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Abstract
In this paper, we consider Harnack inequalities (the gradient estimates) of positive
solutions for two different heat equations via the use of the maximum principle. In
the first part, we obtain the gradient estimate for positive solutions to the following
nonlinear heat equation problem

∂tu = �u + au logu + V u, u > 0

on the compact Riemannian manifold (M, g) of dimension n and with Ric(M) ≥
−K . Here a > 0 and K are some constants and V is a given smooth positive function
on M . Similar results are showed to be true in case when the manifold (M, g) has
compact convex boundary or (M, g) is a complete non-compact Riemannian mani-
fold. In the second part, we study Harnack inequality (gradient estimate) for positive
solution to the following linear heat equation on a compact Riemannian manifold
with non-negative Ricci curvature:

∂tu = �u +
∑

Wiui + V u,

whereWi and V only depend on the space variable x ∈ M . The novelties of our paper
are the refined global gradient estimates for the corresponding evolution equations,
which are not previously considered by other authors such as Yau (Math. Res. Lett.
2(4), 387–399, 1995), Ma (J. Funct. Anal. 241(1), 374–382, 2006), Cao et al. (J.
Funct. Anal. 265, 2312–2330, 2013), Qian (Nonlinear Anal. 73, 1538–1542, 2010).
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1 Introduction

In this paper, we study Harnack inequalities (also called the gradient estimates) for
positive solutions to heat equations of Schrodinger type on Riemannian manifolds. In
the first part, we obtain the gradient estimate for positive solutions to the following
nonlinear heat equation problem

∂tu = �u + au log u + V u. (1.1)

on the compact Riemannian manifold (Mn, g) of dimension n and with Ric(M) ≥
−K . Here a > 0 and K are some uniform constants and V is a given smooth positive
function on M . In recent years there has been increasing interest in the study of the
nonlinear heat equations (1.1) [14]. The special case when V = b is a constant, that
is, a nonlinear heat equation

∂tu = �u + au logu + bu. (1.2)

where a and b are real constants, had been studied by Ma [17], X. Cao et al. [5] and
others. See also [4, 25, 30], and [20] for related works. The motivation for studying
such a nonlinear heat equation is from the soliton solutions of Ricci flow introduced
by Hamilton [10]. L. Ma proved local gradient estimates of positive solutions to the
following elliptic equation

�u + au logu + bu = 0, in (M, g) (1.3)

where a < 0 and b are real constants, (M, g) is a complete noncompact Riemannian
manifolds with Ricci curvature locally bounded below. In 2008 [29], Yang general-
ized Ma’s result and derived a local gradient estimates for positive solution to the
simple parabolic equation (1.2). Since then, it is an interesting question to find gra-
dient estimate for positive solutions the heat equation (1.1) with non-trivial potential
function V . In [18], the author proved that the local gradient estimates holds true for
positive solution to the heat equation (1.1). In particular, L. Ma derived the following
result.

Theorem 1.1 (L. Ma). Assume that the compact n-dimensional Riemannian manifold
(M, g) has non-negative Ricci curvature. Assume that a ≤ 0 and V is a given smooth
function on M such that −�V ≤ A on M for some constant A ≥ 0. Let u > 0 be a
positive smooth solution to the nonlinear equation (1.1). Let f = − logu. Then we
have, for all t > 0

�f − At − n

2t
≤ 0.

In [22], B. Qian obtained an uniform bound for the positive solutions to a simple
nonlinear equation on Riemannian manifolds with Ricci curvature bounded below by
extending Yang’s result. Qian’s result can be stated as below.
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Theorem 1.2 (B. Qian). Let (M, g) be a complete Riemannian manifold without
boundary. Suppose that the Ricci curvature of M is bounded below −K , K ≥ 0. If u
is a positive solution to the elliptic equation

�u + au logu = 0, on M,

then we have, for 2
3 < δ < 1,

⎧
⎨

⎩
u(x) ≥ e− 5n

4 + 5nK
2n , if a < 0,

u(x) ≤ e
Kn

2a(2δ−1) +
√

2Knd
a(2δ−1) , if a > 0,

where d = na√
8(1−δ)(2δ−1)

∨ 4n2K2

(2δ−1)2
.

B. Qian [22] obtained the uniform estimates above based on the method of S.-
T. Yau [27] and proved the above result by the global gradient estimates for the
corresponding nonlinear heat equations. Cao et al. [2], Huang and Ma [11], Huang-
Huang-Li [12], Chen and Chen [8], Ma [19], Qian [22], Souplet and Zhang [23], Wu
[24] and others also found more gradient estimates to related heat equations with
possible drifting terms.

In this work, we prove the following new results for the nonlinear heat equa-
tion (1.1).

