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Abstract In this paper we introduce a new notion of A—order homogeneous
operators on the nuclear algebra of white noise operators. Then, we give their Fock
expansion in terms of quantum white noise (QWN) fields {a;, a; ¢t € R}. The
quantum extension of the scaling transform enables us to prove Euler’s theorem in
quantum white noise setting.
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1 Introduction and Preliminaries

Let H be the real Hilbert space of square integrable functions on R with norm | - |g
and E = S(R) be the Schwartz space consisting of rapidly decreasing C*°-functions.
Then, the nuclear Gel fand triple

SM) C L* (R, dx) Cc S'(R) (1
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can be reconstructed in a standard way (see Ref. [18]) by the harmonic oscillator
A=1+1¢-— dz/dt2 and H. The eigenvalues of A are 2n, n = 1,2,---, the
corresponding eigenfunctions {e,; n > 1} form an orthonormal basis for L%(R). In
fact (e,) are the Hermite functions and therefore each ¢, is an element of E. The
space E is a nuclear space equipped with the Hilbertian norms

&1, = |APE]o, E€E, peR
and we have
E = proj lim Ep, E'=indlim E_,,
p—>00

where, for p > 0, E), is the completion of E with respect to the norm | - |, and E_,
is the topological dual space of E,. Wedenoteby N = E+iEand N, = E, +iE)p,
p € Z, the complexifications of E and E, respectively. Throughout, we fix a Young
function 6 satisfying the condition

. 0(x)
imsup —- < 400- 2)
x—>oo X

Its polar function 6* is the Young function defined by

0*(x) = sup(tx — 0(¢)), x >0.
t=0
For more details , see Refs. [8].
For a complex Banach space (B, || - ||), H(B) denotes the space of all entire
functions on B and for m > 0, Exp(B, 6, m) is the Banach space

Exp(B.0.m) = |/ € H(B): Il flo = sup| f@)le™" "IV < oo},
ze

The projective system {Exp(N_,,0,m); p € N, m > 0} and the inductive system
{Exp(Np, 60, m); p € N, m > 0} give the two nuclear spaces

Fo(N') = proj légn wExp(N_p, 0,m), Go(N) = 1nd hm EXp(Np, 0,m).
p>00im
3)

It is noteworthy that, for each & € N, the exponential function
e (2) == 8 e N,

belongs to Fg(N’) and the set of such test functions spans a dense subspace of
Fp(N"). In the remainder of this paper we use simply Fy to denote the space Fy(N').
The space of continuous linear operators from J4 into its topological dual space F;
is denoted by L(Fy, F;) and assumed to carry the bounded convergence topology.
For z € N' and ¢ € Fy with Taylor expansions Y .- (x®", f,), the holomorphic
derivative of ¢ at x € N’ in the direction z is defined by

p(x +2z) —o(x)

(@@)¢)(x) := lim , . “)

We can check that the limit always exists and a(z) € L(Fp, Fg). Let a*(z) €
L(Fy, Fy) be the dual adjoint of a(z), i.e., for ® € F; and ¢ € Fy, {(a*(2)P, ¢p)) =
(@, a(z)¢)), where (-, -)) denotes the standard bilinear form on F; x Fy. Similarly,
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for ¢ € Gy« (N) with Taylor expansion ¥ (§) = Z;’;O(w”, £9") we use the common
notation a(z)yr for the derivative (4) with z € N.

The Wick symbol of E € L(Fy, F)) is by definition [18] a C-valued function on
N x N defined by

o (B)E, 1) = (Beg, ephe &1, & neN. (5)

By a density argument, every operator in £(Fy, F;) is uniquely determined by its
Wick symbol. In fact, if Gg«(N @ N) denotes the nuclear space obtained as in (3)
by replacing N, by N, x N, we have the following characterization theorem for
operator Wick symbols.

Theorem 1 (See Ref. [13]) The Wick symbol map o yields a topological isomorphism
between L(Fy, F) and Gy=(N @ N).

