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Abstract For Ising model on the Cayley tree of order five and six we present new
weakly periodic (non-periodic) Gibbs measures corresponding to normal subgroups
of indices two in the group representation of the Cayley tree.
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1 Introduction

A Gibbs measure is a mathematical idealization of an equilibrium state of a phys-
ical system which consists of a very large number of interacting components. In
the language of Probability Theory, a Gibbs measure is simply the distribution of a
stochastic process which, instead of being indexed by the time, is parametrized by the
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sites of a spatial lattice, and has the special feature of admitting prescribed versions of
the conditional distributions with respect to the configurations outside finite regions.
The physical phenomenon of phase transition is reflected by the non-uniqueness of
the Gibbs measures for the considered model. The Ising model is realistic enough
to exhibit this non-uniqueness of Gibbs measures in which a phase transition is pre-
dicted by physics. This fact is one of the main reasons for the physical interest in
Gibbs measures. The problem of non-uniqueness, and also the converse problem of
uniqueness, are central themes of the theory of Gibbs measures.

Let M(H) be the set of all Gibbs measures defined by Hamiltonian H. Note that
this set contains translation-invariant Gibbs measures, periodic Gibbs measures and
non-periodic Gibbs measures and one can consider the problem of phase transition
in the classes of translation-invariant Gibbs measures, periodic Gibbs measures and
non-periodic Gibbs measures respectively. In [1–5] the translational invariant Gibbs
measures of the Ising model and some of its generalization on the Cayley tree were
studied. The papers [6–8] are devoted to periodic Gibbs measures with period 2 for
models with finite radius of interaction. In [9–12] the authors introduced a new class
of Gibbs measures, the so-called weakly periodic Gibbs measures and proved the
existence of such measures for the Ising model on the Cayley tree. In [1, 12, 13]
continuum sets of non periodic Gibbs measures for the Ising model on the Cayley tree
are constructed . In [9, 10, 14] the authors considered non-periodic weakly periodic
Gibbs measures for the Ising model on the Cayley tree of order k < 5. The present
paper is a continuation of the investigations in [14] and in this paper we study weakly
periodic Gibbs measures on the Cayley tree of order five and six.

2 Basic Definitions and Formulation of the Problem

Let �k = (V , L), be the Cayley tree of order k � 1, i.e. an infinity graph every
vertex of which is incident to exactly k + 1 edges. Here V is the set of all vertices,
L is the set of all edges of the tree �k. It is known that �k can be represented as a
non-commutative group Gk , which is the free product of k + 1 cyclic groups of the
second order [13]. Therefore we identify V and Gk .

For an arbitrary point x0 ∈ V we set Wn = {x ∈ V |d(x0, x) = n}, Vn =
n⋃

m=0
Wm,

Ln = {< x, y >∈ L|x, y ∈ Vn}, where d(x, y) is the distance between the vertices
x and y in the Cayley tree, i.e. the number of edges in the shortest path joining the
vertices x and y. We write x ≺ y if the path from x0 to y goes through x. We call the
vertex y a direct successor of x, if y � x and x, y are nearest neighbors. The set of
the direct successors of x is denoted by S(x), i.e., if x ∈ Wn , then

S(x) = {yi ∈ Wn+1|d(x, yi) = 1, i = 1, 2, · · · , k}.

Let � = {−1, 1} and let σ ∈ � = �V be a configuration, i.e. σ = {σ(x) ∈ � :
x ∈ V }. For subset A ⊂ V we denote by �A the space of all configurations defined
on the set A and taking values in �.
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We consider the Hamiltonian of the Ising model:

H(σ) = −J
∑

<x,y>∈L

σ(x)σ (y), (2.1)

where J ∈ R, σ(x) ∈ � and < x, y > are nearest neighbors.
For every n, we define a measure μn on �Vn setting

μn(σn) = Z−1
n exp

⎧
⎨

⎩
−βH(σn) +

∑

x∈Wn

hxσ(x)

⎫
⎬

⎭
, (2.2)

where hx ∈ R, x ∈ V, β = 1
T
(T is temperature, T > 0), σn = {σ(x), x ∈ Vn} ∈

�Vn , Z
−1
n is the normalizing factor, and

H(σn) = −J
∑

<x,y>∈Ln

σ (x)σ (y).

