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Abstract
We consider time correlation for KPZ growth in 1+1 dimensions in a neighborhood
of a characteristics. We prove convergence of the covariance with droplet, flat and
stationary initial profile. In particular, this provides a rigorous proof of the exact for-
mula of the covariance for the stationary case obtained in Ferrari and Spohn (2011).
Furthermore, we prove the universality of the first order correction when the two
observation times are close and provide a rigorous bound of the error term. This result
holds also for random initial profiles which are not necessarily stationary.

Keywords Last passage percolation · KPZ universality class · Time-time
correlations
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1 Introduction

Stochastic growth models in the Kardar-Parisi-Zhang (KPZ) universality class [34]
on a one-dimensional substrate are described by a height function h(x, t) with x

denoting space and t time. The height function evolves microscopically according
to a random and local dynamics, while on a macroscopic scale the evolution is a
deterministic PDE and the limit shape is non-random. In particular, if the speed of
growth as a function of the gradient of the interface is a strictly convex or concave
function, then the model is in the KPZ universality class. One expects large time
universality under an appropriate scaling limit.
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By studying special models in the KPZ class, the law of the one-point fluctua-
tions and of the spatial statistics are well-known. In particular, the fluctuations scales
as t1/3 and the correlation length as t2/3 (see surveys and lecture notes [13, 17,
23, 28, 44, 46, 51]).1 Furthermore, it is known that non-trivial correlations survive
on the macroscopic time scale if one considers space-time points along character-
istic lines of the PDE for the macroscopic evolution [19, 22]. This phenomenon
is called slow-decorrelation and it indicates that non-trivial processes in a spatial
t2/3-neighborhood of a characteristic and for macroscopic temporal scale is to be
expected. The limit process depends on the initial condition, since this is already the
case for the processes at a fixed time.

The study of the time-time process started much more recently. On the experimen-
tal and numerical simulation side observables like the persistence probability or the
covariance of an appropriately rescaled height function have been studied [49, 50, 53,
54]. On the analytic and rigorous side, the two-time joint distribution of the height
function is known for special initial conditions: Johansson analyzed a model on full
space [32, 33], while Baik and Liu considered a model on a torus [4, 5]. There are also
non-rigorous works on the time-time covariance and on the upper tail of distributions
using replica approach [36–38]. For general (random) initial conditions exact formu-
las on the joint distributions are not yet available. Also, the analysis of the covariance
starting from the available formulas [4, 33] seems to be a difficult task.

In [29] Ferrari and Spohn made some predictions for the behavior of the two-
time covariance for three typical initial conditions based on a last passage percolation
(LPP) picture. In particular, for the stationary case, an exact formula for the covari-
ance of two points along a characteristic has been derived. Furthermore, the behavior
when the macroscopic times were either close or far from each others were provided.
However, the work is not mathematically rigorous since the exchange of the large
time limit and maximum over sums of Airy processes as well as justification for con-
vergence of the covariances are not provided. The work by Corwin, Liu and Wang
[20] showed the way to obtain a rigorous convergence of distribution in terms of the
variational process used in [29], by lifting the finite-dimensional slow-decorrelation
result of [19, 22] to a functional slow-decorrelation statement.

In this paper we consider a last passage percolation model, which can be also seen
as a (version of the) polynuclear growth model. As initial condition we consider the
three standard cases (called droplet, flat and stationary) as in [29], but we extend the
study to random but not stationary initial profiles (see [16] for a related model). In
the first three cases by the method of [20] (simplified in some aspects in [16, 27])
one knows that the limiting distributions of (rescaled) LPP times can be expressed
as a variational problem in terms of some Airy processes. The first result proven in
this paper is the convergence of the covariance of the LPP time to the covariance of
the limiting processes, see Theorem 2.2. As a corollary, this provides a proof for the
exact formula of the covariance for the stationary case of [29]. We actually extend the

1This holds true around point with smooth limit shape. Around shocks there are some differences, see e.g.
[21, 25, 26].
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result by taking points not exactly on the characteristics, but in a t2/3-neighborhood
of it.

Our second result concerns the behavior of the covariance when the two times
are close to each other on a macroscopic scale. Physically we expect to see the
signature of the stationary state as first approximation. This was noticed also in
numerical experiments [50]. This is proven in Theorem 2.5 for all the initial condi-
tions considered. We also provide a rigorous error term, which is compatible with
the experiments.2 To obtain the result, we need to control the spatial process at fixed
time on small scales. This is achieved by comparing with stationary cases on sets of
high probability. The idea goes back to Cator and Pimentel [15] for the droplet case
(extended to general case in [41]). The control on the high probability sets requires
bounds on exit point probabilities, which has to be obtained for each initial profile.
In particular, to achieve a good control in the error term, one can not use soft bounds
as in [7, 41]. Finally, for droplet initial condition we derive a result also when times
are far apart, see Theorem 2.6.

A few weeks after we finished our paper, for the droplet geometry, Basu and Gan-
guly obtained the same exponents for the behaviour at close or far away points [8].
Unlike in our paper, they did not identify the prefactor, but on the other hand, their
result are non-asymptotic as well. One input often used in their paper are the bounds
on transversal fluctuations of [9].

Outline In Section 2 we introduce the model, state some known limiting results nec-
essary for the rest of the paper and provide the main results. In Section 3 we recall the
stationary LPP and the comparison lemmas. In Section 4 we prove Theorem 2.2 on
the convergence of the covariance. In Section 5 we prove Theorem 2.5 on the close
time behaviour, while in Section 6 we sketch the proof of Theorem 2.6. The appendix
contains several bounds on the one-point distribution or on increments, which are
used in the proofs.

2 Model and Results

2.1 LPP and Polynuclear Growth

Consider a collection of i.i.d. random variables ωi,j , i, j ∈ Z with exponential
distribution of parameter one. An up-right path π = (π(0), π(1), . . . , π(n))

on Z
2 from a point A to a point E is a sequence of points in Z

2 with
π(k + 1) − π(k) ∈ {(0, 1), (1, 0)}, with π(0) = A and π(n) = E, and n is called
the length �(π) of π . Given a set of points SA with some random variables (not

2The next order correction is sensitive to the scaling used to define the process. For the scaling used in
this paper the error term seems to be optimal. However, if one scales the random variables to have the
same one-point distribution function, then experimentally the error term is smaller: instead of an error
term with exponent 1−, one gets an exponent min{5/3, 2/3 + α}, where α is the exponent controlling the
convergence of the variance of the height difference to that of the Baik-Rains distribution [52].
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necessarily independent) h0 on SA, but independent of the ω’s, and given a point E,
one defines the last passage time LSA→E as

LSA→E = max
π :A→E
A∈SA

⎛
⎝h0(π(0)) +

∑
1≤k≤n

ωπ(k)

⎞
⎠ . (2.1)

Also, for two points P,Q which are not on the initial set SA, we define LP→Q as
above but without the term h0(π(0)). πmax

SA→E indicates the maximizer of the last

passage time. For continuous random variables, the maximizer is a.s. unique.3

LPP can be though as a stochastic growth model, a version of the polynuclear
growth model, as follows. Let SA = L := {(i, j) ∈ Z

2 | i + j = 0} and let h0

represents a height function at time t = 0. Then one defines the height function at
time t by the relation

h(x, t) = LL → ((x + t)/2, (t − x)/2) (2.2)

for all x−t being even numbers (and set h(x, t) = LL → ((x+t−1)/2, (t−x−1)/2)

for x − t odd). The dynamics of the height function is

h(x, t) = max{h(x − 1, t − 1), h(x, t − 1), h(x + 1, t − 1)}+ω(x+t)/2,(t−x)/2 (2.3)

with initial conditions h(x, 0) = h0(x/2, −x/2) (here ω(x+t)/2,(t−x)/2 = 0 if x − t

is odd).
We are interested in the scaling limit of the height function

(w, τ) �→ lim
t→∞

h(w21/3t2/3, τ t) − τ t

22/3t1/3
(2.4)

or, equivalently, setting E = (τN, τN) + w(2N)2/3(1, −1),

(w, τ) �→ lim
N→∞

LSA→E − 4τN

24/3N1/3
, (2.5)

for different initial conditions4

1. Droplet case. In this case one sets h0 = 0 and further set ω(i, j) = 0 whenever
(i, j) �∈ Z

2+. In terms of LPP this is equivalent to take SA = (0, 0) and h0 = 0.
2. Flat with zero-slope. This means that we take h0 = 0.
3. Stationary with zero-slope. Let {Xk, Yk}k∈Z be i.i.d. random variable Exp(1/2)-

distributed. Then define

h0(x, −x) =
⎧⎨
⎩

∑x
k=1(Xk − Yk), for x ≥ 1,

0, for x = 0,

−∑0
k=x+1(Xk − Yk), for x ≤ −1.

(2.6)

3The only exception will be if h0 is not random, since then the maximizer is unique up to the initial point,
which has weight 0 and thus it is irrelevant.
4The choice of zero-slope is just for convenience as it avoids to introduce a further parameter in the scaling.
However, the inputs used in the proofs are available for non-zero slopes as well.
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4. A family of random initial conditions. We consider the case where for a given
σ ≥ 0, h0 is given by (2.6) multiplied by σ . Clearly, the cases σ = 0 and σ = 1
correspond to the flat and to the stationary cases.

Remark 2.1 In the setting of TASEP, a random initial condition maps to a LPP start-
ing from a random line. Due to functional slow-decorrelation, the weight h0 should
be taken to reflect the first order LPP from a point on the line to its projection onto
the antidiagonal. Thus a-priori one could try to start with the random line used in [16,
27], but since in the scaling limit the result is identical to the one of our choice, we
did not attempt to use this precise mapping.

2.1.1 Limiting Variational Formulas

For 0 < τ ≤ 1, we set5 Eτ = (τN, τN) + (2N)2/3wτ (1, −1) and define the LPP
and its limit as

L�
N(τ) = L�

SA→Eτ
− 4τN

24/3N1/3
, χ�(τ ) := lim

N→∞ L�
N(τ), (2.7)

where the superscript � denotes the different configurations, point-to-point (•), point-
to-line (�), stationary (B) and random (σ ).

