solutions with lattice structure, i.e. for which the physical
quantities – the density of Cooper pairs |ψ |2, the magnetic field B and the magnetic
current � (

ψ(−i∇ + A)ψ
)
are periodic. This corresponds to states ψ satisfying the

magnetic periodic conditions given by (5.6) below.
Before stating the main result of this section, we should introduce some notation.
First of all, we introduce for an interval J ⊂ R

L2
comp(J × R

2) := {ψ ∈ L2
loc(J × R

2) : ψ ∈ L2(J × K) for all compactK ⊂ R
2}. (5.1)

5.1 Spectral Problemwith Periodic Conditions on a Parallelogram Cell

Let e2 and e3 denote the standard unit vectors (0, 1, 0) and (0, 0, 1) associated with
the variables x2 and x3 (respectively).

Notation 5.1 Let R > 0, R′ > 0 and θ ∈ (0, π). We denote by �R,R′,θ the lattice
(in the x2x3-plane) defined by

�R,R′,θ = spanZ
{
s := Re2, t := R′e

}
,

where e = cos θe2 + sin θe3.
We will denote by DR,R′,θ the following fundamental domain

DR,R′,θ =
{
(x2, x3) ∈ R

2,
x3

tan θ
≤ x2 ≤ x3

tan θ
+ R, 0 ≤ x3 ≤ R′ sin θ

}
.

Notice that for convenience of notation, we have assumed that the system of coor-
dinates is chosen so that one of the ‘legs’ of the lattice is parallel to a coordinate
axis. In general, there can be an angle τ between the lattice and the (projection onto
the x2x3-plane of the) magnetic field. Therefore, this choice necessitates a change of
convention for the magnetic field compared to what has been used in the first part of
the article. As a consequence, we introduce the following notation for the magnetic
vector potential and field,

A = Aν,τ =
⎛
⎝ 0

x1 cos ν sin τ− 1
2x3 sin ν

−x1 cos ν cos τ + 1
2x2 sin ν

⎞
⎠ , (5.2)

and

B = Bν,τ = ∇ × Aν,τ =
⎛
⎝ sin ν

cos ν cos τ

cos ν sin τ

⎞
⎠ . (5.3)

The magnetic flux �Aν,τ
over the cell DR,R′,θ is

�Aν,τ
= 1

2π

∫∫
DR,R′,θ

Bν,τ · e1 dx2dx3 = RR′ sin ν sin θ

2π
. (5.4)
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The flux �Aν,τ
is obviously proportional to the area of the cell RR′ sin θ . As we

are interested in lattice states (i.e. satisfying a double-periodic condition over the
lattice �R,R′,θ ), it is natural to impose the following flux quantization condition

RR′ sin ν sin θ ∈ 2πZ. (5.5)

Under the flux quantization condition (5.5), we can introduce the following
magnetic periodicity condition on wave functions:⎧⎨

⎩
ψ(x1, x2 + R, x3) = ψ(x)e−i R

2 x3 sin ν,

ψ(x1, x2 + R′ cos θ, x3 + R′ sin θ) = ψ(x)e−i R′
2 sin ν(x3 cos θ−x2 sin θ).

(5.6)

The magnetic periodic conditions (5.6) can more compactly be written as

ψ(x + w) = ψ(x)e−igw(x), ∀w ∈ �R,R′,θ , (5.7)

where gw is the function defined as follows

gw(x) = gjs+kt (x) = b

2
((js + kt) ∧ x + (js) ∧ (kt)) , (5.8)

for all w = js + kt in �R,R′,θ (j, k ∈ Z), with b = sin ν. Here, for x, y ∈ R
3, we

have used the definition
x ∧ y = x2y3 − x3y2.