The compatibility condition for the measures μn(σn), n � 1, is
∑

σ (n)

μn(σn−1, σ
(n)) = μn−1(σn−1), (2.3)

where σ (n) = {σ(x), x ∈ Wn}.
Let μn, n � 1 be a sequence of measures on the sets �Vn that satisfy compatibility

condition (2.3). By the Kolmogorov theorem, we then have a unique limit measure μ

on �V = � (called a limit Gibbs measure) such that

μ(σn) = μn(σn)

for every n = 1, 2, .... It is known that measures (2.2) satisfies the condition (2.3) if
and only if the set h = {hx, x ∈ Gk} of real numbers satisfies the condition

hx =
∑

y∈S(x)

f (hy, θ), (2.4)

where S(x) is the set of direct successors of the vertex x ∈ V (see [1–3]). Here,
f (x, θ) = arctanh(θ tanh x), θ = tanh(Jβ), β = 1

T
.

Let Gk/Ĝk = {H1, ..., Hr} be a factor group, where Ĝk is a normal subgroup of
index r � 1.

Definition 1 A set h = {hx, x ∈ Gk} of quantities is called Ĝk-periodic if hxy = hx ,
for all x ∈ Gk and y ∈ Ĝk .

For x ∈ Gk we denote by x↓ the unique point of the set {y ∈ Gk : 〈x, y〉} \ S(x).

Definition 2 A set of quantities h = {hx, x ∈ Gk} is called Ĝk-weakly periodic, if
hx = hij , for any x ∈ Hi, x↓ ∈ Hj .
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We note that the weakly periodic h coincides with an ordinary periodic one (see
Definition 1) if the quantity hx is independent of x↓.

Definition 3 A Gibbs measure μ is said to be Ĝk-(weakly) periodic if it corresponds
to a Ĝk-(weakly) periodic h. We call a Gk-periodic measure a translation-invariant
measure.

In this paper, we study weakly periodic Gibbs measures and demonstrate that such
measures exist for the Ising model on a Cayley tree of order five and six.

3 Weakly Periodic Measures

The level of difficulty in the description of weakly periodic Gibbs measures is related
to the structure and index of the normal subgroup relative to which the periodicity
condition is imposed. It is known (see Chapter 1 of [1]) that in the group Gk , there is
no normal subgroup of odd index different from one. Therefore, we consider normal
subgroups of even indices. Here, we restrict ourself to the case of index two.

We describe Ĝk-weakly periodic Gibbs measures for any normal subgroup Ĝk of
index two. We note (see Chapter 1 of [1]) that any normal subgroup of index two of
the group Gk has the form

HA =
{

x ∈ Gk :
∑

i∈A

ωx(ai)-even

}

,

where ∅ 
= A ⊆ Nk = {1, 2, . . . , k + 1}, and ωx(ai) is the number of letters ai in a
word x ∈ Gk .

Let A ⊆ Nk and HA be the corresponding normal subgroup of index two. We note
that in the case |A| = k + 1, i.e., in the case A = Nk , weak periodicity coincides
with ordinary periodicity. Therefore, we consider A ⊂ Nk such that A 
= Nk . Then,
in view of (2.4), the HA-weakly periodic set of h has the form

hx =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h1, x ∈ HA, x↓ ∈ HA,

h2, x ∈ HA, x↓ ∈ Gk\HA,

h3, x ∈ Gk\HA, x↓ ∈ HA,

h4, x ∈ Gk\HA, x↓ ∈ Gk\HA,

(3.1)

where hi, i = 1, 2, 3, 4, satisfy the following equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h1 = |A|f (h3, θ) + (k − |A|)f (h1, θ),

h2 = (|A| − 1)f (h3, θ) + (k + 1 − |A|)f (h1, θ),

h3 = (|A| − 1)f (h2, θ) + (k + 1 − |A|)f (h4, θ),

h4 = |A|f (h2, θ) + (k − |A|)f (h4, θ).

(3.2)
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Consider operator W : R4 → R4, defined by

⎧
⎪⎪⎨

⎪⎪⎩

h′
1 = |A|f (h3, θ) + (k − |A|)f (h1, θ)

h′
2 = (|A| − 1)f (h3, θ) + (k + 1 − |A|)f (h1, θ)

h′
3 = (|A| − 1)f (h2, θ) + (k + 1 − |A|)f (h4, θ)

h′
4 = |A|f (h2, θ) + (k − |A|)f (h4, θ).

(3.3)

Note that the system of (3.2) describes fixed points of the operator W, i.e. h =
W(h).

It is obvious that the following sets are invariant with respect to operator W :

I1 = {h ∈ R4 : h1 = h2 = h3 = h4}, I2 = {h ∈ R4 : h1 = h4; h2 = h3},

I3 = {h ∈ R4 : h1 = −h4; h2 = −h3}.