Theorem 1.3 Assume that (Mn, g) is an n-dimensional compact Riemannian mani-
fold with Ric(M) ≥ −K for some constant K > 0. Given a > 0 some constant. Let

V be a given smooth positive function on M such that −�V + |∇V |2
K̃

≤ 0 on M for

some K̃ > 0. Let u be a positive solution to the nonlinear heat equation (1.1). Then
we have, for all t > 0 and

|∇ logu|2 − ∂t (logu) + a log u ≤
√

(2K + K̃)n

2δ − 1

√
|∇ log u|2 + d + e

t
+ n

2δt
− V,

where

d = na2

8(1 − δ)(2δ − 1)
∨ (2K + K̃)n

2δ − 1
, e = n

2δ(3δ − 2)
.

The result above can be proved true for the nonlinear heat equation (1.1) on the
compact Riemannian manifold (M, g) with smooth boundary.

Theorem 1.4 Assume that (Mn, g) is an n-dimensional compact Riemannian man-
ifold with smooth convex boundary has Ric(M) ≥ −K for some constant K > 0.
Given a > 0 some constant. Let V be a given smooth positive function on M such

that −�V + |∇V |2
K̃

≤ 0 on M for some K̃ > 0. Let u > 0 be a positive smooth solu-
tion to (1.1) with Neumann boundary condition uν = 0 where ν is the outward unit
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normal to the boundary. Assume that Vν ≤ 0 on the ∂M . Then we have, for all t > 0

and δ ∈
(
2
3 , 1

)
,

|∇ logu|2 − ∂t (logu) + a log u ≤
√

(2K + K̃)n

2δ − 1

√
|∇ log u|2 + d + e

t
+ n

2δt
− V,

where

d = na

8(1 − δ)(2δ − 2)
∨ (2K + K̃)n

2δ − 1
, e = n

2δ(3δ − 2)
.

We remark that our results above are first new results for the (1.1). The arguments
in the proofs are more tricky than previous works since the extra term V u plays an
important role.

Motivated by the works of S.-T. Yau [27], B. Qian [22], X. Cao et al. [5], and
L. Ma [18], we study the gradient estimate for the positive solution to the following
linear heat equation

∂tu = �u +
∑

Wiui + V u, (1.4)

where Wi and V are smooth functions depending only on x. Recall that in [27], S.-T.
Yau studied Harnack inequality for non-self-adjoint equation (1.4), where Wi and V

may depend on t and Yau’s result can be stated as below.

Theorem 1.5 (Yau). Let u be a solution of (1.4) so that (d2 + 1)−1 ∑
i W 2

i and
(d2 + 1)−1V are bounded. Here d is the diameter of the manifold M . Fix ε > 0.
Suppose that we can choose constants α and b so that for any ξ = (ξ1, ..., ξn) ∈ Rn,

α2

n
|ξ |2 ≥ 3ε|ξ |2 − 2

∑
Rij ξj ξj

and
(
b −

∑
Wi,i

)2
>

(
1

4
+ α2

16

)∑

i,j

(Wi,j + Wj,i)
2 + �V − α|∇V |

+1

4

∑
(�Wi)

2 + 1

ε

∑ (∑
RijWi

)2

hold. Then
−(logu)t + |∇ log u|2 +

∑
Wi(log u)i − V

≤ α

√
|∇ logu|2 + d + e

t
+ n

2t
+ b,

where d ≥ α2 and e ≥ n
2 , Rij is the Ricci curvature of the manifold M .

It is clear that the assumptions in Yau’s result above are not simple and Yau’s argu-
ment is based on the deep study of gradient estimates for heat equation in the work
of P. Li and S.-T. Yau [15]. Later, Li [16] generalized the estimates of P. Li and S.-T.
Yau to the semi-linear parabolic equations on complete Riemannian manifolds. Yau
can also generalize Harnack inequalities for heat equations to some non-self-adjoint
evolution equations [26, 27]. Perelman [21] introduce new Harnack quantities and
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derived differential Harnack inequality for the fundamental solution to the backward
heat equation coupled with the Ricci flow without any curvature assumption. Because
Perelman’s gradient estimate for heat kernel plays an important role in Ricci flow,
people are motivated to find extensions of his result to various parabolic problems. In
2008, S. Kuang and Q. S. Zhang [13] established a point-wise gradient estimate for
all positive solutions to the backward heat equation under the Ricci flow on closed
manifolds with nonnegative scalar curvature. We point out that there have been many
important contributions to heat equations on manifolds such as the works [2–4, 6, 7, 9].

We can prove the results below.