Notice that because

ψ(x + js + kt) = ψ((x + js) + kt) = ψ((x + kt) + js),

when ψ(x) = 0 we are lead to the condition

e−igjs+kt (x) = e−igjs (x+kt)e−igkt (x)
(
= e−igkt (x+js)e−igjs (x)

)
. (5.9)

With our choice of gw given by (5.8), (5.9) follows from (5.5). Thus the quantization
of the flux is important for consistency of these periodic conditions.

We also state for later reference the following identity for wave functions ψ

satisfying (5.6) for all w ∈ �R,R′,θ ,

(−i∇ + Aν,τ )ψ
∣∣
x+w

= e−igw(x) (−i∇ + Aν,τ )ψ
∣∣
x
. (5.10)

Under condition (5.5), we consider the following eigenvalue problem on the set
R+ × DR,R′,θ ⎧⎨

⎩
(−i∇ + Aν,τ )

2ψ = λψ in R+ × DR,R′,θ ,
∂ψ
∂x1

= 0 on ∂R3+ ,

ψ satisfying (5.6) .
(5.11)

Lemma 5.2 We can associate with the spectral problem (5.11), a unique self-adjoint
operator which corresponds to the Friedrichs extension of the following quadratic
form

Qper
ν,θ,τ (ψ) =

∫
R+×DR,R′,θ

|(−i∇ + Aν,τ )ψ |2 dx,
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defined for all ψ in the form domain

H 1
τ (ν, R, R′, θ) = {ψ ∈ L2

comp(R
3+) :

(−i∇ + Aν,τ )ψ ∈ L2
comp(R

3+,C3), ψ satisfies (5.6)}. (5.12)

Proof This is a standard result since Qper
ν,θ,τ defines a closed quadratic form on

H 1
τ (ν, R, R′, θ).

Remark 5.3 Notice that if ϕ, ψ satisfy (5.6), ∂x1ψ
∣∣
x1=0 = 0 and are sufficiently

regular, then

Qper
ν,θ,τ (ϕ, ψ) = 〈ϕ, (−i∇ + Aν,τ )

2ψ〉. (5.13)

This follows by integration by parts using that (by (5.7) and (5.10)),

ϕ(−i∇ + Aν,τ )ψ
∣∣
x+w

= (e−igw(x)ϕ(x)e−igw(x)
(
(−i∇ + Aν,τ )ψ

∣∣
x

)
= ϕ(x)(−i∇ + Aν,τ )ψ(x),

causing the boundary terms to cancel each other pairwise.

Notation 5.4 We denote byLper
τ (ν, θ) the linear self-adjoint operator associated with

the eigenvalue problem (5.11), and by ζτ (ν, R, R′, θ) the following quantity

ζτ (ν, R, R′, θ) = inf σ
(
Lper

τ (ν, θ)
)
.

5.2 Statement of the Result

We present here the statement of the result we prove in this section. Similarly to (1.9)
and (4.1), we define (with the space H 1

τ (ν, R, R′, θ) defined in (5.12).)

Eper
τ (b, ν, R, R′, θ)

= inf
ψ∈H 1

τ (ν,R,R′,θ)

∫
R+×DR,R′,θ

{
|(−i∇ + Aν,τ )ψ |2 − b|ψ |2 + b

2
|ψ |4

}
dx. (5.14)

Theorem 5.5 Suppose that ν ∈ (
0, π

2

)
, that the magnetic flux satisfies (5.5), and

that the linear spectral quantity ζ(ν) from (2.3) satisfies

ζ(ν) < b < 1. (5.15)

Then

ζτ (ν, R, R′, θ) = ζ(ν), (5.16)

and the quantity E
per
τ (b, ν, R, R′, θ) defined in (5.14) is achieved in H 1

τ (ν, R, R′, θ)

with

Eper
τ (b, ν, R, R′, θ) < 0. (5.17)

In particular, minimizers of (5.14) exist and are non-trivial.
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Remark 5.6 Theorem 5.5 states that the lowest eigenvalue of the spectral problem
(5.11) is equal to the lowest eigenvalue of the following spectral problem on R3+,

{
(−i∇ + Aν,τ )

2ψ = λψ in R3+ ,
∂ψ
∂x1

= 0 on ∂R3+ ,
(5.18)

which is ζ(ν).