In [9] it was proved that the system of (3.2), on the invariant set I2, has solu-
tions which belong to I1. The system of (3.2) on the invariant set I1 reduces to the
following equation

h = kf (h, θ). (3.4)

The solutions of (3.4) correspond to translation-invariant Gibbs measures. In this
paper we will study weakly periodic (non-periodic, in particular non translation-
invariant) Gibbs measures, i.e. we will investigate the fixed points of operator W in
the invariant set I3.

Let α = 1−θ
1+θ

. In [14] the following statement is proved.

Theorem 1 Let |A| = k, α > 1.

1) For k � 3 all HA-weakly periodic Gibbs measures on I3 are translational
invariant.

2) For k = 4 there exists a critical value αcr(≈ 6.3716) such that for α < αcr on
I3 there exists one HA-weakly periodic Gibbs measure; for α = αcr on I3 there
exist three HA-weakly periodic Gibbs measures; for α > αcr on I3 there exist
five HA-weakly periodic Gibbs measures.

Remark 1 Note that one of the measures described in item 2) of Theorem 1, is
translation-invariant, but the other measures are HA-weakly periodic (non-periodic)
and differ from measures considered in [9, 10].

In Theorem 1 have been considered the cases with k � 4 (see [14]). In this paper
we consider the cases with k � 5.

Using the fact that

f (h, θ) = arctanh(θ tanhh) = 1

2
ln

(1 + θ)e2h + (1 − θ)

(1 − θ)e2h + (1 + θ)
,
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and introducing the variables zi = e2hi i = 1, 2, 3, 4 one can transform the system
of (3.2) to the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

z1 =
(

z3+α
αz3+1

)|A| ·
(

z1+α
αz1+1

)(k−|A|)

z2 =
(

z3+α
αz3+1

)|A|−1 ·
(

z1+α
αz1+1

)(k+1−|A|)

z3 =
(

z2+α
αz2+1

)|A|−1 ·
(

z4+α
αz4+1

)(k+1−|A|)

z4 =
(

z2+α
αz2+1

)|A| ·
(

z4+α
αz4+1

)(k−|A|)
.

(3.5)

Theorem 2 Let |A| = k. Then for arbitrary k the number of HA-weakly periodic
(non-periodic) Gibbs measures which correspond to fixed points of operator W on
the invariant set I3 does not exceed four.

Proof Let |A| = k. Then the system of (3.5) has the form
⎧
⎪⎪⎨

⎪⎪⎩

z1 = (f (z3))
k

z2 = (f (z3))
k−1 · (f (z1))

z3 = (f (z2))
k−1 · (f (z4))

z4 = (f (z2))
k ,

(3.6)

where f (x) = x+α
αx+1 . The system of (3.6) on the invariant set I3 has the following

form: ⎧
⎪⎨

⎪⎩

z1 =
(
f

(
1
z2

))k

z2 =
(
f

(
1
z2

))k−1 · (f (z1))

(3.7)

and it can be transformed to the following equation

z2 =
(
1 + αz2

α + z2

)k−1
α(α + z2)

k + (1 + αz2)
k

(α + z2)k + α(1 + αz2)k
. (3.8)

Assuming u = f (z2) we reduce the (3.8) to the equation

u2k − αu2k−1 + α2uk+1 − α2uk−1 + αu − 1 = 0. (3.9)

According to Descartes’ rule of signs (see for example [15]) the number of positive
roots of the polynomial (3.9) is either equal to the number of sign differences between
consecutive nonzero coefficients, or is less than it by an even number. Therefore, the
(3.9) has at most five positive solutions. It is easy to verify that this (3.9) is factorized
as follows:

(u2 − 1)P2k−2(u) = 0, (3.10)
where P2k−2(u) is a polynomial of degree 2k − 2. Since one of the roots of (3.9) is
u = 1 which corresponds to a translational-invariant Gibbs measure, the number of
HA-weakly periodic (non-periodic) Gibbs measures does not exceed of four.

Remark 2 In general, the total number of HA-weakly periodic (non-periodic) Gibbs
measures (considered everywhere, not only on the invariant set I3) may be greater
than four.
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Recall that a polynomial P = ∑n
i=0 aix

i of degree n , is called palindromic
(antipalindromic) if ai = an−i (respectively ai = −an−i ) for i = 0, 1, · · · , n. Note
that the polynomial (3.9) is antipalindromic. It is known that if antipalindromic poly-
nomial of even degree is a multiple of x2 − 1 (it has − 1 and 1 as a roots) then its
quotient by x2 − 1 is palindromic (see for example [15]).