It is a fundamental fact in quantum white noise theory [18] (see, also Ref. [13])
that every white noise operator & € L(Fyp, ]-"g‘) admits a unique Fock expansion

o0

E= Y Ermlm) 6)
1,m=0
where, for each pairing I,m > 0, k1, € (N®(I+M));ym(l,m) and &, (k;,m) is the

integral kernel operator uniquely specified via the Wick symbol transform by

o (Brm (1)), 1) = (kim, n® @ E®™),  E,n€N. 7

For any S1, S> € L(Fy, F), there exists a unique E € L(Fy, F)), denoted S; © 53,
such that

0 (810 82) =0 (851)0(82). ®)

The operator S7 ¢ Sy will be referred to as the Wick product of S1 and 5.
Let 6, be given by 6, = inf,-¢ ¢’ /r", n € N. Then, for p € Nand y;, y» > 0,
we define the Hilbert space

Fyy1,n(Np @ Np) =

00
{?=(¢l,nz)zom=o; ®1m € (N;?Z(X)N?m)sym(l,m)’ Z (elem)izyl_[yz_mk/)l,mﬁ, <OO}
1,m=0
Put
Fo(N®N) = m FH,Vl,Vz(NP@NP)'

reN,y1>0,2>0

Theorem 2 ([4]) An operator B € L(F;, Fp) if and only if there exists a unique
(K1.m)i.m € Fo(N @ N) such that

o0
E=E .0 Y Eimkim), (€
1[,m=0
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where T is the usual trace on N @ N, i.e., (1,€ @ n) = (&, n) and

=2, (EDF
Z ) Erx(r®h).

k=0

[I]

Let Uy be the space of white noise operators given by

e¢]

Uy ={2 =3 Sl Gmime BN &N}
1,m=0

®1 ®m — , —_
Forx,y € N, weputk;n,(x,y) = Xl_| ® y,T and B 1= Z?,Omzo Erm(k1,m(x, ¥)).
Then, the set {EY; x, y € N} spans a dense subspace of Uj.

Theorem 3 ([4]) The map f; defined by
ff:ﬁ(fgafg)_)uea E'_)ETQE7
is a topological isomorphism.

We recall from Ref. [4] the dual pairing: for T = Z?,Om:() E1m(Prm) € Up and
B =) /=0 Etm(kim) € L(Fp, Fy), we define

o0

E Z 'm'Klmchlm>

m:

For more details see [4-6, 22, 23] and [24].

In mathematics, a homogeneous function is a function with multiplicative scaling
behavior: if the argument is multiplied by a factor, then the result is multiplied by
some power of this factor. More precisely, for f € L*(R?) and t € R\{0}, put
St f(x) = f(tx), x € R4. For a given A € R, an element f € Lz(Rd) is said to be

—order homogeneous if S; f (x) = t* f (x) foreach r € R\{0} and x € R?. It is well
known that f is A—order homogeneous if and only if it satisfies the so-called Euler
equation

5
D g f = (10)

d
In infinite dimension analysis, an analogue of the Euler operator Zx,-a— was
; Xi
i=1
introduced in [17] as follows

oo

Ap =Y (a*(er) +ale))ale) = Y (-, ealer).

i=1 i=1
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Moreover, the scaling transformation S; is defined at ¢ (x) = ZZ‘;O (x®" @) € Fo
by

o]

S =3 (", Z( 2 g, ). xe N

191
e 12

For A € R, ¢ is said to be A—order homogeneous if S;¢ = t*¢ for any ¢ € R\{0}. It
is proved in [20] that ¢ is A—order homogeneous if and only if it satisfies the Euler
equation

Apgp = A (In
The main purpose of this paper is the study of the QWN-analogue of (11). We start
by introducing a QWN-Scaling transformation and a QWN-second quantization. These
transformations will be used to introduce the notion of A—order homogeneous opera-
tors. Then, as a first main result we give their Fock expansions (see Theorem 5). Our
second main result is stated in Theorem 7, where we show that a white noise oper-
ator & is A—order homogeneous if and only if it satisfies the following QWN-Euler
equation

A%E =1z

Here Ag is the QWN-Euler operator defined in [6].