Remark 5.7 It is easy to see that ζτ is independent of τ . In fact, by a rotation by an
angle τ with respect to the x1 axis (which leaves the half-space R

3+ invariant), it is
easy to see that the Schrödinger operator L(ν) associated with the magnetic potential
Aν given in (1.7) with constant magnetic field on the half-space (defined in (2.1))
and the following self-adjoint operator

Lτ (ν) = (−i∇ + Aν,τ )
2 in L2(R3+) , (5.19)

with domain

D(Lτ (ν)) = {u ∈ L2(R3+) : (−i∇ + Aν,τ )u ∈ L2(R3+,C3) ,

(−i∇ + Aν,τ )
2u ∈ L2(R3+) , ∂x1u = 0 on ∂R3+} ,

are unitarily equivalent. Indeed, the geometrical domain remains unchanged after
the rotation so that the spectrum does not change either. Clearly, this rotation also
maps the eigenfunctions of the operator L(ν) to the eigenfunctions of the operator
Lτ (ν).

Thus, denoting ζτ (ν) the bottom of the spectrum of the operator Lτ (ν), we have
that ζτ (ν) = ζ(ν).

The rest of the section is devoted to the proof of Theorem 5.5.

5.3 Proof of Theorem 5.5

Proof of Theorem 5.5 By standard arguments, it suffices to prove (5.16). Indeed, if
Lper

τ (ν, θ)ψ = ζ(ν)ψ , where as assumed ζ(ν) < b, we get (5.17) by using εψ as a
trial state in (5.14) for sufficiently small ε.

Now (5.16) follows upon combining Lemma 5.10 and Lemma 5.13 below.

So we proceed to establish the spectral estimates of Lemma 5.10 and Lemma 5.13
below.

We consider φ3D
ν defined in (2.5), with f ∈ C ∞

c (R) (for concreteness, let us
consider the same f ∈ C ∞

c (R) as the one specified in the proof of Lemma 2.6).
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Notation 5.8 Related to the mapping mentioned above, we denote by φ3D
ν,τ the eigen-

function of the operator Lτ (ν). This eigenfunction is obviously associated with the
eigenvalue ζ(ν).

We define with gw from (5.8), the following function on R3+

ψ(x) =
∑
w∈�

φ3D
ν,τ (x + w)eigw(x) =

∑
j,k∈Z

φ3D
ν,τ (x + js + kt)eigjs+kt (x). (5.20)

Lemma 5.9 For the function ψ introduced in (5.20), which is defined on R
3+, the

following properties hold.

(1) The functions ψ, (−i∇+Aν,τ )ψ, (−i∇+Aν,τ )
2ψ belong to L2(R+×DR,R′,θ )

and (−i∇ + Aν,τ )
2ψ = ζ(ν)ψ .

(2) The function ψ satisfies the magnetic periodic condition (5.6) and the Neumann
boundary condition ∂ψ

∂x1
= 0 on the set ∂R3+.

Proof We prove (1). We first show that ψ ∈ L2(R+ × DR,R′,θ ). It suffices to show
that ∑

(j,k)∈Z2

aj,k < +∞, (5.21)

with aj,k = ‖φ3D
ν,τ (x + js + kt)‖2

L2(R+×DR,R′,θ )
.

Using the last assertion of Lemma 2.6, there exists a positive constant C > 0 such
that for all x ∈ R

3+

(1 + x2
1)(1 + x2

2)(1 + x2
3)

∣∣φ3D
ν,τ (x1, x2, x3)

∣∣ ≤ C. (5.22)

Inequality (5.21) follows from (5.22). We omit the technical details.
Now (−i∇ + Aν,τ )

2ψ ∈ L2(R+ × DR,R′,θ ) since (−i∇ + Aν,τ )
2ψ = ζ(ν)ψ (in

the sense of distributions). We can obtain that the function (−i∇ + Aν,τ )ψ belongs
to L2(R+ × DR,R′,θ ,C3) proceeding in the same way as for the function ψ . Indeed,
thanks to the last assertion of Lemma 2.6, we have in particular that all the first
derivatives of ψ satisfy an analogous inequality as in (5.22), which is the central
argument. This finishes the proof of 1.

