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Abstract
This note is a sequel to Rivasseau and Wang (J. Math. Phys. 51, 092304, 2010). We
correct the intermediate field representation for the stable φ2k field theory in zero
dimension introduced there and extend it to the case of complex conjugate fields. For
k = 3 in the complex case we also provide an improved representation which relies
on ordinary convergent Gaussian integrals rather than oscillatory integrals.

Keywords Constructive field theory · Loop vertex expansion · Borel summability

Mathematics Subject Classification (2010) 81T08

1 Introduction

The intermediate field (hereafter called IF) representation and the associated con-
structive loop vertex expansion (LVE) [2–5] have been increasingly used in recent
years [6–13] for models with quartic interactions. It is important to extend such tech-
niques to models with higher order stable interactions, as first attempted in [1]. The
case of a φ6 interaction is treated in sections 2 and 3 of [1], using imaginary Gaussian
measures with a small contour deformation, and the case of a general φ2k interaction
is sketched in section 4 of [1]. Unfortunately Lemma 4.1 as stated there is not cor-
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Cedex, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s11040-018-9281-5&domain=pdf
http://orcid.org/0000-0003-1338-6929
mailto: vincent.rivasseau@gmail.com


23 Page 2 of 20 Math Phys Anal Geom (2018) 21: 23

rect and requires a modification.1 Also the number of intermediate fields introduced
in [1] is not optimal. Finally we found that the loop vertex expansion in [1] is not
correct since the interpolation of imaginary Gaussian covariances through forest for-
mulas is not fully justified. Hence the main purpose of this paper is to correct [1],
to give a proof of Borel-Leroy summability (since the one in [1] is incorrect), and to
give improved intermediate field representations for the partition functions of such
toy models. It should lay the ground for future extensions to high order interactions
of constructive techniques such as the LVE or its multiscale extension [14].

This multiscale loop vertex representation or MLVE adds a Fermionic expansion
to the LVE. This Fermionic layer performs the usual removal of hard core constraints
between momentum slices (as in a Mayer expansion). It is required to treat theories
with renormalization. In particular it has been the key tool to construct superrenor-
malizable tensor models [13, 15, 16]. However it is not clear yet whether this MLVE
is well-adapted to local quantum field theory, since the spatial decay of correlation
functions is difficult to establish within the LVE formalism (see however [3]). This
remains a key question for future constructive studies.

In the next section we gather some mathematical prerequisites on Gaussian imagi-
nary integrals and Borel-Leroy summability. We also introduce the models discussed
in this paper, namely the (stable) λφ2k model and its complex λ(φ̄φ)k version. They
are zero-dimensional, hence toy models useful to test constructive methods in quan-
tum field theory [4]. Their partition functions Zk(λ) and Zc

k(λ) are the generating
functions for counting φ2k or (φ̄φ)k vacuum Feynman graphs. Using their ordinary
integral representation we check that these partition functions are the Borel-Leroy
sum of their perturbative expansion in powers of λ.

In Section 3, starting from this ordinary representation, we guess the form of
an intermediate field representation, using as in [1] imaginary Gaussian integrals
with suitable integration contours ensuring convergence. This guess is based on
commuting some integrals without caring about convergence.

Then in Section 4 we check that our guess is in fact an absolutely convergent inte-
gral, which is again the Borel sum of its perturbative expansion. Since this expansion
is the same as the initial one, from unicity of the Borel-Leroy sum we conclude a
posteriori that our guess is indeed a correct (non-perturbative) representation of the
partition functions Zk(λ) and Zc

k(λ).
The “free energies” logZk(λ) and logZc

k(λ) are physically more interesting than
the partition functions. They are the generating functions of connected φ2k or (φ̄φ)k

vacuum Feynman graphs. The LVE combines an intermediate field representation
with a forest formula and a replica trick to compute directly these functions through
a convergent expansion. In spite of several attempts, we have not been able yet to
define a convergent LVE for the imaginary Gaussian intermediate field representation
of Section 3, hence correct the last problem in [1]. Therefore in Section 5 of this

1In fact the corresponding correct Lemma happens to be also Lemma IV.1 of this paper. It combines
bounds on complex arguments with a Hilbert-Schmidt bound on the norm of a matrix to reach (4.5). This
rather subtle combination is necessary and had been missed in [1].
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paper we introduce still another intermediate representation, better adapted to this
task. Since it is also more complicated, we limit ourselves to give it in the k = 3
complex case.

After completion of this work our representation has been generalized for matrix
and tensor models with positive interaction [17]. Moreover the improved represen-
tation of Section 5 has been extended to any k � 3 in [18]. It has been applied
to the corresponding matrix models with stable λTrM2k interaction in [19], proving
existence of a coupling constant analyticity domain for such models which does not
shrink as the size N of the matrix tends to infinity.

2 Prerequisites

2.1 Imaginary GaussianMeasures

Consider a function f (z) which is analytic in the strip �z � δ and exponentially
bounded in that domain by Keη|z| for some 0 � η < δ, where K is some constant.

The imaginary Gaussian integral of f with covariance ±iC, where C > 0, is
defined as∫

dμ±iC(x)f (x) :=
∫

C±,ε

e−z2/±2iCdz√±2πiC
f (z) =

∫
C±,ε

e±iz2/2Cdz√±2πiC
f (z) (2.1)

where the contour C±,ε can be for instance chosen as t → z(t) = t ± iε tanh(t)
for any ε ∈]Cη, δ[, where t ∈ R. Remark indeed that from our hypotheses on f ,
the integral (2.1) is well defined and absolutely convergent for Cη < ε < δ, and by
Cauchy theorem, independent of ε ∈]Cη, δ[. The contour C+,ε is shown in Fig. 1.