2 Fundamental QWN-Operators

2.1 QwWN-Laplacians

o o
_E: + p+ Z -n-
- DejD€j+ DejDej’
ot ot

NQ—Z(D (D, )++Z(D VD,
j=1
where, for { € N,

DfE=[a@).El, D E=—[a"(t), El (12)

are the creation derivative and annihilation derivative of B, (see [12]).

Lemma 1 Forany 8 =} 5 _ E1.m(Ki.m) € Up, we have

CE = Z (L + m)Epm (1. m)- (13)

1,m=0

Proof From [6], we have, forx,y € N
o (NPEY)(E n) = ((x, 1) + (¥, E)o (BV)(E, ).
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On the other hand, denoting the right hand side of (13) by A2, we get
o (ACE™)(E, 1)

1— l m

o (x, n) : o 5 g)ym-!
ZZZW’?)W m' ;OX:: (m_l)l

=1 m=0
= ({x,n) +(y, Do (EV)(E, n).
Then, by a density argument we complete the proof. O

It is noteworthy that the identity (13) holds true for E € L(Fy, ]-'5‘ ).

Proposition 1 Let T € L(Fy, Fy). Then, we have
(Ag)*T ={E20(t) + Eo2(D)} o T (14)

(NO*T = N9T. (15)

Proof From [1], for & = 315 _o E1.m(ki.m) € Up, we have

A E= Z A+2) I+ 1) Bl (1@ Ki42,m) + Z (m~+2)(m~+1) B m (k1 m+2827),
1,m=0 1, m=0
(16)
where, for z, € (N®”), and &4, € N®H"=P) p < | + m, the contractions
Zp ®p kim and k; ,, ®P z, are defined by

(Zp ®p Kl,m» Sl—p-ﬁ—m) = <Kl,m’ p ® gl—p+m>a

{K1,m ®p Zps §l+m7p) = (Kl,m» §l+m7p ® Zp)‘
Then, for T = Y15 _0E1.m(P1.m) € L(Fy, Fj), we obtain
(r. 223)

oo
= > Iml+ 2+ 1)(Prm, T @ kiyam)
[,m=0

o0
+ Z I'm!(m + 2)(m + D( D, Kimi2 @2 T)

1,m=0
oo o
= Zzl’m'fébq)z 2,m> Kim) +Zzl'm' D2 ® T, Kim).
[=2 m=0 =0 m=2

Therefore, we get

(AT = ZZuzm(T(X“Dl 2m)+22ulm(<bzm 2 ® 1),

=2 m=0 =0 m=2
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which yields

(A TIED =Y Y (t @ Do, 1™ @)

=2 m=0

+) Y (P2 ®T. 0 @EP)

=0 m=2
= {(n,n) + (&, &)} (T)E, n)
o (E2,0(7) + Eo,2(2))(E, Mo (T)(E, n).
This gives
(AT = (En0(1) + Eoa(0)} o T
as desired. (15) follows from (13). O

2.2 QWN-Second Quantization

We start by clarifying the topology of the nuclear algebra L(Fy, F;). From Theorem
1, we have the topological isomorphism:

L(Fo. F) ~G-(N@N)= | J Exp(N, ®N,. 0% ).
p=0,y>0

For p > Oand y > 0, let Lo _p , (Fp, ]-'5‘) denotes the subspace of all E €
L(Fy, ]-"g ) which correspond to elements in Exp(N, @ N, 6*, y). The topology of
Lo, p,y (Fo, Fj) is naturally induced from the norm of the Banach space Exp(N, ®
Np, 6%, y) which will be denoted by || - llg,—p.y, i.e., for E € Ly, , (Fo, F),

IEllo.—p.y = lloEllo=—p., = sup lo(B)(E, m)]e @ VER=T by,
&.nEN
For E = Z?,om:o E1.m(P1.m) € L(Fo, F5) and t € R, we define the operator INA0)
by
o
remHe= Y Eu™" ). (17)
1,m=0
We denote by GL(,C(}'Q,}";)) the group of all linear homeomorphisms from
L(Fy, Fy) onto itself.

Proposition 2 {I"C(¢")},er is a regular one-parameter subgroup of GL(L(Fy, Fi)
with infinitesimal generator N 2.