The convergence in distribution of the random variables L�
N(τ) are well-known.

Recall that for LPP we have the identity

L�
SA→E1

= max
u∈R

{L�
SA→I (u) + LI(u)→E1} (2.8)

with

I (u) = (τN, τN) + u(2N)2/3(1, −1). (2.9)

Provided that the limit N → ∞ and maxu∈R can be exchanged (which is the case
in all the cases considered here, see [16, 20, 27] for related works), the limiting
processes can be written in terms of Airy processes as follows.

1. Droplet case. Let A2 and Ã2 be two independent Airy2 processes. Then

χ•(τ ) = τ 1/3
[
Ã2(

wτ

τ 2/3 )− w2
τ

τ 4/3

]
,

χ•(1) = max
u∈R

{
τ 1/3

[
Ã2(

u

τ 2/3 ) − u2

τ 4/3

]
+(1−τ)1/3

[
A2

(
u−w1

(1−τ)2/3

)
− (u−w1)

2

(1−τ)4/3

]}
,

(2.10)

The Airy2 process has been discovered in a related polynuclear growth model
setting [43] (see [31] for the case of geometric random variables, or [14] for
a two-parameter generalization). Tightness in this setting was shown in [27],
building on the approach of [15] (while for the geometric case tightness was
shown already in [31]).

5Throughout the paper we do not write explicitly integer parts.
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2. Flat case. Let A1 be an Airy1 process and A2 an Airy2 process, independent of
each other. Then

χ�(τ ) = (2τ)1/3A1(
wτ

(2τ)2/3 ),

χ�(1) = max
u∈R

{
(2τ)1/3A1(

u

(2τ)2/3 ) + (1 − τ)1/3
[
A2

(
u−w1

(1−τ)2/3

)
− (u−w1)

2

(1−τ)4/3

]}
.

(2.11)

The Airy1 process has been discovered in the framework of the totally asymmet-
ric simple exclusion process [11, 48], equivalent through slow-decorrelation to
the LPP [18, 19, 22].

3. Stationary case. Let A2 be an Airy2 process and Astat an Airystat process,
independent of each other. Then

χB(τ ) = τ 1/3Astat

(
wτ

τ 2/3

)
,

χB(1) = max
u∈R

{
τ 1/3Astat

(
u

τ 2/3

)
+ (1 − τ)1/3

[
A2

(
u−w1

(1−τ)2/3

)
− (u−w1)

2

(1−τ)4/3

]}
.

(2.12)

The limit process Airystat (which, in spite of the name, is not stationary) was
obtained in [2].

4. Random initial conditions. For this case, the one-point distribution is given by
the following expression6

P(χσ (1) ≤ s) = P

(
max
u∈R

{A2(u) − u2 + √
2σB(u)} ≤ s

)
, (2.13)

where the Airy2 process and the two-sided standard Brownian motion B are inde-
pendent of each other. Furthermore, we could write formulas similar to the one
of the first three cases in terms of an Airy sheet [35]. However uniqueness in law
of Airy sheet is so-far not proven [35, 40]. Therefore we state the convergence
of the covariance to the covariance of its limit process only for the other cases.
However, the proof could be adapted to the general σ as well, once uniqueness
of the limit is established.

2.2 Main Results

2.2.1 Convergence of the Covariance

As our first result we give a rigorous proof of the convergence of the covariances.

6This was actually proven for the LPP model where instead of the random function on the antidiagonal
one has a random line in [16], see also [27] for general slope. These works were based on the approach in
the geometric random variables case of [20]. Adapting the proof of [27] to this setting to get the variational
formula is straightforward (it is actually even slightly simpler).
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Theorem 2.2 We have

lim
N→∞ Cov

(
L�

N(τ), L�
N(1)

) = Cov
(
χ�(τ), χ�(1)

)
, (2.14)

for � ∈ {•,�,B}.

Remark 2.3 The motivation of this paper is the study of the covariance. However, by
inspecting the proof, one sees that one can generalize the proof to get convergence of
any joint moments of L�

N(τ) and L�
N(1) without the need to new ideas and bounds.

For the stationary process Astat(w)
(d)= maxv∈R{√2B(v) + A2(v) − (v − w)2}

where the Airy2 process, A2, and the two-sided standard Brownian motion, B(v), are
independent [45]. We denote

Fw(s) = P

(
max
v∈R

{√2B(v) + A2(v) − (v − w)2} ≤ s

)
(2.15)

and use the notation ξstat,w for a random variable distributed according to Fw. Due to
stationarity one has the property [6, 42] E(Astat(w)) = 0, which implies

Var(ξstat,w) = E

(
max
v∈R

{√2B(v) + A2(v) − (v − w)2} ≤ s

)2

. (2.16)

For the stationary case, an exact expression for the covariance has been obtained
in [29] for τ in the entire interval [0,1], in the special case wτ = w1 = 0. For general
values of wτ and w1, we obtain

Corollary 2.4 For the stationary LPP, the covariance of the limiting height function
for all τ ∈ (0, 1) can be expressed as

Cov
(
χB(τ ), χB(1)

)
= τ 2/3

2
Var

(
ξstat,τ−2/3wτ

)+ 1

2
Var

(
ξstat,w1

)

− (1 − τ)2/3

2
Var

(
ξstat,(1−τ)−2/3(w1−wτ )

)
. (2.17)

2.2.2 Universal Behavior for τ → 1

In [29] there is a conjecture on the behaviour of the covariance of the limit process
for τ → 1 for the other initial profiles as well. Our second goal is to provide a proof
of such statements together with a rigorous error bound. We also extend the result to
all initial conditions 1-4. Recall that for any random variables X1, X2 it holds

Cov (X1, X2) = 1
2 Var (X1) + 1

2 Var (X2) − 1
2 Var(X2 − X1). (2.18)
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Theorem 2.5 Let us scale w1 = w̃1(1 − τ)2/3 and wτ = w̃τ (1 − τ)2/3. Then as
τ → 1 we have7

Var
(
χ�(τ) − χ�(1)

) = (1 − τ)2/3 Var
(
ξstat,w̃1−w̃τ

)+ O(1 − τ)1−δ, (2.19)

for any δ > 0. In particular, by (2.18), for � = {•,�,B}, we can rewrite

Cov
(
χ�(τ), χ�(1)

) = 1

2
Var

(
ξ�(w1)

)+ τ 2/3

2
Var

(
ξ�(wτ τ

−2/3)
)

− (1 − τ)2/3

2
Var

(
ξstat,w̃1−w̃τ

)+ O(1 − τ)1−δ . (2.20)

Here ξ•(w) + w2 (resp. 22/3ξ�(w)) is distributed according to a GUE (resp. GOE)
Tracy-Widom law and ξB(w) = ξstat,w.

2.2.3 Small τ Behavior for Droplet Initial Conditions

Theorem 2.6 For point-to-point LPP, let wτ = ŵτ τ
2/3. Then the covariance of the

limiting height function for τ → 0 can be expressed as

Cov
(
χ•(τ ), χ•(1)

) = τ 2/3E(A2(ŵτ ) max
u∈R

{A2(u) − u2 + √
2B(u)}) + O(τ 1−δ).

(2.21)

3 The Stationary LPP and its Comparison Lemmas

As shown in [7] the stationary situation can be realized in different ways. For the
purpose of this paper, we will consider the following situations

• On Z
2+: consider the LPP from SA = {(0, 0)} with

ωi,j =

⎧⎪⎪⎨
⎪⎪⎩

0 for i = 0, j = 0,

Exp(1 − ρ) for i ≥ 1, j = 0,

Exp(ρ) for i = 0, j ≥ 1,

Exp(1) for i ≥ 1, j ≥ 1.

(3.1)

This is called stationary LPP with density ρ since the increments of the LPP
along horizontal lines are still sums of iid. Exp(1 − ρ) random variables, as a
special case of Lemma 4.2 of [7]. More generically, the increments along a down-
right path are sums of independent random variables, Exp(1 − ρ) for horizontal
steps, and −Exp(ρ) for vertical steps.

• Consider SA = L = {(i, j) ∈ Z
2 | i + j = 0} and with boundary terms

h0(x, −x) =
⎧⎨
⎩

∑x
k=1(Xk − Yk), for x ≥ 1,

0, for x = 0,

−∑0
k=x+1(Xk − Yk), for x ≤ −1,

(3.2)

7One could also reformulate the result by saying that the error term is O((1 − τ)/ ln(1 − τ)).



Math Phys Anal Geom (2019) 22: 1 Page 9 of 33 1

where {Xk}k∈Z and {Yk}k∈Z are independent random variables with
Xk ∼ Exp(1 − ρ) and Yk ∼ Exp(ρ). Then by Lemma 4.2 of [7] the increments
of the LPP in this model are as in the first case.

We will call a stationary LPP model either of this two settings, depending on the
cases. When we consider the point-to-point problem, we will refer to the station-
ary case as the first setting, while, when considering the other initial conditions, the
stationary LPP will be the second setting.

To prove Theorem 2.5 we are going to use a comparison with the stationary model
of density slightly higher or lower than 1/2. The comparison idea was first used
in [15] and then generalized in [41], with applications in [24, 27, 39, 40]. For that
purpose, we need to introduce the notion of exit point, which is the location where
the maximizer of the LPP exits its boundary terms. Let us define it for both stationary
settings.

Definition 3.1 • The exit point for the stationary LPP to (m, n) with boundary
(3.1) is the last point on the x-axis or the y-axis of the maximizer ending at
(m, n). We introduce the random variable Zρ(m, n) ∈ Z such that, if Zρ(m, n) >

0, then the exit point is (Zρ(m, n), 0), and if Zρ(m, n) < 0, then the exit point
is (0, −Zρ(m, n)).

