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Abstract The version of Marsden-Ratiu reduction theorem for Nambu-Poisson man-
ifolds by a regular distribution has been studied by Ibáñez et al. In this paper we show
that the reduction is always ensured unless the distribution is zero. Next we extend the
more general Falceto-Zambon Poisson reduction theorem for Nambu-Poisson man-
ifolds. Finally, we define gauge transformations of Nambu-Poisson structures and
show that these transformations commute with the reduction procedure.
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1 Introduction

The reduction procedure is very useful in dynamical systems, since it gives rise to
another system with less degrees of freedom. The most general reduction theorem
for Hamiltonian systems is the Marsden-Ratiu reduction of Poisson manifolds [15]
(see also [17]). Given a Poisson manifold M and a submanifold N ⊂ M , they con-
sidered a canonical vector subbundle E of the tangent bundle T M restricted to N

such that E ∩ T N defines a regular, integrable distribution on N (hence, it defines a
regular foliation F on N). The question was the existence of a Poisson structure on
the quotient N/F from the one on M . In [15], the authors gave a necessary and suffi-
cient condition to ensure this. The Marsden-Ratiu reduction by distributions has been
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reformulated by Falceto and Zambon in [8]. It was shown in [8] that the sufficient
condition for the Marsden-Ratiu reduction theorem always hold unless the distribu-
tion E is zero. Moreover, they observed that the assumptions on the subbundle E and
the sufficient condition of the Marsden-Ratiu reduction theorem can be weakend to
ensure the Poisson structure on N/F .

In [16], Y. Nambu introduced a generalisation of Hamiltonian dynamics which is
based on ternary operations. To outline the basic principles of Nambu’s generalised
dynamics, L. Takhtajan [19] introduced the notion of Nambu-Poisson manifolds as
n-ary generalisation of Poisson manifolds. Later, Nambu mechanics and properties of
Nambu-Poisson manifolds were extensively studied by several authors from differ-
ent perspectives [2–4, 6, 9, 11]. A Nambu-Poisson manifold of order n is a manifold
M equipped with a skew-symmetric n-ary bracket on C∞(M) which satisfies the
Leibniz rule and the fundamental identity (generalisation of the Jacobi identity).
Like Poisson manifolds, a Nambu-Poisson manifold gives rise to a singular folia-
tion on the manifold. Moreover, a Nambu-Poisson manifold of order n corresponds
to a Leibniz algebroid on the (n − 1)-th exterior power of its cotangent bundle. A
remarkable difference between a Poisson manifold and a Nambu-Poisson manifold
of order greater than 2 is that in the latter case, the associated (Nambu) tensor is
locally decomposable.

Following the Poisson reduction theorem of Marsden and Ratiu, Ibáñez et al. [10]
considered a similar set-up for Nambu-Poisson manifolds and studied the reduction
of Nambu-Poisson manifolds. More precisely, let M be a Nambu-Poisson manifold,
N ⊂ M a submanifold and E ⊂ T M|N be a canonical vector subbundle of T M

restricted to N such that E ∩ T N defines a regular, integrable distribution on N .
Similar to the Poisson case, the authors gave a necessary and sufficient condition to
ensure the existence of a Nambu-Poisson structure on N/F from the one on M .

The main aim of the present work is to put it in record in the literature that
most of the results of [8] and their proofs extend in a natural way to the context
of Nambu-Poisson manifolds. To do this, we closely follow [8] to adapt the defini-
tions and methods of the proofs therein to prove the Nambu-Poisson version of the
corresponding results.

We begin with the following observation which is the Nambu-Poisson version
of Lemma 2.2 of [8]. Given a canonical subbundle E ⊂ T M|N of a Nambu-
Poisson manifold M with Nambu tensor �, either ��(Ann1E) ⊆ T N or E = 0
(cf. Proposition 3.1). Using the sufficient condition of the Marsden-Ratiu version of
Nambu-Poisson reduction theorem [10], we conclude that the reduction is always
ensured if E �= 0 (cf. Proposition 3.4).

Next we show that the more general Falceto-Zambon Poisson reduction theorem
extends naturally for Nambu-Poisson manifolds. More explicitly, we show that the
canonicity of E and the sufficient condition for the Marsden-Ratiu reduction can be
weakend in an appropriate way to ensure the reduction (cf. Theorems 4.1, 4.2). This
refines the reduction of Nambu-Poisson manifolds considered by Ibáñez et al [10].
The Falceto-Zambon version of reduction theorem involves a smaller subbundle D ⊆
E ⊆ T M|N such that E∩T N ⊆ D. We state the Falceto-Zambon version of Nambu-
Poisson map reduction and dynamics reduction (cf. Proposition 4.7, Theorem 4.8),
whose proofs are same as the Marsden-Ratiu case. In the following we also deduce
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the algebraic interpretation of our reduction theorem (cf. Theorem 4.9) and reduction
of subordinate Nambu structures (cf. Proposition 4.11). Motivated from [8] we give
an application of the Falceto-Zambon reduction theorem when the subbundle D ⊂
T M|N is the restriction of some suitable integrable distribution on M (Section 4.4).

The notion of gauge transformations of Poisson structures associated with cer-
tain closed 2-forms was introduced by Ševera and Weinstein [18] in connection with
Poisson-sigma models. Roughly, a gauge transformation modifies a given Poisson
structure by adding to its leafwise symplectic structure the pullback of the globally
defined 2-form. In this note we introduce gauge transformations of Nambu-Poisson
structures (of order n) associated with certain closed n-forms. We show that gauge
equivalent Nambu-Poisson structures on a manifold gives rise to same singular
foliation, and corresponds to isomorphic Leibniz algebroids (cf. Remark 5.1, Propo-
sition 5.2). We believe that gauge transformations of Nambu-Poisson structures will
have connection with Nambu-sigma models, recently considered by B. Jurco and P.
Schupp [12, 13] . Finally, we show that gauge transformations commute with the
reduction procedure (cf. Theorem 5.3).

Organisation In Section 2 we recall some basic preliminaries on Nambu-Poisson
manifolds and their Marsden-Ratiu reduction. In Section 3 we show that the Marsden-
Ratiu reduction for Nambu-Poisson manifolds is always ensured unless the canonical
vector subbundle is zero. Section 4 is devoted to the version of Falceto-Zambon
reduction theorem for Nambu-Poisson manifolds. Finally, in Section 5 we introduce
gauge transformations of Nambu-Poisson structures and prove Theorem 5.3.

2 Nambu-Poisson Manifolds and M-R Reduction

In this section we recall some basic preliminaries on Nambu-Poisson manifolds [7,
9, 11] and Marsden-Ratiu reduction [10].

