
Math Phys Anal Geom (2017) 20: 18
DOI 10.1007/s11040-017-9249-x

Pauli-Fierz Type Operators with Singular
Electromagnetic Potentials on General Domains

Oliver Matte1

Received: 1 March 2017 / Accepted: 4 May 2017 / Published online: 26 May 2017
© Springer Science+Business Media Dordrecht 2017

Abstract We consider Dirichlet realizations of Pauli-Fierz type operators generating
the dynamics of non-relativistic matter particles which are confined to an arbitrary
open subset of the Euclidean position space and coupled to quantized radiation
fields. We find sufficient conditions under which their domains and a natural class of
operator cores are determined by the domains and operator cores of the correspond-
ing Dirichlet-Schrödinger operators and the radiation field energy. Our results also
extend previous ones dealing with the entire Euclidean space, since the involved elec-
trostatic potentials might be unbounded at infinity with local singularities that can
only be controlled in a quadratic form sense, and since locally square-integrable clas-
sical vector potentials are covered as well. We further discuss Neumann realizations
of Pauli-Fierz type operators on Lipschitz domains.

Keywords Pauli-Fierz operator · Self-adjointness · Diamagnetic inequality ·
Dirichlet and Neumann realizations
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1 Introduction

A lot of attention has been devoted to the mathematical analysis of physical mod-
els for a conserved number of non-relativistic quantum-mechanical matter particles
in interaction with a quantized radiation field comprised of an undetermined num-
ber of relativistic bosons. The prime example for such a model is the standard model
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of non-relativistic quantum electrodynamics, where electrons interact with the quan-
tized electromagnetic field (photon field). In this example quantized field operators
are introduced via minimal coupling and the resulting Hamiltonian is often called
the Pauli-Fierz operator. The aim of the present article is to extend existing non-
perturbative results on the self-adjointness properties of Hamilonians of this type
[8, 10, 14, 15] to a larger class of exterior electromagnetic potentials appearing as
coefficients in the Hamiltonian. Furthermore, we shall allow for an arbitrary open
subset of the Euclidean space as position space for the matter particles, while the
aforementioned papers deal with the entire Euclidean space only. We consider gen-
eral open position spaces because many interesting effects appear in non-relativistic
quantum electrodynamics in bounded cavities or on unbounded domains confined
by perfectly conducting grounded walls. Prominent examples are the Casimir or van
der Vaals forces; see, e.g., the textbooks [6, 24]; a detailed discussion of the corre-
sponding formal minimal coupling Hamiltonians can also be found in [27]. Further
examples of position spaces which are proper subsets of the Euclidean space are
encountered when the nuclei in a molecular system are treated as static particles of
finite extent, as in the theory of hard-core multi-body Schrödinger operators; see,
e.g., [17] and the references given there. We should mention that, at least so far, the
mathematical analysis of minimal coupling Hamiltonians requires the introduction
of an artificial ultra-violet regularization damping the matter-radiation interaction at
very high frequencies.

In what follows we shall describe our results in more detail. Throughout the whole
article we assume that ν, ν̃, s ∈ N and � ⊂ Rν is open. We put �∗ := �×{1, . . . , s},
where the second factor in the Cartesian product accounts for spin degrees of freedom
(if any) of the matter particles. Furthermore, (M,A, μ) is a σ -finite measure space
such that the Hilbert space for a single boson,

h := L2(M,A, μ), (1.1)

is separable. The measurable function ω : M → R plays the role of the dispersion
relation of a single boson. We always assume that ω is μ-a.e. strictly positive. The
symbol F denotes the bosonic Fock space over h. Our main goal is to characterize
the domain and operator cores of a Dirichlet realization of the Pauli-Fierz operator
acting in L2(�∗,F ). This operator is formally given by

1

2
(−i∇ − A − ϕ(G))2 − σ · ϕ(F ) − σ · B + d�(ω) + V, (1.2)

where, for every x ∈ �, the formal vectors ϕ(Gx) := (ϕ(G1,x), . . . , ϕ(Gν,x))

and ϕ(Fx) := (ϕ(F1,x), . . . , ϕ(Fν̃,x)) are tuples of field operators and d�(ω) is
the radiation field energy. The notations F , ϕ(f ), and d�(ω) will be explained in
Section 2.2. Furthermore, σ := (σ1, . . . , σν̃) is a tuple of Hermitian s×s-matrices.
These matrices are the only terms in (1.2) that act on the spin variables in {1, . . . , s};
see Rem. 5.8 for precise definitions.

The main originality of this article lies in the rather general conditions imposed
on the data in (1.2). For instance, the only requirement on the positive part of the
electrostatic potential V : � → R is local integrability, while its negative part is
assumed to be form-bounded with respect to −1/2 times the Dirichlet-Laplacian with
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relative form bound < 1. The classical vector potential A = (A1, . . . , Aν) : � →
Rν only needs to be locally square-integrable, which is the natural requirement for
the construction of magnetic Schrödinger operators via quadratic forms. Of course,
the classical Zeeman term σ ·B (if any) should contain the curl of A. In our discussion
we may, however, ignore this relation and simply keep the assumptions on A, B,
and V as general as our arguments permit. In an application where spin degrees of
freedom are taken into account together with an exterior magnetic field and V as
above, our results cover the case where the components of B : � → Rν̃ are sums of
bounded terms and contributions that are infinitesimally form-bounded with respect
to the negative Dirichlet-Laplacian.

The quantities ω, G, and F satisfy the weakest assumptions appearing in this
context either. Namely, to determine the domain of the Dirichlet-Pauli-Fierz operator
we shall eventually assume that

G ∈ L∞(�,Q(ω−1 + ω)ν), divG ∈ L∞(�,Q(ω−1)),

F ∈ L∞(�,Q(ω−1)ν̃). (1.3)

Here Q stands for the form domain and the Hilbert space-valued divergence is
understood in a weak sense; see Section 2.1. These conditions are slightly milder
than the ones in [10] where the case � = Rν is treated. In applications to cavity
quantum electrodynamics the data (ω,G,F ) should correspond to solutions of the
Maxwell equations with perfect electric conductor boundary conditions after suitable
assumptions on the regularity of ∂� have been added. This is, however, a physical
requirement and the behavior of G, F , and � at the boundary is in fact immaterial
for our results on the Dirichlet-Pauli-Fierz operator to hold. Dirichlet realizations of
the Pauli-Fierz operator on a non-trivial domain can also appear for technical reasons
when localization arguments are applied to non-confined systems as, for instance, in
[22]. In such a case G and F do not necessarily satisfy physical boundary conditions.

The main result of this article (Thm. 5.7 in the case s = 1, F = 0, B = 0, with a
simple extension to s > 1 and non-vanishing F and B in Rem. 5.8) asserts that the
domain of the Dirichlet realization of (1.2) is equal to the intersection of the domain
of the Dirichlet-Schrödinger operator corresponding to (V ,A,B) with the domain
of d�(ω), when the latter two operators are considered as operators in L2(�∗,F )

in the canonical way. That is, the domain of the Dirichlet realization of (1.2) neither
depends on G nor on F thanks to the L∞-conditions in (1.3). Moreover, Thm. 5.7
and Rem. 5.8 identify natural operator cores of the Dirichlet-Pauli-Fierz operator in
terms of the cores of the Dirichlet-Schrödinger operator and d�(ω).

In the case where � = Rν , V is relatively operator-bounded with respect to
− 1

2	 with relative bound < 1, A is bounded with bounded and continuous first
derivative, B = rotA, and G and F satisfy certain slightly stronger hypotheses, all
results of Thm. 5.7 and Rem. 5.8 are well-known. Their first non-perturbative proofs
have been given in [14, 15] in this case. Starting with the case where only G is non-
zero, the arguments in [14] are based on the invariant domain method for the study of
essential self-adjointness and Feynman-Kac formulas. Then a diamagnetic inequality
for the semi-group associated with the Pauli-Fierz operator is employed to argue that
a − 1

2	-small potential V (in the operator sense) is also small with respect to the free
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Pauli-Fierz operator [14, 15]. For infinitesimally Laplace-bounded V , one can avoid
the use of diamagnetic inequalities in the determination of the domain of the Pauli-
Fierz operator. For such V and vanishing A, simpler, analytic proofs have been given
in [10]. Earlier proofs in a perturbative situation based on the Kato-Rellich theorem
can be found in [1, 3]. The article [1] also contains a non-perturbative result on the
dipole approximation to non-relativistic quantum electrodynamics.

To find a natural domain on which the Dirichlet-Pauli-Fierz operator is essentially
self-adjoint it is actually sufficient to assume that

G ∈ L∞(�, hν), divG ∈ L∞(�, h), F ∈ L∞(�, hν̃ ). (1.4)

This has been observed in [8, §4.3]. As one example for the application of a general
theorem the latter article explicitly covers the case where � = Rν , V is non-negative
and locally square-integrable, A and B are zero, and G and F are given by the
usual plane wave solutions to the Maxwell equations. (If G is an affine function of
x ∈ Rν , then essential self-adjointness in an otherwise similar situation also follows
from [2, Ex. 3].) It is, however, clear that the abstract theorem in [8] also applies
to more general situations. Nevertheless, we shall give an alternative proof for the
essential self-adjointness under the condition (1.4) in Thm. 5.5, utilizing a variant
of an argument due to M. Könenberg [19]. This is because some of the bounds and
ideas employed in the proof of Thm. 5.5 are also needed to characterize the domain
of the self-adjoint realization under the condition (1.3), which is the key aspect of our
results.

Recall that the Neumann realization of the magnetic Schrödinger operator can be
defined as the self-adjoint operator representing a canonical maximal Schrödinger
form, while the Dirichlet realization represents a minimal form, which is a restriction
of the maximal one. We shall mimic these constructions in the presence of quan-
tized fields and, for mathematical curiosity, we will derive an analogue of our main
Thm. 5.7 for the Neumann-Pauli-Fierz operator on Lipschitz domains in Section 7.
In the Neumann case an additional boundary condition on G is required for such an
analogue to hold, corresponding to solutions of the Maxwell equations with “per-
fect magnetic conductor” boundary conditions. We do, however, not know whether
the Neumann-Pauli-Fierz operator is of any physical significance, which is also the
reason why we refrained from investigating more general boundary conditions. As it
is the case for Schrödinger forms [31], we shall see that the minimal and maximal
Pauli-Fierz forms agree when � = Rν .

The organization of this article is given as follows. In Section 2 we collect some
remarks on Hilbert space-valued weak derivatives, recall some facts on Fock space
calculus, and derive some Leibniz rules for vector-valued Sobolev functions that are
multiplied by field operators. Although many parts of Section 2 are straightforward
or well-known, we think that a presentation of these topics taylor-made for our later
sections might be convenient for the reader. In Section 3 we add a new, pointwise dia-
magnetic inequality for a sum of a classical and a quantized vector potential to the list
of diamagnetic inequalities in non-relativistic quantum electrodynamics shown ear-
lier; see the first paragraph of that section for references. This pointwise diamagnetic
inequality will be used in the crucial step of our proof of Thm. 5.7. Self-adjoint real-
izations of the Schrödinger and Pauli-Fierz operators will be defined via quadratic
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forms in Section 4. Our main result, Thm. 5.7, is stated and proved in Section 5 by
further elaborating on a general strategy that we applied to fiber Hamiltonians in
[9, App. 2]. Some examples are provided in Section 6 before we treat the Neumann
case in Section 7.

Some General Notation The symbol D(T ) denotes the domain of a linear operator
T , and Q(T ) is the form domain of a semi-bounded self-adjoint operator T in a
Hilbert space K . If T � 0, then we consider Q(T ) as a Hilbert space with scalar
product 〈φ|ψ〉Q(T ) = 〈T 1/2φ|T 1/2ψ〉K + 〈φ|ψ〉K , φ,ψ ∈ Q(T ).

If t is a quadratic form in K that is semi-bounded from below and if c denotes the
corresponding greatest lower bound, then the form norm corresponding to t is given
by ‖ψ‖2

t = t[ψ] + (1 − c)‖ψ‖2
K , ψ ∈ D(t). The sesqui-linear form associated with

t via the polarization identity is denoted by t[φ,ψ], φ,ψ ∈ D(t).
If we write � � �, then � is a subset of Rν whose closure is compact and

contained in �.
If C ⊂ L2(�) or C ⊂ L2(�∗) is a subspace and E a vector space, then we set

C ⊗ E := spanC {fψ : f ∈ C , ψ ∈ E } . (1.5)

We shall write a ∧ b := min{a, b} and a ∨ b := max{a, b}, for a, b ∈ R.

2 Preliminaries

2.1 Vector-Valued Weak Partial Derivatives and Divergences

A well-known complication in the study of magnetic Schrödinger operators with
merely locally square-integrable vector potentials is the fact that the weak partial
derivatives of functions in magnetic Sobolev spaces are in general not square-
integrable. We shall encounter the same difficulty in dealing with the Fock space-
valued functions in the (form) domains of our Pauli-Fierz operators. As a preparation,
we thus collect some basic remarks on weak partial derivatives of Hilbert space-
valued functions in this subsection.

Throughout the whole subsection, K is a separable Hilbert space. Let E ⊂ K be
a subspace. Then we denote the space of E -valued test functions on � by

D(�,E ) := C∞
0 (�) ⊗ E , D(�) := C∞

0 (�). (2.1)

For every j ∈ {1, . . . , ν}, we say that ϒj ∈ L1
loc(�,K ) is a weak partial

derivative of � ∈ L1
loc(�,K ) with respect to xj , iff

∫
�

〈∂xj η(x)|�(x)〉K dx = −
∫
�

〈η(x)|ϒj(x)〉K dx (2.2)

holds, for all η ∈ D(�,K ).

Remark 2.1 Let j ∈ {1, . . . , ν} and �,ϒj ∈ L1
loc(�,K ). Then the following holds:
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(1) ϒj is a weak partial derivative with respect to xj of �, if and only if 〈φ|ϒj 〉K
is a weak partial derivatives with respect to xj of 〈φ|�〉K , for every φ ∈ K .
In particular, ϒj is unique in the affirmative case.

(2) Let E ⊂ K be a total subset. If ϒj satisfies (2.2) for all η of the form η = f φ

with f ∈ D(�) and φ ∈ E , then, by linearity and dominated convergence, it is
a weak partial derivative of � with respect to xj .

(3) Since taking the scalar product with a fixed vector in K and the K -valued
Bochner-Lebesgue integral commute, ϒj is a weak partial derivative of � with
respect to xj , if and only if

∫
�

(∂xj η)(x)�(x)dx = −
∫
�

η(x)ϒj (x)dx, η ∈ D(�).

If it exists, then we denote the unique weak partial derivative of � ∈ L1
loc(�,K )

with respect to xj by ∂xj �.

Remark 2.2 If � ∈ L1
loc(�,K ) has a weak partial derivative respect to xj , then

∂xj � = 0 almost everywhere on {� = 0}.
This follows from the same assertion in the case K = C (cf. the proof of [21,

Thm. 6.19]) upon applying it to 〈φ|�〉K , for every φ in a countable total subset of
K , and taking Rem. 2.1(1) into account.

Of course, the definition of the weak partial derivatives depends on the topology on
K . Hence, we shall sometimes say that they are computed in K . Since the coupling
functions appearing in the Pauli-Fierz operators attain values in the domain of certain
unbounded operators, it thus makes sense to note the following:

Remark 2.3 Let j ∈ {1, . . . , ν}, p ∈ [1,∞], T be a non-negative self-adjoint oper-
ator in K , and � ∈ L

p

loc(�,Q(T )). Then � has a weak partial derivative with
respect to xj computed in K and satisfying ∂xj � ∈ L

p

loc(�,Q(T )), if and only if
it has a weak partial derivative with respect to xj computed in Q(T ) and belonging
to L

p

loc(�,Q(T )). The same assertion holds true, if the subscripts “loc” are dropped
everywhere.