• The exit point for the stationary LPP to (m, n) with boundary (3.2) is the starting
point of the maximizer ending at (m, n). We use the notation Z̃ρ(m, n) ∈ Z such
that the exit point is (Z̃ρ(m, n),−Z̃ρ(m, n)).

• The exit point for the LPP from L with initial condition h0 is the starting point
of the maximizer ending at (m, n). We use the notation Zh0(m, n) ∈ Z such that
the exit point is (Zh0(m, n),−Zh0(m, n)). For the random initial condition with
parameter σ , we denote Zh0 = Zσ , and for flat initial condition Zh0 = Z�.

Now we state the two comparison lemmas which we are going to use in the proof
of Theorem 2.5.

Lemma 3.2 Denote by Lρ the LPP (3.1) and L• the LPP in the droplet case. Let
0 ≤ m1 ≤ m2 and n1 ≥ n2 ≥ 0. Then if Zρ(m1, n1) ≥ 0, it holds

L•(m2, n2) − L•(m1, n1) ≤ Lρ(m2, n2) − Lρ(m1, n1), (3.3)

while, if Zρ(m2, n2) ≤ 0, then we have

L•(m2, n2) − L•(m1, n1) ≥ Lρ(m2, n2) − Lρ(m1, n1). (3.4)

Lemma 3.3 Denote by Lρ the LPP (3.2) and L� be the LPP from L with boundary
term h0. Let 0 ≤ m1 ≤ m2 and n1 ≥ n2 ≥ 0. Then if Z̃ρ(m1, n1) ≥ Z̃h0(m2, n2), it
holds

L�(m2, n2) − L�(m1, n1) ≤ Lρ(m2, n2) − Lρ(m1, n1), (3.5)

while, if Z̃ρ(m2, n2) ≤ Z̃h0(m1, n1), then we have

L�(m2, n2) − L�(m1, n1) ≥ Lρ(m2, n2) − Lρ(m1, n1). (3.6)



1 Page 10 of 33 Math Phys Anal Geom (2019) 22: 1

For n1 = n2, Lemma 3.2 is in Lemma 1 of [15], while Lemma 3.3 is Lemma 2.1
of [41]. The generalization to points on a down-right path is straightforward. It was
made for instance in the LPP setting (3.2) in Lemma 3.5 of [24].

4 Convergence of the Covariance

4.1 Preliminaries and Notations

A law of large number for point-to-point LPP was proven in [47], namely, for large
(m, n), L(0,0)→(m,n) ≈ (

√
m + √

n)2. From this we can estimate

L�
(0,0)→Eτ

≈ 4τN − w2
τ τ

−124/3N1/3,

L�
(0,0)→I (u) ≈ 4τN − u2τ−124/3(τN)1/3,

LI (u)→E1 ≈ 4(1 − τ)N − (u − w1)
2

1 − τ
24/3N1/3. (4.1)

Denote the rescaled LPP by

L�
N(u, τ) := L�

SA→I (u) − 4(1 − τ)N

24/3N1/3
, (4.2)

with I (u) = (τN, τN) + u(2N)2/3(1, −1) and

L
pp
N (u, τ) := LI(u)→E1 − 4(1 − τ)N

24/3N1/3
, (4.3)

where we recall that E1 = (N, N)+w1(2N)2/3(1, −1). Then, (2.7) and (2.8) become

L�
N(τ) ≡ L�

N(wτ , τ ),

L�
N(1) ≡ L�

N(w1, 1) = max
u∈R

{L�
N(u, τ) + L

pp
N (u, τ)}. (4.4)

Furthermore,

lim
N→∞ L

pp
N (u, τ) = (1 − τ)1/3

[
A2

(
u−w1

(1−τ)2/3

)
− (u−w1)

2

(1−τ)4/3

]
, (4.5)

and
lim

N→∞ L�
N(u, τ) = τ 1/3A�

(
u

τ 2/3

)
, � ∈ {•,�,B}, (4.6)

where

A•(u) = Ã2(u) − u2, A�(u) = 21/3A1(u2−2/3), AB(u) = Astat(u). (4.7)

4.2 Localization of theMaximizer at Time τN

The maximizer of the process L�
N(u, τ) + L

pp
N (u, τ) is confined in the region with

|u| ≤ M if the following event holds


G
M =

{
max|u|≤M

{L�
N(u, τ) + L

pp
N (u, τ)} > max|u|>M

{L�
N(u, τ) + L

pp
N (u, τ)}

}
. (4.8)
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Thus we need to estimate P(
G
M). For any choice of s ∈ R we can write

P(
G
M) ≥ P

(
max|u|≤M

{L�
N(u, τ) + L

pp
N (u, τ)} > s > max|u|>M

{L�
N(u, τ) + L

pp
N (u, τ)}

)

≥ 1 − P(GM) − P(BM), (4.9)

where we defined

GM = { max|u|≤M
{L�

N(u, τ) + L
pp
N (u, τ)} ≤ s},

BM = { max|u|>M
{L�

N(u, τ) + L
pp
N (u, τ)} > s}. (4.10)

The right side of (4.9) is estimated using the following lemma.

Lemma 4.1 Let s = −M2c̃ with c̃ = 1/(16(1 − τ)). Then, there exists a finite M0
such that for any M ≥ M0

P (GM) ≤ Ce−cM2

P (BM) ≤ Ce−cM2
(4.11)

for some constants C, c > 0 uniform in N .

As a direct consequence we have the following localization result.

Corollary 4.2 For any M ≥ M0,

P
(
the maximizer ofL�

N(u, τ) + L
pp
N (u, τ) passes byI (u) with|u| > M

) ≤ 2Ce−cM2

(4.12)
uniformly in N .

Denote by

χ�
M(1) = max|u|≤M

{
τ 1/3A�(τ−2/3u) + (1 − τ)1/3

[
A2

(
u−w1

(1−τ)2/3

)
− (u−w1)

2

(1−τ)4/3

]}

(4.13)
and recall

χ�(τ) = τ 1/3A�(τ−2/3wτ ). (4.14)

Lemma 4.3 We have the convergence of joint distributions

lim
N→∞P

(
max|u|≤M

{L�
N(u, τ) + L

pp
N (u, τ)} ≤ s1; L�

N(wτ , τ ) ≤ s2

)

= P
(
χ�

M(1) ≤ s1; χ�(τ) ≤ s2
)

. (4.15)

Proof It is enough to have weak convergence of the two rescaled process to the
terms in the rhs. As mentioned above, the point-wise convergence have been already
proven. So we need tightness in the space of continuous functions of [−M, M].
Tightness L

pp
N (u, τ) and L•

N(u, τ) can be found in Corollary 4.2 of [27], for LB
N(u, τ)
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it is a direct a direct consequence of Lemma 4.2 of [7] and the standard Donsker’s

theorem. Finally, tightness for L
�

N (u, τ) has been established in [41].

4.2.1 Localization of the Process

Let us prove Lemma 4.1 and Corollary 4.2.

Proof of Lemma 4.1 Recall that to prove this lemma, we take s = s0, with the choice
s0 = −M2c̃ = −M2/(16(1 − τ)).

(1) Bound on P(GM).
We have

P(GM) = P

(
max|u|≤M

{L�
N(u, τ) + L

pp
N (u, τ)} ≤ s0

)

≤ P
(
L•

N(0, τ ) + L
pp
N (0, τ ) ≤ s0

)

≤ P
(
L•

N(0, τ ) ≤ s0/2
)+ P

(
L

pp
N (0, τ ) ≤ s0/2

)
. (4.16)

Now we can use standard estimates on the lower tail of the point-to-point LPP
(see Proposition A.1 in Appendix A) to obtain that (4.16) is bounded by Ce−cM3

uniformly in N , for some constants C, c.
(2) Bound on P(BM). Since similar estimates will be used to derive another result,

we add an extra variable ŝ ≥ 0 in the following computations. The case ŝ = 0
is the one relevant for the present proof.

We have

P(BM) = P

(
max|u|>M

{
L�

N(u, τ) + L
pp
N (u, τ)

}
> s0 + ŝ

)

≤ P

(
max|u|>M

{
L�

N(u, τ) − u2

2(1 − τ)

}
>

s0 + ŝ

2

)

+P

(
max|u|>M

{
L

pp
N (u, τ) + u2

2(1 − τ)

}
>

s0 + ŝ

2

)
. (4.17)

We study separately the two terms of (4.17) and rename them P
(
B1

M

)
and

P
(
B2

M

)
respectively. Remark that the maximum over u is actually a maximum

over M < |u| ≤ O(N1/3), since I (u) need to stay in the backward light cone
of the end-point E1. We will not write this explicitly all the time.

(a) Estimate of P
(
B2

M

)
:

P

(
B2

M

)
= P

(
max|u|>M

{
L

pp
N (u, τ) + u2

2(1 − τ)

}
>

s0 + ŝ

2

)
(4.18)

The bound can be obtained through the decay of the kernel for half-flat
initial condition. The bound on the Fredholm determinant and the kernel
are given as in Theorem 2.6 and Lemma 2.7 of [16] to get

P

(
B2

M

)
≤ Ce−cM2(1−τ)−4/3

e−c̃ŝ . (4.19)
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Alternatively, one could adapt the proof of Lemma 4.3 of [27] to get the
same result.

(b) Estimate of P
(
B1

M

)
:

P

(
B1

M

)
= P

(
max|u|>M

{
L�

N(u, τ) − u2

2(1 − τ)

}
>

s0 + ŝ

2

)
. (4.20)

• Droplet initial condition: for this case, one can estimate it like we made for (4.18)
(with minor changes in the terms depending on τ ). However, since L•

N(u, τ) ≤
L
�

N (u, τ), the droplet upper tail is simply bounded by the upper tail of the flat
initial condition case.

• Flat initial condition: the bound is obtained in Lemma 4.4 below.
• Stationary initial condition: the bounds for the maximum over u > M and for

u < −M are similar and thus we present the details only for the first one.