Theorem 3 Let |A| = k, k = 5.
For the weakly periodic Gibbs measures corresponding to the set of quantities

from I3 there exists a critical value αcr(≈ 2.65) such that there is not any HA−
weakly periodic (nonperiodic) Gibbs measure for 0 < α < αcr , there are two HA−
weakly periodic (nonperiodic) Gibbs measures for α = αcr , and there are four HA−
weakly periodic (nonperiodic) Gibbs measures for αcr < α.

Proof Let k = 5.
In this case (3.9) has the form

u10 − αu9 + α2u6 − α2u4 + αu − 1 = 0. (3.11)

Now (3.10) has the form

(u2 −1)
(
u8 − αu7 + u6 − αu5 + (α2 + 1)u4 − αu3 + u2 − αu + 1

)
= 0. (3.12)

From (3.12) we have u2 − 1 = 0 or

u8 − αu7 + u6 − αu5 + (α2 + 1)u4 − αu3 + u2 − αu + 1 = 0. (3.13)

Since u > 0, we have that u = 1 is the solution of (3.12). We assume that u 
= 1.
Setting ξ = u + 1

u
> 2, from (3.13) we obtain the equation

ξ4 − αξ3 − 3ξ2 + 2αξ + α2 + 1 = 0. (3.14)

The (3.14) has at most two positive solutions. From (3.14) we find the parameter α:

α1 = ξ3 − 2ξ + √
ξ6 − 8ξ4 + 16ξ2 − 4

2
:= γ1(ξ), (3.15)

α2 = ξ3 − 2ξ − √
ξ6 − 8ξ4 + 16ξ2 − 4

2
:= γ2(ξ). (3.16)

Assume v = ξ2 and ϕ(v) = v3−8v2+16v−4. We consider ϕ′(v) = 3v2−16v+
16. It is clear that ϕ′(v) > 0 for v > 4. On the other hand ϕ(4) < 0, ϕ(+∞) > 0.
It follows that ϕ(v) = 0 has a unique solution v0 for v > 4. Therefore, the system of
inequalities {

ξ6 − 8ξ4 + 16ξ2 − 4 � 0
ξ > 2,

valid for ξ ∈ [ξ0, +∞), where ξ0 = √
v0(≈ 2.214).

Note that γ1(ξ0) = γ2(ξ0).
One can check that

lim
ξ→+∞ γi(ξ) = +∞, i = 1, 2. (3.17)
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It is clear that the function γ1(ξ) is increasing on the [ξ0, +∞). Then we get
following: for α ∈ (0, γ1(ξ0)) there is not ξ > 2 satisfying the (3.14); if α ∈
[γ1(ξ0),+∞) then there exists a unique ξ > 2 which satisfying the (3.14).

Note that if ξ ∈ [ξ0, +∞) then the equation γ ′
2(ξ) = 0 has a unique solution,

which is ξ1 ≈ 2.3841, and also we get γ2(ξ0) ≈ 3.21, γ2(ξ1) ≈ 2.65. Denote
αcr = γ2(ξ1).

Hence it is evident that the function γ2(ξ) reaches its minimum in [ξ0, +∞) at
ξ1. Consequently, for α ∈ (0, γ2(ξ1)) there is not ξ > 2 satisfying the (3.14), for
α ∈ {γ2(ξ1)} ∪ (γ2(ξ0); +∞) there exists a unique ξ > 2 satisfying the (3.14), if
α ∈ (γ2(ξ1), γ2(ξ0)) then there exist two ξ > 2 satisfying the (3.14).

Let nα be the number of solutions of the (3.14). Then nα has the following form

nα =
⎧
⎨

⎩

0, if α ∈ (0, αcr )

1, if α = αcr

2, if α ∈ (αcr , +∞).

For α > αcr from u + 1
u

= ξ we get four solutions of the (3.13). In this case the
(3.12) has five solutions. For α = αcr from u + 1

u
= ξ we get that the (3.13) has two

solutions. Consequently (3.12) has three solutions. In the case α ∈ (0, αcr ) the (3.12)
has a unique solution u = 1.