We drop the straightforward proof which uses that Ran(T + 1) = K , that D(T )

is dense in Q(T ) with respect to the form norm, and Rem. 2.1(2) with E = D(T ).

Remark 2.4 Let p ∈ [1,∞], j ∈ {1, . . . , ν}, and assume that � ∈ L
p

loc(�,K ) has
a weak partial derivative with respect to xj such that ∂xj � ∈ L

p

loc(�,K ). Further-
more, let ρ ∈ C∞

0 (Rν,R) satisfy ρ � 0, ρ(x) = 0, for |x| � 1, and ‖ρ‖1 = 1. Set
�n := {y ∈ � : dist(y, ∂�) > 1/n} and ρn(x) := nνρ(nx), x ∈ Rν , for all n ∈ N.
Define

�n(x) :=
∫
�

ρn(x − y)�(y)dy, x ∈ �n, n ∈ N. (2.3)
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Then �n ∈ C∞(�n,K ), if �n �= ∅, and, for every measurable � � �,

‖�n − �‖Lp(�,K ) + ‖∂xj �n − ∂xj �‖Lp(�,K )
n→∞−−−−−→ 0, if p < ∞.

If p = ∞, then �n → � and ∂xj �n → ∂xj � a.e. on �.
See, e.g., [7, §4.2.1] for a proof in the scalar case. On account of Rem. 2.1(3) this

proof carries over to the vector-valued case. To cover the case p = ∞, we also use
the fact that the Lebesgue point theorem holds for the Bochner-Lebesgue integral as
well [11].

The next lemma will be used to prove our diamagnetic inequality. Given a
representative �(·) of � ∈ L1

loc(�,K ) and δ > 0, we define

Zδ(�) := (δ2 + ‖�‖2
K )1/2, Sδ,� := Zδ(�)−1�,

S�(x) :=
{ ‖�(x)‖−1

K �(x), x ∈ {�(·) �= 0},
0, x ∈ {�(·) = 0}. (2.4)

Lemma 2.5 Let j ∈ {1, . . . , ν}, p ∈ [1,∞], δ > 0, and let � ∈ L
p

loc(�,K ) have
a weak partial derivative with respect to xj satisfying ∂xj � ∈ L

p

loc(�,K ). Then
‖�‖K , Zδ(�) ∈ L

p

loc(�) have weak partial derivatives with respect to xj as well.
The latter are in L

p

loc(�) and given by

∂xj Zδ(�) = Re〈Sδ,� |∂xj �〉K , ∂xj ‖�‖K = Re〈S� |∂xj �〉K . (2.5)

Proof Let f ∈ D(�). Then we find some open � � � such that supp(f ) ⊂ �. For
the �n defined in (2.3) and sufficiently large n0 ∈ N, we then get

∫
�

(∂xj f )Zδ(�n)dx = −
∫
�

fRe〈Sδ,�n |∂xj�n〉K dx, n � n0. (2.6)

On account of |Zδ(�n)−Zδ(�)| � |‖�n‖K −‖�‖K | � ‖�n−�‖K and �n → �

in L1(�,K ) (because L
p

loc(�,K ) ⊂ L1
loc(�,K )), we see that, as n → ∞, the left

hand side of (2.6) converges to the left hand side of
∫
�

(∂xj f )Zδ(�)dx = −
∫
�

fRe〈Sδ,� |∂xj �〉K dx. (2.7)

Employing the Riesz-Fischer theorem for L1(�,K ) we can find integers n0 � n1 <

n2 < . . . such that �n�
→ � and ∂xj�n�

→ ∂xj �, a.e. on � as � → ∞. The
Riesz-Fischer theorem further implies the existence of some R ∈ L1(�) such that
‖∂xj �n�

‖K � R, a.e. on �, for every � ∈ N. (This is not always stated explicitly in
every textbook treating the Riesz-Fischer theorem, but it can usually be read off from
the proof; see [21, Thm. 2.7].) Then the dominated convergence theorem guarantees
that, along a subsequence, the right hand side of (2.6) converges to the right hand
side of (2.7) as well. Altogether this proves the first identity in (2.5).
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Since �, ∂xj� ∈ L1(�,K ), we may now pass to the limit δ ↓ 0 in (2.7) by
dominated convergence, which yields the second identity in (2.5).

Next, we fix some conventions concerning weak vector-valued divergences of
ν-tuples of K -valued functions. We shall say that q ∈ L1

loc(�,K ) is a weak
divergence (computed in K ) of G = (G1, . . . ,Gν) ∈ L1

loc(�,K ν), iff∫
�

〈∇η(x)|G(x)〉K ν dx = −
∫
�

〈η(x)|q(x)〉K dx, (2.8)

for all η ∈ D(�,K ). Then we also write divG := q.
If K ⊂ h is a subspace of the one-boson space, then we shall usually write

Gx := (G1,x, . . . ,Gν,x) := G(x) and qx := q(x) for the latter objects.

Remark 2.6 As in Rem. 2.1(1) we can show that a weak divergence (if any) of G ∈
L1

loc(�,K ν) is necessarily unique. Furthermore, to conclude that q ∈ L1
loc(�,K )

is a weak divergence of G is suffices to check (2.8) only for test functions of the
form η = f φ with f ∈ D(�) and φ ∈ E , where E is some fixed total subset
of K . Finally, if p ∈ [1,∞] and T is a non-negative self-adjoint operator in K ,
then G ∈ L

p

loc(�,Q(T )ν) has a weak divergence computed in K satisfying divG ∈
L

p

loc(�,Q(T )), if and only if it has a weak divergence computed in Q(T ) which
belongs to L

p

loc(�,Q(T )). The last assertion still holds true, if the subscripts “loc”
are dropped everywhere.

Lemma 2.7 Let p ∈ [1,∞] with conjugated exponent p′. Let K1,K2,K3 be
real or complex separable Hilbert spaces and b : K1 × K2 → K3 be real
bilinear and continuous. Suppose that G ∈ L

p

loc(�,K ν
1 ) has a weak diver-

gence q ∈ L
p

loc(�,K1) and that � ∈ L
p′
loc(�,K2) has weak partial derivatives

∂x1�, . . . , ∂xν� ∈ L
p′
loc(�,K2). Then b(G, �) := (b(G1, �), . . . , b(Gν,�)) ∈

L1
loc(�,K ν

3 ) has the weak divergence

divb(G, �) = b(q,�) +
ν∑

j=1

b(Gj , ∂xj �) in L1
loc(�,K3). (2.9)

Proof Let {e� : � ∈ N} be an orthonormal basis of K2 and define the projections
Pnφ := ∑n

�=1〈e�|ψ〉K2e�, ψ ∈ K2, n ∈ N. Define �n, n ∈ N, as in (2.3) and
put �n := Pn�n. Since Pn → 1K2 strongly, as n → ∞, it follows from Rem. 2.4
that �n → � and ∂xj�n → ∂xj � in Lp′

(�,K2), for all measurable � � � and
j ∈ {1, . . . , ν}, provided that p′ < ∞. If p′ = ∞, then �n → � and ∂xj�n → ∂xj �

a.e. on �.
Now let n ∈ N with �n �= ∅ and η ∈ D(�n,K3). Then η = ∑m

i=1 ηiφi ,
for some ηi ∈ D(�n), φi ∈ K3, and m ∈ N. By virtue of Riesz’ represen-
tation theorem we find vectors gi,� ∈ K1 representing the bounded real linear
functionals K1 � G �→ 〈φi |b(G, e�)〉K3 . Then 〈η|b(q,�n)〉K3 = 〈η̃n|q〉K1 as
well as 〈∂xj η|b(Gj ,�n)〉K3 = 〈∂xj η̃n|Gj 〉K1 − 〈η|b(Gj , ∂xj�n)〉K3 with η̃n :=
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∑m
i=1
∑n

�=1 ηi〈�n|e�〉K2gi,�, so that η̃n ∈ D(�n,K1). Using these observations, we
deduce that b(G,�n) ∈ L1

loc(�n,K3) has the weak divergence

divb(G,�n) = b(q,�n) +
ν∑

j=1

b(Gj , ∂xj�n) in L1
loc(�n,K3). (2.10)

Next, let � � � be measurable. If p′ = ∞, then we pick some compact K ⊂
� with � ⊂ K̊ and observe that, for all sufficiently large n ∈ N, we have the
dominations ‖�n‖K2 � ess supK‖�‖K2 and ‖∂xj�n‖K2 � ess supK‖∂xj �‖K2 ,
j ∈ {1, . . . , ν}, a.e. on �. If p′ < ∞, then we find integers 1 � n1 < n2 < . . . and
R,R′ ∈ Lp′

(�) such that �n�
→ � and ∂xj�n�

→ ∂xj �, a.e. on � as � → ∞, as
well as ‖�n�

‖K2 � R and ‖∂xj�n�
‖K2 � R′, a.e. on � for all � ∈ N. In all cases,

(2.9) now follows from the defining relation (2.8), (2.10), the boundedness of b, and
the dominated convergence theorem.

2.2 Some Fock Space Calculus

In this section we recall the definition of the bosonic Fock space and introduce some
important operators acting in it via the Weyl representation. A textbook exposition of
the latter can be found, e.g., in [26].

Recall that the σ -finite measure space (M,A, μ) and the corresponding, by
assumption separable L2-space h were introduced in (1.1) and the paragraph preced-
ing it. For every n ∈ N, let μn denote the n-fold product measure of μ with itself
defined on the n-fold product σ -algebra An. Let F (n) denote the closed subspace in
L2(Mn,An, μn) of all its elements ψ(n) satisfying

ψ(n)(kπ(1), . . . , kπ(n)) = ψ(n)(k1, . . . , kn), μn-a.e. (k1, . . . , kn) ∈ Mn,

for all permutations π of {1, . . . , n}. Then the bosonic Fock space F modeled over
h is given by

F := C ⊕
⊕
n∈N

F (n).

For every h ∈ h, the corresponding exponential vector ε(h) ∈ F is defined by

ε(h) := (1, h, 2−1/2h⊗2, . . . , (n!)−1/2h⊗n, . . . ),

where h⊗n(k1, . . . , k1) := h(k1) · · · h(kn), μn-a.e. We observe that

〈ε(g)|ε(h)〉 = e〈g|h〉, g, h ∈ h. (2.11)

Let f ∈ h and U ∈ U [h], where U [K ] denotes the set of unitary operators on
some Hilbert space K equipped with the topology corresponding to strong conver-
gence of operators. We also set E[d] := {ε(h) : h ∈ d} and C[d] := spanE[d], for any
subset d ⊂ h. Then E[h] is linearly independent and C[d] is dense in F , whenever d
is dense in h. In particular, the prescription

W(f,U)ε(h) := e−‖f ‖2/2−〈f |Uh〉ε(f + Uh), h ∈ h, (2.12)

determines a linear bijection on C[h]. Since W(f,U) turns out to be isometric, it
extends uniquely to a unitary operator on F . The latter is again denoted by W(f,U)
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and called the Weyl operator corresponding to f and U . Computing on exponential
vectors, we verify the Weyl relations

W(f1, U1)W(f2, U2) = e−iIm〈f1|U1f2〉W(f1 + U1f2, U1U2), (2.13)

for all f1, f2 ∈ h and U1, U2 ∈ U [h]. The thus obtained Weyl representation W :
h × U [h] → U [F ], (f, U) �→ W(f,U), is strongly continuous.

These remarks imply that (W(−itf,1))t∈R is a strongly continuous unitary
group, whose self-adjoint generator is denoted by ϕ(f ) and called the field operator
corresponding to f ∈ h. In view of (2.11) and (2.12) we then have, for instance,

〈ε(g)|ϕ(f )ε(h)〉 = (〈f |h〉 + 〈g|f 〉) e〈g|h〉, f, g, h ∈ h. (2.14)

Recall that, throughout the whole article, ω : M → [0,∞) is assumed to be
measurable and μ-a.e. strictly positive. We denote the associated maximal multipli-
cation operator again by ω. Then (W(0, e−itω))t∈R is a strongly continuous unitary
group as well. Its generator is denoted by d�(ω) and called the (differential) second
quantization of ω.

We shall sometimes use the following fact, where d might for instance be D(ωn)

with n ∈ N or the set of analytic vectors of ω.

Lemma 2.8 Let d be any subset of D(ω) which is dense in h and such that e−itωd ⊂
d, for all t ∈ R. Then d�(ω) is essentially self-adjoint on C[d].

Proof It is straightforward to show that the map h � h �→ ε(h) ∈ F is analytic.
Since R � t �→ e−itωh, belongs to C1(R, h), if h ∈ D(ω), it is thus clear for a start
that C[d] ⊂ D(d�(ω)).

The claim now follows from the invariant domain method (see, e.g., [5, p. 366]):
In fact, let A denote the restriction of d�(ω) to C[d] and suppose that ψ ∈ D(A∗) sat-
isfies A∗ψ = ±iψ , for some choice of the sign. Since W(0, e−itω)ε(h) = ε(e−itωh)

and e−itωh ∈ d, for all h ∈ d, we see that W(0, e−itω) maps C[d] into itself, for all
t ∈ R. Now, let φ ∈ C[d] and set b(t) := 〈W(0, e−itω)φ|ψ〉. Then

b′(t) = 〈d�(ω)W(0, e−itω)φ|iψ〉
= 〈AW(0, e−itω)φ|iψ〉 = 〈W(0, e−itω)φ|iA∗ψ〉 = ∓b(t), t ∈ R,

i.e., b(t) = b(0)e∓t . Since b is bounded, we must have 0 = b(0) = 〈φ|ψ〉. Since
C[d] is dense in F , this implies ψ = 0.

Under the assumption f ∈ D(ω−1/2) = Q(ω−1) it is known (see, e.g., [3]) that
D(d�(ω)1/2) ⊂ D(ϕ(f )) and

‖ϕ(f )ψ‖ � 2‖(ω−1/2 ∨ 1)f ‖‖(1 + d�(ω))1/2ψ‖, (2.15)

|〈φ|ϕ(f )ψ〉| � ‖ω−1/2f ‖
(
‖d�(ω)1/2φ‖‖ψ‖+‖φ‖‖d�(ω)1/2ψ‖

)
, (2.16)

for all φ,ψ ∈ D(d�(ω)1/2). Furthermore,

ϕ(f1 + λf2)ψ = ϕ(f1)ψ + λϕ(f2)ψ, f1, f2 ∈ Q(ω−1), λ ∈ R,
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for all ψ ∈ D(d�(ω)1/2). The latter two remarks imply that

Q(ω−1) × Q(d�(ω)) � (f, ψ) �→ ϕ(f )ψ ∈ F is continuous. (2.17)

Here Q(ω−1) and Q(d�(ω)) are equipped with the form norms of ω−1 and d�(ω),
respectively.

We shall also make use of the commutation relation

〈ϕ(f )φ|d�(ω)ψ〉 − 〈d�(ω)φ|ϕ(f )ψ〉 = 〈φ|iϕ(iωf )ψ〉, (2.18)

valid for all f ∈ D(ω−1/2 + ω) and φ,ψ ∈ D(d�(ω)). It can be verified by taking
derivatives at (s, t) = (0, 0) of

R × R � (s, t) �−→ 〈W(−isf,1)ε(g)|W(0, e−itω)ε(h)〉
−〈W(0, e−itω)ε(g)|W(−isf,1)ε(h)〉,

with g, h ∈ D(ω), before and after applying (2.12) and (2.13), and using that
C[D(ω)] is a core for d�(ω) together with (2.15). Combining (2.16), (2.17), and
(2.18), we see that the bound

|〈ϕ(f )φ|(r + d�(ω))ψ〉 − 〈(r + d�(ω))φ|ϕ(f )ψ〉|
� ‖ω1/2f ‖

(
‖d�(ω)1/2φ‖‖ψ‖ + ‖φ‖‖d�(ω)1/2ψ‖

)
, r ∈ R, (2.19)

holds for all φ,ψ ∈ D(d�(ω)) under the weaker assumption f ∈ Q(ω−1 + ω).
The next lemma follows, e.g., from a more general discussion in [23, §12], but we

shall give a shorter and independent proof for the convenience of the reader.