P

(
max
u>M

{
L�

N(u, τ ) − u2

2(1 − τ)

}
>

s0 + ŝ

2

)

≤ P

(
max
u>M

{
L�

N(u, τ ) − L�
N(M, τ) − u2

2(1 − τ)

}
> s0 + ŝ

4

)

+P

(
L�

N(0, τ ) > − s0

4
+ ŝ

8

)
+ P

(
L�

N(M, τ) − L�
N(0, τ ) > − s0

4
+ ŝ

8

)
. (4.21)

We study separately the three terms of the last line of (4.21). The first term is
bounded using (D.5), the second with (D.1) and the third one with (D.4), with
the final result

P(B1
M) ≤ Ce−cM2−c̃ŝ (4.22)

for some c, c̃ depending on τ , but uniform for all N large enough.

Proof of Corollary 4.2 By (4.16), (4.22), (4.19) we can conclude that

P

(
max|u|≤M

{
L�

N(u, τ) + L
pp
N (u, τ)

}
> max|u|>M

{
L�

N(u, τ) + L
pp
N (u, τ)

})≥1−2Ce−cM2
,

(4.23)
which implies that the probability that the maximizer of L�

N(u, τ)+L
pp
N (u, τ) passes

through I (u) with |u| > M goes to zero as 2Ce−cM2
, for some constants C, c >

0.

Here for simplicity of notation we rename ŝ as s.

Lemma 4.4 For flat initial condition, there exist N0, M0 large enough such that for
all N ≥ N0 and M ≥ M0 it holds

P

(
max

M<|u|<O(N1/3)

{
L
�

N (u, τ) − u2

2(1 − τ)

}
>

s0 + s

2

)
≤ Ce−cse−c̃M2

, (4.24)

for some constants C, c, c̃ independent of N and M .
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Proof By symmetry we can consider only the case u > M , since the bounds for
u < −M are similar. Fix an ε ∈ (0, 1/6). Then,

P

(
max

M<u<O(N1/3)

{
L
�

N (u, τ) − u2

2(1 − τ)

}
>

s0 + s

2

)

≤
Nε∑
�=1

P

(
max

u∈[�M,(�+1)M]

{
L
�

N (u, τ) − u2

2(1 − τ)

}
>

s0 + s

2

)

+
∑

u∈[Nε,O(N2/3)]
P

(
L
�

N (u, τ) − u2

2(1 − τ)
>

s0 + s

2

)
. (4.25)

Notice that v �→ L
�

N (u + v, τ ) and v �→ L
�

N (v, τ ) have the same law for any u.
Thus, we can simply bound (using also (B.3))

P

(
L
�

N (u, τ)− u2

2(1 − τ)
>

s0 + s

2

)
≤ P

(
L
�

N (0, τ )>
s

2
− M2

32(1−τ)
+ N2ε

2(1−τ)

)

≤ Ce−cs/2+cM2/(32(1−τ))−cN2ε/(2(1−τ))

≤ Ce−c̃s−ĉM2
e−cN2ε/(4(1−τ)), (4.26)

for some constants C, c, c̃, ĉ, where the last inequality holds for all N ≥ N0(M).
From this it immediately follows that

∑

u∈[Nε,O(N2/3)]
P

(
L
�

N (u, τ) − u2

2(1 − τ)
>

s0 + s

2

)
≤ Ce−c̃s−ĉM2

. (4.27)

Now we evaluate the first term in (4.25). Using translation-invariance in u we get

P

(
max

u∈[�M,(�+1)M]

{
L
�

N (u, τ) − u2

2(1 − τ)

}
>

s0 + s

2

)

≤ P

(
max

u∈[0,M]
L
�

N (u, τ) >
s

2
− M2

32(1 − τ)
+ �2M2

2(1 − τ)

)

≤ P

(
max

u∈[0,M] L
�

N (u, τ) >
s

2
+ �2M2

4(1 − τ)

)
(4.28)

(a) The first case is s ≥ N2ε. We can still just use the union bound and the
exponential decay to get

(4.28) ≤ N2/3 exp

(
−c

�2M2

4(1 − τ)
− c

s

2

)
≤ N2/3 exp

(
−c

�2M2

4(1 − τ)
− c

s

4
− c

N2ε

4

)

≤ exp(−c1�
2M2 − c2s), (4.29)

for some constants c1, c2 > 0 and all N large enough.
(b) The second case is s ∈ (0, N2ε). Since also � ≤ Nε we have that

x := s
2 + �2M2

8(1−τ)
= O(N2ε) 
 N1/3. The idea is to bound the process in terms
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of the increments of a stationary case. For that reason we first need to get a
formula including the increments of the rescaled LPP, namely we get

(4.50) ≤ P

(
L
�

N (0, τ ) >
s

4
+ �2M2

8(1 − τ)

)

+P

(
max

u∈[0,M]

{
L
�

N (u, τ)−L
�

N (0, τ )
}
>

s

2
+ �2M2

8(1 − τ)

)
.(4.30)

For the first term, we just use (B.3) and obtain

P

(
L
�

N (0, τ ) >
s

4
+ �2M2

8(1 − τ)

)
≤ Ce−cs/4−c�2M2/(8(1−τ)). (4.31)

The sum of this bound over � ≥ 1 leads to a bound C̃e−cs/4−cM2/(8(1−τ)). For
the second term in (4.30), define ρ+ = 1

2 + κN−1/3 and the event


N,κ = {Z̃ρ+(I (0)) > Z̃�(I (u)), for all u ∈ [0, M]}. (4.32)

On this event, by Lemma 3.3, we have

L
�

N (u, τ) − L
�

N (0, τ ) ≤ L
ρ+
N (u, τ) − L

ρ+
N (0, τ ), (4.33)

which in turns gives

P

(
max

u∈[0,M]

{
L
�

N (u, τ) − L
�

N (0, τ )
}

>
s

2
+ �2M2

8(1 − τ)

)

≤ P

(
max

u∈[0,M]
{
L

ρ+
N (u, τ) − L

ρ+
N (0, τ )

}
>

s

2
+ �2M2

8(1 − τ)

)
+ P(
c

N,κ ). (4.34)

By stationarity of the increments we have

L
ρ+
N (u, τ) − L

ρ+
N (0, τ ) = 1

24/3N1/3

�uN2/3�∑
i=1

Zi, (4.35)

where Zi = Xi − Yi with Xi’s i.i.d.Exp(1 − ρ+) and Yi’s i.i.d.Exp(ρ+) ran-

dom variables. Since Mu = ∑�uN2/3�
i=1 Zi is a submartingale, so it is exp(tMu)

for t > 0 (at least for t small enough) and we can use Doob’s inequality for
submartingales,

P

(
max

u∈[0,M]Mu ≥ x

)
≤ inf

t≥0

E
[
etMM

]

etx
= inf

t≥0

E
[
etZ1

]�MN2/3�

etx
. (4.36)

For and ρ+ = 1
2 + κN−1/3. An explicit computation gives, for κ ∈

(0, x/(25/3M)),

(4.36) ≤ exp

(
− (21/3x − 4Mκ)2

4M
+ O(x4N−2/3; κ4N−2/3)

)
. (4.37)
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Thus, with the choice κ = x/(28/3M), we find

P

(
max

u∈[0,M]
{
L

ρ+
N (u, τ) − L

ρ+
N (0, τ )

}
>

s

2
+ �2M2

8(1 − τ)

)

≤ exp

(
− x2

16M

)
≤ exp

(
−c1s

2 − c2�
4M3

)
, (4.38)

for some constants c1, c2 > 0 and all N large enough. Summing this bound
over � ≥ 1 we get Ce−c1s

2−c2M
3

for some constants C, completing the proof of
(4.24).

Lemma 4.5 Let ρ± = 1
2 ± κN−1/3. Define the event


N,κ =
{
Z̃ρ+ (I (0)) ≥ Z̃�(I (u)), ∀u ∈ [0, M]

}
∩
{
Z̃ρ− (I (0)) ≤ Z̃�(I (u)), ∀u ∈ [−M, 0]

}
.

(4.39)

where the exit points are as in Definition 3.1. Then, for all N large enough and all
κ > 0 with κ = o(N1/3),

P(
c
N,κ) ≤ Ce−cκ2

. (4.40)

Proof We need to estimate the complement of the probabilities of the two terms in
(4.39), for instance

P(Z̃�(I (u)) > Z̃ρ+(I (0))), for some u ∈ [0, M]). (4.41)

The estimates are completely analogous, thus we provide the details only for the first
one.

Since Z̃�(I (u)) ≤ Z̃�(I (M)) for all u ∈ [0, M], we have

(4.41) ≤ P(Z̃�(I (M)) > Z̃ρ+(I (0)))

≤ P(Z̃�(I (M)) > α(2N)2/3) + P(Z̃ρ+(I (0))) < α(2N)2/3). (4.42)

By Lemma 4.3 of [27], we have that P(Z̃�(I (M)) > α(2N)2/3) ≤ Ce−cα2
,

for some constants C, c ∈ (0, ∞). Using stationarity of the increments along the
antidiagonal, we have

Z̃ρ+(n − k, n + k)
d= Z̃ρ+(n, n) − k. (4.43)

Thus,

P(Z̃ρ+(I (0)) < α(2N)2/3) = P(Z̃ρ+(I (0))−α(2N)2/3 ≤0)

= P(Z̃ρ+(I (−α))<0)=P(Zρ+(I (−α))<0). (4.44)

The last equality follows from the fact that we can construct the two models on
the same randomness (define the random variables in the model (3.1) as image of
the ones of (3.2) by [7]), for which Z̃ρ+(m, n) < 0 iff Zρ+(m, n) < 0 by simple
geometric considerations.
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Setting (γ 2n, n) = I (−α), and writing ρ+ = 1/(1 + γ ) + κ̃n−1/3, we deduce
that κ̃ = τ 2/3κ − 2−4/3ατ−1/3 + O(κN−1/3). Lemma 2.5 of [27] states8 that if
κ̃ > 0, then P(Zρ+(γ 2n, n) < 0) ≤ Ce−cκ̃2

for some constants C, c > 0. We choose
α = 21/3τκ , which gives κ̃ = 1

2κτ 2/3(1+O(κ/N1/3)). Then, for all N large enough,
we obtain

(4.44) ≤ Ce−c̃κ2
(4.45)

for some constants C, c > 0.