Theorem 1.6 Assume that (Mn, g) is an n-dimensional compact Riemannian man-
ifold with Ric(M) ≥ −K for some constant K > 0. Let u be a positive solution to
the heat equation

∂tu = �u +
∑

Wiui + V u, (1.5)

where V is a smooth function on M and Wi are smooth functions on M ×[0, ∞). Let
1
2 < δ < 3

5 , 0 < ε < 1−δ
n
, α ≥

√
(3ε+2K)n

(1−δ)
. Define,

	 = sup

{
1

4ε

∑
(�Wi)

2 + 1

4ε

(∑
RijWi

)2 − �V + α|∇V |

+4 + α2

16ε

∑
(Wi,j + Wj,i)

2
}
.

Then we have, for all t > 0,

|∇ logu|2 − ∂t (log u) +
∑

Wi(logu)i + V

≤
√

(3ε + 2K)n

1 − δ

√
|∇ logu|2 + d + e

t
+ n

(δ + 1)t
+ b,

where

d = 2
√

n	

(1 − δ)3/2
∨ α2, e = 2n

(3 − 5δ)(δ + 1)
, b =

√
n	

1 − δ
.

We remark that our assumption in Theorem 1.6 is very different from that of The-
orem 1.5 obtained by Yau. We think our assumption in the result above is almost
the best hypotheses for the Harnack inequalities for the (1.5). The computation trick
in our proof of Theorem 1.6 is different from that of Theorem 1.3. Similar result
to Theorem 1.6 is also true for positive solutions to equation (1.5) on a complete
non-compact Riemannian manifold, but we shall not formulation it here.

This paper is organized as follows. We prove Theorem 1.3 and Theorem 1.4 in
Section 2. The proof of Theorem 1.6 will be given in Section 3.
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2 The Proof of Theorem 1.3 and Theorem 1.4

Recall that a key tool in deriving the gradient estimates of positive solutions of heat
equations is the following Weitzenbock-Bochner formula [1]: For a smooth function
u on the Riemannian manifold (M, g), it holds that

�|∇u|2 = 2(∇u,∇�u) + 2|∇2u|2 + 2Rc(∇u,∇u),

where Rc is the Ricci tensor of the metric g.
We now prove Theorem 1.3.

Proof of Theorem 1.3 Let ϕ = − logu. Compute,

ϕt = −ut

u
, ϕj = −uj

u
, �ϕ = −�u

u
+ |∇ϕ|2.

Then we have

ϕt = �ϕ − |∇ϕ|2 + aϕ − V,

and

aϕt = ϕtt − �ϕt + 2ϕiϕit .

Let

ψ := ϕt + |∇ϕ|2 − aϕ − α

√
|∇ϕ|2 + β − γ (t) + V,

where α is a positive constant, β and γ are positive functions in t . All of them will
be determined later. Then we have

ψt = ϕtt + 2
∑

ϕiϕit − aϕt − α
∑

ϕiϕit√|∇ϕ|2 + β
− αβ ′

2
√|∇ϕ|2 + β

− γ ′(t),

and

�ψ = (�ϕ)t + 2
∑

ϕ2
ij + 2

∑
ϕi(�ϕ)i + 2

∑
Rijϕiϕj − a�ϕ + �V

− α
∑

ϕ2
ij√|∇ϕ|2 + β

− α
∑

ϕi(�ϕ)i + α
∑

Rijϕiϕj√|∇ϕ|2 + β
+ α

∑
j (

∑
i ϕiϕij )

2

(
√|∇ϕ|2 + β)3

≥ (�ϕ)t + 2
∑

ϕ2
ij + 2

∑
ϕi(�ϕ)i + 2

∑
Rijϕiϕj − a�ϕ + �V

− α
∑

ϕ2
ij√|∇ϕ|2 + β

− α
∑

ϕi(�ϕ)i√|∇ϕ|2 + β
− α

∑
Rijϕiϕj√|∇ϕ|2 + β

.
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Thus,

ψt − �ψ ≤ (ϕtt + 2
∑

ϕiϕit − aϕt ) − (�ϕ)t

− α
∑

ϕiϕit√|∇ϕ|2 + β
− αβ ′

2
√|∇ϕ|2 + β

−γ ′(t) − 2
∑

ϕ2
ij − 2

∑
ϕi(�ϕ)i − 2

∑
Rijϕiϕj + a�ϕ − �V

+ α
∑

ϕ2
ij√|∇ϕ|2 + β

+ α
∑

ϕi(�ϕ)i√|∇ϕ|2 + β
+ α

∑
Rijϕiϕj√|∇ϕ|2 + β

= −2
∑

ϕj

(
ψ+α

√
|∇ϕ|2+β+γ (t)