We prove (2). The Neumann boundary condition at x1 = 0 is satisfied for each
term in the sum and is therefore clear. We prove the magnetic periodicity in the form
of (5.7), by calculating

eigj0s+k0 t (x)ψ(x + j0s + k0t)

=
∑

j,k∈Z
φ3D

ν,τ (x + (j + j0)s + (k + k0)t)e
igjs+kt (x+j0s+k0t)eigj0s+k0 t (x). (5.23)

We need to verify that

eigjs+kt (x+j0s+k0t)eigj0s+k0 t (x) = eig(j+j0)s+(k+k0)t (x). (5.24)
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But it follows by direct calculation using the definition (5.8) of gw that

eigjs+kt (x+j0s+k0t)eigj0s+k0 t (x)e−ig(j+j0)s+(k+k0)t (x)

= eib((kt)∧(j0s)+(js)∧(k0t)) = 1, (5.25)

where the last equality uses the flux quantization (5.5). This finishes the proof of
(2).

Lemma 5.10 We have the following estimate:

ζτ (ν, R, R′, θ) ≤ ζ(ν). (5.26)

Proof By Lemma 5.9, ψ is an eigenfunction of Lper
τ (ν, θ) with eigenvalue ζ(ν).

Recall the expression of the magnetic potentialAν,τ defined in (5.2). Thanks to the
translation invariance in the third variable x3, and to the fact that the magnetic field
Bν,τ (see (5.3)) does not have any growth at infinity (it is constant), we can easily
understand that the operator Lper

τ (ν, θ) has essential spectrum. We will use Lemma
5.10 to prove the following result

Lemma 5.11 The operator Lper
τ (ν, θ) has an eigenvalue strictly less than the

infimum of its essential spectrum.

Proof Step 1. To prove that the operator Lper
τ (ν, θ) has an eigenvalue below the

threshold of its essential spectrum, it is enough to prove that

inf σess
(
Lper

τ (ν, θ)
)
� 1. (5.27)

Indeed, as we know that ζ(ν) < 1 for all ν ∈ (
0, π

2

)
(see Lemma 2.3), Lemma

5.10 therefore implies that ζτ (ν, R, R′, θ) < 1 for all ν ∈ (
0, π

2

)
(see Notation 5.4).

Establishing (5.27) will give that the quantity ζτ (ν, R, R′, θ) belongs to the discrete
spectrum of the operator Lper

τ (ν, θ), giving in particular that it is an eigenvalue.
Step 2. We introduce the following self-adjoint operator L, having formally the

same expression as the operator Lper
τ (ν, θ), but considered on the whole space R

3.
By rotational invariance of the operator L, it is well known that its spectrum does
not depend on ν. This operator corresponds to the magnetic Laplacian with constant
magnetic field and we know that (see Proposition 2.1)

inf σ(L) = inf σess(L) = 1. (5.28)

We choose L > 0 (to be chosen large at the end of the proof) and we denote
by Lper,Dir

τ,L (ν, θ) the self-adjoint realization of the linear operator Lper
τ (ν, θ) on

H 1
τ (ν, R, R′, θ), on the subset of functions vanishing on x1 = L. Namely, the domain

of Lper,Dir
τ,L (ν, θ) is the set

{ψ ∈ L2
comp((L, +∞) × R

2) : (−i∇ + Aν,τ )ψ ∈ L2
comp((L, +∞) × R

2,C3),

(−i∇ +Aν,τ )
2ψ ∈ L2

comp((L, +∞)×R
2), ψ satisfies (5.6), ψ = 0 on x1 = L}.
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where we recall that H 1
τ (ν, R, R′, θ) has been introduced in (5.12).