Theorem 4 Let |A| = k, k = 6.
For the weakly periodic Gibbs measures corresponding to the set of quantities

from I3 there exists a critical value αc(≈ 1.89) such that there is not anyHA−weakly
periodic (nonperiodic) Gibbs measure for α ∈ (0, αc), there are two HA− weakly
periodic (nonperiodic) Gibbs measures for α ∈ [2, 3]∪{αc}, and there are four HA−
weakly periodic (nonperiodic) Gibbs measures for α ∈ (αc, 2) ∪ (3, +∞).

Proof Let k = 6.
In this case (3.9) has the form

u12 − αu11 + α2u7 − α2u5 + αu − 1 = 0. (3.18)

The function y := y(u) = u12 − αu11 + α2u7 − α2u5 + αu − 1 with α = 4.1 is
plotted in Fig. 1.

In this case, the (3.10) has the form

(u2−1)
(
u10 − αu9 + u8 − αu7 + u6 + (α2−α)u5+u4−αu3+u2 − αu + 1

)
= 0.

(3.19)
From (3.19) we have u2 − 1 = 0 or

u10 − αu9 + u8 − αu7 + u6 + (α2 − α)u5 + u4 − αu3 + u2 − αu + 1 = 0. (3.20)

Since u > 0, we have that u = 1 is a solution of (3.19). We assume that u 
= 1.
Setting ξ = u + 1

u
> 2, from (3.20) we obtain the equation

ξ5 − αξ4 − 4ξ3 + 3αξ2 + 3ξ + α2 − α = 0. (3.21)
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Fig. 1 The function y = y(u) with α = 4.1

From (3.21) we find the parameter α:

α1 = ξ4 − 3ξ2 + 1 − √
ξ(ξ2 − 1)(ξ2 − 3)(ξ − 2)(ξ2 + 2ξ + 2) + 1

2
:= α1(ξ),

(3.22)

α2 = ξ4 − 3ξ2 + 1 + √
ξ(ξ2 − 1)(ξ2 − 3)(ξ − 2)(ξ2 + 2ξ + 2) + 1

2
:= α2(ξ).

(3.23)
One can check that

lim
ξ→+∞ αi(ξ) = +∞, i = 1, 2,

and ξ(ξ2 − 1)(ξ2 − 3)(ξ − 2)(ξ2 + 2ξ + 2) + 1 is positive for all ξ � 2.
Note that if ξ ∈ [2, +∞) the the equation α′

1(ξ) = 0 has a unique solution which
is ξ0 ≈ 2.077, and also we get α1(ξ0) ≈ 1.89. Hence it is clear that the function α1(ξ)

reaches its minimum in [2, +∞) at ξ0. Consequently, for α ∈ (0, α1(ξ0)) there is not
ξ � 2 satisfying the (3.21), for α ∈ {α1(ξ0)}∪ (α1(2); +∞) there exist unique ξ � 2
satisfying the (3.21), α ∈ (α1(ξ0), α1(2)] there exists two ξ � 2 satisfying the (3.21).

It is clear that the function α2(ξ) is increasing on the [2, +∞). Then we get fol-
lowing: for α ∈ (0, α2(2)) there is not ξ > 2 satisfying the (3.21); α ∈ [α2(2),+∞)

there exist a unique ξ > 2 which satisfying the (3.21).
Denote α1(ξ0) = αc.
Let nα be the number of solutions of the (3.20). Then nα has the following form

nα =
⎧
⎨

⎩

0, if α ∈ (0, αc)

1, if α ∈ (α1(2), α2(2)) ∪ {αc}
2, if α ∈ (αc, α1(2)] ∪ [α2(2),+∞).

For α ∈ (0, αc) (3.19) has a unique solution u = 1. For α ∈ (2, 3) ∪ {αc} from
u+ 1

u
= ξ we get two solutions of the (3.20). In this case the (3.19) has five solutions.



2 Page 10 of 10 Math Phys Anal Geom (2018) 21: 2

Note that α1(2) = 2 and α2(2) = 3 and in the case ξ = 2 from u + 1
u

= ξ we get
u = 1. Consequently, for α = 2 and α = 3 we get two solutions of (3.20) which differ
from u = 1. In this case (3.19) has three solutions. For α ∈ (αc, α1(2))∪(α2(2),+∞)

from u + 1
u

= ξ we get that the (3.20) has two solutions. Consequently, the (3.19)
has five solutions.

Let Nα be the number of solutions of the (3.19). Then Nα has the following form

Nα =
⎧
⎨

⎩

1, if α ∈ (0, αc)

3, if α ∈ [2, 3] ∪ {αc}
5, if α ∈ (αc, 2) ∪ (3, +∞).
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