)

j

− α
∑

ϕiϕit√|∇ϕ|2 + β
− αβ ′

2
√|∇ϕ|2+β

−γ ′(t) − 2
∑

ϕ2
ij − 2

∑
Rijϕiϕj + a�ϕ − �V + α

∑
ϕ2

ij√|∇ϕ|2 + β

+α
∑

ϕi(�ϕ)i√|∇ϕ|2 + β
+ α

∑
Rijϕiϕj√|∇ϕ|2 + β

= −2
∑

ϕjψj − α
∑

ϕj (|∇ϕ|2)j√|∇ϕ|2 + β
− α

∑
ϕiϕit√|∇ϕ|2 + β

− αβ ′

2
√|∇ϕ|2 + β

−γ ′(t) − 2
∑

ϕ2
ij − 2

∑
Rijϕiϕj + a�ϕ − �V + α

∑
ϕ2

ij√|∇ϕ|2 + β

+α
∑

Rijϕiϕj√|∇ϕ|2 + β
+ α

∑
ϕiϕit√|∇ϕ|2 + β

+ α
∑

ϕj (|∇ϕ|2)j√|∇ϕ|2 + β
+ α

∑
ϕiVi√|∇ϕ|2 + β

− αa
∑

ϕiϕj√|∇ϕ|2 + β

= −2
∑

ϕjψj − αβ ′

2
√|∇ϕ|2 + β

− γ ′(t) − 2
∑

ϕ2
ij − 2

∑
Rijϕiϕj

+a�ϕ − �V + α
∑

ϕ2
ij√|∇ϕ|2 + β

+ α
∑

Rijϕiϕj√|∇ϕ|2 + β
− αa

∑
ϕiϕj√|∇ϕ|2 + β

+ α
∑

ϕiVi√|∇ϕ|2 + β

≤ −2∇ϕ∇ψ −
(

α(K + a)
√|∇ϕ|2 + β

− 2K

)
|∇ϕ|2

+
(

α
√
2|∇ϕ|2 + β(t)

− 2

n

)
|�ϕ|2

+a�ϕ − αβ ′(t)
2
√|∇ϕ|2 + β

+ 2|∇ϕ||∇V | − γ ′(t) − �V, (2.1)
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where we have used the assumption α ≤ 2
√|∇ϕ|2 + β(t). Suppose that ψ < 0

when t = 0. Assume that at t0 > 0, ψ becomes zero at some point x0 in the interior
of the manifold and ψ < 0 for all t < t0. Then we have the first order condition
ψt ≥ 0, ∇ψ = 0 at (t0, x0) and the second order conditon �ψ ≤ 0 at (t0, x0). Note
that at the point (t0, x0), we have �ϕ = α

√|∇ϕ|2 + β(t) + γ (t). Hence, at point
(t0, x0), by (2.1), ψt − �ψ ≥ 0 becomes

−
(

α(K + a)
√|∇ϕ|2 + β

− 2K

)
|∇ϕ|2 +

(
α

√
2|∇ϕ|2 + β

− 2

n

)
|�ϕ|2

+ a�ϕ − αβ ′(t)
2
√|∇ϕ|2 + β

− γ ′(t) − �V + 2|∇ϕ||∇V | ≥ 0. (2.2)

Let K̃ > 0. Then we can write

2K|∇ϕ|2 = (2K + K̃)|∇ϕ|2 − K̃|∇ϕ|2.

Let δ ∈ (0, 1). By (2.2), at (t0, x0), we have

0 ≤ (2K + K̃)|∇ϕ|2 − K̃|∇ϕ|2 + 2|∇ϕ||∇V |

+
(

α

n
√|∇ϕ|2 + β

− 2δ

n

)
|�ϕ|2

+
(
2δ

n
− 2

n

)
|�ϕ|2 + a�ϕ − αβ ′

2
√|∇ϕ|2 + β

− γ ′ − �V

≤ (2K + K̃)|∇ϕ|2 +
(

α

n
√|∇ϕ|2 + β

− 2δ

n

)
|�ϕ|2 + na2

8(1 − δ)

− αβ ′

2
√|∇ϕ|2 + β

− γ ′ − �V + |∇V |2
K̃

. (2.3)