2.1 Nambu-Poisson Manifolds

Definition 2.1 Let M be a smooth manifold of dimension m. A Nambu-Poisson
structure of order n (n � m) on M is an n-multilinear skew-symmetric bracket

{, . . . , } : C∞(M)× (n)· · · ×C∞(M) → C∞(M)

on the space C∞(M) of smooth functions on M satisfying the following:

(i) Leibniz rule: {f1, . . . , fn−1, gh} = g{f1, . . . , fn−1, h} + {f1, . . . , fn−1, g}h,

(ii) fundamental identity (generalisation of the Jacobi identity):

{g1, . . . , gn−1, {f1, . . . , fn}} =
n∑

k=1

{f1, . . . , fk−1, {g1, . . . , gn−1, fk}, . . . , fn},

for all f1, . . . , fn, g1, . . . , gn−1, g, h ∈ C∞(M).
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The pair (M, {, . . . , }) is called a Nambu-Poisson manifold of order n. In this
paper, by a Nambu-Poisson manifold, we shall always mean a Nambu-Poisson man-
ifold of order n. See [10, 11] for examples of Nambu-Poisson manifolds. A smooth
map between two Nambu-Poisson manifolds of same order n is called a Nambu-
Poisson map if it preserves the corresponding brackets. A Nambu-Poisson manifold
of order 2 is nothing but a Poisson manifold.

Let (M, {, . . . , }) be a Nambu-Poisson manifold of order n. Since the bracket is
skew-symmetric and satisfies the Leibniz rule, it follows that there exists a skew-
symmetric tensor � ∈ �(�nT M) of type (n, 0) such that

�(df1, . . . , dfn) = {f1, . . . , fn},
for all f1, . . . , fn ∈ C∞(M). In this case, � is called the corresponding Nambu
tensor and the Nambu-Poisson manifold (M, {, . . . , }) is also denoted by (M, �).
The tensor � induces a bundle map �� : �n−1T ∗M → T M given by

〈β, ��(α1 ∧ · · · ∧ αn−1)〉 = �(α1, . . . , αn−1, β), ∀αi, β ∈ T ∗M.

Given any (n − 1) functions f1, . . . , fn−1 ∈ C∞(M), the Hamiltonian vector field
associated to these functions, denoted by Xf1,...,fn−1 and is defined by

Xf1,...,fn−1 = ��(df1 ∧ · · · ∧ dfn−1).

Then the fundamental identity in terms of Hamiltonian vector fields can also be
rephrased as

[Xg1,...,gn−1 , Xf1,...,fn−1]=
n−1∑

k=1

Xf1,...,{g1,...,gn−1,fk},...,fn−1 , ∀gi, fj ∈ C∞(M). (1)

The following result describes the local structure of a Nambu-Poisson manifold
[7, 9].

Theorem 2.2 Let M be a smooth manifold of dimension m. Then a skew-symmetric
n-tensor � ∈ �(�nT M), n � 3, defines a Nambu-Poisson structure on M

if and only if for all x ∈ M with �(x) �= 0, there exist local coordinates
(U ; x1, . . . , xn, xn+1, . . . , xm) around x such that

�|U = ∂

∂x1
∧ · · · ∧ ∂

∂xn
.

For each m ∈ M , let DmM ⊂ TmM be the subspace of the tangent space at m

generated by all Hamiltonian vector fields at m. It follows from (1) that D(M) defines
a (singular) integrable distribution, called the characteristic distribution of M , whose
leaves are either n-dimensional submanifolds endowed with a volume form or just
singletons.

Remark 2.3 It can be shown that, if � is a Nambu tensor of order �3 and g is any
smooth function, then g� is also a Nambu tensor [7].
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Let M be a smooth manifold. Consider the bundle

T n(M) = T M ⊕ �n−1T ∗M.

The space of sections of T n(M) carries a higher order Dorfman bracket �, �, given by

�(X, α), (Y, β)� = ([X, Y ],LXβ − iY dα), (2)

for (X, α), (Y, β) ∈ �(T n(M)), where L denotes the Lie derivative and i denotes the
contraction operator.

Another characterisation of Nambu-Poisson tensor is given by the following [1].

Proposition 2.4 Let � ∈ �(�nT M) be a skew-symmetric n-tensor on M , and �� :
�n−1T ∗M → T M be the induced bundle map. Then

L� := Graph(��) = {(��α, α)|α ∈ �n−1T ∗M} ⊂ T n(M)

is closed under the higher order Dorfman bracket �, � if and only if � is a Nambu-
Poisson tensor.

It follows that, if (M, �) is a Nambu-Poisson manifold of order n, the bundle
�n−1T ∗M → M carries a Leibniz algebroid structure whose bracket is given by

{α, β}� = L��αβ − i��βdα, (3)

for all α, β ∈ 	n−1(M) and the anchor is given by the map �� [1, 20].

2.2 Marsden-Ratiu Reduction

Let (M, {, . . . , }) be a Nambu-Poisson manifold of order n with corresponding
Nambu tensor �. Let N ⊂ M be a Nambu-Poisson submanifold and i : N ↪→ M be
the inclusion. That is, N has a Nambu-Poisson structure such that the inclusion map
i is a Nambu-Poisson map. Therefore, if h ∈ C∞(M) is such that h|N ≡ 0

(
that is,

dh ∈ (T N)0
)
, then for any f1, . . . , fn−1 ∈ C∞(M),

��(df1 ∧ · · · ∧ dfn−1)(dh)(p) = {f1 ◦ i, . . . , fn−1 ◦ i, h ◦ i}N(p) = 0,

for all p ∈ N , where �� : �n−1T ∗M → T M is the bundle map induced by �. Thus,
it implies that ��(�n−1T ∗

p M) ⊆ TpN,for all p ∈ N . Conversely, if the above rela-
tion holds pointwise on a submanifold N , then N induces a Nambu-Poisson structure
such that the inclusion map is a Nambu-Poisson map. The induced Nambu structure
on N is defined by arbitrary extensions of the functions on N .

Next consider a Nambu-Poisson manifold (M, {, . . . , }) together with an inte-
grable distribution E which induces a regular foliation F , that is, the space of leaves
M/F is a smooth manifold and the projecton map π : M → M/F is a sub-
mersion. A natural question arises, when M/F inherits a Nambu-Poisson structure
such that π is a Nambu-Poisson map. For that, take any f1, . . . , fn ∈ C∞(M/F).
Then f1 ◦ π, . . . , fn ◦ π are the functions on M which are constant along the fibres
of the projection

(
that is, d(fk ◦ π)|E = 0

)
. In order that π is a Nambu-Poisson

map, the function {f1 ◦ π, . . . , fn ◦ π} has to be constant along the fibres, that is,
(d{f1 ◦ π, . . . , fn ◦ π})|E = 0.
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Both situations above may be viewed as a particular case of Marsden-Ratiu reduc-
tion theorem for Nambu-Poisson manifolds [10]. Let (M, �) be a Nambu-Poisson
manifold, N ⊂ M a submanifold and i : N ↪→ M the inclusion. Let E ⊂ T M|N be
a subbundle of T M when restricted to N which satisfies the following condition:

• F := E∩T N is a regular, integrable distribution on N . Thus, it defines a regular
foliation F on N , so the space of leaves N := N/F is a smooth manifold with
projection map π : N → N is a submersion.