Proof The proof of the fact that {I'?(e’)};cr is a one-parameter subgroup of
GL(L(Fg, F, *)) is straightforward. Since we have

olUm) l+t(l+m)+t22 a +m)(k+2)

“ (k+2)!
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then, for E = Y7 _o Bi.m(Pr.m) € L(Fy, Fj), one can write
r%e)e =E+1N2(E) +>A@)(E) (18)

where
o0

ADE) = Y (A @)D m)

1,m=0

with
0 k

Al,m(t) = Z(k T 2)'

k=0

( +m)*+2),

Now, for [t| < 1, using a similar computation as in [7], one can show that, there
existc, r,r’ > 0 and p, g > 0 such that

a(F2(eYE) —a(8)

a(NCE) < cltllo(E)lgs,—q.r-
t 9*’_[7’},./
It then follows
rée)e) —o(8
lim  sup o7& =o(®) _  yor —0.
=06 (8)[lgx <1 4 0%, —py
This proves the desired statement. O
2.3 QWN-Scaling Transformation
S2(B) :=
w2 ek CE2DNm 20! ok
Z e — 1) Ty Slm (T @7 K2 miak @ TE19)
k=0 27K kN m!

We recall from Ref. [6] and Theorem 3 that the QWN-Fourier-Gauss transform
G¢ is a continuous linear operator from Uy into itself defined b
K1.K»:By.Ba P lp into itself defined by

o0

GIQ(1,K2;31,BZE = Z El,m(gl,m) (20)
I,m
where K;, B; € L(N',N)NL(N, N),i = 1,2 and g; ,, is given by

o]

[4+2j)! 2k)!
g 30 L+ 20

I 1k (bel ® Bi@lﬂ) (Tlgj ®% 2.2k @2k Tgk) '

J:k=0

. Q0 _ -0
In our setting, we observe that S = G%(tz_l)l,%(lz_l)mlﬂ.

Theorem 4 Let & = Z?,omzo Erm(Ki.m) € L(Fg, Fy). Then, (S,Q)*E is given by

(S2)'E = F@1) o T2(1)(8),
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where F(t) is given by

0 (t2 _ 1)j+k o ok
F@) = Z 2j+k—j,k,52j,2k(f T ® T¢%). 2D
e k!

Proof For & = Zl,m:O El,m(Kl,m) S E(f"g,]:g) and T = Zl,m:O E[)m(q)[,m) S
Up, we have

(e, s21)
o0
. (L 4 2j)!(m + 2Kk)!
= > il (2 - 1)-’*””’"% # @ Gy O 7)
J.k,l,m=0
[p/2] [4/2] j+
—2j-2%_®j k
= Z P‘I'< Z Z 21+/< vkv P8 @ kpajg-u ® T ’q)f"q>'
2.q=0 j=0 k=0
This yields
oo [p/211q/2] —2j—2k .2 j+k
_ PHa=2i=2k (2 _ )itk .
(2= Z Z Z 20k 1 Epg(® ® kp-2jq-2u ® T

p,q=0 j=0 k=0
(22)
On the other hand, we have
o(F(t)oT2(t)(ENE, n)
o (F(1))(&, ma (T2 (E))(E, n)

(N IAL K @li2) 2%
—<r®f ® Kim ® T, n®HH @ g®mt >

J+k i1
Jjok,1,m=0

oo [p/211g/2] (PHa=2j=2k (12 _ 1)J+k

E ®j ®k . ® ®
Z Z 20Fk k! <T T QKp2jq—2u®@T, NP ®E fl>
p.q=0 j=0 k=0 i

or equivalently
F(1) o T2(1)(E)

oo [p/211g/2] PHa=2j=2k(;2 _ 1)i+k

o ®J . k
Z Z Z 27+ j1k! Epg (T @ Kp—2j,g-24 ©T).
p-q=0 j=0 k=0 o

Comparing with (22), the statement follows. O

Remark 1 Using (19), for x, y € N, we have

SF(EXJ)==exp{ (> = D, x) + 5 (r - Dy, »jE*@23)
Then, for all s, € R\{0}, by a density argument, one can verify that
ssP =53 (24)
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In particular, for all s € R and ¢ € R\{0}, we get
Sﬁ%s,Q =52, (25)

S

3 Euler’s Theorem For Homogeneous Operator
3.1 Homogeneous Operator

Definition 1 Let E € Uy and A € R. We say that E is A-order homogeneous if for
each t € R\{0} we have

S2(8) = r*E. (26)
This definition is motivated by the classical case studied in [17].