We only need to show that (2.3) is violated. We choose γ (t) = f
t
, β = d + e

t
,

where d > α2, e, and f are positive constants, which will be determined later.
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Note that for any 1
2 < δ < 1 we have α

n
√

|∇ϕ|2+β
< 2δ

n
holds. Substituting

�ϕ = α
√|∇ϕ|2 + β(t) + γ (t) at (t0, x0) into (2.3), we have

0 ≤ (2K+K̃)|∇ϕ|2+
(

α

n
√|∇ϕ|2 + β

− 2δ

n

)
(α2(|∇ϕ|2+β)+2αγ

√
|∇ϕ|2 + β

+γ 2) + na2

8(1 − δ)
− αβ ′

2
√|∇ϕ|2 + β

− γ ′ − �V + |∇V |2
K̃

= (2K + K̃)|∇ϕ|2+
(

α

n
√|∇ϕ|2 + β

− 2δ

n

)
(α2(|∇ϕ|2+β) + 2αγ

√
|∇ϕ|2 + β

+γ 2) + na2

8(1 − δ)
+ αe

2t2
√|∇ϕ|2 + β

+ f

t2
− �V + |∇V |2

K̃

=
(

(2K+K̃)+ (1−2δ)α2

n

)
|∇ϕ|2+

(
(1−2δ)α2β

n
+ na2

8(1 − δ)

)
+ f

t2

(
1− 2δf

n

)

+2αf (1 − 2δ)

nt

√
|∇ϕ|2 + β + αf 2

nt2
√|∇ϕ|2 + β

+ αe

2t2
√|∇ϕ|2 + β

− �V + |∇V |2
K̃

.

To make the above be violate, we only need

I1 := 2K + K̃ + (1 − 2δ)α2

n
≤ 0,

I2 := (1 − 2δ)α2β

n
+ na2

8(1 − δ)
< 0,

I3 := 1 − 2δ

n
f ≤ 0,

I4 := 2α(1 − 2δ)f

tn

√
|∇ϕ|2 + β + αf 2

nt2
√|∇ϕ|2 + β

+ αe

2t2
√|∇ϕ|2 + β

− �V + |∇V |2
K̃

≤ 0.

To this end, we choose

α ≥
√

(2K + K̃)n/(2δ − 1), d ≥ na

8(1 − δ)(2δ − 1)
,

f = n

2δ
, e ≥ n

2(3δ − 2)δ
,

where 2
3 < δ < 1. We then complete the proof of Theorem 1.3.
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We remark that Theorem 1.3 can be extended to the complete noncompact mani-
folds (Mn, g) with the bounded function V . This can be done because the maximum
principle hold; see [28] Theorem 1. We use the same function ψ as defined in Theo-
rem 1.3. Provided that ψ < 0 near t = 0, we now applying the maximum principle
to the function ψ on [0, t]×M for any fixed t > 0. Assume that we may find a point
t0 ∈ [0, t] and a sequence of points xk ∈ M such that

�ψ(t0, xk) ≤ 1

k
, |∇ψ |(t0, xk) ≤ 1

k
,

and also

∂tψ(t0, xk) ≥ 0, lim
k→∞ ψ(t0, xk) = 0.

Hence, we have that (∂t−�)ψ ≥ − 1
k
and�ϕ(t0, xk) = ψ(t0, xk)+

√|∇ϕ|2 + β(t)+
γ (t) − V keep positive for k large enough when we choose β = d + f

t
, α, d, f > 0

as desired. The item ∇ϕ∇ψ appearing in (2.1) can be controlled by ε|∇ϕ|2 and a
constant c(ε, k), where c(ε, k) → 0 as k → ∞. So all the steps following (2.1) will
be valid with a bit of modification. Finally, letting k → ∞ and then ε → 0, we can
get the following result.

Theorem 2.1 Assume that (Mn, g) is an n-dimensional complete noncompact Rie-
mannian manifold with Ric(M) ≥ for some K > 0. Given a > 0 some constant for
some K > 0. Let V be a given smooth positive bounded function on M such that

−�V + |∇V |2
K̃

≤ 0 for some K̃ > 0. Let u be a positive solution to the nonlinear heat

equation (1.1) in (M, g) × [0, T ). Then we have, for all t > 0 and δ ∈
(
2
3 , 1

)

|∇ logu|2 − ∂t (logu) + a log u ≤
√
2n(K + K̃)

2δ − 1

√
|∇ log u|2 + d + e

t
+ n

2δt
+ V,

where

d = na2

8(1 − δ)(2K + K̃)
∨ 2n(K + K̃)

2δ − 1
, e = n

2δ(3δ − 2)
.

We now consider the proof of Theorem 1.4. Note that Theorem 1.4 is a variant
of Theorem 1.3 to any compact Riemannian manifold with smooth convex boundary
and Vν ≤ 0 on the boundary. The proof of Theorem 1.4 is similar to the proof of
Theorem 1.3. We need only to exclude the possibility of the maximum point of ψ at
boundary point. If the maximum occurs at the boundary point (t0, x0), then by the
strong maximum principle we have ψν > 0, ϕν = −uν

u
= 0, (ϕt )ν = 0 at this point.