Note that any function on N whose differential vanishes on F can be extended to a
function in a neighbourhood N ′ of N with differential vanishing on E [8]. We assume
that N ′ = M has this property. Thus, if C∞(M)E denotes the space of functions on
M whose differential vanish on E, the restriction map i∗ : C∞(M)E → C∞(N)F is
surjective.

Definition 2.5 A triple (M, N, E) with the above properties is called reducible or
Nambu-Poisson reducible if N = N/F has a Nambu-Poisson structure with the
induced bracket {, . . . , }N such that for any f1, . . . , fn ∈ C∞(N), and any smooth
extensions F1, . . . , Fn ∈ C∞(M)E of the functions f1 ◦ π, . . . , fn ◦ π , respectively,
we have

π∗{f1, . . . , fn}N = i∗{F1, . . . , Fn}.

Definition 2.6 A subbundle E ⊂ T M|N is called canonical if for any smooth func-
tions F1, . . . , Fn on M with differentials vanishing on E, the differential of the
function {F1, . . . , Fn} also vanishes on E, that is,

F1, . . . , Fn ∈ C∞(M)E ⇒ {F1, . . . , Fn} ∈ C∞(M)E.

The Marsden-Ratiu reduction theorem for Nambu-Poisson manifolds [10] is the
following.

Theorem 2.7 Let (M, {, . . . , }) be a Nambu-Poisson manifold of order n with associ-
ated Nambu tensor �. Let N ⊂ M be a submanifold, and E ⊆ T M|N be a canonical
subbundle such that F := E ∩ T N is a regular, integrable distribution on N . Then
the triple (M, N, E) is reducible if and only if

��(Ann1E) ⊆ T N + E,

where Ann1Ep = {η ∈ �n−1T ∗
p M|ivη = 0, ∀v ∈ Ep, p ∈ N}.

Note that, Ann1Ep is generated by elements of the form α1 ∧ · · · ∧ αn−1, where
for all k = 1, . . . , n − 1; αk ∈ E0

p = {α ∈ T ∗
p M|α(v) = 0, ∀v ∈ Ep, p ∈ N}

is the annihilator of Ep. When M is a Poisson manifold (that is, when n = 2),
this is the Marsden-Ratiu reduction theorem for Poisson manifolds [15]. We remark
that the singular version of the Marsden-Ratiu reduction theorem for Nambu-Poisson
manifolds has been studied by the author in [5].
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3 Non-zero E ⊂ T M|N
In this section, we show that the triple (M, N, E) as described in Section 2.2 is
always reducible provided the canonical subbundle E �= 0.

The following is a generalisation of Lemma 2.2 of [8].

Proposition 3.1 Let (M, {, . . . , }) be a Nambu-Poisson manifold with associated
Nambu tensor �, and N ⊂ M be a submanifold. Assume that E ⊂ T M|N is a
canonical subbundle. Then either

��(Ann1E) ⊆ T N or E = 0.

Proof Suppose there is a point p ∈ N such that ��(Ann1Ep) � TpN . Since
Ann1Ep is generated by elements of the form α1 ∧ · · · ∧ αn−1, with αi ∈ E0

p, for
all i = 1, . . . , n − 1, there exist functions f1, . . . , fn−1 ∈ C∞(M) with differ-
entials vanishing on E such that ��(df1 ∧ · · · ∧ dfn−1)(p) /∈ TpN . Hence, there
is a function g ∈ C∞(M) with g|N ≡ 0

(
that is, dg(p) ∈ (TpN)0

)
such that

〈��(df1 ∧ · · · ∧ dfn−1)(p), dg(p)〉 �= 0,that is, {f1, . . . , fn−1, g}(p) �= 0. Since
d(g2) = 2gdg and g vanishes on N , the differential of the function g2 also van-
ishes on E. As the bundle E is canonical, we have d{f1, . . . , fn−1, g

2}|E = 0. Thus,
d
(
g{f1, . . . , fn−1, g})|E = 0, which implies that

iv(dg)(p){f1, . . . , fn−1, g}(p) + iv
(
d{f1, . . . , fn−1, g})(p)g(p) = 0,

for all v ∈ Ep. Hence, iv(dg)(p) = 0, for all v ∈ Ep.
Next consider any function h ∈ C∞(M) with h|N ≡ 0. Then the differential of

the product function gh vanishes on E, as d(gh)|E = gdh|E + hdg|E and g|N =
0 = h|N. Hence, from the canonicity of E, the differential of the function
{f1, . . . , fn−1, gh} also vanishes on E, which then implies that iv(dh)(p) = 0, for
all v ∈ Ep. As (T N)0 is locally generated by the differential of functions vanishing
on N , it follows that Ep ⊆ TpN. Since the bundle E ∩ T N is a smooth distribu-
tion of constant rank, we must have E ⊆ T N everywhere. Thus, for any function
f ∈ C∞(M), the differential of the function fg vanishes on E, because d(fg)|E =
f dg|E + gdf |E anddg ∈ (T N)0 ⊆ E0. Therefore, d

({f1, . . . , fn−1, fg})|E = 0.
This implies that iv(df )(p) = 0, for all v ∈ Ep and p ∈ N . This can happen only
when Ep = 0, for all p ∈ N , that is, E = 0. Hence the proof.

Example 3.2 Let (M, {, . . . , }) be a Nambu-Poisson manifold of order n with
induced Nambu tensor �, and N ⊂ M a submanifold. Let

E = ��(Annn−1T N),

where (Annn−1T N)p = {η ∈ �n−1T ∗
p M|iv1∧···∧vn−1η = 0, ∀v1, . . . , vn−1 ∈

TpN, p ∈ N}. Thus, E is (locally) generated by vector fields ��(dh1 ∧· · ·∧dhn−1),
where h1, . . . , hn−1 are smooth functions with dhi is vanishing T N , for some
i ∈ {1, . . . , n − 1}. The bundle E is canonical as shown in [10].
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Moreover, the bundle E satisfies ��(Ann1E) ⊂ T N . One can also conclude the
same fact by using Proposition 3.1.

Remark 3.3 Let (M, {, . . . , }) be a Nambu-Poisson manifold of order n with associ-
ated tensor �. Consider the Leibniz bracket {, }� on the space of (n − 1) forms on
M given by (3). This bracket satisfies

{df1 ∧ · · · ∧ dfn−1, dg1 ∧ · · · ∧ dgn−1}�

=
n−1∑

i=1

dg1 ∧ · · · ∧ d{f1, . . . , fn−1, gi} ∧ · · · ∧ dgn−1, (4)

for all f1, . . . , fn−1, g1, . . . , gn−1 ∈ C∞(M). Let N ⊂ M be a submanifold, and
0 �= E ⊆ T M|N be a canonical subbundle. Since Ann1E is generated by elements
of the form df1 ∧ · · · ∧ dfn−1, where f1, . . . , fn−1 are smooth functions on M with
differentials dfk vanish on E, it follows from (4) and the canonicity of E that the
sections of the subbundle (Ann1E) → N are closed with respect to the bracket
defined by (3). Moreover, from Proposition 3.1, the anchor �� maps (Ann1E) to
T N . Hence, (Ann1E) → N is a Leibniz subalgebroid of �n−1T ∗M → M .