4.2.2 Convergence of the Covariance

To prove Theorem 2.2, first we show that the N → ∞ limit of the covariance of
L�

N(τ) and max|u|≤M

{
L�

N(u, τ) + L
pp
N (u, τ)

}
is the covariance of χ�(τ) and χ�

M(1),
for fixed M > 0. Now that we have proved the localization of the process, we need to
show that the covariance of χ�(τ) and χ�(1) is the M → ∞ limit of the covariance
of the LPP restricted to the region |u| ≤ M .

Proposition 4.6 For any fixed M > 0,

lim
N→∞ Cov

(
L�

N(wτ , τ ), max|u|≤M
{L�

N(u, τ) + L
pp
N (u, τ)}

)
= Cov

(
χ�(τ), χ�

M(1)
)

.

(4.46)

Proof Let us denote

L�
N;M(1) = max|u|≤M

{L�
N(u, τ) + L

pp
N (u, τ)}. (4.47)

By Lemma 4.1 we already have the convergence of joint distributions of L�
N;M(1)

and L�
N(τ) ≡ L�

N(wτ , τ ) to χ�
M(1) and ξ�(τ ). By Cauchy-Schwarz it is enough to

show the convergence of the second moments of L�
N;M(1) and L�

N(τ).
For a random variable XN with distribution function FN(s) = P(XN ≤ s), we

can write

E(X2
N) = 2

∫
R+

s(1 − FN(s))ds − 2
∫
R−

sFN(s)ds. (4.48)

If we know that XN → X in distribution, to show convergence of the second moment
we need only to find g(s) independent of N such that 1 − FN(s) ≤ g(s) for s ≥ 0,
FN(s) ≤ g(s) for s < 0 and that g ∈ L1(R). Then dominated convergence allows
to take the limit in the integrals and obtain E(X2

N) → E(X2). Thus our task is to
find such bounds. Since FN(s) ∈ [0, 1], it is enough to get bounds for the tails, i.e., a
bound for 1 − FN(s) for s ≥ s0 and for FN(s) for s ≤ −s0 for some s0.

(1) limN→∞ E[(L�
N(τ))2] = E[(χ�(τ ))2].

8By inspecting the proof of Lemma 2.5 of [27], one sees that it actually holds true not only for any given
κ , but also for all κ ∈ [0, o(n1/3)].
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• bound on lower tails: due to L�
N(τ) ≥ L•

N(τ), we can use for all cases the
lower bound for the droplet initial condition, which is in Proposition A.1
(by appropriate change of variables).

• bound on upper tails: (a) for the droplet initial condition, this is in Propo-
sition A.1, (b) for the flat initial condition, this is given in Proposition A.1,
(c) for the stationary initial condition,9 we have

P(LB
N(τ) ≤ s) ≤ P(LB

N(0) ≤ s/2) + P(LB
N(τ) − LB

N(0) ≤ s/2). (4.49)

The first term is bounded using Proposition A.4, while the second using
Proposition A.5.

In all cases we have at least exponential decay of the both the upper and lower
tails. This implies the convergence of the second moment as well.

(2) limN→∞ E[(L�
N;M(1))2] = E[(χ�

M(1))2].
• bound on lower tails: we have

P(L�
N;M(1) ≤ s) ≤ P(L�

N (0, τ ) ≤ s/2) + P(L
pp
N (0, τ ) ≤ s/2)

≤ P(L•
N(0, τ ) ≤ s/2) + P(L

pp
N (0, τ ) ≤ s/2) ≤ Ce−c|s|3/2

(4.50)

by Proposition A.1.
• bound on upper tails: we have L�

N;M(1) ≤ L�
N(1) and thus by the estimates

used already in part (1) we have

P(L�
N(1) ≥ s) ≤ Ce−cs . (4.51)

These bounds implies convergence of the second moment as well.

What remains to prove Theorem 2.2 is a control on the contribution to the covari-
ance from the events when the maximizer passed by I (u) for some |u| > M . We
have the decomposition

Cov
(
L�

N(τ), L�
N(1)

)

= Cov
(
L�

N(τ), L�
N;M(1)

)+ Cov
(
L�

N(τ), L�
N(1) − L�

N;M(1)
)

. (4.52)

Given the convergence of the second moments for fixed M by Proposition 4.6, there
is one term left to study:

| Cov
(
L�

N(τ), L�
N(1) − L�

N;M(1)
) |

= |E [L�
N(τ)

(
L�

N(1) − L�
N;M(1)

)]− E
[
L�

N(τ)
]
E
[
L�

N(1) − L�
N;M(1)

] |
≤ 2

(
E
[
(L�

N(τ))2
]
E
[
(L�

N(1) − L�
N;M(1))2

])1/2
, (4.53)

where we used Cauchy-Schwarz to control the second term.

9For stationary initial condition, the convergence of all moments was already proven in [3].
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Lemma 4.7 For any M > 0,

lim
N→∞E

[
(L�

N(1) − L�
N;M(1))2

]
≤ Ce−cM2

(4.54)

as well as

E[(χ�(1) − χ�
M(1))2] ≤ Ce−cM2

. (4.55)

where C, c > 0 are positive constants, uniformly in N .

Proof Let us denote

L�
N;Mc(1) = max|u|>M

{L�
N(u, τ) + L

pp
N (u, τ)}. (4.56)

Since L�
N(1) = max{L�

N;M(1), L�
N;Mc(1)}, we can write

L�
N(1) − L�

N;M(1) = max{0, L�
N;Mc(1) − L�

N;M(1)}. (4.57)

Integrating by parts, we obtain

E
[(

L�
N(1) − L�

N;M(1)
)2] = 2

∫
R+

sP
(
L�

N;Mc(1) − L�
N;M(1) > s

)
. (4.58)

The probability in the r.h.s. of (4.58) can be bounded as

P
(
L�

N;Mc(1)−L�
N;M(1)>s

) ≤ P

(
L�

N;Mc(1) >
s + α

2

)
+ P

(
L�

N;M(1) ≤ α − s

2

)

(4.59)
for any choice of α.

(a) We use the first inequality in (4.28) and obtain

P

(
L�

N;M(1) <
α − s

2

)
≤ P

(
L•

N(0, τ ) <
α − s

4

)
+P

(
Lpp(0, τ ) <

α − s

4

)
.

(4.60)
For any α < 0 and s ≥ 0, by Proposition A.1 we get

P

(
L�

N;M(1) <
α − s

2

)
≤ Ce−c(s−α)3/2

(4.61)

for some constants C, c. Thus it is enough to choose α = −γM2 for some
γ > 0.

(b) Next we bound P

(
L�

N;Mc(1) > s+α
2

)
. Choosing α = − M2

16(1−τ)
and using the

bounds for P(BM) in the proof of Lemma 4.1, we obtain

P

(
L�

N;Mc(1) >
s + α

2

)
≤ Ce−cM2

e−c̃s . (4.62)

Plugging the bounds (4.61) and (231) into (4.58) leads (4.54).
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Finally, (4.55) is proven as follows. By dominated convergence we have that

E[(χ�(1) − χ�
M(1))2] = 2

∫
R+

sP
(
χ�

Mc (1) − χ�
M(1) > s

)

= lim
N→∞ 2

∫
R+

sP
(
L�

N;Mc(1) − L�
N;M(1) > s

) ≤ Ce−cM2
(4.63)

where the last inequality follows from (4.54).

Proof of Theorem 2.2 We have

lim
N→∞ Cov

(
L�

N(τ), L�
N (1)

)

= lim
M→∞ lim

N→∞ Cov
(
L�

N(τ), L�
N,M(1)

)+ lim
M→∞ lim

N→∞ Cov
(
L�

N(τ), L�
N (1) − L�

N,M(1)
)

.(4.64)

By Proposition 4.6, the first term equals Cov(χ�(τ ), χ�
M(1)). By Lemma 4.7, the

second term is 0. Thus what remains is to show that

Cov(χ�(τ ), χ�(1)) = lim
M→∞ Cov(χ�(τ ), χ�

M(1)). (4.65)

This is obtained once we prove that

lim
M→∞E[(χ�(1) − χ�

M(1))2] = 0, (4.66)

which is also part of Lemma 4.7.

4.3 Formula for the Stationary Case

Now we prove the claimed formula for the stationary case. It follows by a simple
computation using the result of Theorem 2.2 for the stationary case and the identity
(2.18).

Proof of Corollary 2.4 Setting X1 = χB(τ ) and X2 = χB(1) in (2.18) we get

Cov
(
χB(τ ), χB(1)

)
= 1

2 Var(χB(τ )) + 1
2 Var(χB(1)) − 1

2 Var(χB(1) − χB(τ )).

(4.67)
The first two terms in (2.17) are an immediate consequence of the convergence of
moments, see proof of Proposition 4.6. For the last term, we have

χB(1) − χB(τ ) = max
u∈R

{
(1 − τ)1/3

[
A2

(
u−w1

(1−τ)2/3

)
− (u−w1)

2

(1−τ)4/3

]

+τ 1/3[Astat(τ
−2/3u) − Astat(τ

−2/3wτ )]
}

. (4.68)
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Changing the variable u = wτ + z(1 − τ)2/3, and calling ξ = w1−wτ

(1−τ)2/3 , it gives

χB(1) − χB(τ ) = (1 − τ)1/3 max
z∈R

{
A2 (z − ξ) − (z − ξ)2

+ τ 1/3

(1 − τ)1/3

[
Astat(τ

−2/3(wτ + z(1 − τ)2/3)) − Astat(τ
−2/3wτ )

]}
.