Using Persson’s Theorem ([22], see also [9, Theorem B.1.1]), we have

inf σess
(
Lper

τ (ν, θ)
) = lim

L→+∞ inf σ
(
Lper,Dir

τ,L (ν, θ)
)
. (5.29)

By inclusion of the domains, we have

lim
L→+∞ inf σ

(
Lper,Dir

τ,L (ν, θ)
)
� inf σ

(
Lper,Dir

τ,0 (ν, θ)
)

, (5.30)

where Lper,Dir
τ,0 (ν, θ) is the operator on R

3+ with the same expression as Lper
τ (ν, θ),

and with Dirichlet boundary condition at ∂R3+.
Step 3. Using (5.28), (5.29) and (5.30), we need to prove that

λ0 := inf σ
(
Lper,Dir

τ,0 (ν, θ)
)
� inf σ(L) = 1. (5.31)

To prove (5.31) we construct a sequence (�n) of functions in the domain of the
operator L such that

lim
n→+∞

Q(�n)

‖�n‖2
L2(R3+)

= λ0, (5.32)

where Q is the quadratic form associated with the operator L. We know that there
exists a minimizing sequence (ψn)n∈N∗ such that

lim
n→+∞

Qper,Dir
ν,θ,τ (ψn)

‖ψn‖L2(R3+)

= λ0, (5.33)

where Qper,Dir
ν,θ,τ is the quadratic form associated with the operator Lper,Dir

τ,0 (ν, θ). By
density of the set of smooth functions with support bounded with respect to x1, we
can assume without loss of generality that ψn is smooth and for each n there exists k

such that

supp(ψn) ⊂ {x = (x1, x2, x3) ∈ R
3 : |x1| ≤ k}. (5.34)

We let k(n) be the smallest such integer k. For all n ∈ N
∗, we denote by ψ̃n the

function ψn extended by 0 to the complement of R3+ so that for all n ∈ N
∗, the

function ψ̃n is defined on the whole space R3.
We consider a sequence of cutoff functions (χn)n∈N∗ ⊂ C ∞

c (R) satisfying

0 ≤ χn ≤ 1 on R, χn = 1 on [−n, n], χn = 0 on R\[−(n + 1), n + 1],
(5.35)

and

|∇χn| ≤ C, (5.36)

for all n ∈ N
∗ and where C > 0 is a fixed constant. Using these cutoff functions, we

build the following sequence of real valued functions ηn in C ∞
c (R3) defined (for all

n ∈ N
∗) on R3 as follows

ηn(x) = χk(n)(x1)χn

(x2

R

)
χn

( x3

R′ sin θ

)
. (5.37)
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Notice that the cutoff function ηn defined in (5.37) depends on θ , R, R′ and the
function k but we have chosen not to indicate this dependence to simplify the
notations.

For all n ∈ N
∗, we define �n as

�n = ηnψ̃n.

Thanks to the cutoff, the functions ηnψ̃n belong to the domain of the operator L, for
all n ∈ N

∗. What is more, thanks the choice of k(n) we have

ηn(x)ψ̃n(x) = χn

(x2

R

)
χn

( x3

R′ sin θ

)
ψ̃n(x). (5.38)

We introduce the following sets (for l ∈ N)

C0 = (0, +∞) × DR,R′,θ ,

Cl = (0, +∞) × {(x2, x3) ∈ R
2 : |x2| < lR, |x3| < lR′ sin θ},

Kl = (0, +∞) × {(x2, x3) ∈ R
2 : lR < |x2| < (l + 1)R, or

lR′ sin θ < |x3| < (l + 1)R′ sin θ}.
Notice that these sets depend on θ , R and R′ but we have chosen not to encumber the
notations.