Ann1E
� � ��

��

�n−1T ∗M

��

N
� � �� M

We have a different Leibniz algebroid structure on �n−1T ∗M → M associated to
any Nambu-Poisson manifold of order n, given by Ibáñez et al [11]. The Leibniz
bracket as defined in [11] also satisfies (4). Thus, in this case, the bundle (Ann1E) →
N is a Leibniz subalgebroid of �n−1T ∗M → M .

Combinding Theorem 2.7 and Proposition 3.1, we get the following result which
is analogous to Theorem 2.2 of [8].

Proposition 3.4 Let E ⊆ T M|N be a canonical subbundle such that F := E ∩ T N

is a regular, integrable distribution on N .

1. If E �= 0, then (M, N, E) is reducible.
2. If E = 0, then (M, N, E) is reducible if and only if ��(�n−1T ∗

p M) ⊆ TpN , for
all p ∈ N , that is, if and only if N is a Nambu-Poisson submanifold.

Remark 3.5 It follows from Proposition 3.4 that the triple (M, N, E = 0) is reducible
if and only if N is a Nambu-Poisson submanifold. If E′ is any canonical subbundle
such that E′ ∩ T N = 0, the Nambu-Poisson structures on N induced by E and E′
are the same, as N is a Nambu-Poisson submanifold.
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A Nambu ring is an associative, commutative ring R with a skew-symmetric n-
multilinear bracket

{, . . . , } : R × · · · × R︸ ︷︷ ︸
n copies

→ R

which satisfies the Leibniz rule and the fundamental identity. A subring of R is called
a Nambu subring if it is itself a Nambu ring under the induced structure.

Let R be a Nambu ring and I be an ideal of it. Given a Nambu subring N , the
quotient N /(N ∩ I) inherits a Nambu ring structure [14].

Remark 3.6 Let E ⊂ T M|N be a canonical subbundle. Then the induced Nambu-
Poisson structure on C∞(N/F) = C∞(M)E/(C∞(M)E ∩ I) given by Proposition
3.4, is just the quotient Nambu structure as above, where I is the ideal of smooth
functions on M vanishing on N .

4 Falceto-Zambon Reduction

In this section, we study the version of Falceto-Zambon Poisson reduction the-
orem for Nambu-Poisson manifolds, and subsequently we deduce the algebraic
interpretation of our main result and reduction of subordinate Nambu structures.
Our approaches here closely follow the work of Falceto and Zambon for Poisson
manifolds [8].

4.1 Falceto-Zambon Reduction

In the Marsden-Ratiu reduction theorem for Nambu-Poisson manifolds, the induced
bracket on C∞(N) is given as follows. For any f1, . . . , fn ∈ C∞(N), choose any
arbitrary extensions F1, . . . , Fn ∈ C∞(M)E of f1 ◦ π, . . . , fn ◦ π . The bracket
{, . . . , }N on C∞(N) is then defined by

{f1, . . . , fn}N := i∗{F1, . . . , Fn}. (5)

Note that the function on the right hand side of the above expression is in C∞(N)F .
To prove that the above bracket is well defined, one uses the fact that given any two
extensions Fn and F ′

n of fn ◦ π , the differential d(Fn − F ′
n) annihilate both T N and

E, thus, annihilate T N + E. On the other hand,

��(dF1 ∧ · · · ∧ dFn−1) ∈ ��(Ann1E) ⊂ T N + E.

Thus, it follows that the bracket is independent of the chosen extensions. This inde-
pendence is even valid if there is a subbundle D ⊂ T M|N such that F ⊆ D ⊆ E and
satisfying ��(Ann1E) ⊂ T N +D. To verify the fundamental identity of the reduced
bracket, one observes that the canonicity of E may be weakend. More precisely, we
only need the fact that if F1, . . . , Fn ∈ C∞(M)E , their bracket {F1, . . . , Fn} is in
C∞(M)D . One can also improve the reduction by adding a multiplicative subalgebra
B ⊂ C∞(M)E such that the restriction map i∗ : B → C∞(N)F is surjective.
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With the above observations, we have the following Nambu-Poisson version of
Falceto-Zambon reduction theorem (compare with Theorem 3.1 [8]).

Theorem 4.1 Let (M, {, . . . , }) be a Nambu-Poisson manifold with associated
Nambu tensor �, and N ⊂ M be a submanifold. Let E ⊂ T M|N be a subbundle
(may not be canonical) such that F := E ∩ T N is a regular, integrable distribution.
Assume that D is a subbundle of T M|N satisfying F ⊆ D ⊆ E and

��(Ann1E) ⊆ T N + D. (6)

Moreover, let B ⊆ C∞(M)E be a multiplicative subalgebra such that the restriction
map i∗ : B → C∞(N)F is surjective and

{B, . . . ,B} ⊆ C∞(M)D (7)

holds. Then (M, N, E) is reducible.

Proof Let f1, . . . , fn ∈ C∞(N) = C∞(N)F be any functions on N and choose
their arbitrary extensions F1, . . . , Fn in B. Then the bracket {, . . . , }N on C∞(N) is
defined by (5). Suppose there is another extension F ′

n ∈ B ⊆ C∞(M)E for fn. Then
the differential of the function (Fn − F ′

n) annihilates T N + E.
On the other hand, since each Fk ∈ C∞(M)E , we have dF1 ∧ · · · ∧ dFn−1 ∈

Ann1E. Therefore,

��(dF1 ∧ · · · ∧ dFn−1) ∈ ��(Ann1E) ⊆ T N + D ⊆ T N + E,

which implies that i∗{F1, . . . , Fn−1, Fn −Fn
′} = i∗〈��(dF1 ∧· · ·∧dFn−1), d(Fn −

Fn
′)〉 = 0. Thus, by skew-symmetry, the bracket is independent of the chosen exten-

sions of its entries. Hence, the bracket {f1, . . . , fn}N is well defined. The property of
skew-symmetryness and the Leibniz rule of this bracket follows from that of {, . . . , }.

To prove the fundamental identity of this bracket, we need the following obser-
vation. Let {f1, . . . , fn}BN be any extension of {f1, . . . , fn}N in B. Then from the
definition of the bracket {f1, . . . , fn}N , it follows that the functions {F1, . . . , Fn} and
{f1, . . . , fn}BN agrees on N . Thus, d

({F1, . . . , Fn}−{f1, . . . , fn}BN
) ∈ (T N)0. More-

over, since the function {F1, . . . , Fn} is in C∞(M)D , and the function {f1, . . . , fn}BN
is in B ⊆ C∞(M)E , we have d

({F1, . . . , Fn} − {f1, . . . , fn}BN
)|D = 0. Thus, the

differential of the function
({F1, . . . , Fn} − {f1, . . . , fn}BN

)
annihilates both T N and

D, hence, annihilates T N +D. Thus, it follows from condition (6) that the bracket of
(n − 1) functions of C∞(M)E with the above difference function is zero. Therefore,
for any g1, . . . , gn−1 ∈ C∞(N),

{g1, . . . , gn−1, {f1, . . . , fn}N }N = i∗{G1, . . . , Gn−1, {f1, . . . , fn}BN }
= i∗{G1, . . . , Gn−1, {F1, . . . , Fn}}.