Note that

�ϕ = ϕt + |∇ϕ|2 − aϕ + V

and

|∇ϕ|2ν = 2ϕjϕjν = −2II (∇ϕ, ∇ϕ) ≤ 0.
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So, at (t0, x0),

ψν = |∇ϕ|2ν + (ϕt )ν − aϕν − α(∇ϕ, ∇ν∇ϕ)
√|∇ϕ|2 + β

+ Vν

= −
(
2 − α

√|∇ϕ|2 + β

)
II (∇ϕ, ∇ϕ) + Vν

≤ 0.

This is in contradiction with the ψν > 0. This proves Theorem 1.4.

3 The Proof of Theorem 1.6

As before, we let ϕ = − logu. Then

ϕt = −ut

u
, ϕj = −uj

u
, �ϕ = −�u

u
+ |∇ϕ|2.

Then we have

ϕt = �ϕ − |∇ϕ|2 − V +
∑

Wiϕi .

As in the work [26], we let

ψ := ϕt + |∇ϕ|2 + V −
∑

Wiϕi − α

√
|∇ϕ|2 + β − γ (t) − b,

where α and b are positive constants, β and γ are positive functions in t , which will
be determined later. Then we have

ψt = ϕtt + 2
∑

ϕjϕit −
∑

(Wi)tϕi −
∑

Wiϕit

− α
∑

ϕiϕit√|∇ϕ|2 + β
− αβ ′(t)

2
√|∇ϕ|2 + β

− γ ′(t)

and

�ψ = (�ϕ)t + 2
∑

ϕ2
ij + 2

∑
ϕj (�ϕ)j + 2

∑
Rijϕiϕj −

∑
RijWiϕj

−2
∑

Wi,jϕij −
∑

Wi(�ϕ)i −
∑

(�Wi)ϕi + �V − α
∑

ϕ2
ij√|∇ϕ|2 + β

−α
∑

ϕi(�ϕ)i√|∇ϕ|2 + β
−

∑
Rijϕiϕj√|∇ϕ|2 + β

+ α
∑

j (
∑

i ϕiϕij )
2

3
√

(|∇ϕ|2 + β)2
.

≥ (�ϕ)t + 2
∑

ϕ2
ij + 2

∑
ϕj (�ϕ)j + 2

∑
Rijϕiϕj −

∑
RijWiϕj

−2
∑

Wi,jϕij −
∑

Wi(�ϕ)i −
∑

(�Wi)ϕi + �V

− α
∑

ϕ2
ij√|∇ϕ|2 + β

− α
∑

ϕi(�ϕ)i√|∇ϕ|2 + β
−

∑
Rijϕiϕj√|∇ϕ|2 + β

.
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By these relations, we get

ψt − �ψ ≤ (�ϕ)t − α
∑

ϕiϕit√|∇ϕ|2 + β
− αβ ′(t)

2
√|∇ϕ|2 + β

− γ ′(t) − (�ϕ)t − 2
∑

ϕ2
ij

−2
∑

ϕj (�ϕ)j − 2
∑

Rijϕiϕj +
∑

RijWiϕj + 2
∑

Wi,j ϕij

+
∑

Wi(�ϕ)i +
∑

(�Wi)ϕi − �V + α
∑

ϕ2
ij√|∇ϕ|2 + β

+ α
∑

ϕi(�ϕ)i√|∇ϕ|2 + β

+
∑

Rijϕiϕj√|∇ϕ|2 + β

= − α
∑

ϕiϕit√|∇ϕ|2 + β
− αβ ′(t)

2
√|∇ϕ|2 + β

− γ ′(t) − 2
∑

ϕ2
ij − 2

∑
ϕj (�ϕ)j

−2
∑

Rijϕiϕj +
∑

RijWiϕj + 2
∑

Wi,j ϕij +
∑

Wi(�ϕ)i

+
∑

(�Wi)ϕi − �V + α
∑

ϕ2
ij√|∇ϕ|2 + β

+ α
∑

ϕi(�ϕ)i√|∇ϕ|2 + β
+

∑
Rijϕiϕj√|∇ϕ|2 + β

= −2ϕj (ψ + α

√
|∇ϕ|2 + β + γ (t) + b)j

+
∑

Wi(ψ + α

√
|∇ϕ|2 + β + γ (t) + b)i

−2
∑

ϕ2
ij − 2

∑
Rijϕiϕj +

∑
RijWiϕj + 2

∑
Wi,j ϕij +

∑
Wi(�ϕ)i

+
∑

(�Wi)ϕi − �V + α
∑

ϕ2
ij√|∇ϕ|2 + β

+ α
∑

ϕi(ϕt + |∇ϕ|2 + V − Wiϕi)i√|∇ϕ|2 + β

+α
∑

Rijϕiϕj√|∇ϕ|2 + β
− α

∑
ϕiϕit√|∇ϕ|2 + β

− αβ ′(t)
2
√|∇ϕ|2 + β

− γ ′(t)