Lemma 2.9 For all f ∈ Q(ω−1 + ω), the following assertions hold true:

(1) Let ε > 0 and set θε := 1+εd�(ω). Then the operator defined byD(Cε(f )) :=
Q(d�(ω ∧ 1)) and

Cε(f )ψ := θ−1/2
ε ϕ(f )ψ − ϕ(f )θ−1/2

ε ψ, ψ ∈ D(Cε(f )),

is bounded with

‖Cε(f )‖ � (4/π)ε1/2‖ω1/2f ‖.
(2) Set θ := 1+d�(ω). Then the operator given byD(T (f )) := Q(d�(ω∧1)) and

T (f )ψ := θ1/2ϕ(f )θ−1/2ψ − ϕ(f )ψ, ψ ∈ D(T (f )),

is well-defined and bounded with

‖T (f )‖ � 2‖ω1/2f ‖.
Furthermore, T (f )∗�D(d�(ω))⊂ C1(f )θ1/2.

(3) ϕ(f ) maps D(d�(ω)) into D(d�(ω)1/2).
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Proof Inserting φ = (r + d�(ω))−1ξ and ψ = (r + d�(ω))−1η with r > 0 and
ξ, η ∈ Q(d�(ω ∧ 1)) into (2.19), we obtain

∣∣∣
〈
ξ
∣∣(r + d�(ω))−1ϕ(f )η

〉
−
〈
ϕ(f )ξ

∣∣(r + d�(ω))−1η
〉∣∣∣

� ‖ω1/2f ‖
(∥∥∥d�(ω)1/2(r + d�(ω))−1ξ

∥∥∥ ‖η‖
r

+
∥∥∥(r + d�(ω))−1ξ

∥∥∥ ‖η‖
r1/2

)
.

(2.20)

Applying this bound with r = (1 + t)/ε, t � 0, and observing that the formula
A−1/2 = ∫∞

0 (t + A)−1dt/πt1/2, valid for any strictly positive self-adjoint operator
A in some Hilbert space, implies

〈ξ |Cε(f )η〉
=
∫ ∞

0

(〈
ξ
∣∣(t + 1 + εd�(ω))−1ϕ(f )η

〉
−
〈
ϕ(f )ξ

∣∣(t + 1 + εd�(ω))−1η
〉) dt

πt1/2
,

we deduce that

|〈ξ |Cε(f )η〉| � 2ε1/2‖ω1/2f ‖
∫ ∞

0

1

(1 + t)3/2

dt

πt1/2
‖ξ‖‖η‖,

for all ξ, η ∈ Q(d�(ω ∧ 1)), which proves Part (1).
Choosing r = 1 + t and ξ = θ1/2ζ with ζ ∈ D(d�(ω)) we further infer from

(2.20) that

|〈θ1/2ζ |C1(f )η〉| � 2‖ω1/2f ‖
∫ ∞

0

1

1 + t

dt

πt1/2
‖ζ‖‖η‖, (2.21)

for all η ∈ Q(d�(ω ∧ 1)). Since D(d�(ω)) is a core for θ1/2, (2.21) implies that
the range of C1(f ) is contained in D(θ1/2) and that θ1/2C1(f ) is bounded with
‖θ1/2C1(f )‖ � 2‖ω1/2f ‖. Now, if ψ ∈ Q(d�(ω ∧ 1)), then ϕ(f )θ−1/2ψ =
θ−1/2ϕ(f )ψ − C1(f )ψ . We conclude that ϕ(f )θ−1/2ψ ∈ D(θ1/2), which proves
Part (3) and shows that T (f ) is well-defined with T (f )ψ = −θ1/2C1(f )ψ .
The latter relation finally entails T (f )∗ ⊃ −C1(f )∗θ1/2 and it is clear that
−C1(f )∗�D(θ1/2)= C1(f )�D(θ1/2).

Remark 2.10 Let f, g ∈ Q(ω−1) and ψ ∈ D(d�(ω)). Then we may apply Lem.
2.9 with ω replaced by ω ∧ 1, so that θ = 1 + d�(ω ∧ 1). According to its third
part ϕ(f )ψ ∈ D(θ1/2) ⊂ D(ϕ(g)), and we may write θ1/2ϕ(f )ψ = T (f )θ1/2ψ +
ϕ(f )θ1/2ψ . Taking also (2.15) (with ω replaced by ω∧1) and the bound in its second
part into account, we obtain ‖θ1/2ϕ(f )ψ‖ � 4‖(ω−1/2∨1)f ‖‖θψ‖. Applying (2.15)
once more we arrive at the familiar bound

‖ϕ(g)ϕ(f )ψ‖
� 8‖(ω−1/2 ∨ 1)g‖‖(ω−1/2 ∨ 1)f ‖‖(1 + d�(ω))ψ‖. (2.22)
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2.3 Discussion of the Interaction Terms

Next, we discuss direct integrals of the field operators introduced in the previous
subsection employing the remarks given in Section 2.1. Our main aim is to verify a
Leibniz rule involving classical and quantized vector potentials.

First, we observe that, if � � x �→ Gx ∈ h is measurable, then the strong continu-
ity of the Weyl representation implies measurability of the maps � � x �→ eiϕ(Gx )ψ

with ψ ∈ F . Therefore, the direct integral ϕ(G) := ∫
�
ϕ(Gx)dx is a well-defined

self-adjoint operator in L2(�,F ). The symbol D(ϕ(G)) will always denote the
domain of the latter direct integral operator.

Since the weak partial derivatives of magnetic Sobolev functions are in general
not square-integrable we shall, under some extra assumptions on G and the vectors
it is applied to, generalize the meaning of the symbol ϕ(G) as follows: Consider
Q(ω−1) as a Hilbert space equipped with the form norm of ω−1 and assume that
G : � → Q(ω−1) and � : � → Q(d�(ω)) are measurable. Then (2.17) shows that

(ϕ(G)�)(x) = ϕ(Gx)�(x), a.e. x ∈ �,

defines an equivalence class ϕ(G)� of measurable functions from � to F . If
� � x �→ ‖Gx‖Q(ω−1)‖�(x)‖Q(d�(ω)) is in L

p

loc(�), for some p ∈ [1,∞], then
ϕ(G)� ∈ L

p

loc(�,F ) on account of (2.15); the same remark holds true, if the
subscripts “loc” are dropped.

The next lemma is a generalization of [10, Lem. 13].

Lemma 2.11 Let p ∈ [1,∞] and G ∈ L
p′
loc(�,Q(ω−1)ν) have a weak diver-

gence q := divG ∈ L
p′
loc(�,Q(ω−1)). Assume that � ∈ L

p

loc(�,Q(d�(ω))) has
weak partial derivatives with respect to all variables such that ∂x1�, . . . , ∂xν� ∈
L

p

loc(�,Q(d�(ω))). Then ϕ(q)� and ϕ(G) · ∇� := ∑ν
�=1 ϕ(G�)∂x�� belong to

L1
loc(�,F ) and ϕ(G)� := (ϕ(G1)�, . . . , ϕ(Gν)�) ∈ L1

loc(�,F ν) has a weak
divergence given by

div(ϕ(G)�) = ϕ(q)� + ϕ(G) · ∇� in L1
loc(�,F ).

Proof The assertion follows from Lem. 2.7 and (2.17).

We shall need a variant of the previous lemma including a classical vector potential
A = (A1, . . . , Aν) ∈ L2

loc(�,Rν). We shall first define scalar and Fock space-
valued weak covariant derivatives associated with A. As we will apply them only to
square-integrable functions, we shall invoke some Hilbert space theory in their def-
initions. So, let j ∈ {1, . . . , ν}. Then the corresponding (maximal) scalar covariant
derivative is the adjoint of the symmetric operator in L2(�) given by

wj := (−i∂xj − Aj)�D(�). (2.23)

In analogy we define a symmetric operator in L2(�,F ) by

wj := (−i∂xj − Aj)�D(�,F ). (2.24)
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Remark 2.12 Let j ∈ {1, . . . , ν}. Then the following holds:

(1) D(w∗
j )⊗F ⊂ D(w∗

j ) and w∗
j (fψ) = (w∗

j f )ψ , for all f ∈ D(w∗
j ) and φ ∈ F .

Furthermore, 〈φ|�〉F ∈ D(w∗
j ) with w∗

j 〈φ|�〉F = 〈φ|w∗
j�〉K , for all φ ∈ F

and � ∈ D(w∗
j ).

Both observations follow from wj(gφ) = (wj g)φ, g ∈ D(�), φ ∈ F .
(2) A function � ∈ L2(�,F ) belongs to D(w∗

j ), if and only if it has a weak partial
derivative with respect to xj such that the sum of locally integrable functions
−i∂xj � − Aj� is in L2(�,F ). In the affirmative case

w∗
j� = −i∂xj � − Aj� in L1

loc(�,F ). (2.25)

This follows from the fact that Aj� ∈ L1
loc(�,F ), for all � ∈ L2(�,F ), and

from the definitions of the adjoint w∗
j and the weak partial derivative.

In the next lemma and henceforth we shall use the shorthands

A · ϕ(G)� :=
ν∑

�=1

A�ϕ(G�)�, ϕ(G) · w∗� :=
ν∑

�=1

ϕ(G�)w
∗
��. (2.26)

Lemma 2.13 Let A ∈ L2
loc(�,Rν), let � ∈ L2(�,Q(d�(ω))) ∩⋂ν

j=1 D(w∗
j ) be

such that w∗
j� ∈ L2(�,Q(d�(ω))), for all j ∈ {1, . . . , ν}, and assume that G ∈

L∞(�,Q(ω−1)ν) has a weak divergence satisfying q := divG ∈ L∞(�,Q(ω−1)).
Then ϕ(G) · w∗�, ϕ(q)� ∈ L2(�,F ) and

ν∑
j=1

〈
wj�

∣∣ϕ(Gj )�
〉 = 〈�∣∣ϕ(G) · w∗� − iϕ(q)�

〉
, � ∈ D(�,F ). (2.27)

Proof The assumption on � and (2.25) entail ∂xj � ∈ L1
loc(�,Q(d�(ω))), for all j ∈

{1, . . . , ν}. The assumptions on G and Lem. 2.11 now imply ϕ(G) · ∇�, ϕ(q)� ∈
L1

loc(�,F ) and div(ϕ(G)�) = ϕ(G) · ∇� + ϕ(q)�. In view of (2.15) we further
have ϕ(G)� ∈ L2(�,F ν), thus A · ϕ(G)� ∈ L1

loc(�,F ). Hence, by (2.25),

− idiv(ϕ(G)�) − A · ϕ(G)� = ϕ(G) · w∗� − iϕ(q)� in L1
loc(�,F ). (2.28)

A posteriori, the conditions �,w∗
j� ∈ L2(�,Q(d�(ω))) and (2.15) show that both

summands on the right hand side of (2.28) actually belong to L2(�,F ). Scalar
multiplying (2.28) with � ∈ D(�,F ) we thus arrive at (2.27).

3 A Diamagnetic Inequality

Our aim in the following is to derive a pointwise diamagnetic inequality for a sum
of a classical and a quantized field by transferring the proof of [21, Thm. 7.21]
to the vector-valued case. There already exist a number of diamagnetic inequalities
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with different proofs in the literature on non-relativistc quantum electrodynamics.
For infra-red regularized vector potentials, a diamagnetic inequality for the semi-
group has been proven by Trotter-product expansions and dressing transformations
in [12]. A Feynman-Kac formula that immediately leads to a diamagnetic inequality
for the semi-group has been derived in [13]. Analytic proofs for various diamagnetic
inequalities, in particular a generalized Kato-type inequality and an inequality for the
square root of the Laplacian with quantized vector potential, have been worked out
in [19] by adapting ideas from [28, 30]. We did not find the pointwise bound (3.5) in
the literature. For more information and references on the classical case we refer the
reader to [16].

Before we prove the diamagnetic inequality at the end of this subsection we
shall first discuss some basic properties of the Fock space-valued covariant deriva-
tive appearing in it. The latter is defined as the adjoint of the symmetric operator
vj in L2(�,F ) given as follows: If A ∈ L2

loc(�,Rν), G ∈ L2
loc(�, hν), and

j ∈ {1, . . . , ν}, then we set D(vj ) := D(�,Q(d�(1))) and

vj� := (−i∂xj − Aj − ϕ(Gj ))�, � ∈ D(vj ). (3.1)

Remark 3.1 Let A ∈ L2
loc(�,Rν), G ∈ L2

loc(�,Q(ω−1)ν), j ∈ {1, . . . , ν}, and let
� : � → Q(d�(ω ∧ 1)) be measurable. Then the following assertions follow easily
from the definitions of v∗

j and w∗
j , (2.15), and Rem. 2.1(2):

(1) Assume that the map x �→ ‖Gj,x‖Q(ω−1)‖�(x)‖Q(d�(ω∧1)) is in L2(�). Then
ϕ(Gj )� ∈ L2(�,F ) and the equivalence � ∈ D(w∗

j ) ⇔ � ∈ D(v∗
j ) holds.

In the affirmative case v∗
j� = w∗

j� − ϕ(Gj )�.

(2) Assume that � ∈ L2(�,F ) and x �→ ‖Gj,x‖Q(ω−1)‖�(x)‖Q(d�(ω∧1)) is in
L1

loc(�). Then Aj�, ϕ(Gj )� ∈ L1
loc(�,F ). Furthermore, � ∈ D(v∗

j ), if and
only if � has a weak partial derivative with respect to xj and −i∂xj � −Aj� −
ϕ(Gj )� ∈ L2(�,F ). In the affirmative case v∗

j� = −i∂xj � − Aj� −
ϕ(Gj )�.

Recall that the operator Cε(f ) has been defined in Lem. 2.9(1). Since the real
linear map Q(ω) � f �→ Cε(f )∗ ∈ B(F ) is continuous by Lem. 2.9(1), the formula
(C∗

ε (G)�)(x) := Cε(Gx)
∗�(x), x ∈ �, defines a measurable F -valued function,

for all measurable G : � → Q(ω) and � : � → F .

Lemma 3.2 Assume that A ∈ L2
loc(�,Rν) and G ∈ L2

loc(�,Q(ω−1 + ω)ν). Let
j ∈ {1, . . . , ν} and � ∈ D(v∗

j ). Furthermore, let ε > 0 and set θε := 1 + εd�(ω)

and �ε := θ
−1/2
ε �. Then ϕ(Gj )�ε, Aj�, and C∗

ε (G)� all belong to L1
loc(�,F ),

and �ε has a weak partial derivative with respect to xj given by

∂xj�ε = iθ−1/2
ε v∗

j� + iAj�ε + iϕ(Gj )�ε + iC∗
ε (Gj )� in L1

loc(�,F ). (3.2)
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Proof First, we observe that Aj ∈ L2
loc(�,R) implies Aj� ∈ L1

loc(�,F ) and
(2.15) entails ϕ(Gj )�ε ∈ L1

loc(�,F ). Lem. 2.9 further ensures that C∗
ε (G)� ∈

L1
loc(�,F ). Of course θ

−1/2
ε D(vj ) ⊂ D(vj ), and Lem. 2.9 implies that, for all η ∈

D(vj ),

(vj θ
−1/2
ε η)(x) = (θ−1/2

ε vj η)(x) + Cε(Gj,x)η(x), x ∈ �. (3.3)

For all η ∈ D(vj ), we thus obtain

〈η|θ−1/2
ε v∗

j�〉 = 〈vj θ−1/2
ε η|�〉

= i〈∂xj η|θ−1/2
ε �〉

−
∫
�

〈
η(x)

∣∣(Aj (x) + ϕ(Gj,x))θ
−1/2
ε �(x) + Cε(Gj,x)

∗�(x)
〉
F

dx.

We conclude by comparing this with the definition of the weak partial derivatives and
applying Rem. 2.1(2).