Thus, the fundamental identity of the bracket {, . . . , }N follows from that of {, . . . , }.
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By choosing smaller D, we get better improvement of the reduction problem.
Taking D = F and B = C∞(M)E , we get a slight improvement of the Marsden-
Ratiu reduction theorem (cf. Theorem 2.7) for Nambu-Poisson manifolds.

Theorem 4.2 Let (M, {, . . . , }) be a Nambu-Poisson manifold with associated
Nambu tensor �, and N ⊂ M a submanifold. Let E ⊂ T M|N be a subbundle (may
not be canonical) such that F := E ∩ T N is a regular, integrable distribution on N

and that

(i) if F1, . . . , Fn ∈ C∞(M)E are smooth functions on M , then

{F1, . . . , Fn} ∈ C∞(M)F .

(ii) Moreover,

��(Ann1E) ⊆ T N. (8)

Then (M, N, E) is reducible.

Remark 4.3 In the above theorem, condition (ii) is equivalent to the following:
locally there exists a frame of sections Xi of F and for any extensions of them to
vector fields on M such that

(LXi
�)|N ⊆ E ∧

∧n−1
T M|N.

This follows from the formula of the Lie derivative

(LXi
�)(dF1, . . . , dFn) = Xi(�(dF1, . . . , dFn))

−
n∑

k=1

�(dF1, . . . , d(Xi(Fk)), . . . , dFn)

= Xi({F1, . . . , Fn}) −
n∑

k=1

{F1, . . . , Xi(Fk), . . . , Fn}.

Indeed, if F1, . . . , Fn ∈ C∞(M)E and {F1, . . . , Fn} ∈ C∞(M)F , the first term
of the right hand side vanishes. Moreover, in the right hand side, each term of the
summation vanishes on N as Xi(Fk)|N = 〈Xi, dFk〉 = 0 and ��(Ann1E) ⊂ T N .
Therefore, we have

(LXi
�)(dF1, . . . , dFn)|N = 0,

which implies that

(LXi
�)|N ⊆ E ∧

∧n−1
T M|N.

Corollary 4.4 Let (M, N, E) be a triple satisfying conditions of Theorem 4.2, so
that it is Nambu-Poisson reducible to (N, �N). Then

�(π̃∗α1, . . . , π̃∗αn) ◦ i = �N(α1, . . . , αn) ◦ π

and

dπ ◦ ��(π̃∗α1 ∧ · · · ∧ π̃∗αn−1) = (�N)�(α1 ∧ · · · ∧ αn−1) ◦ π,
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for any α1, . . . , αn ∈ 	1(N) and any extensions π̃∗α1, . . . , π̃∗αn ∈ 	1(M) of
π∗α1, . . . , π

∗αn vanishing on E.

Motivated from the examples of [8] here we provide examples where the assump-
tions of Theorem 4.2 are satisfied but E is not canonical.

Example 4.5 Consider the manifold M = R4 with the Nambu structure � = w ∂
∂x

∧
∂
∂y

∧ ∂
∂z

of order 3. Let N = {w = 0} be the submanifold of xyz-plane and E = R ∂
∂w

.
The bundle E is not canonical. Indeed, the functions f1 = x, f2 = y and f3 = z

which are in C∞(M)E , whilst their Nambu bracket

{x, y, z} =
(

idx∧dy∧dzw
∂

∂x
∧ ∂

∂y
∧ ∂

∂z

)
= w,

is not in C∞(M)E , but in C∞(M)F , since F = E ∩ T N = {0}. The bundle E also
satisfies condition (8) as � vanishes at points of N .

One can extend the preceding example to the case of Nambu structure of higher
order.

Example 4.6 Take M = Rn+k with the Nambu structure � = xn+1
∂

∂x1
∧ · · · ∧ ∂

∂xn

of order n. Take N = {xn+1 = 0} and E = R ∂
∂xn+1

. The bundle E is not canonical as
in the previous example and also satisfies condition (8) as � vanishes at points of N .

If we take N ′ = {xn+1 = · · · = xn+k = 0},the hypothesis of Theorem 4.2 also
holds. Therefore, the Nambu structure can also be reduced.

Similar to the Marsden-Ratiu version of Nambu-Poisson map reduction and
dynamics reduction [10], one can state the Falceto-Zambon version as follows. The
proof of these results are same as the Marsden-Ratiu case.

Proposition 4.7 (Reduction of Nambu-Poisson map) Let the tuples
(Mj , Nj , Ej , Dj ,Bj ) satisfies the conditions of Theorem 4.1, thus (Mj , Nj , Ej )

are Nambu-Poisson reducible, for j = 1, 2. Let φ : M1 → M2 be a Nambu-Poisson
map such that φ(N1) ⊆ N2, φ∗(E1) ⊂ E2, and φ∗B2 ⊂ B1. Then φ induces a
unique Nambu-Poisson map φ̂ : N1 → N2 such that π2 ◦ φ|N1 = φ̂ ◦ π1.

Let M be a Nambu-Poisson manifold of order n. Then a submanifold N ⊂ M is
conserved for the functions F1, . . . , Fn−1 ∈ C∞(M), if XF1,...,Fn−1(x) ∈ TxN , for
all x ∈ N .

Theorem 4.8 (Reduction of dynamics) Let the tuple (M, N, E, D,B) satisfies the
conditions of Theorem 4.1, thus (M, N, E) is reducible. Let H1, . . . , Hn−1 ∈ B ⊂
C∞(M)E be a family of functions for which the submanifold N is conserved. In
addition, assume that the flow φt of XH1,...,Hn−1 preserves the subbundle E and that

φ∗
t B ⊂ B. Then φt induces Nambu-Poisson diffeomorphisms φ̂t on N and φ̂t is the

flow of the Hamiltonian vector field Xh1,...,hn−1 , where hi ∈ C∞(N) are uniquely
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determined by hi ◦ π = Hi |N , for i = 1, . . . , n − 1. Moreover, the vector fields
(XH1,...,Hn−1)|N and Xh1,...,hn−1 are π -related.

4.2 Algebraic Interpretation of Theorem 4.1

An algebraic formulation of the Marsden-Ratiu reduction theorem for Nambu-
Poisson manifolds (cf. Theorem 2.7) is given as follows. Let I be an ideal of a Nambu
ring R and B ⊂ R be a Nambu subring such that

{B, . . . ,B,B ∩ I} ⊂ I.

Then there is an induced Nambu ring structure on B/(B ∩ I).

In the next, we will give the algebraic interpretation of Theorem 4.1 which is
similar to Proposition A.1 of [8].

Theorem 4.9 Let R be a Nambu ring and I be an ideal of R. Let B ⊂ D be
multiplicative subalgebras of R having the same images under the projection map
R → R/I. Moreover, suppose that

{B, . . . ,B,D ∩ I} ⊂ I (9)

and

{B, . . . ,B} ⊂ D. (10)

Then B/(B∩I) inherits a Nambu ring structure with its bracket is determined by the
following diagram

B × · · · × B {,...,}
��

��

D

��
B

B∩I × · · · × B
B∩I �� B

B∩I = D
D∩I .