(4.69)

Next we use the facts: (a) A2(z−ξ)
(d)= A2(z), (b) Astat(a+x)−Astat(a)

(d)= √
2B(x)

with B a standard Brownian motion, and (c) the scaling of Brownian motion, to get

χB(1)−χB(τ )
(d)= (1−τ)1/3 max

z∈R

{√
2B(z) + A2(z)−(z − ξ)2

}
(d)=Astat(ξ)(1−τ)1/3.

(4.70)

5 Behavior Around τ = 1

What we have to prove is

Var
[
χ�(1) − χ�(τ)

] = (1 − τ)2/3 Var
(
ξstat,w̃

)+ O(1 − τ)1−δ, (5.1)

as τ → 1 for all the initial conditions. Clearly the flat and stationary are special case
of the more generic random initial conditions. Define

χ�
M = lim

N→∞ max
|u|≤(1−τ)2/3M

(L�
N(u, τ) + L

pp
N (u, τ))

= lim
N→∞ max|v|≤M

(L�
N((1 − τ)2/3v, τ ) + L

pp
N ((1 − τ)2/3v, τ )). (5.2)

In particular, for droplet, flat, stationary initial conditions, we have

χ�
M = (1−τ)1/3 max|v|≤M

((
τ

1−τ

)1/3
A�

(
v
(

1−τ
τ

)2/3
)

+ A2(v − w̃1) − (v − w̃1)
2
)

,

(5.3)
with A� being the Airy2, Airy1 or Airystat process for � = •,�,B respectively. Also,
recall the notation

χ�(τ) = lim
N→∞ L�

N((1 − τ)2/3w̃τ , τ ) = (1 − τ)1/3
(

τ
1−τ

)1/3
A�

(
ṽ(τ )

(
1−τ
τ

)2/3
)

.

(5.4)
On short scales, A� is expected to behave similar to the stationary state, which is

a two-sided Brownian motion with diffusion coefficient 2. Since the Airy2 process is
stationary, for τ → 1, χ�

M − χ�(τ) should be close to the following expression

ξM,w̃τ ,w̃1 := (1 − τ)1/3 max|v|≤M

{√
2B(v − w̃τ ) + A2(v) − (v − w̃1)

2
}

. (5.5)

In this proof we set
w̃ = w̃1 − w̃τ . (5.6)
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For M = ∞, replacing v − w̃τ → ṽ and using the stationarity of A2 we obtain

ξ∞,w̃τ ,w̃1

(d)= (1 − τ)1/3 max
ṽ∈R

{√2B(ṽ) + A2(ṽ) − (ṽ − w̃)2} = ξstat,w̃. (5.7)

Note that in distribution

(1 − τ)1/3(ξGUE − w̃2) ≤ ξM,w̃τ ,w̃1 ≤ (1 − τ)1/3ξstat,w̃ (5.8)

and therefore we know that the mth moment of ξM,w̃τ ,w̃1 is finite and of order (1 −
τ)m/3.

To control the error term, the idea is to take M depending on τ such that M → ∞
as τ goes to 1. Then the task is to prove that the difference between the second
moment of χ�

M(1)−χ�(τ) and the second moment of ξM,w̃τ ,w̃1 goes to zero as τ → 1.

Lemma 5.1 Let M = 1
(1−τ)δ/2 with δ > 0. Then

∣∣∣E
[
(χ�

M(1) − χ�(τ))2
]

− E
[
ξ2
M,w̃τ ,w̃1

] ∣∣∣ = O(1 − τ)1−δ . (5.9)

We need to control how close the increments of the process over distances of order
(1 − τ)2/3 at time τ are with respect to the increments of Brownian motion.

We present a short technical lemma that will be used in the proof of Lemma 5.1.
Recall Definition 3.1 of the exit point for a LPP with boundary conditions (3.1) (for
the droplet case) or (3.2) (for the random case) and define ρ± = 1

2 ±κN−1/3. Denote

by Lρ±
its associated LPP.

Lemma 5.2 There is an event 
κ with P(
κ) ≥ 1 − C exp
(−cκ̃2

)
, with

(a) for droplet initial condition, κ̃ = κ − M(1−τ)2/3

24/3τ
,

(b) for random initial condition, κ̃ = κ − 2M(1−τ)2/3

24/3τ
,

and constants C, c, M0 ∈ (0, ∞), such that on 
κ the inequalities

ξM,w̃τ ,w̃1 − ε0 ≤ χ�
M(1) − χ�(τ) ≤ ξM,w̃τ ,w̃1 + ε0, (5.10)

hold in distribution, for all M ≥ M0 with ε0 = O(κM(1 − τ)2/3), under the
condition κ̃ > 0.

Proof Let us define

�•
N(u) = L(0,0)→I (u) − L(0,0)→Eτ

24/3N1/3
, �σ

N(u) = Lσ
L→I (u)

− Lσ
L → Eτ

24/3N1/3
, (5.11)

and recall the definitions

L•
N(u, τ) = L(0,0)→I (u) − 4τN

24/3N1/3
, Lσ

N(u, τ ) = Lσ
L → I (u) − 4τN

24/3N1/3
,

L
pp
N (u, τ) = LI(u)→E1 − 4(1 − τ)N

24/3N1/3
. (5.12)

Then we have
L�

N(u, τ) = L�
N(0, τ ) + ��

N(u). (5.13)
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Also, recall that we will use the notation u = v(1 − τ)2/3 and M̃ = M(1 − τ)2/3.
Define the event


N,κ =
{ {Zρ+ (I (−M̃)) > 0, Zρ−(I (M̃)) < 0}, for droplet IC,

{Z̃ρ+ (I (−M̃)) > Zσ (I (M̃)), Z̃ρ−(I (M̃)) < Zσ (I (−M̃))}, for random IC.
(5.14)

Then, on the event 
N,κ we can bound ��
N(u) with the increments of the stationary

LPP with density ρ±, defined as

B±(u) = Lρ±(I (u)) − Lρ±(I (0)) − mρ±u(2N)2/3

24/3N1/3
, (5.15)

where mρ± = 1
1−ρ± − 1

ρ± = 8κN−1/3 +O(N−1). Indeed a minimal modification of

Lemma 3.2 implies, for −M̃ ≤ w < u ≤ M̃ ,
[
B−(u) − B−(w)

]− 4(u − w)κ ≤ L�
N(u, τ) − L�

N(w, τ)

≤ [
B+(u) − B+(w)

]+ 4(u − w)κ (5.16)

for N large enough. Furthermore, Var(B±(u)) = u21/2(1+O(N−2/3)) and B±(0) =
0. Thus by Donsker’s theorem, limN→∞ B±(u) = √

2B(u), with B(u) a standard
two-sided Brownian motion in the space of continuous functions on bounded sets.

Recall that

χ�
M(1) − χ�(τ) = lim

N→∞ max|v|≤M

{
L�

N

(
v(1 − τ)2/3, τ

)
− L�

N(w̃τ (1 − τ)2/3, τ )

+ L
pp
N (v(1 − τ)2/3, τ )

}
(5.17)

and also that v �→ L
pp
N (v(1 − τ)2/3, τ ) converges weakly to (1 − τ)1/3[A2(v)− (v −

w̃1)
2]. Thus, taking the N → ∞ limit and using the inequalities (54) we obtain

P

(
χ�

M(1) − χ�(τ ) ≤ (1 − τ)1/3s
)

≤ P

(
max|v|≤M

{√
2(B(v) − B(w̃τ ) + A2(v) − (v − w̃1)

2 − 4κ(v − w̃τ )(1 − τ)1/3
}

≤ s

)
. (5.18)

Denoting ε = max|v|≤M |4κ(v − w)(1 − τ)1/3| = 6κM(1 − τ)1/3 we obtain

P

(
χ�

M(1) − χ�(τ) ≤ (1 − τ)1/3s
)

≤ P

(
max|v|≤M

{√
2B(v − w̃τ ) + A2(v) − (v − w̃1)

2
}

≤ s + ε

)

= P

(
ξM,w̃τ ,w̃1 ≤ (1 − τ)1/3s + ε0

)
(5.19)

with ε0 = (1 − τ)1/3ε.
Similarly for the lower bound we get

P

(
χ�

M(1) − χ�(τ) > (1 − τ)1/3s
)

≤ P

(
ξM,w̃τ ,w̃1 > (1 − τ)1/3s + ε0

)
. (5.20)

To conclude the proof, we need to estimate P(
N,κ).
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(a) Droplet initial condition: For this case, we apply Lemma 2.5 of [27]. To
estimate P(Zρ±(I (∓M̃)) > 0), we need to set I (∓M̃) = (γ 2n, n). This gives

ρ± = 1

2
± M̃

24/3τN1/3
± κ̃

τ 2/3N1/3
. (5.21)

Then, Lemma 2.5 of [27] gives

P(Zρ±(I (∓M̃)) > 0) ≥ 1 − Ce−cκ̃2 = 1 − Ce−c(τ 2/3κ−2−4/3M̃τ−1/3)2
. (5.22)

The estimates are uniform for all N large enough. Renaming cτ 4/3 as a new
constant c, and 2C by C, we get

P(
N,κ) ≥ 1 − C exp

(
−c

(
κ − M(1 − τ)2/3

24/3τ

)2)
. (5.23)

(b) Random initial condition: We derive a bound only for P(Z̃ρ+(I (−M̃)) <

Zσ (I (M̃))), since bounding P(Z̃ρ−(I (M̃)) < Zσ (I (−M̃))) is completely ana-
logue.

The probability we want to bound is smaller than

P(Z̃ρ+(I (−M̃)) ≤ α(2N)2/3) + P(Zσ (I (M̃)) > α(2N)2/3), (5.24)

and we choose α = 21/3τκ . Exactly as in (4.44), we have

P(Z̃ρ+(I (−M̃)) ≤ α(2N)2/3) = P(Zρ+(I (−M̃ − α)) < 0) ≤ Ce−cκ̃2
(5.25)

with κ̃ = 2τ 2/3
(
κ − (1−τ)2/3M

21/3τ

)
, provided κ̃ > 0.