Lemma 3.3 Let A ∈ L2
loc(�,Rν), G ∈ L2

loc(�,Q(ω−1 + ω)ν), j ∈ {1, . . . , ν},
� ∈ D(v∗

j ), θε := 1 + εd�(ω), and �ε := θ
−1/2
ε �, ε > 0. Assume hat x �→

‖ω1/2Gj,x‖h‖�(x)‖F is in L2(�). Then �ε ∈ D(v∗
j ), for every ε > 0, and �ε →

�, ε ↓ 0, with respect to the graph norm of v∗
j . If we additionally assume that

x �→ ‖ω1/2Gj,x‖h is essentially bounded on�, then each θε, ε > 0, maps the graph
of v∗

j continuously into itself.

Proof From (3.3) we infer that �ε ∈ D(v∗
j ) with v∗

j�ε = θ
−1/2
ε v∗

j� − C∗
ε (Gj )�,

where C∗
ε (Gj )� → 0, ε ↓ 0, in L2(�,F ) due to Lem. 2.9(1) and the assumptions

on �. If x �→ ‖ω1/2Gj,x‖h is essentially bounded, then every C∗
ε (Gj ), ε > 0,

defines a bounded operator on L2(�,F ) by Lem. 2.9(1).

Lemma 3.4 Let A ∈ L2
loc(�,Rν), G ∈ L2

loc(�, hν), j ∈ {1, . . . , ν}, and � ∈
D(v∗

j ). Then v∗
j� = 0 almost everywhere on {� = 0}.

Proof Let ε > 0 and set θε := 1 + εd�(1) and �ε := θ
−1/2
ε �. By Lem. 3.3 (applied

to ω = 1) we know that �ε ∈ D(v∗
j ). Thanks to Rem. 3.1(2) (applied to ω = 1) we

may conclude that �ε has a weak partial derivative with respect to xj and v∗
j�ε =

−i∂xj �ε −Aj�ε − ϕ(Gj )�ε in L1
loc(�,F ). Of course, Aj�ε + ϕ(Gj )�ε = 0 a.e.

on {� = 0}. Furthermore, ∂xj �ε = 0 a.e. on {� = 0} according to Rem. 2.2. In view
of Lem. 3.3 and the Riesz-Fischer theorem we finally find a zero sequence εn > 0,
n ∈ N, such that v∗

j�εn → v∗
j� a.e. on �, which altogether proves the lemma.

In the following theorem we again use the notation introduced in (2.4).
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Theorem 3.5 Assume that A ∈ L2
loc(�,Rν) and G ∈ L2

loc(�, hν). Let j ∈
{1, . . . , ν} and � ∈ D(v∗

j ). Then ‖�‖F : � → R has a weak partial derivative

with respect to xj that belongs to L2(�) and is given by

∂xj ‖�(x)‖F = Re〈S�(x)|(iv∗
j�)(x)〉F , a.e. x ∈ �. (3.4)

In particular, the following diamagnetic inequality holds,

∣∣∂xj ‖�(x)‖F

∣∣ � ‖(v∗
j�)(x)‖F , a.e. x ∈ �. (3.5)

Proof Let θε := 1 + εd�(1), �ε := θ
−1/2
ε �, ε > 0. By Lem. 2.5 and Lem. 3.2

(applied with ω = 1) we may plug �ε into the second formula in (2.5). Subtracting
the expression

Re
〈
S�ε(x)

∣∣i(Aj (x) + ϕ(Gj,x))�ε(x)
〉
F = 0, a.e. x ∈ �, (3.6)

from the corresponding right hand side we arrive at

∂xj ‖�ε(x)‖F

= Re
〈
S�ε(x)

∣∣∂xj�ε(x) − i(Aj (x) + ϕ(Gj,x))�ε(x)
〉
F

= Re
〈
S�ε(x)

∣∣iθ−1/2
ε (v∗

j�)(x) + iCε(Gj,x)
∗�(x)

〉
F

, a.e. x ∈ �. (3.7)

Notice that S�ε(x) ∈ Q(d�(1)), a.e. x ∈ �, so that (3.6) follows from the sym-
metry of ϕ(Gj,x) on Q(d�(1)); in the second step of (3.7) we took (3.2) into

account. Since θ
−1/2
ε converges strongly to the identity operator on F , it is clear

that S�ε(x) → S�(x) and θ
−1/2
ε (v∗

j�)(x) → (v∗
j�)(x), for all x ∈ �, as

ε ↓ 0. We may thus invoke the dominated convergence theorem to show that
Re〈S�ε |iθ−1/2

ε v∗
j�〉F → Re〈S� |iv∗

j�〉F in L2(�), as ε ↓ 0. By virtue of the

bound ‖Cε(Gj,x)
∗‖ � (4/π)ε1/2‖Gj,x‖ (due to Lem. 2.9 applied to ω = 1), the fact

that x �→ ‖Gj,x‖‖�(x)‖F is in L1
loc(�), and ‖�ε‖F → ‖�‖F in L2(�), we thus

arrive at (3.4).

4 Definition of the Schrödinger and Pauli-Fierz Operators

We are now in a position to give precise definitions via quadratic forms of the
Schrödinger and Pauli-Fierz operators we are interested in. In the whole section
we assume that V+, V− : � → R are non-negative and locally integrable. We
set V := V+ − V−. For the definition of all forms below it suffices to assume
that A ∈ L2

loc(�,Rν) and G ∈ L2
loc(�, hν). The latter condition on G will be

strengthened in the two lemmas and their two corollaries at the end of this subsection.
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We recall the notation D(�) = C∞
0 (�) and wj = (−i∂xj − Aj)�D(�)

already used earlier. Then a well-known diamagnetic inequality ensures that f ∈⋂ν
j=1 D(w∗

j ) implies |f | ∈ W 1,2(�) with
∣∣∂xj |f (x)|∣∣ � |(w∗

j f )(x)|, a.e. x ∈ �, j ∈ {1, . . . , ν}; (4.1)

see, e.g., [21, Thm. 7.21]. The maximal Schrödinger form associated with �, A, and
V+ is defined by

D(s
A,V+
�,N ) := Q(V+) ∩

ν⋂
j=1

D(w∗
j ),

s
A,V+
�,N [f ] := 1

2

ν∑
j=1

‖w∗
j f ‖2 +

∫
�

V+(x)|f (x)|2dx, f ∈ D(s
A,V+
�,N ). (4.2)

It is non-negative and closed as a sum of non-negative closed forms [18, Ex. VI.1.23
& Thm. VI.1.31], and the unique self-adjoint operator representing it, call it SA,V+

�,N ,
is interpreted as the Neumann realization of the Schrödinger operator associated with
�, A, and V+. The restriction of sA,V+

�,N to D(�) is closable and its closure,

s
A,V+
�,D := s

A,V+
�,N �D(�),

is called the minimal Schrödinger form. The unique self-adjoint operator representing
s
A,V+
�,D , call it S

A,V+
�,D , is interpreted as the Dirichlet realization of the Schrödinger

operator.
In the case � = Rν it is known that sA,V+

Rν ,D = s
A,V+
Rν ,N, [31].

Next, we add negative parts to the electrostatic potential. Let � ∈ {D,N} and
suppose that there exist a ∈ [0, 1) and b > 0 such that∫

�

V−(x)|f (x)|2dx � as
0,V+
�,� [f ] + b‖f ‖2, f ∈ D(s

0,V+
�,� ). (4.3)

Note that |g| ∈ D(s
0,V+
�,N ) = W 1,2(�) ∩ Q(V+), for all g ∈ D(s

A,V+
�,N ). Likewise,

a well-known analogue of Cor. 4.1 below shows that |g| ∈ D(s
0,V+
�,D ), for all g ∈

D(s
A,V+
�,D ). From these remarks and (4.1) we infer that the inequality in (4.3) also

holds true with s
0,V+
�,� replaced by s

A,V+
�,� , provided that f ∈ D(s

A,V+
�,� ). Thus, by the

KLMN theorem, the form defined by D(s
A,V
�,� ) := D(s

A,V+
�,� ) and

s
A,V
�,� [f ] := s

A,V+
�,� [f ] −

∫
�

V−(x)|f (x)|2dx, f ∈ D(s
A,V
�,� ), (4.4)

is semi-bounded and closed, and we denote the unique self-adjoint operator repre-
senting it by S

A,V
�,� .

We shall now mimic these constructions in the case where quantized fields are
added. Thus, we put

v
±
�[�] :=

∫
�

V±(x)‖�(x)‖2
F dx, � ∈ D(v±

�) := Q(V±1F ) ⊂ L2(�,F ),
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and introduce a maximal form

t
G,A,V+
�,N [�] := 1

2

ν∑
j=1

‖v∗
j�‖2 + v

+
�[�], � ∈ D(t

G,A,V+
�,N ) := D(v+

�) ∩
ν⋂

j=1

D(v∗
j ),

and a minimal form

t
G,A,V+
�,D := t

G,A,V+
�,N �D(�,Q(d�(1))).

Recall that vj is defined in (3.1) and depends on A and G. If we set G equal to zero,
then vj = wj and v∗

j = w∗
j . At this point we need the following observation:

Corollary 4.1 Let A ∈ L2
loc(�,Rν), G ∈ L2

loc(�, hν), and � ∈ {D,N}. Then � ∈
D(t

G,A,V+
�,� ) implies ‖�‖F ∈ D(s

0,V+
�,� ).

Proof For � = N, the assertion is immediately clear from Thm. 3.5.
To prove it for � = D, we shall use that Q ⊂ D(s

0,V+
�,D ) where Q := {f ∈

W 1,2(�) ∩ Q(V+) : supp(f ) � �}.
Let � ∈ D(t

G,A,V+
�,D ). By definition, we then find �n ∈ D(�,Q(d�(1))), n ∈ N,

such that vj�n → v∗
j�, j ∈ {1, . . . , ν}, n → ∞, in L2(�,F ), and �n → �

in D(v+
�). By Lem. 2.5, ‖�n‖F ∈ Q, and the latter convergence and the inverse

triangle inequality for ‖ · ‖F imply that ‖�n‖F → ‖�‖F in Q(V+). In view of
Lem. 2.5 it remains to show that

Re〈S�n |iv∗
j�n〉F n→∞−−−−−→ Re〈S� |iv∗

j�〉F in L2(�), j ∈ {1, . . . , ν}. (4.5)

Passing to suitable subsequences, if necessary, we may assume that the convergences
�n → � and vj�n → v∗

j�, j ∈ {1, . . . , ν}, also take place pointwise a.e. on �

and that ‖vj�n(x)‖ � Rj (x), a.e. x ∈ �, n ∈ N, for some R1, . . . , Rν ∈ L2(�).
Then S�n → S� a.e. on {� �= 0}. Furthermore, v∗

j�n → 0 a.e. on {� = 0} since
v∗
j� = 0 a.e. on {� = 0} by Lem. 3.4. Now (4.5) follows from the dominated

convergence theorem.

Now let � ∈ {D,N}. On account of Cor. 4.1 we may plug f = ‖�‖F into (4.3),
for every � ∈ D(t

G,A,V+
�,� ). Employing our diamagnetic inequality (3.5) instead of

(4.1), we then observe that D(t
G,A,V+
�,� ) ⊂ D(v−

�) and

v
−
�[�] � at

G,A,V+
�,� [�] + b‖�‖2, � ∈ D(t

G,A,V+
�,� ). (4.6)

Again we conclude that the form defined by D(t
G,A,V
�,� ) := D(t

G,A,V+
�,� ) and

t
G,A,V
�,� [�] := t

G,A,V+
�,� [�] − v

−
�[�], � ∈ D(t

G,A,V
�,� ), (4.7)

is semi-bounded and closed. Later on, we shall also need the following familiar
consequence of (4.6) and (4.7),

t
G,A,0
�,� [�] � t

G,A,V+
�,� [�] � 1

1−a
t
G,A,V
�,� [�] + b

1−a
‖�‖2, (4.8)
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for all � ∈ D(t
G,A,V
�,� ).

We denote the unique self-adjoint operator representing t
G,A,V
�,� by T

G,A,V
�,� .

For later reference we note some quite elementary observations:

Lemma 4.2 Let � be D or N, A ∈ L2
loc(�,Rν), and assume that V+, V− ∈ L1

loc(�),
V± � 0, satisfy (4.3) for some a ∈ [0, 1) and b > 0. Then the following holds:

(1) We have the following inclusions, where φ ∈ F ,

D(s
A,V
�,� ) ⊗ F ⊂ D(t

0,A,V
�,� ),

{
〈φ|�〉F : � ∈ D(t

0,A,V
�,N )

}
⊂ D(s

A,V
�,N).

(2) Let N ∈ N, f1, . . . , fN ∈ D(s
A,V
�,N), and let e1, . . . , eN mutually orthonormal

elements of F . Then

∥∥∥∥∥
n∑

�=1

f�e�

∥∥∥∥∥
2

t
0,A,V
�,N

=
n∑

�=1

‖f�‖2
s

A,V
�,N

. (4.9)

(3) D(s
A,V
�,� ) ⊗ F is a core of t0,A,V

�,� .

(4) D(S
A,V
�,� ) ⊗ F ⊂ D(T

0,A,V
�,� ) with

T
0,A,V
�,� (f φ) = (S

A,V
�,� f )φ, f ∈ D(S

A,V
�,� ), φ ∈ F .

Proof The second inclusion in (1) and the first one for � = N follow from Rem. 2.12.
For all f, g ∈ D(s

A,V
�,N) and φ,ψ ∈ F , we further infer from Rem. 2.12 that

s
A,V
�,N[f, g]〈φ|ψ〉F = t

0,A,V
�,N [f φ, gψ], (4.10)

which entails the formula in Part (2).
Now, we can prove the first inclusion in Part (1) in the case � = D. In fact, every

� ∈ D(s
A,V+
�,D ) ⊗ F has the form

∑N
�=1 f�e� with f� ∈ D(s

A,V+
�,D ) and a suitable

orthonormal basis {e� : � ∈ N} of F . We then find sequences {f�,n}n∈N in D(�)

such that f�,n → f�, n → ∞, with respect to the form norm of s
A,V+
�,D , for all

� ∈ {1, . . . , N}. Set �n := ∑N
�=1 f�,ne�. In view of (4.9) we then see that {�n}n∈N

is a Cauchy sequence with respect to the form norm of t0,A,V+
�,D , thus � ∈ D(t

0,A,V+
�,D ).

In the case � = D, the assertion (3) holds by definition of the minimal forms
and the first inclusion in Part (1). To prove (3) for � = N, let {e� : � ∈ N} be an
orthonormal basis of F , pn :=∑n

�=1 |e�〉〈e�|, n ∈ N, and � ∈ D(w∗
j ). Then, on the

one hand, the second inclusion in Part (1) implies pn� ∈ D(s
A,V+
�,N )⊗F . On the other

hand, the obvious relations pnwj� = wjpn�, � ∈ D(�,F ), show that pn� ∈
D(w∗

j ) and w∗
j pn� = pnw

∗
j� → w∗

j� in L2(�,F ). Since also V
1/2
+ pn� →

V
1/2
+ � in L2(�,F ), this concludes the proof of Part (3).
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Finally, for all f ∈ D(S
A,V
�,� ), g ∈ D(s

A,V
�,� ) and φ,ψ ∈ F , the formula (4.10)

yields

〈(SA,V
�,� f )φ|gψ〉 = 〈SA,V

�,� f |g〉〈φ|ψ〉F
= s

A,V
�,� [f, g]〈φ|ψ〉F = t

0,A,V
�,N [f φ, gψ] = t

0,A,V
�,� [f φ, gψ].

In the last step we also took Part (1) into account. Since D(s
A,V
�,� ) ⊗ F is a core for

t
0,A,V
�,� , this computation implies the assertion; see [18, Thm. VI.2.1(iii)].

Next, we add the radiation field energy to our forms and Hamiltonians. The
corresponding form is given by

f�[�] :=
∫
�

‖d�(ω)1/2�(x)‖2
F dx, � ∈ D(f�) := L2(�,Q(d�(ω))).