Although the result of integration does not depend on the contour, actual bounds
on the result typically depend on choosing particular contours in which ε is not too
small, see Section 4. Furthermore the Gaussian rules of integration still apply, e.g.
defining (2n − 1)!! := (2n − 1)(2n − 3) · · · 5.3.1∫

dμ±iC(x)x2n = (±iC)n(2n − 1)!! . (2.2)

This is easy to check since a polynomial is an entire function and we can deform the
contour into z = x + ix, in which case we recover an ordinary Gaussian integration.
Similarly ∫

dμ±iC(x)eax = e±iCa2/2, (2.3)

Fig. 1 The integration contour C+,ε
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the integral being absolutely convergent for any contour such that C|a| < ε.
The imaginary complex normalized Gaussian measures dμc±iC(z) of covariance

±i for a complex variable z = x+iy is similarly defined as a pair of independent real
normalized Gaussian measuresof covariance C, one for x and one for y. (2.2)-(2.3)
generalize to

∫
dμc±iC(x)znz̄n̄ = δnn̄(±iC)nn! (2.4)

and ∫
dμc±iC(z)eaz+bz̄ = e±iabC, (2.5)

again this last integral being absolutely convergent if C sup{|a|, |b|} < ε. The inte-
grals correspond to complexifications of the two dimensional integral

∫
C

dzdz̄ =∫ +∞
−∞ dx

∫ +∞
−∞ dy into the product of two contour integrals on C+,ε , one for x and

one for y.

2.2 Borel-Leroy Summability

Usual Borel summability concerns functions analytic in a domain with opening angle
π asymptotic to power series

∑∞
n=0 anλ

n with large n behavior an � cnn!. Borel-
Leroy summability extends to the case of functions with larger analyticity domains,
of opening angle kπ , but also worse asymptotic series with large n behavior an �
cn[n!]k .

Consider the Riemann surface L for the logarithm, namely the universal cover of
C

� with deck transformations (z, θ) → (z, θ + 2kπ), k ∈ Z. L can be embedded
in C

� × R since a point of L can be defined as a pair (z, θ) in C
� × R such that θ

is an argument of z. The logarithm is well-defined (single valued) on L. For ρ > 0

we define the open domain Dk
ρ ⊂ L by the equation 	λ− 1

k > ρ−1, which means

	[e− 1
k
log λ] > ρ−1. D1

ρ is a disk tangent to the imaginary axis of diameter ρ. For
larger values of k Dk

ρ spreads over more and more sheets of L but remains close
to the vertical axis (the origin λ = 0). More precisely a point λ is in Dk

ρ iff its

unique representative (z, θ) ∈ C
� × R with θ = arg z (2π) satisfies to |θ | < kπ

2 and
|z|1/k < ρ cos θ

k
so it is at distance less than ρk of the vertical axis {0}×R in C×R.

We note RN the N-th order Taylor remainder operator at the origin. It acts on a
smooth function f (λ) through

RNf = λN

∫ 1

0

(1 − t)N−1

(N − 1)! f (N)(tλ)dt . (2.6)

Theorem 2.1 A power series
∑∞

n=0 anλ
n is Borel-Leroy summable of order k to the

function f (λ) if the following conditions are met:

• For some ρ > 0, f (λ) is analytic in a domain Dk
ρ .
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• The function f (λ) admits
∑∞

n=0 anλ
n as a strong asymptotic expansion to all

orders as λ → 0 with uniform estimate in Dk
ρ:∣∣∣RNf

∣∣∣ � ABN [(kN)!] |λ|N . (2.7)

where A and B are some positive constants.

Then the Borel-Leroy transform of order k defined by

B
(k)
f (u) =

∞∑
n=0

an

(kn)!u
n, (2.8)

is holomorphic for |u| < B−1, it admits (for some R > 0) an analytic continuation
to the strip {u ∈ C : |�u| < R, 	u > 0} which does not grow too fast at infinity, so
that one recovers f (λ) for λ ∈ Dk

ρ through the absolutely convergent inverse integral

f (λ) = 1

kλ

∫ ∞

0
B

(k)
f (u)e−( u

λ
)
1
k
(u

λ

) 1
k
−1

du. (2.9)

Proof For k = 1 this is exactly Nevanlinna’s theorem as redicovered by Sokal [20].
For larger values of k, defining g = λ1/k , we see that f̃ (g) = f (λ) � ∑

n ang
kn

satisfies Nevanlinna’s hypothesis, and through the change of variables u = λvk (2.9)
is nothing but the ordinary inverse Borel formula from B̃ to f̃ .

2.3 φ2k Theory in 0 Dimension

The partition function of the φ2k scalar theory in zero dimension for k ≥ 2 is given
by the one-dimensional integral

Zk(λ) =
∫ +∞

−∞
dφ√
2π

e− 1
2φ2

e−λφ2k/2 =
∫

dμ(φ)e−λφ2k/2, (2.10)

where dμ is the normalized one-dimensional Gaussian measure of covariance 1. Its
“free energy” is simply logZk(λ). The integral (2.10) will from now on be called
the standard representation of the theory. The factor 1/2 in front of λ is a suitable
normalization to simplify the intermediate field representation below.
Illegally commuting series and integration leads to

Zk(λ) �
∞∑

n=0

ak,nλ
n, ak,n = (−1)n

2nn!
∫

dμ(φ)φ2kn = (−1)n
(2kn)!!
2nn! (2.11)

where we define 2p!! = ∏p

k=1(2k − 1). Of course the power series an has zero
radius of convergence but it is Borel-Leroy summable of order k − 1 (see Theorem
2.2 below).