Now we bound P(Zσ (I (M̃)) > α(2N)2/3). Let J (v) = v(2N)2/3(1, −1), define
the scaled variables

LN(v) = L
J(v)→I (M̃)

− 4(1 − τ)N

24/3N1/3
, WN(v) = h0(J (v))

24/3N1/3
. (5.26)

Then,

P(Zσ (I (M̃)) > α(2N)2/3) ≤ P

(
max
v≤α

(LN(v) + WN(v)) ≤ −s

)

+P

(
max
v>α

(LN(v) + WN(v)) ≥ −s
)

. (5.27)

Since LN(v) ∼ −(v − M̃)2/(τ), we choose s = (α − M̃)2/4.
The first term in (5.27) is bounded by

P (LN(α) + WN(α) ≤ −s) ≤ P

(
LN(α) ≤ − 3

2 s
)

+ P

(
WN(α) ≤ 1

2 s
)

. (5.28)

The first term bounded by C1e
−c2(α−M̃)3

by (A.4). Since WN is a (rescaled) sum of
iid. random variables, we can use the the exponential Chebyshev’s inequality (see
e.g. the proof of (D.4)) and obtain a bound C2e

−c2(α−M̃)4/α .
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The second term in (5.27) is bounded by

P

(
max
v≥α

(
LN(v) + 1

2 (v − M̃)2
)

≥ − 1
2 s

)
+ P

(
max
v≥α

(
WN(v) − 1

2 (v − M̃)2
)

≥ − 1
2 s

)
.

(5.29)

The first term is estimated similarly to (4.18) and leads to a bound C3e
−c3(α−M̃)2

.
The second term is bounded using Doob’s maximal inequality (see e.g. the proof of
(D.5) leading to a bound C4e

−c4(α−M̃)4/α).
Combining these bounds we get P(Zσ (I (M̃)) > α(2N)2/3) ≤ Ce−cκ̃2

, provided
κ̃ > 0, for some constants C, c ∈ (0, ∞) uniformly for all τ in a compact subset
of (0, 1]. Up to renaming cτ 4/3 to c and the constant 2C to C we get the claimed
result.

Now we can prove Lemma 5.1.

Proof of Lemma 5.1 By Lemma 5.2 we have, on a event 
κ with P(
c
κ) ≤ Ce−cκ̃2

,
with

κ̃ = κ − M(1 − τ)2/3

24/3τ
. (5.30)

the inequality

(χ�
M(1) − χ�(τ))1
κ = ξM,w̃τ ,w̃11
κ + ζ1
κ , (5.31)

for some random variables ζ with |ζ | ≤ ε0. Thus

E[(χ�
M(1) − χ�(τ))2] = E[(χ�

M(1) − χ�(τ))21
κ ] + E[(χ�
M(1) − χ�(τ))21
c

κ
].

(5.32)
Using (5.31) we get

E[(χ�
M(1)−χ�(τ))21
κ ] = E(ξ2

M,w̃τ ,w̃1
)−E(ξ2

M,w̃τ ,w̃1
1
c

κ
)+2E(ζ ξM,w̃τ ,w̃11
κ )+E(ζ 21
κ ).

(5.33)

Using Cauchy-Schwarz and the fact that |ζ | ≤ ε0, we get the bounds

E(ξ2
M,w̃τ ,w̃1

1
c
κ
) ≤

√
E(ξ4

M,w̃τ ,w̃1
)P(
c

κ) ≤ C1(1 − τ)2/3e−cκ̃2/2,

|E(ζ ξM,w̃τ ,w̃11
κ )| ≤ ε0

√
E(ξ2

M,w̃τ ,w̃1
) ≤ C2(1 − τ)1/3ε0,

E(ζ 21
κ ) ≤ ε2
0, (5.34)

for some constants C1, C2 (since, as already mentioned, the mth moment of ξM,w̃τ ,w̃1

is of order (1 − τ)m/3).
It remains to bound the last term of (5.32). Let � = {|χ�

M(1) − χ�(τ)| ≤ λ
}

and
decompose (χ�

M(1) − χ�(τ))1
c
κ

as (χ�
M(1) − χ�(τ))1
c

κ
(1� + 1�c). Then,

E[(χ�
M(1) − χ�(τ))21
c

κ
] ≤ E[(χ�

M(1) − χ�(τ))21�c ] + λ2
P(
c

κ). (5.35)
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Integration by parts gives

E
[
(χ�

M(1) − χ�(τ))21�c

]
= λ2

P(|χ�
M(1) − χ�(τ)| > λ)

+ 2
∫ ∞

λ

sP(χ�
M(1) − χ�(τ) > s)ds − 2

∫ −λ

−∞
sP(χ�

M(1) − χ�(τ) ≤ s)ds. (5.36)

Now, for s > 0,

P(χ�
M(1) − χ�(τ) > s) ≤ P(χ�

M(1) ≥ s/2) + P(χ�(τ ) ≤ −s/2), (5.37)

and for s < 0,

P(χ�
M(1) − χ�(τ) ≤ s) ≤ P(χ�

M(1) ≤ s/2) + P(χ�(τ ) ≥ −s/2). (5.38)

Recall that

P(χ�
M(1) > s) ≤ P(χ�(1) > s),

P(χ�
M(1)) ≤ s) ≤ P((1 − τ)1/3Ã2(0) ≤ s) = FGUE(s/(1 − τ)1/3). (5.39)

Since both tails of χ�(1) and of the GUE Tracy-Widom distributions have (at least)
exponential decay (see Appendix C and D), it then follows that

E
[
(χ�

M(1) − χ�(τ))21�c

]
≤ Cλ2e−cλ/(1−τ)1/3

(5.40)

for some constants C, c.
Summing up we have obtained

E[(χ�
M(1) − χ�(τ))2] − E(ξ2

M,w̃τ ,w̃1
)

= O
(
(1 − τ)2/3e−cκ̃2/2; (1 − τ)1/3ε0; ε2

0; λ2e−cκ̃2; λ2e−cλ/(1−τ)1/3
)

,(5.41)

with ε0 = O(κM(1 − τ)2/3). Now we choose M, κ, λ. Let δ ∈ (0, 1/3) be any fixed
number and choose

M = 1

(1 − τ)δ/2
, κ = 1

(1 − τ)δ/2
, λ = 1. (5.42)

Then, the error term in (5.41) is just of order O((1 − τ)1−δ).

Now we are ready to prove Theorem 2.5.

Proof of Theorem 2.5 We have

E
[
(χ�(1)−χ�(τ))2

]
= E

[
(χ�(1)−χ�

M(1))2
]
+E

[
(χ�

M(1) − χ�(τ))2
]

+2E
[
(χ�(1) − χ�

M(1))(χ�
M(1) − χ�(τ))

]
(5.43)

With the choice M = (1 − τ)−δ/2, by Lemma 5.1 we have

E
[
(χ�

M(1) − χ�(τ))2
]

= E[ξ2
M,w̃τ ,w̃1

] + O(1 − τ)1−δ . (5.44)
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By Lemma 4.7, the Cauchy-Schwarz inequality, and ξ∞,w̃ = (1 − τ)1/3ξstat,w̃, we
obtain

E
[
(χ�(1) − χ�(τ))2

]
= (1 − τ)2/3E[ξstat,w̃]2 + O((1 − τ)1−δ). (5.45)

Since E[ξstat,w̃] = 0 the claimed result is proven.

6 Behavior Around τ = 0 for Droplet Initial Conditions

Let us finally explain the asymptotic for τ → 0. The details are simple modifications
of what we made for the case τ → 1. By Theorem 1 of [41], we have local weak
convergence of the Airy2 process to a Brownian motion for τ → 0,

lim
τ→0

(
τ

1−τ

)−1/3
(
Ã2

((
τ

1−τ

)2/3
v

)
− Ã2(0)

)
= √

2B(v). (6.1)

Lemmas 5.1 and 5.2 can be easily readjusted for this case. Let us call wτ = τ 2/3ŵτ .
Then, by Theorem 2.2, renaming u = zτ 2/3,

Cov
(
χ•(τ ), χ•(1)

)

= Cov

(
τ 1/3[Ã2(ŵτ ) − ŵ2

τ ], τ 1/3 max
z∈R

{
Ã2(z) − z2 +

(
1−τ
τ

)1/3
A2(z

τ 2/3

(1−τ)2/3 ) − z2 τ
1−τ

})

= τ 2/3 Cov

(
Ã2(ŵτ ), max

z∈R

{
Ã2(z) − z2 + √

2B(z)
}

+
(

1−τ
τ

)1/3
A2(0)

)
+ O(τ 1−δ)

= τ 2/3 Cov

(
Ã2(ŵτ ), max

z∈R

{
Ã2(z) − z2 + √

2B(z)
})

+ O(τ 1−δ), (6.2)

for any δ > 0, where the covariance of Ã2(ŵτ ) and A2(0) is zero, since they are
independent processes. The second term in the covariance has the same distribution
as ξstat,0, which is has expected value 0. This leads to the claimed result of Theorem
2.6.
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Appendix A: Bounds on Point-to-Point LPP

In the proofs, we use known results for the point-to-point LPP with exponential
random variables, which we recall here.

Proposition A.1 For η ∈ (0, ∞) define μ = (
√

η� + √
�)2, σ = η−1/6(1 + √

η)4/3,
and the rescaled random variable

Lresc
� := L(0,0)→(η�,�) − μ

σ�1/3
. (A.1)
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(a) Limit law

lim
�→∞P(Lresc

� ≤ s) = FGUE(s), (A.2)

with FGUE the GUE Tracy-Widom distribution function.
(b) Bound on upper tail: there exist constants s0, �0, C, c such that

P(Lresc
� ≥ s) ≤ Ce−cs (A.3)

for all � ≥ �0 and s ≥ s0.
(c) Bound on lower tail: there exist constants s0, �0, C, c such that

P(Lresc
� ≤ s) ≤ Ce−c|s|3/2

(A.4)

for all � ≥ �0 and s ≤ −s0.