Lemma 2 Let Im > 0 and k;,y € (N® ® N®’")sym(l,m). Then, for K;, B; €
L(N',NYNL(N,N),i=1,2, we have

[1/2][m/2]
G[%JQ;E;IJB2 Ermkim) =) Y Er-apm-4(8-2p.m-24), 27
p=0 g=0
where g1_2p m—24 is given by
8l-2pm—2q =
= 2p)!(lri1mi i (B0 @ B (6] @7 s 0 7Y 29

and Tk, is the K;-trace defined by (tk,, z @ w) = (K;z, w).

Proof The operator &y, (ki ,) can be rewritten as

o
Eimkim) =Y Eap(fup),
@, =0
where f g is defined by
K, i I,m) = (a,
T i i ) @
Then, by using (20), we get
o
GRy ki 5 Bl tm) = ) Bap(2ap)s
@, =0
with
o0 .

fp= > (@ +z{;v'(],3'k4'r 26)! (szxx ® B2®ﬂ> (Tglf &% fusajprot O fg‘) .

s 181 k!
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From (29), we observe that g, g = 0 for & > [ or 8 > m. Thus, we obtain

Q o =

GKl,Kz;Bl,Bzu - Z Z Ba.p(80.8):
0<a<<I 0 psm
with
_ c Iim! B® @ BB (&7 @2 ®k
ZEDNDINDY apj \Pr @Bt ) T, 7 ki @2 Tk, ) -
Jj k=02j=l—a2k=m—p

Moreover, when/ — o =2p +1orm — 8 = 2qg + 1, we have g4 g = 0. The case
| —a=2pandm — B = 2q gives

['m!

_ ® ®B Rp 2 ®q
8 = L1BIplg! (8P @ B) () & ki @24 7).

Replacing a by I — 2p and by m — 2q, we get the desired statement. O

The following theorem gives the Fock expansion of the A—order homogeneous
operator in Up.

Theorem 5 Let & € Nand 8 = ) ;5,_o Bim(kim) € Up. Then, B is r-order
homogeneous if and only if

A [/21155H
E = Z / Y opa—i—2g(S1, -+ s Si—2p, H, -+ s himi—2g)
RA2p—2q
=0 p=0 ¢=0
* k
as1 “ e aSlfzpatl oo al}hflfzqul oo dSZ—Zpdt] e dt}»7172q7

where Yj_3p . —1-24 is given by

Yi—2pa—i—2q =

®(k+q>>.

00 . itk
(420 — [+ 201 (—1)/+ . .
E (T®(’+”) @2UHP) Ky n stk @oktg) T
J k=0

JIplgil — 2p)(h — [ — 2q)120Hk2p+g

Proof In the following we set

g2 :=G?

—tr-in-ir—ir

Motivated by the classical case (see [16]), we can show that G€ is a topological
isomorphism from Uy into itself. Moreover,

Ov-lg _ 2 =
@7 E= G—%[,—%I;il,ilu' (30)

Forany & = ) [ _o Ei.m(k1.m) € Up and t € R, the technical identity

s2(8) = G2 'T2(1)G2(E) 31)
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holds true. Indeed, by direct computation, we have

1 1 .
G2 =exp| — 76Xy =20y, yWETFTY, x,y€eN.
Therefore,
1 1 o
FQ([)gQ(ExJ)) = exp{ — E(x’x> _ §<y’ y>}E—lTx,—lty.