The model exists also in a complex version, with partition function

Zc
k(λ) =

∫ +∞

−∞

∫ +∞

−∞
dφdφ̄

π
e−φ̄φe−λ(φ̄φ)k =

∫
C

dμc(φ)e−λ(φ̄φ)k , (2.12)
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where dμc is the normalized one-dimensional complex Gaussian measure of covari-
ance 1. Its perturbative expansion is

Zc
k(λ) �

∞∑
n=0

ac
k,nλ

n, ak,n = (−1)n

n!
∫

dμc(φ)(φ̄φ)kn = (−1)n
(kn)!
n! (2.13)

Theorem 2.2 The partition functions Zk(λ) and Zk,c(λ) are Borel-Leroy summable
of order k − 1.

Proof Let us give the proof only for Zk(λ) as the complex case is similar. We
shall prove analyticity in a domain Dk

ρ = {λ ∈ L : 	λ−1/k > ρ−1} obviously bigger
than the needed domain Dk−1

ρ . But we shall prove Borel-Leroy summability of order
k − 1 (not k) since we shall prove Taylor remainder estimates in [(k − 1)N ]! (see
(2.11)-(2.13)).

The integrand of Zk(λ) is an entire function of λ which is uniformly bounded by

the integrable function e− 1
2φ2

in the right-half complex plane C+ = {λ | 	(λ) > 0}.
Hence Zk is analytic in C+. For k = 2, C+ contains a disk D1

ρ . For k > 2 we
continue Zk(λ) analytically to a domain of L of wider opening angle by performing

the change of variable φ = λ− 1
2k ψ . Rotating the integration contour we find

Zk(λ) = λ− 1
2k

∫ +∞

−∞
e− ψ2k

2 e−λ
− 1

k ψ2

2
dψ√
2π

. (2.14)

In the domain Dk
ρ the integrand is analytic and its absolute value is uniformly

bounded by the integrable function e− ψ2k

2 , hence we can conclude to analyticity of

the integral Zk(λ) in this domain.2 However because of the prefactor λ− 1
2k it is not

yet obvious that Zk(λ) is uniformly bounded in Dk
ρ , as it should for (2.7) to hold at

N = 0. This can be checked through a single expansion step on the e− ψ2k

2 factor,
writing

e− ψ2k

2 = 1 −
∫ 1

0
dt

ψ2k

2
e−t

ψ2k

2 , (2.15)

taking one ψ factor out of ψ2k and joining it to the Gaussian factor e−λ
− 1

k ψ2

2 to

create a full derivative (correcting for the missing −λ− 1
k factor) and then performing

integration by parts. It leads to:

Zk(λ) = 1 − λ− 1
2k

∫ +∞

−∞
dψ

2
√
2π

∫ 1

0
dte−t

ψ2k

2 ψ2k−1
[
−λ

1
k

d

dψ
e−λ

− 1
k ψ2

2

]
(2.16)

= 1 − λ
1
2k

∫ +∞

−∞
dψ

2
√
2π

∫ 1

0
dt[2k − 1 − tkψ2k]ψ2k−2e−t

ψ2k

2 −λ
− 1

k ψ2

2 ,

an expression now easy to bound for λ ∈ Dk
ρ by a (k dependent) constant.

2We could without too much pain prove analyticity in a domain of larger opening angle, but shall not need
it.
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The uniform estimates in AkB
N
k [(kN)!]|λ|N of (2.7) for N ≥ 1 (the constants Ak

and Bk being of course allowed to depend on k), are similar. First:

RNZk(λ) = λN

∫ 1

0

(1 − t)N−1

(N − 1)! dt

∫
dμ(φ)(−φ2k

2
)Ne−tλ

φ2k

2 (2.17)

= (−1)Nλ− 1
2k

2N(N − 1)!
∫ 1

0
(1 − t)N−1dt

∫ +∞

−∞
dψ√
2π

ψ2kNe−t
ψ2k

2 −λ
− 1

k ψ2

2 .

Let us evaluate

IN = 1

(N − 1)!
∫ +∞

−∞
dψ√
2π

ψ2kNe−t
ψ2k

2 −λ
− 1

k ψ2

2 . (2.18)

Applying as before a single expansion step on the

e−t
ψ2k

2 = 1 − t

∫ 1

0
dt ′ ψ

2k

2
e−t t ′ ψ2k

2 (2.19)

factor and computing exactly the first factor which is a Gaussian integral, we find

IN = (2kN)!!
(N−1)!λ

N+ 1
2k − tJN , with

JN := 1

(N − 1)!
∫ 1

0
dt ′

∫ +∞

−∞
dψ

2
√
2π

ψ2k(N+1)e−t t ′ ψ2k

2 −λ
− 1

k ψ2

2 . (2.20)

To bound JN , we consider the factor ψ2k(N+1) as an initial vertex, of coordination
2k(N + 1).

We apply exactly kN + 1 Wick contraction steps to (less than half) the fields of

this initial vertex with respect to the Gaussian measure e−λ
− 1

k ψ2

2 . Each such step is
similar to the one of (2.16). More precisely each step

• selects a remaining field in the initial vertex ψ2k(N+1), joins it to the Gaus-

sian factor e−λ
− 1

k ψ2

2 to create a full derivative (correcting for the missing −λ− 1
k

factor)

• then integrates by parts: the derivative either acts on the interaction e−t
ψ2k

2 or
on the remaining fields of the initial vertex or on the field created by previous
integration steps.

The process cannot run short of fields in the initial vertex ψ2k(N+1) because each
step consumes at most two of these fields and the number of steps is kN + 1, less
than half the total number (2kN + 2k) of such fields. We call p the number of

times the integration by parts hits the exponential e−t t ′ ψ2k

2 ; hence 0 ≤ p � kN + 1,
and it hits kN + 1 − p times the fields down from the exponential. The result is a
complicated sum of non perturbative amplitudes AG for processes G.3 They all have
exactly kN + 1 edges, hence kN + 1 covariance factors λ1/k , which in total give a

3Processes are not exactly Feynman graphs because of the remaining non-perturbative interaction factor

e−t t ′ ψ2k

2 .
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factor λN+ 1
k . The number of fields down at the end must be 2k(N +1)+p(2k−2)−

2(kN + 1 − p) = 2k(p + 1) − 2 because p steps destroy a field and create 2k − 1
fields (together with a t t ′k factor) and kN + 1 − p steps destroy two fields.