It is closed and obviously non-negative. The closed form defined by

q
G,A,V
�,N [�] := t

G,A,V
�,N [�] + f�[�], � ∈ D(q

G,A,V
�,N ) := D(t

G,A,V+
�,N ) ∩ D(f�),

will be called the maximal Pauli-Fierz form and

q
G,A,V
�,D := q

G,A,V
�,N �D(�,Q(d�(1∨ω))), (4.11)

the minimal Pauli-Fierz form. For � ∈ {D,N}, the corresponding Pauli-Fierz
operator HG,A,V

�,� is defined as the unique self-adjoint operator representing q
G,A,V
�,� .

Remark 4.3 In analogy to the aforementioned result of [31], a series of approxima-
tion arguments reveals that tG,A,V+

Rν ,D = t
G,A,V+
Rν ,N and q

G,A,V+
Rν ,D = q

G,A,V+
Rν ,N under the

mere assumption that A ∈ L2
loc(R

ν,Rν), G ∈ L2
loc(R

ν,Q(ω−1)ν), and V+ � 0
is locally integrable. As we do not use this result we refrain from presenting its
space-consuming proof. See, however, Cor. 4.7 for a special case.

As a direct consequence of the definitions, D(q
G,A,V
�,N ) = D(q

G,A,V+
�,N ) and

q
G,A,V
�,N = t

G,A,V+
�,N − v

−
� + f� = q

G,A,V+
�,N − v

−
�. (4.12)

In view of (4.8) we further observe that the form norms associated with q
G,A,V
�,N and

q
G,A,V+
�,N are equivalent. Furthermore, tG,A,V

�,D + f� is closed as a sum of two semi-
bounded closed forms and its domain contains D(�,Q(d�(1 ∨ ω))), whence

q
G,A,V
�,D ⊂ t

G,A,V
�,D + f�. (4.13)

Lemma 4.4 Let A ∈ L2
loc(�,Rν), G ∈ L∞(�,Q(ω−1 + ω)ν), and let V± ∈

L1
loc(R

ν), V± � 0, satisfy (4.3) with � = D for some a ∈ [0, 1) and b < ∞. Then

q
G,A,V
�,D = t

G,A,V
�,D + f� = q

G,A,V+
�,D − v

−
�.
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Proof We drop the superscripts A, G, and the subscript � in this proof as all these
quantities are kept fixed.

To prove the inclusion converse to (4.13), let � ∈ D(tVD) ∩ D(f). Then there

exist �n ∈ D(�,Q(d�(1))), n ∈ N, such that �n → �, V
1/2
+ �n → V

1/2
+ �,

and vj�n → v∗
j�, j ∈ {1, . . . , ν}, in L2(�,F ). Set θε := 1 + εd�(ω), �ε :=

θ
−1/2
ε �, and �n,ε := θ

−1/2
ε �n ∈ D(�,Q(d�(1 ∨ ω))), n ∈ N, ε > 0. Since,

according to Lem. 3.3, θ−1/2
ε maps the graph of every v∗

j continuously into itself,

and since θ
−1/2
ε commutes with V

1/2
+ , it follows for every ε > 0 that �n,ε → �ε,

V
1/2
+ �n,ε → V

1/2
+ �ε, and vj�n,ε → v∗

j�ε, i.e., ‖�n,ε − �ε‖
t
V+
N

→ 0, as n → ∞.

Since d�(ω)1/2θ
−1/2
ε is bounded, we also have ‖�n,ε − �ε‖f → 0. Altogether this

shows that �ε ∈ D(qVD), ε > 0. Lem. 3.3 also implies, however, that v∗
j�ε →

v∗
j�, as ε ↓ 0. Since � ∈ Q(V+1F ) ∩ D(f), the dominated convergence theorem

further shows that V
1/2
+ �ε → V

1/2
+ � in L2(�,F ) and f[�ε − �] → 0. Hence,

‖�ε − �‖
q
V+
N

→ 0, ε ↓ 0, thus � ∈ D(qVD).

Lemma 4.5 Let A ∈ L2
loc(�,Rν), G ∈ L∞(�,Q(ω−1)ν), V+ ∈ L1

loc(�), V+ � 0,

and � ∈ {D,N}. Then the domain of the form q
G,A,V+
�,� is equal to the domain of

q
0,A,V+
�,� and the form norm ‖ · ‖

q
G,A,V+
�,�

is equivalent to ‖ · ‖
q
0,A,V+
�,�

.

Proof We drop all sub/superscripts �, A, or V+ in this proof.

Step 1. First, we consider the domains of the maximal forms. For every j ∈
{1, . . . , ν}, Rem. 3.1(1) implies that D(f) ∩ D(v∗

j ) = D(f) ∩ D(w∗
j ) and

that any vector � in the latter domain satisfies v∗
j� = w∗

j� − ϕ(Gj )�. In

particular, D(q0N) = D(qG
N ).

Step 2. Next, we prove the asserted equivalence of norms for the maximal forms.
By Step 1, the identity tGN = t0N + bG + cG holds on D(q0N), where

bG[�] := 1

2

ν∑
j=1

‖ϕ(Gj )�‖2, cG[�] := −
ν∑

j=1

Re〈w∗
j�|ϕ(Gj )�〉, � ∈ D(q0N).

On account of (2.15),

|cG| � 1

2
t0� + 2bG � 1

2
t0N + ρf + ρ‖ · ‖2

L2(�,F )
on D(q0N),

where ρ > 0 is chosen such that ρ � 4‖(ω−1/2 ∨ 1)G‖2
L∞(�,hν )

. Further
assuming ρ � 1/2, we finally deduce that

qG
N = t0N + f + bG + cG �

(
1 + 3ρ

2

)
q0N + 3ρ

2
‖ · ‖2

L2(�,F )
on D(q0N),

(4.14)
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and

qG
N � 1

2ρ
tGN + f � 1

2ρ

(
t0N + cG

)
+ f � 1

4ρ
t0N + 1

2
f − 1

2
‖ · ‖2

L2(�,F )

� 1

4ρ
q0N − 1

2
‖ · ‖2

L2(�,F )
on D(q0N). (4.15)

Step 3. According to Step 2, the closure of D(�,Q(d�(1 ∨ ω))) with respect to
‖ · ‖

qG
N

is the same as its closure with respect to ‖ · ‖
q0N

. By definition of

the minimal forms this means that D(q0D) = D(qG
D ). In particular, the latter

equal domains are subsets of D(q0N), whence the equivalence of ‖ · ‖
q0D

and
‖ · ‖

qG
D

follows from (4.14) and (4.15).

Corollary 4.6 Under the assumptions of Lem. 4.5, let � ∈ {D,N} and V− ∈ L1
loc(�),

V− � 0, satisfy (4.3) for some a ∈ [0, 1) and b < ∞. Let C be a core for the form
s
A,V+
�,� and D a form core for d�(ω). Then C ⊗ D is a core for qG,A,V

�,� .

Proof Combining Lem. 4.2(1) with (4.12) and Lem. 4.4 (applied to G = 0) we
observe that D(s

A,V
�,� )⊗Q(d�(ω)) ⊂ D(q

0,A,V
�,� ). On account of Lem. 4.5 this ensures

for a start that C ⊗ D ⊂ D(s
A,V
�,� ) ⊗ Q(d�(ω)) ⊂ D(q

G,A,V
�,� ).

Again by Lem. 4.5, it remains to show that C ⊗ D is a core for q0,A,V+
�,� . So let

� ∈ D(q
0,A,V+
�,� ). In view of Lem. 4.2(2)&(3) we then find �n ∈ C ⊗ F , n ∈ N,

such that �n → � in D(t
0,A,V+
�,� ). For ε > 0, let θε := 1 + εd�(ω), �ε := θ

−1/2
ε ,

and �n,ε := θ
−1/2
ε �n. As in the proof of Lem. 4.4 it then follows that �n,ε → �ε,

V
1/2
+ �n,ε → V

1/2
+ �ε, f�[�n,ε −�ε] → 0, and w∗

j�n,ε → w∗
j�ε, j ∈ {1, . . . , ν}, as

n goes to infinity. Moreover, V 1/2
+ �ε → V

1/2
+ � and f�[�ε − �] → 0, as ε ↓ 0, by

dominated convergence, and w∗
j�ε → w∗

j� by Lem. 3.3 in the trivial case G = 0.
For fixed n ∈ N and ε > 0, it follows, however, from Rem. 2.12 that every �n,ε ∈
C ⊗Q(d�(ω)) can be approximated by elements in C ⊗ D with respect to the form
norm of q0,A,V+

�,N .

Before stating the next corollay we recall that S0,V+
Rν ,D = S

0,V+
Rν ,N =: S0,V+

Rν .

Corollary 4.7 Consider the special case � = Rν with A ∈ L2
loc(R

ν,Rν) and
G ∈ L∞(Rν,Q(ω−1)ν). Let V± ∈ L1

loc(R
ν), V± � 0, such that V− is relatively form

bounded with respect to S
0,V+
Rν with relative form bound< 1. Then qG,A,V

Rν ,D = q
G,A,V
Rν ,N .

Proof The result s
A,V
Rν ,D = s

A,V
Rν ,N of [31] and Cor. 4.6 imply that D(s

A,V
Rν ,D) ⊗

Q(d�(ω)) is a common form core of q
G,A,V
Rν ,D and q

G,A,V
Rν ,N . In view of (4.11) this

implies the assertion.
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5 Domain and Cores of the Dirchlet-Pauli-Fierz Operator

In this section we prove the main result of this paper, Thm. 5.7 below, asserting that
the domain of the Dirchlet-Pauli-Fierz operator H

G,A,V
�,D is equal to the intersection

of the domain of the vector-valued Dirichlet-Schrödinger operator T
0,A,V
�,D with the

domain L2(�,D(d�(ω))) of the radiation field energy. In combination with Lem.
5.1(2), the theorem further shows that the determination of the operator cores of the
Dirichlet-Pauli-Fierz operator of the type (1.5) boils down to the determination of
the operator cores of the scalar Schrödinger operator S

A,V
�,D and d�(ω). In Rem. 5.8

we extend these results to the case where classical and quantized Zeeman terms are
added to H

G,A,V
�,D .

Throughout this section we shall again use the notation

θ = 1 + d�(ω).

We start with some elementary remarks on the operator H 0,A,V
�,D , where the interaction

between the matter particles and the radiation field is turned off:

Lemma 5.1 Let A ∈ L2
loc(�,Rν), � ∈ {D,N}, and assume that V± � 0 satisfy (4.3)

for some a ∈ [0, 1) and b � 0. Assume further that sA,V
�,� � 0, which can always be

achieved by adding a suitable non-negative constant to V+. Then the following holds:

(1) H
0,A,V
�,� = T

0,A,V
�,� +d�(ω) which in particular includes the equality of domains

D(H
0,A,V
�,� ) = D(T

0,A,V
�,� ) ∩ L2(�,D(d�(ω))). Furthermore,

(
‖T 0,A,V

�,� �‖2 + ‖d�(ω)�‖2
)1/2

� ‖H 0,A,V
�,� �‖ + ‖�‖, � ∈ D(H

0,A,V
�,� ).

(2) Let C ⊂ L2(�) be a core for S
A,V
�,� and D ⊂ F be a core for d�(ω). Then

C ⊗ D is a core for H 0,A,V
�,� .

(3) � ∈ D(H
0,A,V
�,� ) implies w∗

j� ∈ D(θ1/2), θ1/2� ∈ D(w∗
j ), and θ1/2w∗

j� =
w∗

j θ
1/2�, for every j ∈ {1, . . . , ν}. Moreover,

1

2

ν∑
j=1

‖θ1/2w∗
j�‖2� 1+b

1−a
‖(T 0,A,V

�,� +1)�‖‖θ�‖, �∈D(H
0,A,V
�,� ). (5.1)

Proof We shall drop all sub/superscripts �, A, and V in this proof, so that
for instance t0� = t

0,A,V
�,� and q0� = q

0,A,V
�,� . First, we prove Parts (1) and (2)

simultaneously.
Thanks to Lem. 4.2(4) we know that D(S�) ⊗ F ⊂ D(T 0� ) with T 0� (f φ) =

(S�f )φ, f ∈ D(S�), φ ∈ F . On account of D(T 0� ) ∩ L2(�,D(d�(ω))) ⊂ D(t0�) ∩
L2(�,Q(d�(ω))) = D(q0�), we further have q0�[�,�] = t0�[�,�] + f[�,�] =
〈�|T 0� �〉+〈�|d�(ω)�〉, � ∈ D(q0�), � ∈ D(T 0� )∩L2(�,D(d�(ω))), which shows
that T 0� + d�(ω) ⊂ H 0� by the first representation theorem for quadratic forms; see
[18, Thm. VI.2.1(iii)].
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Let U : L2(�,F ) → L2(�)⊗̂F be the canonical unitary transform onto the
completed tensor product of Hilbert spaces that maps f φ to f ⊗ φ, for f ∈ L2(�)

and φ ∈ F . Then in view of the above remarks, UH 0��C ⊗D U∗ = (S��C )⊗1+1⊗
(d�(ω)�D ), which is known to be essentially self-adjoint; see, e.g., [32, Thm. 8.33].
Hence, H 0��C ⊗D is essentially self-adjoint as well.

Finally, we consider � ∈ D(S�) ⊗ D(d�(ω)) ⊂ D(H 0� ). After an application
of the Gram-Schmid orthogonalization scheme, we may write � in the form � =∑N

�=1 f�φ�, where φ1, . . . , φN are mutually orthonormal with respect to the scalar
product [φ,ψ] := 〈θ1/2φ|θ1/2ψ〉F . By our earlier remarks, H 0� �D(S�)⊗D(d�(ω))⊂
T 0� + d�(ω), which permits to get

‖(H 0� + 1)�‖2 =
∥∥∥T 0� � + θ�

∥∥∥2

= ‖T 0� �‖2 + ‖θ�‖2 + 2
N∑

j,�=1

Re
{〈fj |S�f�〉[φj , φ�]

}

= ‖T 0� �‖2 + ‖θ�‖2 + 2
N∑

�=1

s�[f�] � ‖T 0� �‖2 + ‖d�(ω)�‖2.

Here we used the assumption that s� is non-negative in the last step. Since H 0� is
essentially self-adjoint on D(S�) ⊗ D(d�(ω)) and T 0� and d�(ω) are closed, this
bound entails H 0� ⊂ T 0� + d�(ω).

To prove Part (3) we again abbreviate θε := 1+εd�(ω) and put ϒε := θ1/2θ
−1/2
ε ,

ε > 0. Obviously, ϒε maps D(wj ) = D(�,F ) into itself and wjϒε = ϒεwj . Since
ϒε is bounded, self-adjoint, and continuously invertible, this implies ϒεw

∗
j = w∗

jϒε.

For all � ∈ D(H 0� ) ⊂ D(T 0� ) ⊂ Q(V+)∩⋂ν
j=1 D(w∗

j ), we infer from these remarks
and (4.8) that

1

2

ν∑
j=1

‖ϒεw
∗
j�‖2 � 1

2

ν∑
j=1

‖w∗
jϒε�‖2 +

∥∥∥V 1/2
+ ϒε�

∥∥∥2
� c t0�[ϒε�] + c‖ϒε�‖2

= c t0�[�,ϒ2
ε �] + c〈�|ϒ2

ε �〉 = c〈(T 0� + 1)�|ϒ2
ε �〉,

with c := (1 + b)/(1 − a). Here we further have ϒ2
ε � → θ�, ε ↓ 0, since

D(H 0� ) ⊂ L2(�,D(d�(ω))). The monotone convergence theorem now implies that
w∗

j� ∈ D(θ1/2) and (5.1) is valid. Since w∗
j is closed and we know that w∗

jϒε� =
ϒεw

∗
j� converges to θ1/2w∗

j�, as ε ↓ 0, we further see that θ1/2� ∈ D(w∗
j ) with

w∗
j θ

1/2� = θ1/2w∗
j�.