Then, we obtain

1
G97'T9(1)G2(E™Y) = exp {5(t2 — D({x, x) + (y, y) B,
Hence, by (23) we deduce that
s2(E) = G2 'T21)G2(E™),

which proves (31) by density argument.
In view of (31), Equation (26) can be rewritten as follows

reng2(e) = g2 (g). (32)

Let T = ij’nzo E1.m(P1,m) € Up be the unique Fock expansion of the operator
T = G2(E), where ®; ,, is given by

;) = i (L + 2))Mm + 201 (—i) 7 (— 1) +k

®Jj g2J . ®k
im) j K120+ (T Q@ @pi2jmy2k 2k T )

jik=0
Then (32) can be rewritten as
remr =T, (33)

or equivalently

00 00
I4+m = E A
E tm c"l,m((pl,m) = t E‘l,m(q)[,m)'

1,m=0 I,m=0

From the uniqueness of the Fock expansion, this last equation is satisfied if and only
if A =1 + m. Then, T satisfies (33) if and only if

A
T = Epa—1(Pra—1)-
=0

Therefore, by (27), we obtain
E=@97'r

2
0 =
= Z Gf%l it i1 (Ba—1(®r 1))
1=

/2

(%54
Z Ei-2pa—t—2¢(Vi—2p—1-2¢)
1=0 p:() =0
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where Y;_2, 324 is given by

10— Dli*
(I —2p)l(h — [ — 2p)!plgl2r+a

2
Yi—2pa—i—2g = <r®1’ ® ®y 51 ®2g r®'l)

and
oo

_ (420 — 1+ 2k)(=DH(=1)I**
AP I — 1)) k120 FF

i o2) k
(r®f ® Kiy2ja—i42k Rk T )

k=0
Then, we get
- U+ 210 — [ + 2001 (— 1)+
Yi-2pi-i-2g = ) — : —
fzo IRl =2k — 1 = 2q)127HK2
X (T®(j+p) @YU ki 190142k ®2(ktq) r®(k+l’)>
as desired. 0

Example I (The 1-order homogeneous operators). For z, w € N, the operator
E =a"(z) +a(w)

is a l-order homogeneous operator. In particular, for z = w, the multiplication
operator & = M. ) is 1-order homogeneous.

Example 2 (The 2-order homogeneous operators). For g 2, k2,0, k1,1 € N @ N, the
operators

B2,0(k2,0) + Bo,0({T, k2,0)),
E0,2(k0,2) + Eo,0({7, k0,2)),
Er1(k1,1)
are 2-order homogeneous. Note that if we take ko = k2,0 = tx for K € L(N’, N)
such that (7, tx) = 0, then the K—Gross Laplacian Ag(K) = Ezo(rx) and
its dual A*G(K ) = Eo.2(tk) are 2-order homogeneous operators. Moreover, for

B € L(N', N), the conservation operator N(B) = & 1(tp) is 2-order homogeneous
operator.

Remark 2 Let A € N. Then, using Theorem 3, & € L(Fj,Fp) is A-order
homogeneous if and only if

- _ = -
E=E_;00%,

where Ej, is A-order homogeneous in Uy.

3.2 Euler’s Theorem For Homogeneous Operator

00 o
) 0 _ O+ p+ 0- p-
A=A tN== ZM(-,eﬁDE./ + ZMWﬂDei’
j=1 j=l
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where for z € N/,
M =07 (M ® Do, MZh =o' (1 ® M.z)o,
and M. ;) is the multiplication operator by (-, z), see [18].

Theorem 6 Let E € Uy and t € R\{0}. Then for each T € L(Fy, .7-';)

, s =52z 1
lim (7, ===} = {r" A%sPg)

Proof By Theorem 4 and (25) we have
S5,E— 828

e 1
lim {r, ===} = lim{~ {F(1 +2) o 201+ (1) ~ T} 578)
s—>0"S

s—0 S
. s 1 0 s
= lim{F(14+ =)o -0 +-)(T)-T)
s—0 t S t
1 S o=
+ S(F(+)=DoT, 5 8

Since, we have

‘s:O = 1(l +m),

A+D* -1y _d
= :

_a S\l+m
~ds )

(1+t

lim
s—0 N

for T'=3"15—0 E1.m(Pr.m), we get

. Tea+5mM -1
lim
s—0 S Lm0

On the other hand using (21), we have

1
lim o (~{F(1 + 2) — INE, )
s—0 Ky t

1 1+5)° -1
= lim - {exp |:(¥)((§,§) + (. 77)):| - 1}

s—>0§ 2

1

. -
= ?a(do,z(f) + B2,0(D) (., n).