Therefore any process with a given value of p has the same amplitude

JN,p := λN+ 1
k

∫ 1

0
dt ′(−t t ′k)p

∫ +∞

−∞
dψ

2
√
2π

ψ2k(p+1)−2e−t t ′ ψ2k

2 −λ
− 1

k ψ2

2 . (2.21)

Lemma 2.1
|JN,p| � |λ|N+ 1

k AkB
N
k p! (2.22)

for some constants Ak and Bk (possibly depending on k).

Proof If p = 0, JN,0 is bounded by a (k dependent) constant times |λ|N+ 1
k since

in Dk
ρ we have 	λ− 1

k > ρ−1. If p ≥ 1,

JN,p = (−k)pλN+ 1
k

∫ 1

0
dt ′

∫ +∞

−∞
dψ

2
√
2π

KN,p(ψ, t, t ′)L(ψ), (2.23)

where we define

KN,p(ψ, t, t ′) := (tt ′)pψ2k(p−1)+ke−t t ′ ψ2k

2 (2.24)

L(ψ) := ψ3k−2e−λ
− 1

k ψ2

2 . (2.25)

Applying a Cauchy-Schwarz bound we find

|JN,p| � kp|λ|N+ 1
k

∫ 1

0
dt ′

√∫ +∞

−∞
dψ

2
√
2π

K2
N,p(ψ, t, t ′)

∫ +∞

−∞
dψ

2
√
2π

L2(ψ).

(2.26)
Obviously the integral over L is easily bounded by a k dependent constant since in

Dk
ρ we have 	λ− 1

k > ρ−1. The other integral is also easily bounded by the change
of variables u = t t ′ψ2k . Indeed√∫ +∞

−∞
dψ

2
√
2π

K2
N,p(ψ, t, t ′) =

√∫ +∞

−∞
dψ

2
√
2π

(tt ′)2pψ4k(p−1)+2ke−t t ′ψ2k

�

√
(tt ′) 2k−1

2k

2k
√
2π

∫ ∞

0
u2p−2+ 1

2k e−udu

� AkB
N
k p! (2.27)

since t t ′ � 1. Remembering that p � kN + 1 completes the proof.
To complete the bound on JN we need only to multiply this bound on JN,p by
1

(N−1)! times the number of processes at given p, then sum over p. But it is not neces-
sary to compute the exact number of such processes with a fixed p. We can just give
a crude bound on it (we do not try to find optimal constants). This number is bounded
by 2kN+1 (to choose the p particular steps which derive the exponential) times the
product over the kN + 1− p steps which derive fields down from the exponential of
the number of fields down the exponential at that step. This last number is certainly at
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most the total maximal number of fields ever produced down the exponential, raised
to the power kN + 1 − p, hence certainly bounded by

[2k(N + 1) + (2k − 2)p]kN+1−p � NkN+1−p[2k2 + 4k]kN+1. (2.28)

Taking into account that N1−pp! � N(k + 1)(k+1)N for p � kN + 1, we get a
bound of the form AkB

N
k NkN , which is independent of p. Summing over p adds a

factor kN + 1 which can be absorbed by changing Bk . Finally multipying by 1
(N−1)!

(and using Stirling’s formula) gives a bound of the form AkB
N
k N(k−1)N . Returning

to (2.17) and gathering all factors proves (2.7) hence completes the proof of Theorem
2.2.

From now on our goal is to define new intermediate field representations for the
functions Zk(λ), Zk,c(λ) and to check in these new representations their Borel-Leroy
summability.

3 Imaginary Gaussian IF Representation

3.1 Real Case

We first split the interaction in two using an intermediate field σ with normalized
Gaussian measure dμ(σ) of covariance 1. The result is:

e−λφ2k/2 =
∫

dμ(σ)ei
√

λφkσ . (3.1)

We define gk = λ
1
2k , and as next step we decompose

i
√

λφkσ = i

4
[(gkφσ + (gkφ)k−1)2 − (gkφσ − (gkφ)k−1)2]. (3.2)

We introduce a pair of intermediate fields a1 and b1 with imaginary covariances −i

and +i, hence the Gaussian measure dμ±i (a1, b1) = dμ−i (a1)dμi(b1) so that

ei
√

λφkσ =
∫

dμ±i (a1, b1)e
i√
2
[(gkφσ+(gkφ)k−1)a1+(gkφσ−(gkφ)k−1)b1] (3.3)

=
∫

dμ±i (a1, b1)e
i[gkφσ

a1+b1√
2

+(gkφ)k−1 a1−b1√
2

]
. (3.4)

We now change variables for

α1 = a1 + b1√
2

, β1 = a1 − b1√
2

, (3.5)

so that

ei
√

λφkσ =
∫

dμX(α1, β1)e
igkφσα1+i(gkφ)k−1β1 , (3.6)

where the Gaussian measure dμX is defined by its covariance

< α1β1 >X= −i, < α2
1 >X= 0, < β2

1 >X= 0. (3.7)
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Remember this section is heuristic so do not worry yet about convergence and
integration contours, which will be addressed in the next section.