= −2ϕjψj − 2αϕjϕiϕij√|∇ϕ|2 + β
+

∑
Wiψi + α

∑
Wiϕjϕij√|∇ϕ|2 + β

− 2
∑

ϕ2
ij

−2
∑

Rijϕiϕj +
∑

RijWiϕj + 2
∑

Wi,j ϕij +
∑

(�Wi)ϕi

−�V + α
∑

ϕ2
ij√|∇ϕ|2 + β

+ α
∑

ϕi(ϕit + ϕjϕij + Vi − Wi,j ϕi − Wiϕij )√|∇ϕ|2 + β

+α
∑

Rijϕiϕj√|∇ϕ|2 + β
− α

∑
ϕiϕit√|∇ϕ|2 + β

− αβ ′(t)
2
√|∇ϕ|2 + β

− γ ′(t)

= −2ϕjψj +
∑

Wiψi − 2
∑

ϕ2
ij − 2

∑
Rijϕiϕj +

∑
RijWiϕj

+2
∑

Wi,j ϕij +
∑

(�Wi)ϕi − �V + α
∑

ϕ2
ij√|∇ϕ|2 + β

+ α
∑

ϕiVi√|∇ϕ|2 + β

−α
∑

Wi,j ϕiϕj√|∇ϕ|2 + β
+ α

∑
Rijϕiϕj√|∇ϕ|2 + β

− αβ ′(t)
2
√|∇ϕ|2 + β

− γ ′(t). (3.1)

Suppose that ψ < 0 when t = 0. Assume that at t0 > 0, ψ becomes zero at
some point x0 in the interior of the manifold and ψ < 0 for t < t0. Then ψt ≥ 0,
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∇ψ = 0 and �ψ ≤ 0 at (t0, x0). Note that at the point (t0, x0), we have �ϕ =
α
√|∇ϕ|2 + β(t) + γ (t) + b. Hence, at point (t0, x0),

0 ≤ −2
∑

ϕ2
ij − 2

∑
Rijϕiϕj +

∑
RijWiϕj + 2

∑
Wi,jϕij

+
∑

(�Wi)ϕi − �V + α
∑

ϕ2
ij√|∇ϕ|2 + β

+ α
∑

ϕiVi√|∇ϕ|2 + β

−α
∑

Wi,jϕiϕj√|∇ϕ|2 + β
+ α

∑
Rijϕiϕj√|∇ϕ|2 + β

− αβ ′(t)
2
√|∇ϕ|2 + β

− γ ′(t)

=
(

α
√|∇ϕ|2 + β

− 2

)
Rijϕiϕj +

(
α

√|∇ϕ|2 + β
− 2

)
∑

ϕ2
ij

+
∑

(Wi,j + Wj,i)ϕij +
∑

(�Wi)ϕi +
∑

RijWiϕj

−α
∑

(Wi,j + Wj,i)ϕiϕj

2
√|∇ϕ|2 + β

+ α
∑

ϕiVi√|∇ϕ|2 + β
− αβ ′(t)

2
√|∇ϕ|2 + β

−γ ′(t) − �V,

where we have used the assumption α ≤ 2
√|∇ϕ|2 + β. By the Ricci curvature lower

bound assumption, we have at (t0, x0),

0 ≤ −
(

α
√|∇ϕ|2 + β

− 2

)
K|∇ϕ|2 +

(
α

n
√|∇ϕ|2 + β

− 2

n

)
|�ϕ|2 + ε|�ϕ|2

+ 1

4ε

∑
(Wi,j + Wj,i)

2 + ε|∇ϕ|2 + 1

4ε

∑
(�Wi)

2 + ε|∇ϕ|2

+ 1

4ε

(∑
RijWi

)2 + ε|∇ϕ|2 + 1

16ε

∑
(Wi,j + Wj,i)

2 + α|∇V |

− αβ ′(t)
2
√|∇ϕ|2 + β

− γ ′(t) − �V

=
(
2K − αK

√|∇ϕ|2 + β
+ 3ε

)
|∇ϕ|2 +

(
α

n
√|∇ϕ|2 + β

− 2

n
+ ε

)
|�ϕ|2

+4 + α2

16ε

∑
(Wi,j + Wj,i)

2 + 1

4ε

∑
(�Wi)

2 + 1

4ε

(∑
RijWi

)2

− αβ ′(t)
2
√|∇ϕ|2 + β

− γ ′(t) + α|∇V | − �V . (3.2)
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We need only to show that (3.2) is violated. Choose γ (t) = f
t
, β = d + e

t
,

where d > α2, e, f are positive constants, which will be determined later. For any
1
2 < δ < 1 and 0 < ε < 1−δ

n
, we can get α

n
√

|∇ϕ|2+β
< 2δ

n
. Then

α

n
√|∇ϕ|2 + β

− 2

n
+ ε <

δ − 1

n
.