In what follows we shall work with several choices of the dispersion relation at the
same time. Hence we make the dependence of the Pauli-Fierz operators on the disper-
sion relation explicit in the notation as well, although this leads to an ugly cluttering
of sub and superscripts. More precisely, we shall consider the family of dispersion
relations αω + m with α � 1 and m � 0 and write q

G,A,V
�,�,αω+m and H

G,A,V
�,�,αω+m

for the Pauli-Fierz form and operator obtained upon replacing ω by αω + m in the
construction of qG,A,V

�,� =: qG,A,V
�,�,ω and H

G,A,V
�,� =: HG,A,V

�,�,ω , respectively.
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Furthermore, we shall, besides (2.26), use the following short-hands,

ϕ(G) · w� :=
ν∑

j=1

ϕ(Gj )wj�, ϕ(G)2� :=
ν∑

j=1

ϕ(Gj )
2�.

Proposition 5.2 Let A ∈ L2
loc(�,Rν) and suppose that V± ∈ L1

loc(�,R), V± � 0,
satisfy (4.3) with � = D for some a ∈ [0, 1) and b > 0. Then the following holds:

(1) Assume that G ∈ L∞(�,Q(ω−1)ν) has a weak divergence q := divG ∈
L∞(�,Q(ω−1)) and let � ∈ D(H

0,A,V
�,D ). Then � ∈ D(H

G,A,V
�,D ) and

H
G,A,V
�,D � = H

0,A,V
�,D � − ϕ(G) · w� + 1

2ϕ(G)2� + i
2ϕ(q)�. (5.2)

(2) Assume that G ∈ L∞(�, hν) has a weak divergence q ∈ L∞(�, h) and let
m > 0 and � ∈ D(H

0,A,V
�,D,ω+m). Then again � ∈ D(H

G,A,V
�,D ) and (5.2) is

satisfied.

Proof We shall assume without loss of generality that a suitable non-negative con-
stant has been added to V+ such that sA,V

�,D � 0. From now on we will also drop all
sub/superscripts �, A, and V in this proof.

Let m � 0 and � ∈ D(H 0
D,ω+m) where H 0

D,ω = H 0
D. If m = 0, then we assume

that the conditions under (1) are fulfilled. Otherwise we work with the hypotheses
of (2). Firstly, we observe that, in view of (2.15), (2.22), and Lem. 5.1, the terms
ϕ(Gj )w

∗
j�, ϕ(Gj )

2�, and ϕ(q)� are well-defined elements of L2(�,F ) in both
cases. Lem. 5.1(3) further ensures that Lem. 2.13 applies to �, if we choose ω + m

as dispersion relation in the latter lemma.
Under the conditions of Part (1), i.e., for m = 0, Lem. 4.5 implies � ∈ D(q0D) =

D(qG
D ). If m > 0, then D(H 0

D,ω+m) ⊂ D(H 0
D) by Lem. 5.1, so that � ∈ D(H 0

D) ⊂
D(q0D). Then we can further apply Lem. 4.5 to the dispersion relation ω + m, which
ensures that � ∈ D(q0D,ω+m) = D(qG

D,ω+m) under the conditions of Part (2). More-
over, if �n ∈ D(�,Q(d�(1 ∨ ω))), n ∈ N, converge to � with respect to the form
norm of qG

D,ω+m, then they form a Cauchy sequence with respect to the form norm of

qG
D . Thus, � ∈ D(qG

D ) holds in the case m > 0 as well.
Pick some � ∈ D(�,Q(d�(1 ∨ ω))). Thanks to Step 2 of the proof of Lem.

4.5 (applied to the dispersion relation m + ω) we already know that tGN [�,�] =
t0N[�,�]+bG[�,�]+cG[�,�], where we use the notation introduced there. Taking
also (4.13) into account in the first and second equalities, we infer from these remarks
and (2.27) that

qG
D [�,�] = tGD [�,�] + f[�,�]

= q0D[�,�] − 1

2

ν∑
j=1

(
〈w∗

j�|ϕ(Gj )�〉 + 〈ϕ(Gj )�|w∗
j�〉 − 〈ϕ(Gj )�|ϕ(Gj )�〉

)

=
〈
�

∣∣∣H 0
D� − ϕ(G) · w∗ � + i

2
ϕ(q)� + 1

2
ϕ(G)2�

〉
.
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Since D(�,Q(d�(1 ∨ ω))) is a core for qG
D , this proves � ∈ D(HG

D ) and (5.2);
see [18, Thm. VI.2.1(iii)]. For we know that w∗

j� = wj� since D(q0D,ω+m) ⊂
D(wj ).

In combination with Thm. 5.7 below the next remark extends [10, Thm. 7].

Remark 5.3 Let A and V± fulfill the hypotheses in Prop. 5.2. Assume that Gj ∈
L∞(�,Q(ω−1)) has a weak partial derivative with respect to xj satisfying ∂xjGj ∈
L∞(�,Q(ω−1)), for all j ∈ {1, . . . , ν}. This easily implies that G has a weak diver-
gence given by div G = q := ∑ν

j=1 ∂xjGj ∈ L∞(�,Q(ω−1)) and thus strengthens

the hypothesis of Prop. 5.2(1). Let � ∈ D(H
0,A,V
�,D ). Then the following alternative

formula is valid, with the third term on its right hand side defined in analogy to (2.26),

H
G,A,V
�,D � = H

0,A,V
�,D � − 1

2ϕ(G) · w� − 1
2w∗ · ϕ(G)� + 1

2ϕ(G)2�. (5.3)

To see this we apply Lem. 2.13 to the vectors G(j) with components G
(j)

� :=
δj,�Gj , j, � ∈ {1, . . . , ν}, which reveals that w∗

j ϕ(Gj )� = ϕ(Gj )wj� −
iϕ(∂xjGj )�. (Recall that D(H

0,A,V
�,D ) ⊂ D(θ)∩⋂ν

j=1 D(θ1/2w∗
j ) according to Lem.

5.1(3).) Summing these identities over j , we see that w∗ · ϕ(G)� = ϕ(G) · w� −
iϕ(q)�, whence (5.3) follows from (5.2).

The next lemma already determines the domain of the Dirichlet-Pauli-Fierz oper-
ator when the dispersion relation is sufficiently large compared to G. (Choose m = 0
in the lemma.) This is a direct analogue of the well-known weak coupling result [3].

Lemma 5.4 Let A ∈ L2
loc(�,Rν) and V± ∈ L1

loc(�,R), V± � 0, satisfy (4.3) with
� = D for some a ∈ [0, 1) and b > 0. Let α � 1, m � 0, and set

ω̃ :=
{
ω, if m = 0,
1, if m > 0.

Let G ∈ L∞(�,Q(ω̃−1)ν) have a weak divergence q := divG ∈ L∞(�,Q(ω̃−1)),
and write

cG := 2‖G‖L∞(�,Q(ω̃−1)ν ) and cq := ‖q‖L∞(�,Q(ω̃−1)).

Abbreviate

K0 := H
0,A,V
�,D,αω+m,

and define the operator KG by D(KG) := D(K0) and

KG� := H
G,A,V
�,D � + d�((α − 1)ω + m)�, � ∈ D(KG).
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Finally, set β := α, if m = 0, and β = m, if m > 0. Then there exist constants
γ0, γ1 > 0 depending only on a, b, cG, and cq such that the following bounds hold,
for all � ∈ D(K0), provided that β � γ0,

‖(KG − K0)�‖ = ‖(HG,A,V
�,D − H

0,A,V
�,D )�‖ � 1

2
‖K0�‖ + γ1‖�‖, (5.4)

‖d�(αω + m)�‖ � ‖K0�‖ + ‖�‖ � 2‖KG�‖ + (2γ1 + 1)‖�‖, (5.5)

‖HG,A,V
�,D �‖ � 3‖KG�‖ + (2γ1 + 1)‖�‖. (5.6)

In particular, KG is self-adjoint, in fact equal to H
G,A,V
�,D,αω+m, and it has the same

operator cores as K0, again provided that β � γ0.

Proof On account of Lem. 5.1(1) and Prop. 5.2, KG is a well-defined restriction of
the self-adjoint operator H

G,A,V
�,D,αω+m. Hence, if KG is self-adjoint, then these two

operators agree. The identity in (5.4) follows from (5.2) and Lem. 5.1(1). Due to
Lem. 5.1(1) we further have D(K0) ⊂ D(H

0,A,V
�,D,ω̃

). Therefore, (2.15), (2.22), (5.1)
applied to the dispersion relation ω̃, and the representation in (5.2) entail

‖(HG,A,V
�,D − H

0,A,V
�,D )�‖

� 21/2cG

√
1 + b

1 − a
‖(T 0,A,V

�,D + 1)�‖1/2‖θ̃�‖1/2 + (cq + c2
G)‖θ̃�‖,

with θ̃ := 1 + d�(ω̃). In view of the bound in Lem. 5.1(1) and ω̃ � β−1(αω + m)

this yields the inequality in (5.4). Now the last assertion of the lemma follows from
the Kato-Rellich theorem.

Furthermore, the first bound in (5.5) follows from Lem. 5.1(1) while the sec-
ond one is a consequence of (5.4). Finally, (5.6) is implied by (5.5) and the relation
H

G,A,V
�,D � = KG� − d�((α − 1)ω + m)�, where 0 � (α − 1)ω � αω.

The next theorem extends a result of [8]. The idea to use operators like KG, which
are more manifestly self-adjoint thanks to an artificially enlarged dispersion relation,
as comparison operators in an application of Nelson’s commutator theorem goes back
to M. Könenberg [19, Lem. 3.1].

Theorem 5.5 Let A ∈ L2
loc(�,Rν) and V± ∈ L1

loc(�,R), V± � 0, satisfy (4.3)
with � = D for some a ∈ [0, 1) and b > 0. Assume that G ∈ L∞(�, hν) has a
weak divergence q := divG ∈ L∞(�, h). Then every core forH 0,A,V

�,D,ω+1 is a core for

H
G,A,V
�,D as well.

Proof To start with we observe that, in view of Lem. 5.1(1), the graph norms of
H

0,A,V
�,D,ω+1 and any H

0,A,V
�,D,ω+m with m > 0 are equivalent and both operators have the

same domain and the same operator cores. In what follows we shall employ Lem.
5.4 with α = 1 and choose m > 0 so large that the operator given by KG� =
H

G,A,V
�,D � + d�(m)�, � ∈ D(KG) = D(H

0,A,V
�,D,ω+1), is self-adjoint, in fact equal

to H
G,A,V
�,D,ω+m, satisfies (5.6) for all � ∈ D(KG), and has the same operator cores as

H
0,A,V
�,D,ω+1.
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Let � ∈ D(S
A,V
�,D ) ⊗ D(d�(ω + m)2), which is a core for KG according to the

previous remarks and Lem. 5.1(2). By Prop. 5.2(2), � ∈ D(H
G,A,V
�,D ) and we may

use (5.2) to represent HG,A,V
�,D �. We thus find

−2Im〈KG�|HG,A,V
�,D �〉

= −2Im〈d�(m)�|HG,A,V
�,D �〉

= Im〈d�(m)�|2ϕ(G) · w∗� − iϕ(q)�〉 − Im〈d�(m)�|ϕ(G)2�〉. (5.7)

Noticing that the integration by parts formula (2.27) extends to all � ∈ D(t
0,A,0
�,D ) and

that d�(m)� ∈ D(t
0,A,0
�,D ) by Lem. 4.2(1), we further obtain

∣∣Im〈d�(m)�|2ϕ(G) · w∗� − iϕ(q)�〉∣∣

=
∣∣∣∣∣∣

ν∑
j=1

(
Im〈d�(m)�|ϕ(Gj )w

∗
j�〉 + Im〈d�(m)w∗

j�|ϕ(Gj )�〉
)∣∣∣∣∣∣

� m

ν∑
j=1

∣∣∣〈ϕ(iGj )�|w∗
j�〉

∣∣∣

� 23/2m1/2‖G‖L∞(�,hν )‖(m + d�(m))1/2�‖t0,A,0
�,D [�]1/2,

where we wrote out the imaginary parts and applied (2.18) in the penultimate step.
In the second and penultimate steps we also used Rem. 2.12(1). The identity (2.18)
reveals that ϕ(Gj,x) maps D(d�(1)3/2) into D(d�(1)) and in view of this it further
implies

Im〈d�(m)�|ϕ(G)2�〉 = m

ν∑
j=1

Im〈iϕ(iGj )�|ϕ(Gj )�〉.

Putting these remarks together and employing (4.8) we deduce that

|Im〈KG�|HD�〉| � c(m + ‖G‖2
L∞(�,hν )

)
(
q
0,A,V+
�,D,ω+m[�] + m‖�‖2

)
,

for some universal constant c > 0. Since by Lem. 4.5 (applied to the dispersion
relation ω + m) and (4.8) the form norms of q0,A,V+

�,D,ω+m and q
G,A,V
�,D,ω+m are equivalent,

and since KG = H
G,A,V
�,D,ω+m, the assertion now follows from Nelson’s commutator

theorem.

The next lemma will be used in the crucial Step 2 of the proof of Thm. 5.7.

Lemma 5.6 Let A ∈ L2
loc(�,Rν), G ∈ L∞(�,Q(ω−1 + ω)ν), � ∈ {D,N}, and

assume that V± � 0 satisfy (4.3) for some a ∈ [0, 1) and b � 0. Pick some j ∈
{1, . . . , ν} and � ∈ D(S

A,V
�,� ) ⊗ D(θ3/2). Then θ� ∈ D(t

G,A,V
�,� ) ∩ D(f�), θ1/2� ∈

D(v∗
j ), and the following bound holds for every β > 0,

Re〈v∗
j θ�|v∗

j�〉 � (1 − β)‖v∗
j θ

1/2�‖2 − 4
(

1 + 1
β

)
‖ω1/2Gj‖2

L∞(�,h)
‖θ1/2�‖2.
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Proof Since θ� ∈ D(S
A,V
�,� )⊗D(θ1/2), Cor. 4.6 implies θ� ∈ D(q

G,A,V
�,� ) ⊂ D(v∗

j ).

Furthermore, let f ∈ D(S
A,V
�,� ) and ψ ∈ D(θ1/2). Then f ∈ D(w∗

j ) and it follows
from Rem. 2.12(1) and Rem. 3.1(1) that fψ ∈ D(v∗

j ) with v∗
j (fψ) = (w∗

j f )ψ −
ϕ(Gj )(fψ). Since ϕ(Gj,x) maps D(θ) into D(θ1/2) by Lem. 2.9, we may thus write

θ−1/2(v∗
j θ�)(x) = (v∗

j θ
1/2�)(x) − (θ−1/2ϕ(Gj,x) − ϕ(Gj,x)θ

−1/2)θ�(x)

= (v∗
j θ

1/2�)(x) − T (Gj,x)
∗θ1/2�(x),

θ1/2(v∗
j�)(x) = (v∗

j θ
1/2�)(x) − T (Gj,x)θ

1/2�(x),

for a.e. x ∈ �, where the bounded operator T (Gj,x) is defined as in Lem. 2.9(2).
Combining the above identities we obtain

Re〈(v∗
j θ�)(x)|(v∗

j�)(x)〉
� (1 − β)‖(v∗

j θ
1/2�)(x)‖2 −

(
1 + 1

β

)
‖T (Gj,x)‖2‖θ1/2�(x)‖2,

for a.e. x ∈ �, and we conclude by applying the bound in Lem. 2.9(2).

Finally, we are in a position to prove the main theorem of this paper. In the subse-
quent remark we discuss a simple extension to the case where additional spin degrees
of freedom are taken into account.