We keep the term igkφσα1 and decompose the igk−1
k φk−1β1 term as

eigk−1
k φk−1β1 =

∫
dμX(α2, β2)e

igkφβ1α2+i(gkφ)k−2β2 . (3.8)

Continuing in this way we prove inductively the following representation:

e−λφ2k/2 =
∫

dμ(σ)

k−1∏
j=1

dμX(αj , βj )e
igk[φσα1+∑k−2

j=1 φβj αj+1+φβk−1], (3.9)

where the αj , βj and the measure dμX are respectively defined as in (3.5) and (3.7).
We now integrate

• for k odd, over φ, σ and all even α2j , β2j , for j ∈ {1, .., k−1
2 }. In that case

we denote � = (φ, σ, α2, β2, ..., αk−1, βk−1) the k + 1 integrated variables and
� = (α1, β1, ..., αk−2, βk−2) the k − 1 remaining ones. The Gaussian measure
dμ(σ)

∏k−2
j=1 dμX(αj , βj ) factorizes as dν(�)dχ(�).

• for k even, over φ and all odd α2j−1, β2j−1, for j ∈ {1, .., k
2 }. In that case

we denote � = (φ, α1, β1, ..., αk−1, βk−1) the k + 1 integrated variables and
� = (σ, α2, β2, ..., αk−2, βk−2) the k−1 remaining ones. The Gaussian measure
dμ(σ)

∏k−2
j=1 dμX(αj , βj ) factorizes again as dν(�)dχ(�).

The partition function writes

Zk(λ) =
∫

dχ(�)

[
dν(�) exp[ igk

2
< �,Hk(�).� >]

]
, (3.10)

where Hk is a (k + 1) × (k + 1) real symmetric matrix. More precisely :

• if k = 2p + 1 is odd, Hk is

Hk =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 α1 β1 · · · βk−2 1
α1

0
β1
...

βk−2
1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.11)

• if k = 2p is even, Hk is

Hk =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 σ α2 · · · βk−2 1
σ

0
α2
...

βk−2
1

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.12)
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The Gaussian integration over � gives a determinant. Rewritten as usual in field
theory as exponential of an action, it leads to the IF representation

Zk(λ) =
∫

dχ(�) exp
[−1

2
Tr ln(1 − gkMk(�))

]
, (3.13)

where Mk(�) = iCk .Hk(�) and Ck , the covariance for the � variables, is

Codd =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
0 1

0 −i 0
−i 0

0 −i

0 −i 0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.14)

Ceven =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0 −i 0
−i 0

0 −i

0 −i 0

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.15)

The proof that this integral representation (3.13) converges and that the integral is
indeed Zk(λ) is postponed to Section III. In the simplest cases k = 3, 4, hence for
the e−λφ6/2 and e−λφ8/2 models, we obtain the representations:

Z3(λ) =
∫

dχ(α1, β1)e
− 1

2 Tr ln[1−λ1/6M3], M3 =

⎛
⎜⎜⎝

0 iα1 iβ1 i

iα1 0 0 0
1 0 0 0
β1 0 0 0

⎞
⎟⎟⎠ (3.16)

and

Z4(λ) =
∫

dχ(σ, α2, β2)e
− 1

2 Tr ln[1−λ1/8M4], M4 =

⎛
⎜⎜⎜⎜⎝

0 iσ iα2 iβ2 i

α2 0 0 0 0
σ 0 0 0 0
1 0 0 0 0
β2 0 0 0 0

⎞
⎟⎟⎟⎟⎠ . (3.17)
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3.2 Complex Case

As in the previous section, we first split the interaction in two using a complex
intermediate field σ with normalized Gaussian measure dμ(σ) of covariance 1. We
obtain

e−λ(φφ̄)2p+1 =
∫

dμc(σ )ei
√

λ(φφ̄)p(φ̄σ+φσ̄ ), (3.18)

e−λ(φφ̄)2p =
∫

dμc(σ )ei
√

λ(φφ̄)p(σ+σ̄ ). (3.19)

For λ real positive and respectively k = 2p + 1 and k = 2p, defining gk = λ
1
2k , we

write

i
√

λ(φφ̄)p(φ̄σ + φσ̄ ) = i

2
[|gkφ̄σ + (g2

kφφ̄)p|2−[gkφ̄σ − (g2
kφφ̄)p|2], (3.20)

i
√

λ(φφ̄)p(σ + σ̄ ) = i

2
[|gkφ̄σ + (g2

kφφ̄)p−1gkφ̄|2 − |gkφ̄σ − (g2
kφφ̄)p−1gkφ̄|2].

We introduce a pair of complex intermediate fields a1 and b1 with imaginary
covariances −i and +i, hence the Gaussian measure

dμc±i (a1, b1) = dμc−i (a1, ā1)dμc
i (b1, b̄1). (3.21)

More precisely it means that writing aR
1 , bR

1 and aI
1 , b

I
1 for the real and imaginary

parts of a1 and b1, the measure dμc−i (a1, ā1)dμc
i (b1, b̄1) is the product of four inde-

pendent Gaussain measures on these four real variables. Each of the four can be
independently complexified and we should use an appropriate contour of integration
C+,ε in each of the four corresponding complex planes, as defined in Section 2.1.
However remember that in this heuristic section we do not consider convergence
questions. Then we have

ei
√

λ(φφ̄)p(φ̄σ+φσ̄ ) =
∫

dμc±i (a1, b1)e
i√
2
[(gkφ̄σ+(g2kφφ̄)p)a1 (3.22)

+(gkφ̄σ−(g2kφφ̄)p)b1+c.c.]

=
∫

dμc±i (a1, b1)e
i[gkφ̄σ

a1+b1√
2

+(g2kφφ̄)p
a1−b1√

2
+c.c.]

,

ei
√

λ(φφ̄)p(σ+σ̄ ) =
∫

dμc±i (a1, b1)e
i[gkφ̄σ

a1+b1√
2

+(g2kφφ̄)pgkφ̄
a1−b1√

2
+c.c.]