Proof The bracket on B/(B ∩ I) is well defined because of conditions (9) and (10).
The induced bracket on B/(B ∩ I) is of course skew-symmetric and satisfies the
Leibniz rule as so does the bracket on R. To cheque the fundamental identity of the
bracket, consider any g1, . . . , gn−1, f1, . . . , fn ∈ B/(B ∩ I) and arbitrary represen-

tations g̃1, . . . , g̃n−1, f̃1, . . . , f̃n ∈ B of them. Then ˜{f1, . . . , fn} and {f̃1, . . . , f̃n}
represents the same element, therefore, their difference ˜{f1, . . . , fn} − {f̃1, . . . , f̃n}
lies in B ∩ I ⊆ D ∩ I.

Thus, we have

{g1, . . . , gn−1, {f1, . . . , fn}} = {g̃1, . . . , g̃n−1, ˜{f1, . . . , fn}} (mod D ∩ I)

= {g̃1, . . . , g̃n−1, {f̃1, . . . , f̃n}} (mod D ∩ I).

Hence, the bracket on B/(B ∩ I) satisfies the fundamental identity.
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Remark 4.10 Theorem 4.1 can be recovered from the above algebraic formulation
by taking R = C∞(M), I = {f ∈ C∞(M)|f |N ≡ 0}, B = B and D = C∞(M)D .
In this case, conditions (6) and (7) become conditions (9) and (10), respectively.

4.3 Reduction of Subordinate Nambu Structures

Let the tuple (M, N, E, D,B) satisfies the conditions of Theorem 4.1, that is, there
is a subbundle D ⊂ T M|N satisfying F ⊆ D ⊆ E and

��(Ann1E) ⊆ T N + D.

Moreover, B ⊆ C∞(M)E is a multiplicative subalgebra such that the map i∗ : B →
C∞(N)F is surjective and {B, . . . ,B} ⊆ C∞(M)D. Let F1, . . . , Fk (k � n − 2)

be any fixed functions on M . Then there is an induced Nambu-Poisson structure of
order n−k on M , called the subordinate Nambu structure with subordinate functions
F1, . . . , Fk and is defined by

{f1, . . . , fn−k}F1···Fk
= {F1, . . . , Fk, f1, . . . , fn−k},

for any f1, . . . , fn−k ∈ C∞(M). The Nambu tensor �F1···Fk
of this subordinate

Nambu structure is given by

(�F1···Fk
)�(df1 ∧ · · · ∧ dfn−k−1) = ��(dF1 ∧ · · · ∧ dFk ∧ df1 ∧ · · · ∧ dfn−k−1).

Observe that

(�F1···Fk
)�(Ann1

kE) ⊂ ��(Ann1E) ⊂ T N + D,

where (Ann1
kE)p = {μ ∈ �n−k−1T ∗

x M|ivμ = 0, ∀v ∈ Ep},for p ∈ N,if the
differentials dF1, . . . , dFk are vanishing on E. Thus, condition (6) holds for this
subordinate Nambu structure if F1, . . . , Fk ∈ C∞(M)E . If F1, . . . , Fk are also in B,
that is, they lie in the same multiplicative subalgebra, then condition (7) also holds
for the subordinate Nambu structure. In that case, the subordinate Nambu structure
{, . . . , }F1···Fk

is also reducible.
Thus we have the following result.

Proposition 4.11 Let the assumptions of Theorem 4.1 hold and let F1, . . . , Fk be any
fixed functions on M . If F1, . . . , Fk are in B, then the subordinate Nambu structure
{, . . . , }F1···Fk

is reducible.

4.4 Application

In this subsection, we give an application of Theorem 4.1 where the subbundle D ⊂
T M|N is the restriction of some suitable integrable distribution on M . We recall the
following definition from [8].

Definition 4.12 Let M be a manifold, N ⊂ M a submanifold and i : N ↪→ M

the inclusion. Let E ⊆ T M|N be a subbundle such that F := E ∩ T N is a regular,
integrable distribution on N . If θD is an integrable distribution on M with F ⊆ D :=
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θD|N ⊆ E, then θD is said to be compatible with E if the restriction map

i∗ : C∞(M)E ∩ C∞(M)θD
→ C∞(N)F

is surjective.

In order to provide some examples we need the following proposition which is a
generalisation of Proposition 4.2 of [8].

Proposition 4.13 Let (M, {, . . . , }) be a Nambu-Poisson manifold with associated
Nambu tensor �, N ⊂ M a submanifold, and i : N ↪→ M the inclusion. Let E, θD

as in the above and θD is compatible with E. If

��(Ann1E) ⊆ T N + D (11)

and for any section X ∈ �(θD),

(LX�)|N ⊆ E ∧
∧n−1

T M|N, (12)

then (M, N, E) is reducible.

Proof Take B = C∞(M)E ∩ C∞(M)θD
in Theorem 4.1 . As θD is compatible with

E, the map i∗ : B → C∞(N)F is surjective. Moreover, the condition (6) is given.
To show that B satisfies condition (7), that is, {B, . . . ,B} ⊆ C∞(M)D,take any
F1, . . . , Fn ∈ B = C∞(M)E ∩ C∞(M)θD

and X ∈ �(θD).
We have the formula for the Lie derivative

(LX�)(dF1, . . . , dFn) = X({F1, . . . , Fn}) −
n∑

k=1

{F1, . . . , X(Fk), . . . , Fn}.

Note that, if (LX�)|N ⊂ E ∧ ∧n−1
T M|N , then the left hand side of the above

expression vanishes on N . Moreover, in the right hand side, each term of the sum-
mation vanishes, as X(Fk) = 〈X, dFk〉 = 0

(
since X ∈ �(θD) and Fk ∈

C∞(M)θD

)
. Thus, we have (X{F1, . . . , Fn})|N ≡ 0,that is 〈X, d{F1, . . . , Fn}〉|N =

0. Since X|N ∈ D = θD|N , the differential d{F1, . . . , Fn} vanishes on D. That
is, {F1, . . . , Fn} ∈ C∞(M)D . Hence, by Theorem 4.1, the triple (M, N, E) is
reducible.

Example 4.14 Consider M = R4 with the Nambu structure � = ∂
∂x

∧ ∂
∂y

∧ ∂
∂z

of order

3. Take the submanifold N = {z = 0} and E = D = θD|N , where θD = R ∂
∂z

. Then
θD is compatible with E, and since T N + D = T M|N , condition (11) also holds.
Moreover, we have L ∂

∂z
� = 0. Therefore, by Proposition 4.13, the triple (M, N, E)

is reducible.
Note that in this example the condition ��(Ann1E) ⊂ T N is not satisfied, since

��(dx ∧ dy) = ∂
∂z

/∈ T N.