(a) was proven in Theorem 1.6 of [30]. Using the relation with the Laguerre
ensemble of random matrices (Proposition 6.1 of [1]), or to TASEP described above,
the distribution is given by a Fredholm determinant. An exponential decay of its ker-
nel leads directly to (b). See e.g. Proposition 4.2 of [25] or Lemma 1 of [3] for an
explicit statement. (c) was proven in [3] (Proposition 3 together with (56)). In the
present language it is reported in Proposition 4.3 of [25] as well.

Appendix B: Bounds for Point-to-Line LPP

Proposition B.1 Let L = {(k, −k), k ∈ Z}. Consider the rescaled LPP from L to
(�, �) given by

L
L,resc
� = LL → (�, �) − 4�

24/3�1/3
. (B.1)

(a) Limit law

lim
�→∞P(L

L,resc
� ≤ s) = FGOE(22/3s). (B.2)

(b) Bound on upper tail: there exists constants s0, �0, C, c such that

P(L
L,resc
� ≥ s) ≤ Ce−cs (B.3)

for all � ≥ �0 and s ≥ s0.
(c) Bound on lower tail: there exists constants s0, �0, C, c such that

P(L
L,resc
� ≤ s) ≤ Ce−c|s|3/2

(B.4)

for all � ≥ �0 and s ≤ −s0.

(a) was obtained in [11, 48] in terms of TASEP, which can be directly rewritten
in term of LPP (the complete proof is present in [10]). For general slopes of L it
was shown in [27]. (b) this tails follows from the asymptotic analysis on the corre-
lation kernel made in [10]. (c) It follows from (A.4) since P(LL → (�, �) ≤ x) ≤
P(L(0,0)→(�,�) ≤ x).
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Appendix C: Bounds on LPP with Random Initial Condition

Proposition C.1 Define Lσ
L→(�,�)

= maxk{L(k,−k)→(�,�) + h0(k, −k)} with h0 as in
(2.6), and consider the rescaled LPP time

L
σ,resc
� = Lσ

L→(�,�)
− 4�

24/3�1/3
. (C.1)

Then, there exists constants s0, �0, C, c such that:

(a) Bound on upper tail:

P(L
σ,resc
� ≥ s) ≤ Ce−cs (C.2)

for all � ≥ �0 and s ≥ s0.
(b) Tail on lower tail:

P(L
σ,resc
� ≤ s) ≤ Ce−c|s|3/2

(C.3)

for all � ≥ �0 and s ≤ −s0.

Proof (a) Define J (u) = u(2�)2/3(1, −1) and W�(u) = h0(J (u))/(24/3�1/3). By
Donsker’s theorem, u �→ W�(u) converges weakly to a two-sided Brownian
motion with diffusion coefficient 2σ 2. Further, define

L
pp
� (u) := LJ(u)→(�,�) − 4�

24/3�1/3
. (C.4)

Then, we can write

L
σ,resc
� = max

u
{Lpp

� (u)+W�(u)} ≤ max
u

{Lpp
� (u)+u2/2}+max

u
{W�(u)−u2/2}.

(C.5)
Thus,

P(L
σ,resc
� ≥ s)≤P(max

u
{Lpp

� (u)+u2/2}≥s/2)+P(max
u

{W�(u)−u2/2} ≥ s/2).

(C.6)
By computations based on Doob maximal inequality (used for instance in
(4.36)), one obtains P(maxu{W�(u) − u2/2} ≥ s/2) ≤ Ce−cs2

for some con-
stants C, c > 0. To bound the first term without new estimates, remark that for
any M we can bound

P(max
u

{Lpp
� (u) + u2/2} ≥ s/2) ≤ P(max

u
L

pp
� (u) ≥ s/4 − M2/2)

+P( max|u|>M
{Lpp

� (u) + u2/2} ≥ s/4) (C.7)

The exponential decay in s for the second term is just a special case of (4.19) (set
τ = 0) and it holds for all M ≥ M0, for some finite M0. We fix M = M0 and
then, using the fact that maxu L

pp
� (u) = L

L,resc
� , by (B.3) we have exponential

decay in s for the first term as well.
(b) It follows from (A.4) since P(Lσ

L → (�, �) ≤ x) ≤ P(L(0,0)→(�,�) ≤ x).
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Appendix D: Bounds on Stationary LPP

We now state and give a short proof of the tails of the one-point distribution in the
stationary case with ρ = 1/2 of the LPP to (�, �).

Proposition D.1 Let ρ = 1/2. Then there exists constants s0, �0, C, c such that:

(a) Bound on upper tail:

P(LB
(0,0)→(�,�) ≥ 4� + 24/3s�1/3) ≤ Ce−cs (D.1)

for all � ≥ �0 and s ≥ s0.
(b) Bound on lower tail:

P(LB
(0,0)→(�,�) ≤ 4� + 24/3s�1/3) ≤ Ce−c|s|3/2

(D.2)

for all � ≥ �0 and s ≤ −s0.

Proof (a) One can write LB
(0,0)→(�,�) = max{L|,ρ(�, �), L−,ρ(�, �)}, where

L|,ρ(�, �) (resp. L−,ρ(�, �)) are the LPP with one-sided perturbation only on
i = 0 (resp. j = 0). Then,

P(LB
(0,0)→(�,�) ≥ x) ≤ P(L|,ρ(�, �) ≥ x) + P(L−,ρ(�, �) ≥ x). (D.3)

By choosing x = 4�+ s24/3�1/3, Lemma 3.3 of [27] (based on the estimates on
the correlation kernel in [1]) gives exponential decay in s for all s ≥ s0.

(b) It follows from (A.4), since P(LB
(0,0)→(�,�) ≤ x) ≤ P(L(0,0)→(�,�) ≤ x).

Lemma D.2 Let ρ = 1/2 and define I (u) = (�− 2u�2/3, �+ 2u�2/3). Then, for any
α > 0, we have

P(|LB
(0,0)→I (K) − LB

(0,0)→I (0)| ≥ α�1/3) ≤ 4e−α2/(16K) (D.4)

for all � large enough. Furthermore,

P(max
u≥K

LB
(0,0)→I (u) − LB

(0,0)→I (K) − βu2�1/3 ≥ α�1/3) ≤ Ce− (α+βK2)2

16K , (D.5)

for a constant C and for all β > 0 and α > −βK2 and � large enough.
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Proof The process K �→ YK := LB
(0,0)→I (K) − LB

(0,0)→I (0) is a martingale [7]
given by a sum of i.i.d.zero mean random variables Zj − 2, with Zj ∼ Exp(1/2). By
the exponential Chebyshev inequality,

P(|YK | ≥ α�1/3) ≤ P(YK ≥ α�1/3) + P(−YK ≥ α�1/3)

≤ inf
t≥0

e−tα�1/3
E(et (Z1−2))2K�2/3 + inf

t ′≥0
e−t ′α�1/3

E(e−t ′(Z1−2))2K�2/3
. (C.6)

Using E(et (Z1−2)) = e−2t

1−2t
for t ∈ (0, 1/2) and E(e−t ′(Z1−2)) = e2t ′

1+2t ′ for all t ′ ≥ 0,
after the minimization we obtain

P(|YK | ≥ α�1/3) ≤ 2e−α2/(16K)(1+O(αK−1�−1/3) ≤ 4e−α2/(16K) (C.7)

for all � large enough.
For the second estimate, from the inequality

P(max
u≥K

LB
(0,0)→I (u) − LB

(0,0)→I (K) − βu2�1/3 ≥ α�1/3)

≤
∑
m≥1

P( max
u∈[Km,K(m+1)]

LB
(0,0)→I (u) − LB

(0,0)→I (K) ≥ (α + βK2m2)�1/3)

≤
∑
m≥1

inf
t>0

e−t (α+βK2m2)�1/3
E(et (Z1−2))2Km�2/3

. (C.8)

Maximising over t and taking the sum we finally get10

P

(
max
u≥K

LB
(0,0)→I (u) − LB

(0,0)→I (−K) − βu2�1/3 ≥ α�1/3
)

≤ Ce− (α+βK2)2

16K

(C.9)
for a constant C and for all β > 0 and α > −βK2 and � large enough.

Appendix E: Bounds for point-to-half line LPP

Proposition E.1 Let I (u) = (τN, τN) + u(2N)2/3(1, −1). Then,

P

(
max|u|>M

LI(u)→(N,N) > 4(1 − τ)N + 24/3(s − γM2)N1/3
)

≤ Ce−cM2(1−τ)−4/3
e−c̃s(1−τ)−1/3

(E.1)

for some constants C, c, c̃ > 0, which can be taken uniform in N and uniform for γ

in a compact subset of (0, 1/(1 − τ)).

Proof By symmetry, it is enough to get the bound on the distribution of
maxu<−M LI(u)→(N,N). By first shifting I (−M) to the origin, and then using the

10To be precise, for ε > 0 small, one can bound P(LB
(0,0)→I (u) − LB

(0,0)→I (K) ≥ (α + βK2u2)�1/3)

for all u ≥ εK�1/3 using (C.8) and for m ∈ {1, . . . , ε�1/3} we can minimize over t and compute the series
expansion in the exponent for large �.
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mapping between LPP and TASEP, the distribution function is the same as the dis-
tribution of TASEP particle number n = t/4 + τ̃ (t/2)2/3 at time t = 4(1 − τ)N +
24/3N1/3(s − γM2), starting at xk(0) = −2k, k ≥ 0.

From Proposition 3 of [12] we have an explicit expression in terms of Fred-
holm determinant. The upper tail estimate is standard. Using Hadamard’s bound it
is enough to have a bound on the correlation kernel. In Section 4 of [12] exponen-
tial decay of the rescaled correlation kernel has been proven. Then, simple algebraic
computations give the claimed result.
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18. Corwin, I., Ferrari, P.L., Péché, S.: Limit processes for TASEP with shocks and rarefaction fans. J.

Stat. Phys. 140, 232–267 (2010)
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