,

where c.c. means complex conjugate. We can change variables as in the real case for

α1 = a1 + b1√
2

, β1 = a1 − b1√
2

, (3.23)

and complex conjugates, so that

ei
√

λ(φφ̄)p(φ̄σ+φσ̄ ) =
∫

dμc
X(α1, β1)e

i[gkφ̄σα1+(g2kφφ̄)pβ1+c.c.], (3.24)

ei
√

λ(φφ̄)p(σ+σ̄ ) =
∫

dμc
X(α1, β1)e

i[gkφ̄σα1+(g2kφφ̄)pgkφ̄β1+c.c.], (3.25)
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where the Gaussian measure dμc
X(α1, β1) is defined by its covariance

< α1β̄1 >X=< ᾱ1β1 >X= −i, (3.26)

< α2
1 >X=< ᾱ2

1 >X=< β2
1 >X=< β̄2

1 >X= 0 (3.27)

< α1ᾱ1 >X=< β1β̄1 >X=< α1β1 >X=< ᾱ1β̄1 >X= 0. (3.28)

We invite the reader to check in particular (3.26), which may be surprising at first
sight but is perfectly consistent with the imaginary-Gaussian complex integration rule
(2.4)).

An inductive reasoning strictly parallel to the previous subsection leads to:

e−λ(φφ̄)k =
∫

dμc(σ )

k−1∏
j=1

dμc
X(αj , βj )e

igk[φ̄σα1+∑k−2
j=1 φ̄βj αj+1+φ̄βk−1+c.c.]

, (3.29)

where the αj , βj and the measure dμc
X are respectively defined as in (3.23) and

(3.26). Integrating again

• for k odd, over φ, σ , all even α2j , β2j , for j ∈ {1, .., k−1
2 } and complex conju-

gates. In that case we denote � = (φ, σ, α2, β2, ..., αk−1, βk−1) the k + 1 inte-
grated variables and � = (α1, β1, ..., αk−2, βk−2) the k − 1 remaining ones. The
Gaussian measure dμc(σ )

∏k−2
j=1 dμc

X(αj , βj ) factorizes as dχ(�, �̄)dν(�, �̄).
• for k even, over φ, all odd α2j−1, β2j−1, for j ∈ {1, .., k

2 } and complex con-
jugates. In that case we denote � = (φ, α1, β1, ..., αk−1, βk−1) the k + 1
integrated variables and � = (σ, α2, β2, ..., αk−2, βk−2) the k − 1 remain-
ing ones. The Gaussian measure dμc(σ )

∏k−2
j=1 dμc

X(αj , βj ) factorizes again as

dχ(�, �̄)dν(�, �̄).

the partition function writes

Zk,c(λ) =
∫

dχ(�, �̄)

[
dν(�, �̄) exp[igk < �,Hk(�, �̄).� >]

]
, (3.30)

where Hk is a (k + 1) × (k + 1) Hermitian matrix. More precisely :

• if k = 2p + 1 is odd, Hk is

Hk =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 α1 β1 · · · βk−2 1
ᾱ1

0
β̄1
...

β̄k−2
1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3.31)

• if k = 2p is even, Hk is

Hk =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 σ α2 · · · βk−2 1
σ̄

0
ᾱ2
...

β̄k−2
1

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.32)
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Gaussian integration over � leads to the IF representation

Zk,c(λ) =
∫

dχ(�) exp
[−Tr ln(1 − gkMk(�))

]
, (3.33)

where Mk(�) = iCk .Hk(�) and Ck , the covariance for the � variables, is given as
in the real case by (3.14) and (3.15).
In the simplest cases k = 3, 4 we obtain the representations :

Z3,c(λ) =
∫

dχ(α1, β1)e
−Tr ln[1−λ1/6M3], M3 =

⎛
⎜⎜⎝

0 iα1 iβ1 1
iᾱ1 0 0 0
1 0 0 0
β̄1 0 0 0

⎞
⎟⎟⎠ (3.34)

and

Z4,c(λ) =
∫

dχ(σ, α2, β2)e
−Tr ln[1−λ1/8M4], M4 =

⎛
⎜⎜⎜⎜⎝

0 iσ iα2 iβ2 i

ᾱ2 0 0 0 0
σ̄ 0 0 0 0
1 0 0 0 0
β̄2 0 0 0 0

⎞
⎟⎟⎟⎟⎠ . (3.35)

This integral represnettaion has been established for λ real positive and in the next
section will be used to perform the analytic continuation of the functions Zk to
complex values of λ.

4 Analyticity Domains

In this section we prove the following theorem:

Theorem 4.1 The integral
∫

dχ(�) exp
[− 1

2Tr ln(1− gkMk(�))
]
is absolutely con-

vergent in a domain Dk−1
ρ = {λ ∈ C : 	λ− 1

k−1 > ρ−1} (for ρ sufficiently small). It
defines a Borel-Leroy summable function of order k −1 in this domain, whose Taylor
series at the origin is the same as the Taylor series of Zk(λ). Hence (by unicity of the
Borel sum) (3.13) and (3.33) hold.

Proof We give the proof in the real φ2k case, the argument for the complex case
(φ̄φ)k being essentially identical. The key step is an upper bound on the norm of the
resolvent [1 − gkM(�)]−1 in the Nevanlinna domain for Borel-Leroy summability
of order k − 1. This bound must be uniform both in λ in that domain and uniform in
the intermediate fields along the contours associated to dχ .

Let us prove such a uniform bound in a slightly larger domain Ek−1
ρ consisting of

all λ = ρeiθ with ρ small and |θ | <
(k−1)π

2 (hence in a half-disk for λ
1

k−1 ). Obviously

it contains the disk Dk−1
ρ/2 necessary for Nevanlinna’s Theorem. We need to compute

the eigenvalues of the matrix 1 − gkMk , and to take into account the contours of
integration.
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Lemma 4.1 For λ ∈ Ek−1
1 and � on the contours of integration C±ε with ε =

1
4k

−1/2 sin π
4k we have

‖(1 − gkMk)
−1‖ � 2[sin π

4k
]−1. (4.1)

where, from now on the notation ‖M‖ means the operator norm of M .