Define

Il := {w ∈ �R,R′,θ : C0 + w ⊂ Cl},
Ĩl := {w ∈ �R,R′,θ : (C0 + w) ∩ Kl = ∅}.

We will use that

|Ĩl |/|Il | → 0, as l → ∞, (5.39)

which easily follows by an area consideration.
We now calculate/estimate using the periodicity of ψ̃n and the definition of ηn∣∣∣∣

∫
|(−i∇ + Aν,τ )�n|2 dx − |In|

∫
C0

|(−i∇ + Aν,τ )ψ̃n|2 dx

∣∣∣∣
�

∫
R
3+\(∪w∈InC0+w)

|(−i∇ + Aν,τ )�n|2 dx

�
∫

∪
w∈Ĩn

(C0+w)

|(−i∇ + Aν,τ )�n|2 dx

� C|Ĩn|
∫
C0

|(−i∇ + Aν,τ )ψ̃n|2 + |ψ̃n|2 dx. (5.40)

Similarly, ∣∣∣∣
∫

|�n|2 dx − |In|
∫
C0

|ψ̃n|2 dx

∣∣∣∣ � |Ĩn|
∫
C0

|ψ̃n|2 dx. (5.41)
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From (5.41) we get using (5.39) that∣∣∣∣∣
∫ |�n|2 dx

|In|
∫
C0 |ψ̃n|2 dx

− 1

∣∣∣∣∣ → 0, as n → ∞. (5.42)

Similarly, from (5.40) we find using (5.39) and (5.33) that∫ |(−i∇ + Aν,τ )�n|2 dx

|In|
∫
C0 |ψ̃n|2 dx

→ λ0. (5.43)

Combining (5.43) and (5.42) we conclude (5.32) which finishes the proof.

Since we know by Lemma 5.11 that ζτ (ν, R, R′, θ) is an eigenvalue strictly below
the essential spectrum we have the following classical result (see for example [9,
Theorem B.5.1]).

Lemma 5.12 Let ψ
R,R′
ν,θ,τ be a normalized eigenfunction of the operator Lper

τ (ν, θ),
associated with the lowest eigenvalue ζτ (ν, R, R′, θ). There exist constants C, α > 0
such that:∫

R+×DR,R′,θ
eαx1

{∣∣ψR,R′
ν,θ,τ (x)

∣∣2 + ∣∣(−i∇ + Aν,τ )ψ
R,R′
ν,θ,τ (x)

∣∣2} dx < C.

Lemma 5.13 We have

ζτ (ν, R, R′, θ) � ζ(ν).

Proof To prove (5.13) it suffices to construct a sequence (�n) of functions in the
domain of the operator L(ν), such that

lim
n→+∞

Qν(�n)

‖�n‖2
L2(R3+)

= ζτ (ν, R, R′, θ), (5.44)

where Qν is the quadratic form associated with the operator L(ν).
Let ψ

R,R′
ν,θ,τ ∈ H 1

τ (ν, R, R′, θ) be an eigenfunction of the operator Lper
τ (ν, θ),

associated with the lowest eigenvalue ζτ (ν, R, R′, θ) (see Lemma 5.11). In particular,

Qper
ν,θ,τ (ψ

R,R′
ν,θ,τ )

‖ψR,R′
ν,θ,τ‖2L2(R+×DR,R′,θ )

= ζτ (ν, R, R′, θ). (5.45)

We consider a sequence (χn)n∈N∗ of cutoff functions (χn) ⊂ C ∞
c (R) satisfying

(5.35) and (5.36). Using these cutoff functions, we define ηn in C ∞
c (R3+) by

ηn(x) = χn (x2) χn (x3) .

Thanks to the cutoff in the variables x2 and x3, and the decay in the variable x1, the
functions �n := ηnψ̃

R,R′
ν,θ,τ belong to the domain of the operator L(ν), for all n ∈ N

∗.
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One can now prove that (�n) satisfies (5.44) using the exact same arguments as in
the proof of Lemma 5.11. We omit the details.
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