Theorem 5.7 Let A ∈ L2
loc(�,Rν) and G ∈ L∞(�,Q(ω−1 + ω)ν). Assume that

V± ∈ L1
loc(�,R), V± � 0, satisfy the form bound (4.3) with � = D for some

a ∈ [0, 1) and b > 0. Assume further that G has a weak divergence q := divG ∈
L∞(�,Q(ω−1)). Then

D(H
G,A,V
�,D ) = D(H

0,A,V
�,D ) = D(T

0,A,V
�,D ) ∩ L2(�,D(d�(ω))),

the graph norms of H
G,A,V
�,D and H

0,A,V
�,D are equivalent and, in particular, both

operators have the same cores.

Recall that Lem. 5.1(2) identifies a natural class of cores for H 0,A,V
�,D .

Proof Without loss of generality we shall assume that sA,V
�,D � 0. From now on we

will also drop all sub/superscripts �, A, and V in this proof.

Step 1. We start by observing that Lem. 5.1(1) implies D(H 0
D,αω) = D(H 0

D) and

H 0
D,αω� = T 0

D� + αd�(ω)�, � ∈ D(H 0
D), for all α � 1. Further-

more, the graph norms of H 0
D and H 0

D,αω are equivalent and both operators
have the same cores, for all α � 1. Thanks to Prop. 5.2(1) we already
know that D(H 0

D) ⊂ D(HG
D ). We employ Lem. 5.4 with m = 0 and fix

α � 1 sufficiently large throughout this proof such that the operator given
by KG� = HG

D � + (α − 1)d�(ω)�, � ∈ D(KG) = D(H 0
D), is self-

adjoint and has the same operator cores as H 0
D and such that (5.4)–(5.6) are

available. Then (5.4) and Lem. 5.1(1) imply

‖HG
D �‖ � ‖H 0

D�‖ + 1

2
‖H 0

D,αω�‖ + γ1‖�‖
� (α + 1)‖H 0

D�‖ + (α + γ1)‖�‖, (5.8)
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for all � ∈ D(H 0
D).

Step 2. In this step we derive the following key estimate of this proof: Set c̃G :=
2‖ω1/2G‖L∞(�,hν ). Then there exists some (a, b, c̃G)-dependent constant
c0 > 0 such that, for all � ∈ D(H 0

D) and δ ∈ (0, 1],
D[�] := ‖(HG

D + 1)�‖2 − ‖θ�‖2 − ‖(HG
D − d�(ω))�‖2

� −δ‖θ�‖2 − (c0/δ)‖�‖2. (5.9)

In view of the already proven inclusion D(H 0
D) ⊂ D(HG

D ), (5.8), and the
closedness of HG

D , it suffices to prove (5.9) for every element � in a core
of H 0

D. A suitable core is D(SD) ⊗ D(θ3/2); recall Lem. 5.1(2).
So, let � ∈ D(SD) ⊗ D(θ3/2). Then � ∈ D(HG

D ) ∩ L2(�,D(d�(ω)))

and Lem. 5.6 ensures that θ� ∈ D(qG
D ) = D(tGD )∩D(f). Taking also Lem.

4.4 into account we thus obtain

〈θ�|(HG
D − d�(ω))�〉 = qG

D [θ�,�] − f[θ�,�] = tGD [θ�,�]

= 1

2

ν∑
j=1

〈
v∗
j θ�

∣∣v∗
j�
〉
+ v+[θ1/2�] − v−[θ1/2�].

(5.10)

By our assumptions on V± and the diamagnetic inequality (3.5),

a

2

ν∑
j=1

‖v∗
j θ

1/2�‖2 + av+[θ1/2�] − v−[θ1/2�] � −b‖θ1/2�‖2,

for all � ∈ D(SD) ⊗ D(θ3/2). Combining (5.10) and Lem. 5.6 with β :=
1 − a > 0 we then arrive at

D[�] = 2Re〈θ�|(HG
D − d�(ω))�〉

� −
(

2 − a

1 − a
c̃2
G + 2b

)
‖θ1/2�‖2 � −δ‖θ�‖2 − 1

δ

(
2 − a

1 − a

c̃2
G

2
+ b

)2

‖�‖2,

for all � ∈ D(SD) ⊗ D(θ3/2) and δ ∈ (0, 1].
Step 3. Next, we show that the graph norms of HG

D �D(H 0
D) and KG are equivalent.

This will imply that HG
D �D(H 0

D) is closed and that every core for KG is a

core for HG
D �D(H 0

D) and vice versa; by Step 1 of this proof we then also

know that every core for H 0
D is a core for HG

D �D(H 0
D) and vice versa.

In view of (5.6) it only remains to dominate the graph norm of KG by
the one of HG

D �D(H 0
D). To this end let � ∈ D(H 0

D). Using 1 � α in the first
step and (5.9) in the second one, we obtain

‖KG�‖2 � 2α2
(
‖(HG

D − d�(ω))�‖2 + ‖θ�‖2
)

� 2α2
(
‖(HG

D + 1)�‖2 + δ‖θ�‖2 + (c0/δ)‖�‖2
)
,
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which in combination with ‖θ�‖ � 2‖KG�‖+2(1+γ1)‖�‖ (recall (5.5))
and for sufficiently small δ ∈ (0, 1] readily leads to the bound

‖KG�‖ � cα‖HG
D �‖ + c′‖�‖,

with a universal constant c > 0 and a (α, γ1, c0)-dependent constant c′ > 0.
Step 4. Finally, we show that HG

D �D(H 0
D) is a self-adjoint restriction of the self-

adjoint operator HG
D , which implies that HG

D �D(H 0
D)= HG

D . To this end we
apply the following theorem for operators in a Hilbert space ([33]; see also
[32, Thm. 5.29]):

If A is self-adjoint, B is symmetric and A-bounded, and A + tB is
closed, for all t ∈ [0, 1], then A + B is self-adjoint.

We apply this theorem with A = KG and B = (1 − α)d�(ω), so that B
is A-bounded by (5.5). Furthermore, with these choices, A + tB is equal to
the operator that we obtained, if we replaced ω by ωt := (1 − t)αω + tω in
the construction of HG

D �D(H 0
D), i.e., A+ tB = HG

D,ωt
�D(H 0

D,ωt
). In particular,

A+B = HG
D �D(H 0

D). Since the pair (ωt ,G) satisfies the assumptions of the
theorem, for all t ∈ [0, 1], every A + tB, t ∈ [0, 1], is closed according to
Step 3.

Remark 5.8 Linearly coupled fields and Zeeman terms.

Assume that 0 � V+ ∈ L1
loc(�) and that A and G fulfill all hypotheses of Thm.

5.7. We explain how to extend the theorem so as to cover additional linearly coupled
fields or Zeeman terms accounting for additional spin degrees of freedom. To this
end let ν̃, s ∈ N and let σ1, . . . , σν̃ be Hermitian s×s-matrices with norm equal
to one. We extend the configuration space as �∗ := � × {1, . . . , s} and consider
each matrix σj as a self-adjoint operator on L2(�∗,F ) by setting (σj�)(x, ς) :=∑s

ς ′=1(σj )ς,ς ′�(x, ς ′), for a.e. (x, ς) ∈ �∗ and all � ∈ L2(�∗,F ).
An easy way to include possibly singular classical Zeeman terms σ · B is to gen-

eralize the constructions in Section 4 to (not necessarily non-negative) matrix-valued
V− ∈ L1

loc(�,B(Cs)). Then each V−(x), x ∈ �, is assumed to be a Hermitian
s×s-matrix and the condition (4.3) is replaced by

∫
�

‖V−(x)‖B(Cs )|f (x)|2dx � as
0,V+
�,� [f ] + b‖f ‖2, f ∈ D(s

0,V+
�,� ),

for some a ∈ [0, 1) and b > 0. The definition of the Schrödinger forms with matrix-
valued V− reads

s
A,V
�∗,�[f ] :=

s∑
ς=1

s
A,V+
�,� [f (·, ς)] −

s∑
ς,ς ′=1

∫
�

V−(x)ς,ς ′f (x, ς)f (x, ς ′)dx,
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for all f ∈ D(s
A,V+
�∗,� ), where D(s

A,V+
�∗,� ) is the set of functions f : �∗ → C with

f (·, ς) ∈ D(s
A,V+
�,� ), for all ς ∈ {1, . . . , s}. Likewise, we replace the old definition

of v−
� by

v
−
�∗ [�] :=

s∑
ς,ς ′=1

∫
�

V−(x)ς,ς ′ 〈�(x, ς)|�(x, ς ′)〉F dx,

where �(·, ς) ∈ Q(‖V−‖B(Cs )1F ), for all ς ∈ {1, . . . , s}. All other forms and oper-
ators can be extended to forms and operators in L2(�∗,F ) in an obvious fashion.
The so-obtained Pauli-Fierz operators will be indicated by the subscript �∗ in what
follows. It is then clear that all results of Section 4 and all previous results of the
present section hold mutatis mutandis for matrix-valued V− as well.

Having implemented the generalization just described, we can further add a
quantized Zeeman term: Let F = (F1, . . . , Fν̃) ∈ L∞(�,Q(ω−1)ν̃) and abbreviate

σ · ϕ(F )� :=∑ν̃
j=1 σjϕ(Fj )�, � ∈ D(σ · ϕ(F )) := L2(�∗,Q(d�(ω))).

On account of (2.15) and ‖σj‖ = 1 the previous expressions are well-defined and

‖σ · ϕ(F )�‖ � cF ‖�‖Q(d�(ω)) � ε‖d�(ω)�‖ +
(
cF + c2

F
4ε

)
‖�‖, (5.11)

for all ε > 0 and � ∈ L2(�∗,D(d�(ω))), with

cF := 2
ν̃∑

j=1

‖Fj‖L∞(�,Q(ω−1)).

In view of Lem. 5.1(1) and (5.11), the symmetric operator σ ·ϕ(F ) is infinitesimally
H

0,A,V
�∗,D -bounded. By the above extension of Thm. 5.7 it is infinitesimally H

G,A,V
�∗,D -

bounded as well. The Kato-Rellich theorem and the extended Thm. 5.7 thus imply
that HG,A,V

�∗,D − σ · ϕ(F ) is self-adjoint on the domain D(H
0,A,V
�∗,D ) and that is has the

same operator cores as H
0,A,V
�∗,D .

6 Examples

6.1 Examples of Coupling Functions

In what follows we give several examples for physically relevant choices of G and F

with � ⊂ R3. The given formulas are suitable for Pauli-Fierz operators for one elec-
tron; in Section 6.3 we shall explain how to deal with several electrons. In all cases
G and F are determined by an expansion into proper or generalized eigenfunctions
of the Maxwell operator on divergence free vector fields satisfying perfect electric
conductor boundary conditions, if the boundary ∂� is non-empty. The latter bound-
ary conditions require the tangential components of the electric field and the normal
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component of the magnetic field to vanish on ∂�. We also have to artificially intro-
duce ultra-violet cut-offs damping the interaction with very high frequency modes.
The measure space (M,A, μ) will always be the mode space in the generalized
eigenfunction expansion.

For later reference, we first note a very simple observation:

Remark 6.1 Let M×� � (k, x) �→ Gx(k) ∈ Cν be measurable such that, for every
k ∈ M, the map � � x �→ Gx(k) is locally integrable and has a weak divergence
denoted by � � x �→ qx(k) ∈ C. Assume in addition that the components of G and
q belong to L1

loc(�,Q(ω−1)). Then G has a weak divergence computed in Q(ω−1)

given by divG = q.
This is a direct consequence of the relevant definitions and Fubini’s theorem.

Example 6.2 Let � ⊂ R3 be a bounded, simply connected domain with smooth
boundary ∂� and exterior normal field n ∈ C∞(∂�,R3). We shall consider a self-
adjoint realization of the Maxwell operator in L2(�,C6) corresponding to perfect
electric conductor (ec) boundary conditions. To this end we shall briefly summarize
some constructions and results of [29]. (The article [29] deals with exterior domains,
but the results quoted below hold for bounded domains as well; cf. the survey article
[4] and the references given there for a more general discussion of the Hilbert space
theory of the Maxwell operator on Lipschitz domains.) We start by setting

M :=
(

0 irot
−irot 0

)
�C∞

0 (�,C6),

Cec := {(E,B) ∈ C2(�,C6) | n × E = 0 on ∂�},

and defining Mec := M∗�Cec . It turns out that Mec is self-adjoint, and so is its
restriction, call it M⊥

ec, to the orthogonal complement of its kernel ker(Mec). The
elements in D(M⊥

ec) have a vanishing weak divergence. It further turns out that
D(M⊥

ec) ⊂ W 1,2(�,C6), so that (E,B) ∈ D(M⊥
ec) has a well-defined trace on ∂�.

Denoting this trace by �∂�, every (E,B) ∈ D(M⊥
ec) indeed satisfies the full set

of perfect electric conductor boundary conditions in the sense that n × E �∂�= 0
and n · B �∂�= 0. Thm. 2.2.9 in [29] (see also [4]) implies that M⊥

ec has a com-
pact resolvent. We also observe that, if (E,B) ∈ D(M⊥

ec) \ {0} is an eigenvector for
the eigenvalue � ∈ R \ {0} of Mec, then (E,−B) is an eigenvector for the eigen-
value −� of Mec. In particular, (E,−B) ⊥ (E,B), thus ‖E‖ = ‖B‖. Putting these
remarks together, we find a non-decreasing sequence {ωn}n∈N of strictly positive
eigenvalues (counting multiplicities) and corresponding eigenvectors {(En,Bn)}n∈N
of M⊥

ec, normalized such that ‖En‖ = ‖Bn‖ = 1, with the property that {(En, �Bn) :
n ∈ N, � ∈ {+,−}} is a complete orthogonal system in ker(Mec)

⊥. Since these
eigenvectors are divergence free, we find

ω2
nEn = iωnrotBn = rot rotEn = −	En, n ∈ N,
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and likewise (	+ω2
n)Bn = 0. By elliptic regularity, En,Bn ∈ C∞(�,C3), n ∈ N.

The following asymptotics, which are uniform in x ∈ �, are proven in [25, Satz 12],

∑
0<ωn<τ

|En(x)|2
ω2
n

∼ τ

π2
,

∑
0<ωn<τ

|En(x)|2 ∼ τ 2

3π2
, τ → ∞. (6.1)

The same asymptotic relations are valid with En replaced by Bn.
In the above situation the measure space (M,A, μ) equals (N,P(N),Z), with

Z denoting the counting measure on the power set P(N). The dispersion relation is
given by ω(n) := ωn, n ∈ N. Furthermore, we pick some measurable ultra-violet
cut-off function χ : [0,∞) → [0, 1] such that χ(τ) = O(τ−α), τ → ∞, for some
α > 2. Then the recipe for quantizing the electromagnetic radiation field described,
e.g., in [6, §2.4.1] or [27] amounts to defining

G
χ
x (n) := eχ(ωn)ω

−1/2
n En(x), F

χ
x (n) := e

2χ(ωn)ω
1/2
n Bn(x),

for all x ∈ � and n ∈ N. Here e ∈ R accounts for some combination of physical
constants. Then we have the relation −(i/2)rotGχ

x (n) = F
χ
x (n), x ∈ �, n ∈ N. By

the choice of χ and by virtue of (6.1) and its analogue for the Bn,

‖Gχ‖2
L∞(�,Q(ω−1+ω)3)

= e2 sup
x∈�

∑
n∈N

(
1

ω2
n

+ 1

)
χ(ωn)

2|En(x)|2 < ∞,

‖F χ‖2
L∞(�,Q(ω−1)3)

= e2

4
sup
x∈�

∑
n∈N

(1 + ωn)χ(ωn)
2|Bn(x)|2 < ∞.

Furthermore, the fact that each En is divergence free and Rem. 6.1 ensure that Gχ

has the weak Q(ω−1)-valued divergence divGχ = 0.