Proof Returning to the parametrization of our contour integrals we recall that aj =
	aj − iε tanh(	aj ) and bj = 	bj − iε tanh(	bj ), where 	 is the real part. Hence
remembering (3.5), and putting � = X + iY , where the vectors X and Y are real,
each coefficient of Y is bounded in absolute value by ε

√
2. The matrix M(�) being

linear in �, we have Mk(�) = Mk(X) + iMk(Y ), and since each of the 2k non-
zero coefficients of Mk(Y ) is bounded in absolute value by ε

√
2, we can bound its

Hilbert-Schmidt norm ‖Mk(Y )‖2 by 2ε
√

k, hence

‖Mk(Y )‖ � ‖Mk(Y )‖2 = 2ε
√

k (4.2)

Now let us compute the eigenvalues of the matrix 1 − gkMk(X). It has eigenvalue 1
with multiplicity k − 1 and two non trivial eigenvalues,

x± = 1 ± gk

√
Rk, (4.3)

where Rk is −(	α1)
2 + i(	β1	α3 + · · · + 	βk−4	αk−2 + 	βk−2) if k is odd and

is i(σ	α2 + 	β2	α4 + · · · + 	βk−4	αk−2 + 	βk−2) if k is even.
If Rk is not zero we can state something about the argument of ±√

Rk . In the odd
case, if 	α1 �= 0, we have Rk = −a2(1 + ib) with a and b real, hence ±√

Rk =
ia

√
1 + ib and the argument of ±√

Rk lies in I = [π
4 , 3π

4 ]∪[− 3π
4 , −π

4 ]. If 	α1 = 0
or in the even case the argument of ±√

Rk belongs to {− 3π
4 , −π

4 , π
4 , 3π

4 }, hence to
the boundary of I .

But in the domain Ek−1
ρ the argument of gk is bounded by (k−1)π

4k hence the
argument of ±gk

√
Rk (when gkRk �= 0) lies in

Ik = [π
4

− (k − 1)π

4k
,
3π

4
+ (k − 1)π

4k
] ∪ [−3π

4
− (k − 1)π

4k
, −π

4
+ (k − 1)π

4k
]

= [ π

4k
, π − π

4k
] ∪ [−π + π

4k
, − π

4k
], (4.4)

hence in that domain the spectrum of 1 − gkMk lies out of the disk of center 0

and radius sin π
4k . Choosing ε = sin π

4k

4
√

k
, and assuming ρ � 1, we have by (4.2)

‖gkMk(Y )‖ � 1
2 sin

π
4k , hence the spectrum of (1 − gkMk(X) − igkMk(Y )) lies out

of the disk of center 0 and radius 1
2 sin

π
4k , and

‖(1 − gkMk)
−1‖ � 2[sin π

4k
]−1. (4.5)
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Since (1−gkMk)
−1 has only two non trivial eigenvalues not equal to 1, this bound

implies the same bound on the inverse square root of its determinant det(1 − gkMk),
hence

| exp[−1

2
Tr ln(1 − gkM(�))

]| = |det−1/2(1 − gkMk)| � 2[sin π

4k
]−1. (4.6)

which means a uniform upper bound on the integrand in (5.4). Analyticity of Zk

then follows by the standard argument based on Morera’s theorem that a uniformly
convergent integral of an analytic integrand is analytic.

In fact there is clearly some margin still in the proof of Lemma 4.1 and with a litlle
additional work we could check analyticity in a Dk

ρ domain as done in the proof of
Theorem 2.2.

Finally the uniform estimates on the Taylor remainder at order n can be obtained
simply by Taylor expanding Zk by the Taylor formula with integral remainder. This
is similar to the proof of Theorem 2.2 in Section 2.3 and left to the reader.

To complete the proof of Theorem 4.1, one needs also to check that the perturba-
tive expansion in λ of this intermediate field representation is identical to the ordinary
one, which is easy and left as an exercise to the reader. Then by unicity of the Borel
sum, one concludes that the two integral representations (2.10) and (3.13) must be
equal.

The LVE [2] as in [1] is a technique to compute explicitly the logarithm of such
partition functions and check its Borel sumability. However we have not found yet
how to adapt it to such intermediate field representations with Gaussian imaginary
integrals. The problem comes from the many replicas introduced by the LVE (one
per vertex). Each of them should have its own small contour deformation and these
deformations add up in a way which we do not know how to control as the number
n of loop vertices tends to infinity. Hence as a way out of this dilemma we give now,
for the complex k = 3 case, hence for the (φ̄φ)3 model, another intermediate field
representation, this time with bona fide real Gaussian integrals rather than imaginary
ones.

5 Improved IF Representation

We return to (2.12) in the k = 3 case, hence consider

Zc
3(λ) =

∫ +∞

−∞

∫ +∞

−∞
dμ(φ, φ̄)e−λ(φ̄φ)3 . (5.1)

We split the interaction in two using a complex intermediate field σ with normalized
Gaussian measure dμ(σ) of covariance 1. The result is:

e−λ(φ̄φ)3 =
∫

dμ(σ)eiλ1/2(φ̄φ)[φ̄σ+φσ̄ ]. (5.2)

We introduce complex conjugate fields intermediate fields a and ā so that

ei
√

λ(φ̄φ)[φ̄σ+φσ̄ ] =
∫

dμ(a)e
√

iλ1/4[φ̄φa+(φ̄σ+φσ̄ )ā]. (5.3)
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The Gaussian integrals over φ and σ can be explicitly performed, giving

Zc
3(λ) =

∫
dμ(φ, σ, a)e

√
iλ1/4[φ̄φa+(φ̄σ+φσ̄ )ā] (5.4)