The next example shows that conditions in Proposition 4.13 are not necessary in
order to obtain a reduced Nambu structure.
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Example 4.15 Consider M = R4 with the Nambu structure � = w ∂
∂x

∧ ∂
∂y

∧ ∂
∂z

of

order 3. Take the submanifold N = {w = x} and E = R ∂
∂w

. Then a distribution θD

as in Proposition 4.13 does not exist. Indeed, if θD exists, it has to be one dimensional
because of E ∩ T N ⊂ θD|N ⊂ E and condition (11). For any vector field X which
restricts to ∂

∂w
on N , we have (LX�)(p) = X(w)(p) ∂

∂x
∧ ∂

∂y
∧ ∂

∂z
= ∂

∂x
∧ ∂

∂y
∧ ∂

∂z

at the point p ∈ N , but this is not in E ∧ ∧n−1
T M|N . Thus condition (12) is not

satisfied. However (5) defines the Nambu structure {x, y, z} = x on N .

5 Gauge Transformations and Reduction

In this section, we consider the concept of gauge transformation of Nambu-Poisson
structures and show that gauge transformation commute with the reduction proce-
dure.

5.1 Gauge Transformations

Let (M, �) be a Nambu-Poisson manifold of order n � 3 and take a closed n-form
B ∈ 	n(M). Consider the subbundle

TB(L�) := {(��α, α + i��αB)|α ∈ �n−1T ∗M}.
Let B̃ : T M → �n−1T ∗M, X �→ iXB be the induced bundle map. If the bundle map

Id + B̃ ◦ �� : �n−1T ∗M → �n−1T ∗M (13)

is invertible, then TB(L�) is the graph of a map ��(Id + B̃ ◦��)−1 : �n−1T ∗M →
T M . Next we will show that the map ��(Id + B̃ ◦ ��)−1 is skew-symmetric,
thus, given by a skew-symmetric n-tensor field, denoted by TB(�). If �(x) = 0
for some x ∈ M then �

�
x(Id + B̃ ◦ ��)−1

x : �n−1T ∗
x M → TxM is the zero

map and hence skew-symmetric. If �(x) �= 0 then there exists a local coordinate
(U ; x1, . . . , xn, xn+1, . . . , xm) around x such that

�|U = ∂

∂x1
∧ · · · ∧ ∂

∂xn

(cf. Theorem 2.2). For any locally defined (n − 1)-form α of the form α = dxi1 ∧
· · · ∧ dxin−1 with {i1, . . . , in−1} � {1, . . . , n}, we have ��α = 0. Therefore,

(Id + B̃ ◦ ��)−1(dxi1 ∧ · · · ∧ dxin−1) = dxi1 ∧ · · · ∧ dxin−1 ,

for {i1, . . . , in−1} � {1, . . . , n}. Hence,

��(Id + B̃ ◦ ��)−1(dxi1 ∧ · · · ∧ dxin−1) = 0.

On the other hand, if α = dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn for some k ∈ {1, . . . , n}, we
have

(Id+B̃◦��)(dx1∧· · ·∧d̂xk∧· · ·∧dxn) = dx1∧· · ·∧d̂xk∧· · ·∧dxn+(−1)n−ki ∂

∂xk
B.
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Suppose B is locally of the form B|U = bdx1 ∧· · ·∧dxn +B ′ with b ∈ C∞(U) and
B ′ is an n-form defined on U containing local expressions other than dx1 ∧· · ·∧dxn.
In that case i ∂

∂xk
B = (−1)k−1bdx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn + B ′′, where B ′′ is an

(n − 1)-form containing terms dxi1 ∧ · · · ∧ dxin−1 with {i1, . . . , in−1} � {1, . . . , n}.
Therefore,

(Id + B̃ ◦ ��)(dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn)

= [1 + (−1)n−1b]dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn + (−1)n−kB ′′.

Since ��(B ′′) = 0 we have

(Id + B̃ ◦ ��)

(
dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn − (−1)n−kB ′′

[1 + (−1)n−1b]
)

= dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn,

which implies that

��(Id + B̃ ◦ ��)−1(dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn)

= 1

[1 + (−1)n−1b]�
�(dx1 ∧ · · · ∧ d̂xk ∧ · · · ∧ dxn)

= (−1)n−k

[1 + (−1)n−1b]
∂

∂xk
.

Therefore, in any case,

〈dxj , ��(Id + B̃ ◦ ��)−1(dxi1 ∧ · · · ∧ dxin−1)〉
= −〈dxin−1, ��(Id + B̃ ◦ ��)−1(dxi1 ∧ · · · ∧ dxin−2 ∧ dxj )〉

holds. This shows that the map ��(Id + B̃ ◦ ��)−1 is skew-symmetric. The skew-
symmetric n-tensor field TB(�) ∈ �(�nT M) is completely determined by

TB(�)� = ��(Id + B̃ ◦ ��)−1,

and, in this case,
TB(L�) = Graph(TB(�)�) = LTB(�).

Moreover, TB(L�) is closed under the higher order Dorfman bracket, as

�(��α, α + i��αB), (��β, β + i��βB)�

= ([��α, ��β],L��αβ + L��αi��βB − i��βdα − i��βdi��αB)

= ([��α, ��β], {α, β}� + i[��α,��β]B) (since B is closed)

= (��{α, β}�, {α, β}� + i��{α,β}�B).

Therefore, it follows from Proposition 2.4 that TB(�) is a Nambu-Poisson tensor on
M . The Nambu tensor TB(�) is called the gauge transformation of � associated with
the n-form B, and the Nambu structures �, TB(�) are called gauge equivalent.

Remark 5.1 Since the map (13) is an isomorphism, it follows that gauge equivalent
Nambu-Poisson structures gives rise to same characteristic distribution.
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More generally, gauge equivalent Nambu-Poisson structures corresponds to iso-
morphic Leibniz algebroids.

Proposition 5.2 Let � be a Nambu-Poisson structure of order n on M , and TB(�)

be the gauge transformation of � associated with the n-form B. Then the Leibniz
algebroid structures on �n−1T ∗M → M associated to the Nambu-Poisson tensors
� and TB(�) are isomorphic.

Proof Consider the bundle isomorphism (Id + B̃ ◦ ��) : �n−1T ∗M → �n−1T ∗M ,
given by α �→ α + i��αB, for α ∈ �n−1T ∗M . This map commute with the
corresponding anchors, as

�� = TB(�)� ◦ (Id + B̃ ◦ ��).

For any α, β ∈ �n−1T ∗M , we also have

{(Id + B̃ ◦ ��)(α), (Id + B̃ ◦ ��)(β)}TB(�)

= LTB(�)�(Id+B̃◦��)α(Id + B̃ ◦ ��)β − iTB(�)�(Id+B̃◦��)βd((Id + B̃ ◦ ��)α)

= L��αβ + L��αi��βB − i��βdα − i��βdi��αB

= {α, β}� + i��{α,β}�B = (Id + B̃ ◦ ��){α, β}�.

Hence the proof.