Example 6.3 Next, we recall the two perhaps most common cases where the Maxwell
equations with perfect electric conductor boundary conditions are explicitly solvable.
In both items below, e ∈ R, the cut-off χ : [0,∞) → [0, 1] is measurable and
satisfies χ(τ) = O(τ−α), τ → ∞, for some α > 2, and ω(k, λ) := ω(k) := |k|,
k ∈ R3, λ ∈ {1, 2}. Moreover, ελ : S2 → S2, λ ∈ {1, 2}, are measurable such that
{a, ε1(a), ε2(a)} is an oriented orthonormal basis of R3, for every a ∈ S2. Finally,
k̊ := |k|−1k, if k ∈ R3\{0}. In both cases Gχ fulfills the hypothesis in Thm. 5.7 with
divGχ = 0 (due to Rem. 6.1) and F

χ
x := −(i/2)rotGχ

x then fulfills the hypothesis
in Rem. 5.8.

(1) Let � ∈ (0,∞)3 and consider the parallelepiped �(�) := (0, �1) × (0, �2) ×
(0, �3); see, e.g., [24, §2.7]. Put L := {(πn1/�1, πn2/�2, πn3/�3) ∈ R3 :
n1, n2, n3 ∈ N0} and let L∗ be the set of all k ∈ L having at most one vanishing
component. Set M := L∗ ×{1, 2} and suppose that the measure μ gives weight
1 to (k, λ) ∈ M, if no component of k vanishes, and weight 1/2 otherwise.
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In this situation, analogues of the modes En appearing in Ex. 6.2 are indexed
by (k, λ) ∈ M. They read

E(k,λ)(x) :=
√

8√
�1�2�3

⎛
⎝ελ,1(k̊) cos(k1x1) sin(k2x2) sin(k3x3)

ελ,2(k̊) sin(k1x1) cos(k2x2) sin(k3x3)

ελ,3(k̊) sin(k1x1) sin(k2x2) cos(k3x3)

⎞
⎠ ,

for all x ∈ �(�), if no component of k vanishes. If precisely one component of
k vanishes, then we have to replace the components ελ,� of the polarization vec-
tors by a complex number of modulus 1 in the above formula, which yields the
same mode for λ = 1 and λ = 2 and explains the choice of μ. Then every E(k,λ)

is normalized, divergence free, and satisfies n×E(k,λ)�∂�(�)= 0 and 	E(k,λ) =
−ω(k)2E(k,λ). Hence, we define G

χ
x (k, λ) := eχ(ω(k))ω(k)−1/2E(k,λ)(x),

for all (k, λ) ∈ M.
(2) In the case � = R3 we choose M = R3 × {1, 2} and μ is the product of

the Lebesgue-Borel measure on R3 with the counting measure on {1, 2}. It is
common to choose G

χ
x (k, λ) := e(2π)−3/2(2ω(k))−1/2χ(ω(k))e−ik·xελ(k̊).

6.2 More on the Entire Euclidean Space

Example 6.4 Consider the case � = Rν where A ∈ L4
loc(R

ν,Rν) has a weak
divergence divA ∈ L2

loc(R
ν). Let G ∈ L∞(Rν,Q(ω−1 + ω)ν) have a weak diver-

gence divG ∈ L∞(Rν,Q(ω−1)). Finally, let V± ∈ L2
loc(R

ν), V± � 0, such that
V− is relatively − 1

2	-bounded (in the operator sense) with relative bound < 1. Then

s
A,V
Rν ,D = s

A,V
Rν ,N and q

G,A,V
Rν ,D = q

G,A,V
Rν ,N by [31] and Cor. 4.7, respectively. In partic-

ular, the Dirichlet and Neumann realizations of the Schrödinger operator agree, and
the same holds for the Pauli-Fierz operator. Hence, we may drop all subscripts D and
N in what follows.

Under the above conditions the Leinfelder-Simader theorem [20, Thm. 3] says that
S

A,V
Rν is essentially self-adjoint on D(Rν). Hence, by Thm. 5.7, HG,A,V

Rν is essentially
self-adjoint on D(Rν) ⊗ E , for every core E of the field energy d�(ω).

6.3 N -Particle Hamiltonians and Pauli Principle

The next example clarifies in particular how the examples of Section 6.1 are extended
to several electrons.

Example 6.5 Let � ⊂ R3 be open, N ∈ N, N > 1, and �N∗ := �N ×{−1, 1}N , i.e.,
the Cartesian products �N and {−1, 1}N will play the roles of the position and spin
spaces, respectively. The corresponding position and spin variables will be denoted
as x = (x1, . . . , xN) and ς := (ς1, . . . , ςN). If σ̂1, σ̂2, and σ̂3 are the standard Pauli

matrices, whose entries we label by (ς, ς ′) ∈ {−1, 1}2, then the 3N components of
σ are the 2N × 2N -matrices given by

(σ3(�−1)+j )ς,ς ′ := (σ̂j )ς�,ς ′
�
·
{

1, if ςi = ς ′
i , for i ∈ {1, . . . , N} \ {�},

0, otherwise,
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for ς, ς ′ ∈ {−1, 1}N , � ∈ {1, . . . , N}, and j ∈ {1, 2, 3}. Assuming that G ∈
L∞(�,Q(ω−1 + ω)3) has a weak divergence divG ∈ L∞(�,Q(ω−1)) and F ∈
L∞(�,Q(ω−1)3), we introduce GN ∈ L∞(�,Q(ω−1 + ω)3N) with a weak
divergence divGN ∈ L∞(�,Q(ω−1)) and FN ∈ L∞(�,Q(ω−1)3N) by setting

GN
x := (Gx1 , . . . ,GxN

),

for all x ∈ �N , and defining FN analogously. We suppose that A ∈ L2
loc(�,R3)

and put
AN(x) := (A(x1), . . . ,A(xN)).

Finally, we pick V+ ∈ L1
loc(�

N), V+ � 0, and V− ∈ L1
loc(�

N,B(C2N
)) such that

‖V−‖B(C2N )
is relatively form bounded with respect to −1/2 times the Dirichlet-

Laplacian on �N with relative form bound < 1. Let SN be the set of permutations
of {1, . . . , N}, put π∗x := (xπ(1), . . . , xπ(N)), for all π ∈ SN , and define π∗ς
analogously. Then we further assume that V+(π∗x) = V+(x) and

V−(π∗x)π∗ς,π∗ς ′ = V−(x)ς,ς ′, x ∈ �N, ς, ς ′ ∈ {−1, 1}N, π ∈ SN.

Finally, let AN be the orthogonal projection onto the space of functions obeying the
Pauli principle, i.e.,

(AN�)(x, ς):= 1

N !
∑

π∈SN

(−1)π�(π∗x, π∗ς), a.e.(x, ς)∈ �N∗ , � ∈ L2(�N∗ ,F ).

Then it is straightforward to show that Ran(AN) is a reducing subspace for

HN := H
GN ,AN ,V

�N∗ ,D
− σ · ϕ(FN).

It now follows from Rem. 5.8 that the restriction HN �Ran(AN) is self-adjoint on the

domain AND(H
0,AN ,V

�N∗ ,D
). Furthermore, if C is a core for the Dirichlet-Schrödinger

operator SAN ,V

�N∗ ,D
and E is a core for d�(ω), then AN(C ⊗E ) is a core for HN�Ran(AN).

The potential V in the previous example could for instance be a sum of classical
Zeeman terms and a multi-particle Coulomb potential for a molecule in a half space
bounded by a perfectly conducting wall. In this case the multi-particle Coulomb
potential contains the electrostatic interactions between all charged particles (elec-
trons and nuclei) and their image charges behind the wall; see, e.g., [27] for explicit
formulas.

7 The Neumann Case

For mathematical curiosity we derive a version of Thm. 5.7 for Neumann boundary
conditions in this final section. While the behavior of G at the boundary ∂� and
the regularity of ∂� did not play any role for the validity of Thm. 5.7, in the Neu-
mann case G and ∂� have to satisfy suitable boundary and regularity conditions,
respectively. It turns out that perfect magnetic conductor boundary conditions permit
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to derive an analogue of the integration by parts formula (2.27). These are boundary
conditions imposed on the Maxwell operator requiring the tangential components of
the magnetic field and the normal component of the electric field (and hence of G)
to vanish on ∂�. In other words, the roles of the electric and magnetic fields are
switched in comparison to perfect electric conductor boundary conditions.

Throughout the whole section we shall assume that ν � 2 and the boundary
∂� is Lipschitz with exterior normal field n; see, e.g., [7, §4.2.1] for a definition
of Lipschitz boundaries and their normal fields. The symbol Hν−1 will denote the
(ν − 1)-dimensional Hausdorff measure. The classical vector potential is assumed
to have a locally square-integrable extension to the whole Euclidean space, A ∈
L2

loc(R
ν,Rν). The coupling function G ∈ L∞(�,Q(ω−1 + ω)ν) has weak partial

derivatives with respect to all variables such that ∂xj G ∈ L∞(�,Q(ω−1)ν), for all
j ∈ {1, . . . , ν}. As in the scalar case we then see that (a unique representative of)
G : � → Q(ω−1)ν is locally Lipschitz continuous. Since we can always choose
the L∞(�,Q(ω−1)ν×ν)-norm of ∇G as a local Lipschitz constant, G has a unique
continuous Q(ω−1)ν-valued extension to �. We postulate that

n · G = 0, Hν−1-a.e. on ∂�. (7.1)

Lemma 7.1 Under the assumptions on G described in the preceding paragraph,
let f ∈ C∞

0 (�), φ ∈ Q(d�(ω)), and let � ∈ L1
loc(�,F ) have weak partial

derivatives with respect to all variables. Then 〈f ϕ(G)φ|�〉F ∈ W 1,1(�,Cν) and
n · 〈f ϕ(G)φ|�〉F�∂�= 0, where �∂� denotes the trace of Sobolev functions.

Proof Let ψ ∈ F . Applying Lem. 2.11 to the vectors G(j,�) with compo-
nents G

(j,�)
k := δj,kG�, for all j, �, k ∈ {1, . . . , ν}, we convince ourselves that

〈f ϕ(G)φ|ψ〉F ∈ W 1,∞(�,Cν) and 〈f ϕ(G)φ|�〉F ∈ W 1,1(�,Cν) and that their
weak partial derivatives can be computed by formally applying Leibniz rules. In view
of (2.17) we further know that 〈f ϕ(G)φ|ψ〉F ∈ C(�,Cν).

Pick some " ∈ C∞
0 (Rν,R) with " = 1 on supp(f ) and let {en : n ∈ N} be an

orthonormal basis of F . Let �′ be the intersection of � with a sufficiently large open
ball containing the supports of f and ". Then 〈en|"�〉F ∈ W 1,1(�′), n ∈ N, have
a well-defined trace on ∂�′ and we infer from the above remarks that the functions
Xm := ∑m

n=1〈f ϕ(G)φ|en〉F 〈en|"�〉F ∈ W 1,1(�′,Cν) satisfy n · Xm�∂�′= 0, for
all m ∈ N. The trace �∂�′ : W 1,1(�′) → L1(∂�′,Hν−1) on the bounded domain �′
is continuous. Hence, we may conclude by observing that Xm → 〈f ϕ(G)φ|�〉F ,
m → ∞, in W 1,1(�′,Cν).

We finally assume that V± ∈ L1
loc(�), V± � 0, are such that (4.3) is satisfied with

� = N and for some a ∈ [0, 1) and b � 0.

Theorem 7.2 In the situation described above, D(H
G,A,V
�,N ) = D(H

0,A,V
�,N ) and

H
G,A,V
�,N � = H

0,A,V
�,N � − ϕ(G) · w∗� + 1

2ϕ(G)2� + i
2ϕ(q)�, (7.2)

for all � ∈ D(H
G,A,V
�,N ). The graph norms of HG,A,V

�,N and H
0,A,V
�,N are equivalent

and, in particular, both operators have the same cores.
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Recall that a natural class of operator cores for H 0,A,V
�,N has been identified in Lem.

5.1(2). Zeeman terms accounting for spin degrees of freedom can be added in the
previous theorem by the same arguments as in Rem. 5.8.

Proof Essentially, we only have to extend (2.27) to test functions � that might be
non-vanishing on the boundary. This is done in the first step below, which is the only
one where the boundary condition on G is used explicitly.

Step 1. Fix f ∈ C∞
0 (�), φ ∈ F , and � ∈ D(H

0,A,V
�,N ). On account of Lem.

5.1(3), � satisfies the assumptions in Lem. 2.13, and 〈f φ|ϕ(G)�〉F ∈
W 1,1(�,Cν) by Lem. 7.1. Since the identity (2.28) in the proof of Lem.
2.13 is available, we further conclude that

div〈f φ|ϕ(G)�〉F = 〈f φ|iϕ(G) · w∗� + ϕ(q)�〉F
+

ν∑
j=1

〈(∂xj − iAj )f φ|ϕ(Gj )�〉F ,

where q := divG. It is easy to see that f φ ∈ D(w∗
j ) with w∗

j (f φ) =
(−i∂xj f −Ajf )φ. Combining Thm. 3 on page 127 and Thm. 1 on page 133
of [7] we observe that the divergence theorem applies to 〈f φ|ϕ(G)�〉F
and the intersection of � with some large open ball, which together with
Lem. 7.1 and the above remarks implies

〈f φ|ϕ(G) · w∗� − iϕ(q)�〉 −
ν∑

j=1

〈w∗
j (f φ)|ϕ(Gj )�〉 = 0. (7.3)

Step 2. Next, we observe that C∞
0 (�) is a core for the form s

A,V+
�,N . In fact, the

condition A ∈ L2
loc(R

ν,Rν) ensures that C∞
0 (�) ⊂ D(s

A,V+
�,N ). Further-

more, that sA,V+
�,N ∩ L∞(�) is a core for sA,V+

�,N follows from the argument

in [16, Step 1 on p. 125]. If f ∈ D(s
A,V+
�,N ) ∩ L∞(�), then we can pick

ϑn ∈ C∞
0 (Rν) with ϑn+1 = 1 on supp(ϑn), n ∈ N,

⋃
n∈N supp(ϑn) = Rν ,

and supn ‖∇ϑn‖∞ < ∞. Observing
∑∞

n=1(∇ϑn)f ∈ L2(�,Rν) we can
then follow the reasoning in [16, Step 2 on p. 125] to see that ϑnf → f

with respect to the form norm of sA,V+
�,N . Finally, if g ∈ D(s

A,V+
�,N ) ∩ L∞(�)

has a compact support, then Ajg ∈ L2(�), which implies ∂xj g ∈ L2(�),
as we a priori know that ∂xj g = iAjg +w∗

j g in L1
loc(�). Invoking [7, Thm.

3 on p. 127], we find gn ∈ C∞(�), n ∈ N, such that gn → g, n → ∞, in
W 1,2(�) and pointwise a.e. on �. A glance at the proof of [7, Thm. 3 on
p. 127] reveals that we may further assume that ‖gn‖∞ � ‖g‖∞, n ∈ N,
and that all gn and g have their supports contained in some fixed compact
set. Employing the dominated convergence theorem we then conclude that
w∗
j gn = −i∂xj gn − Ajgn → −i∂xj g − Ajg = w∗

j g and V
1/2
+ gn → V

1/2
+ g

in L2(�).
Combining this result with Cor. 4.6 we see that C∞

0 (�)⊗Q(d�(1 ∨ω))

is a core for the form q
G,A,V
�,N .
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Step 3. If we employ (4.12) and (7.3) instead of (4.13) and Lem. 2.13, respectively,
and choose C∞

0 (�) ⊗ Q(d�(1 ∨ ω)) instead of D(�,Q(d�(1 ∨ ω))) as
a core, then, apart from the very last sentence, all arguments in the proof
of Prop. 5.7(1) remain valid after the subscript D has been replaced by N
everywhere. This proves (7.2) for all � ∈ D(H

0,A,V
�,N ).

Step 4. Employing (7.2) for � ∈ D(H
0,A,V
�,N ) instead of Prop. 5.2(1) and replacing

the subscript D by N everywhere, we can now literally follow the proofs
of Lem. 5.4 and Thm. 5.7 to arrive at the full assertion. (We employ (4.12)
instead of Lem. 4.4 in the analogue of (5.10); notice that Lem. 5.1 and Lem.
5.6 cover the Neumann case.)
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