Substituting that, at (t0, x0), we have �ϕ = α
√|∇ϕ|2 + β(t) + γ (t) + b into (3.2)

0 ≤ (2K + 3ε)|∇ϕ|2 +
(

α

n
√|∇ϕ|2 + β

− 2

n
+ ε

)(
α

√
|∇ϕ|2 + β + γ (t) + b

)2

+4 + α2

16ε

∑
(Wi,j + Wj,i)

2 + 1

4ε

∑
(�Wi)

2 + α|∇V | + 1

4ε

(∑
RijWi

)2

+ αe

2t2
√|∇ϕ|2 + β

+ f

t2
− �V

= (2K + 3ε)|∇ϕ|2 +
(

α

n
√|∇ϕ|2 + β

− 2

n
+ ε

){
α2(|∇ϕ|2 + β(t)) + 2(γ (t)

+b)α

√
|∇ϕ|2 + β(t) + (γ (t) + b)2

}
+ 4 + α2

16ε

∑
(Wi,j + Wj,i)

2

+ 1

4ε

∑
(�Wi)

2 + α|∇V |+ 1

4ε

(∑
RijWi

)2 + αe

2t2
√|∇ϕ|2 + β

+ f

t2
− �V

≤
(

(δ − 1)α2

n
+ 3ε + 2K

)
|∇ϕ|2 + (δ − 1)α2

n
β + 2(δ − 1)αf

tn

√
|∇ϕ|2 + β

+
(

α

n
√|∇ϕ|2 + β

− 2

n
+ 1 − δ

n

)
f 2

t2
+ 2bα(δ − 1)

n

×
√

|∇ϕ|2 + β + 2f b(δ − 1)

nt
+ (δ − 1)

n
b2 + 1

4ε

∑
(�Wi)

2

+ 1

4ε

(∑
RijWi

)2 + αe

2t2
√|∇ϕ|2 + β

+ f

t2
− �V + α|∇V |

+4 + α2

16ε

∑
(Wi,j + Wj,i)

2

≤
(

(δ − 1)α2

n
+ 3ε + 2K

)
|∇ϕ|2 + f

t2

(
1 − (δ + 1)f

n

)
+ (δ − 1)α2

n
β + 2bα2

n

+2(δ − 1)αf

tn

√
|∇ϕ|2 + β + αf 2

nt2
√|∇ϕ|2 + β

− 2αb(δ + 1)

n

√
|∇ϕ|2 + β

+ αe

2t2
√|∇ϕ|2 + β

+ δ − 1

n
b2 + 1

4ε

∑
(�Wi)

2 + 1

4ε

(∑
RijWi

)2 − �V

+α|∇V | + 4 + α2

16ε

∑
(Wi,j + Wj,i)

2.
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To make the above be violate, we only need

I1 := (δ − 1)α2

n
+ 3ε + 2K ≤ 0,

I2 := (δ − 1)α2β

n
+ 2bα2

n
< 0,

I3 := 1 − (δ + 1)f

n
= 0,

I4 := 2(δ − 1)αf

tn

√
|∇ϕ|2 + β + αf 2

nt2
√|∇ϕ|2 + β

−2αb(δ + 1)

n

√
|∇ϕ|2 + β + αe

2t2
√|∇ϕ|2 + β

≤ 0,

I5 := δ − 1

n
b2 + 1

4ε

∑
(�Wi)

2 + 1

4ε

(∑
RijWi

)2 − �V

+α|∇V | + 4 + α2

16ε

∑
(Wi,j + Wj,i)

2 ≤ 0.

To this end, we need

α ≥ √
(3ε + 2K)n/(1 − δ), d ≥ 2

√
n	

(1 − δ)3/2
,

f = n

δ + 1
, e ≥ 2n

(3 − 5δ)(δ + 1)
, b ≥

√
n	

1 − δ
,

where

	 = sup

{
1

4ε

∑
(�Wi)

2 + 1

4ε

(∑
RijWi

)2 − �V + α|∇V |

+4 + α2

16ε

∑
(Wi,j + Wj,i)

2
}

,

and 1
2 < δ < 3

5 . This completes the proof of Theorem 1.6.
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