5.2 Gauge Transformation Commutes with Reduction

Theorem 5.3 Let (M, {, . . . , }) be a Nambu-Poisson manifold with associated
Nambu-Poisson tensor �, N ⊂ M a submanifold and i : N ↪→ M the inclusion. Let
E ⊂ T M|N be a subbundle (may not be canonical) such that F := E ∩ T N is a
regular, integrable distribution on N and that

(i) if F1, . . . , Fn ∈ C∞(M)E are smooth functions on M , then

{F1, . . . , Fn} ∈ C∞(M)F .

(ii) Moreover,

��(Ann1E) ⊆ T N.

Let B be a closed n-form onM such that the map defined in (13) is invertible and that

a) B̃ : T M → �n−1T ∗M maps B̃(T N) ⊂ Ann1E,

b) B projects to an n-form B ∈ 	n(N) on N .

Consider the gauge transformation of � associated with the n-form B, and let the
Nambu structure be denoted by TB(�). Then (M, TB(�)) reduces to a Nambu-
Poisson manifold (N, TB(�)) which is same as the gauge transformation of the
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reduced Nambu-Poisson manifold (N, �) associated with the n-form B, that is, the
following diagram

(M, �)
TB ��

π

��

(M, TB(�))

π

��

(N, �)
TB

�� (N, TB(�) = TB(�))

is commutative.

Proof First we will show that the Nambu-Poisson tensor TB(�) satisfies the condi-
tions of Theorem 4.2. Since ��(Ann1E) ⊂ T N and B̃(T N) ⊂ Ann1E, it follows
that,

(Id + B̃ ◦ ��) : �n−1T ∗M → �n−1T ∗M

maps (Id + B̃ ◦ ��)(Ann1E) ⊂ Ann1E. As (Id + B̃ ◦ ��) is an isomorphism,
(Id + B̃ ◦ ��)(Ann1E) = Ann1E. Therefore, for any η ∈ Ann1E,

TB(�)�(η) = ��(Id + B̃ ◦ ��)−1(η) ∈ ��(Ann1E) ⊆ T N.

Moreover, for any F1, . . . , Fn ∈ C∞(M)E , we have

{F1, . . . , Fn}TB(�) = 〈TB(�)�(dF1 ∧ · · · ∧ dFn−1), dFn〉
= 〈��(Id + B̃ ◦ ��)−1(dF1 ∧ · · · ∧ dFn−1), dFn〉.

Therefore, for any V ∈ �(T M) with V |N ∈ F , we have

〈d({F1, . . . , Fn}TB(�)), V 〉|N
= (L��(Id+B̃◦��)−1(dF1∧···∧dFn−1)

dFn)(V )|N
= [

L��(Id+B̃◦��)−1(dF1∧···∧dFn−1)
V (Fn)

−dFn([��(Id + B̃ ◦ ��)−1(dF1 ∧ · · · ∧ dFn−1), V ])]|N = 0.

This shows that, {F1, . . . , Fn}TB(�) ∈ C∞(M)F . Thus, the Nambu structure TB(�)

is reducible by Theorem 4.2.
Moreover, since B is closed, the n-form B ∈ 	n(N) on N is closed. The bundle

map

Id + B̃ ◦ �� : �n−1T ∗N → �n−1T ∗N

is invertible and the inverse is given as follows. For any f1, . . . , fn ∈ C∞(N), let
F1, . . . , Fn ∈ C∞(M)E be arbitrary extensions of f1 ◦ π, . . . , fn ◦ π fron N to M .
If the inverse (Id + B̃ ◦ ��)−1(dF1 ∧ · · · ∧ dFn−1) is locally given by the sum∑

j1,...,jn−1
Hj1...jn−1dHj1 ∧ · · ·∧dHjn−1 , for some locally defined functions Hj ’s on

M with differentials vanishing on E, then the inverse (Id + B̃ ◦ ��)−1(df1 ∧ · · · ∧
dfn−1) is locally given by by the sum

∑
j1,...,jn−1

hj1...jn−1dhj1 ∧ · · · ∧ dhjn−1 , where
hj ’s are restriction of Hj ’s on N .
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From the reducibility of Nambu structures � and TB(�), we have

{f1, . . . , fn}� ◦ π = {F1, . . . , Fn} ◦ i, (14)

{f1, . . . , fn}TB� ◦ π = {F1, . . . , Fn}TB� ◦ i. (15)

Therefore, for any x ∈ N ,

{f1, . . . , fn}TB(�)(π(x))

=
〈
TB(�)�(df1 ∧ · · · ∧ dfn−1), dfn

〉
(π(x))

=
〈
��(Id + B̃ ◦ ��)−1(df1 ∧ · · · ∧ dfn−1), dfn

〉
(π(x))

=
∑

j1,...,jn−1

〈hj1...jn−1�
�(dhj1 ∧ · · · ∧ dhjn−1), dfn〉(π(x))

=
∑

j1,...,jn−1

(hj1...jn−1{hj1 , . . . , hjn−1 , fn}�)(π(x))

=
∑

j1,...,jn−1

(Hj1...jn−1{Hj1 , . . . , Hjn−1 , Fn})(i(x)) (by (14))

=
∑

j1,...,jn−1

〈Hj1...jn−1�
�(dHj1 ∧ · · · ∧ dHjn−1), dFn〉(i(x))

=
〈
��(Id + B̃ ◦ ��)−1(dF1 ∧ · · · ∧ dFn−1), dFn

〉
(i(x))

=
〈
TB(�)�(dF1 ∧ · · · ∧ dFn−1), dFn

〉
(i(x)) = {F1, . . . , Fn−1, Fn}TB(�)(i(x)).

Thus by (15), it follows that

{f1, . . . , fn}TB� ◦ π = {f1, . . . , fn}TB(�) ◦ π.

Since π is surjective, we have TB� = TB(�). Hence the proof.
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11. Ibáñez, R., de León, M., Marrero, J.C., Padrón, E.: Leibniz algebroid associated with a Nambu-

Poisson structure. J. Phys. A: Math. Gen. 32, 8129–8144 (1999)
12. Jurco, B., Schupp, P.: Nambu-sigma model and effective membrane actions. Phys. Lett. B 713(3),

313–316 (2012)
13. Jurco, B., Schupp, P.: Nambu-sigma model and branes. In: Proceedings of the 11th Hellenic School

and Workshops on Elementary Particle Physics and Gravity, pp. 45–53. Corfu Summer Institute
(Corfu2011) (2011)

14. Marmo, G., Ibort, A.: A generalized reduction procedure for dynamical systems. In: Proceeding of
the IV Workshop on Differential Geometry and Its Applications. Santiago de Compostela 95 RSEF
Monografias, vol. 3 (1995)

15. Marsden, J.E., Ratiu, T.: Reduction of Poisson manifolds. Lett. Math. Phys. 11, 161–169 (1986)
16. Nambu, Y.: Generalized Hamiltonian Dynamics. Phys. Rev. D 7(8), 2405–2412 (1973)
17. Ortega, J.-P., Ratiu, T.: Momentum Maps and Hamiltonian reduction, Progress in Mathematics

(Boston Mass.), vol. 222. Birkhäuser, Boston (2004)
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