=
∫

dμ(a) det[1 − √
iλ1/4

(
a ā

ā 0

)
]−1 (5.5)

=
∫

dμ(a)f (a, ā). (5.6)

Since det[1 − √
iλ1/4

(
a ā

ā 0

)
] = 1 − √

iλ1/4a − iλ1/2ā2, we have

f (a, ā) := (1 − √
iλ1/4a − iλ1/2ā2)−1 =

∞∑
n=0

(
√

iλ1/4a + iλ1/2ā2)n. (5.7)

Since any integral
∫

dμ(a)apāq is zero unless p = q we can, in the functional inte-
gral (5.6), subsitute another perturbatively equivalent function f#a=#ā which simply
discards, in the power series defining f , any term not satisfying that constraint. This
is a priori not justified non-perturbatively but will be justified a posteriori if we can
obtain a Borel summable series by this process. In our case f#a=#ā can be computed
explicitly. More precisely

f#a=#ā =
∑
n=3p

(−1)pλp(aā)2pC
3p
p . (5.8)

The binomial coefficient C3p
p = 3p!

p!(2p)! is not far from the generalized Catalan num-

ber C
(3)
p := 1

3p+1C
3p+1
p = 1

2p+1C
3p
p . We know that the alternating generating

function

h(x) =
∞∑

p=0

(−1)pC(3)
p xp (5.9)

for such generalized Catalan numbers obeys the algebraic equation [21]

− xh3(x) − h(x) + 1 = 0. (5.10)

which is soluble by radicals. More precisely defining f#a=#ā = g(λ1/2aā) and noting
u = λ1/2aā, we have

g(u) =
∞∑

p=0

(−1)p[u2]pC
3p
p =

∞∑
p=0

(2p + 1)(−1)p(u2)pC(3)
p . (5.11)

Hence the generating functions g and h are related through the simple equation

g(u) = d

du
[uh(u2)] = h(u2) + 2u2h′(u2). (5.12)

Returning to the solution of (5.9), we define

�±(y) :=
(√

1 + y ± √
y

)1/3

= 1 ± 1

3
√

y + 7y

18
∓ 4y3/2

81
+ O(y2) (5.13)
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where we used that (1+ v)1/3 = 1+ v/3− v2/9+ 5v3/81+ O(v4). The derivatives
are easily computed as

�′±(y) = 1

6

(
(1 + y)−1/2 ± y−1/2

)(√
1 + y ± √

y

)−2/3

(5.14)

Cardano’s solution gives

h(x) = �+( 274 x) − �−( 274 x)√
3x

= 1 − x + 3x2 + O(x3)

h′(x) = (3x)−3/2[81
4

x(�′+ − �′−) − 3

2
(�+ − �−)] = −1 + 6x + O(x2)

(5.15)

where each � or �′ is taken at 27
4 x. A nice simplification occurs in

g(u) := h(u2) + 2u2h′(u2) = 35/2

2
u(�′+ − �′−)|

y= 27
4 u2

, (5.16)

since the terms in (�+ − �−) disappear. Let us compute

(�′±)|
y= 27

4 u2
= 1

6u

(
u(1+ 27

4
u2)−1/2±

√
4

27

)(√
1 + 27

4
u2±

√
27

4
u

)−2/3

. (5.17)

It leads to an explicit expression for g, analytic in a disk around u = 0, namely

g(u) = 1

2

[(
1 +

√
27

4
u(1 + 27

4
u2)−1/2

)(√
1 + 27

4
u2 +

√
27

4
u

)−2/3

+
(
1 −

√
27

4
u(1 + 27

4
u2)−1/2

)(√
1 + 27

4
u2 −

√
27

4
u

)−2/3]

= 1 − 3u2 + 15u4 + · · · (5.18)

Substituting in (5.6) we end up with the improved IF representation with true (i.e.
non imaginary) Gaussian measures

Improved IF Representation

Z(λ) =
∫

dμ(a)eS(a,ā), S(a, ā) = S1 + S2 − log 2 (5.19)

S1 = log
[(√

1 + v2 + v
)1/3 + (√

1 + v2 − v
)1/3]

v=
√

27λ
4 aā

(5.20)

S2 = −1

2
log(1 + 27λ

4
(aā)2) (5.21)

This formula seems now well adapted to a loop vertex expansion because
derivatives of S remain bounded:
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Lemma The derivatives of S with respect to any (strictly positive) number of a and
ā variables are all uniformly bounded as a ∈ C and λ runs in a suitable Borel-Leroy
domain of order 2.

| ∂p

∂ap

∂q

∂āq
S(a, ā)| � (p + q)!Kp+q |λ| p+q

4 (5.22)

Proof (Sketch) The lemma is obviously proved if we prove it separately for S1 and
S2.

For S2 it is quite trivial as the Faa di Bruno forumla gives a sum of terms of the
form (1 + 27λ

4 (aā)2)−r [ 27λ4 ]sat (ā)u with 1 � r � p + q, s � (p + q)/4 and
t + u � 3r .

For S2 it is slightly more complicated but a derivative acting on logD gives the
factorD′D−1 withD := (√

1 + v2+v
)1/3+(√

1 + v2−v
)1/3. Deriving (√

1 + v2−
v
)1/3 seems to create possibly an a or ā times D−1[v(1 + v2)−1/2 − 1](√1 + v2 −

v
)−2/3, which would naively look unbounded. But in fact at large v positive v(1 +

v2)−1/2 tends to 1 and there is a compensation [v(1 + v2)−1/2 − 1](√1 + v2 −
v
)−2/3 = v−2/3[(1 + v−2)−1/2 − 1][(1 + v−2)1/2 − 1]−2/3 � cv−4.
The generalization of this improved representation to higher values of k and the

precise definition and convergence of the corresponding loop vertex expansion has
(after completion of this paper) been developed in [18].
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