Then, from (14) and (15) we get

SEE—SPE, 1 1
lim (7, “H=—2 ) = (NOT 4 (AG) T, 5P E)

1
= A2s2g)

Which gives the desired statement.

@ Springer
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Remark 3 Using Theorem 6, for E € Uy, we have

0 Z_
lim SPE—E _ Cim (€1 Jeoen® T E A2E.
s—0 s s—0 es —1 E

This shows that {SeQ,} is a semigroup on Uy with infinitesimal generator Ag. Hence,

we deduce that Sg Uj is the unique solution of the Cauchy problem

a
—U, = A%U;, Ugelly.

ot

Theorem 7 (Euler’s theorem). Let E € Uy. Then B is A—order homogeneous if and
only if it satisfies the following QWN-Euler equation

ACE =B (35)

Proof 1If E is A-order homogeneous, then by (26) we have

0/ 0/ = A
SE(E) — S (B =1
ga=1 SCEZSTE

—1 t—1 t—»1 t—1

Conversely, suppose that (35) is satisfied. Let t € R\{0}. Put G(r) = t‘AS,Q(E).
Then, by (35) and Theorem 6 we get
G(t —G(t 1
hmu =1 [(t+S) )LS+X( )_I*KSIQ(E)}
s—)O N

s—0 s

E=A

[0

tim {49758, - s2@)

+ lim L9 -1 528)
t_(}”_H)Ag(StQ(E)) _ )\l‘_()"—H)StQ(E). (36)
Now, let T € L(Fy, F5). Then, by Theorem 4 and Theorem 6, we have

[, s2a2e) = [F@) o T2\ (T), A2E)
0 =_ &

S = [\
lim{F (1) o D2 (0)(T). ———]
§—> s

0¢0 = 0=

AN\ ORI Yall®)

= lim {1, =4 )
s—0 s

But, by applying the QWN-Scaling transformation on E*Y, for x,y € N, we can
show that SMQ SUQ = SUQ SL,Q for all u, v € R. Then we get
0 SQ =) SQ =

S g
Ir. SQ(AQ_)p_hm@T )

Hence, using Theorem 6 , we obtain

[, s2ae)=({r, alsLe)
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from which we deduce that

s2alg) = a%sle).
Therefore, using (35) we get

A2(s2(E)) = 152(E).
Thus, from (36) we deduce that G'(r) = 0 for all + € R\{0}. In particular, G(r) =
G(1),1ie.,

5P E) =s2@® =&

From which we deduce the desired statement. O]

Remark 4 Euler’s theorem remains valid in L(F}, Fy) where Ag is replaced by Zg

acting on L(F}, Fy) as follows
A2E) = E_0A%(E, 0 B).

Corollary 1 Let ). € Nand & = 3.5° o B1.m(kim) € Up such that AZ(E) = 0.
Then E is A—order homogeneous if and only if E = ZLO 81 a—1(k1 5—1)-

Proposition 3 Let E € Uy be a A—order homogeneous operator such that Ag (B) =
0. Then for each & € N, D;(E) are (A — 1)—order homogeneous and (Dgt)*(E) are
(A + 1)—order homogeneous.

Proof We recall from [6] that, for any & € N, the following identities hold true

Df Bt m) = 1B1-1,m(E ®" 1m)

Dy Bim(Ki.m) = mEpm—1(K,m ®18)

(D) Epm(kt,m) = Er1,m (€ @ kim)

(D) Erm(kim) = Erms1 (kim @ &).
Then, if E = Z?:o B a—i(k1.0—1), we have

r—1
DfE=) I+ DEit-1E® krr1a-1-0). 37)

~
Il
=}

Thus, the fact Ag(D,’;|r g) = D;(AgE) = 0 and identity (37) proves the state-
ment for D;r (&) via Corollary 1. The others statements can be verified by slight
modification. 0

Theorem 8 Let B 1, (k1.m) € Ug. Then Ej (ki m) is (I +m)—order homogeneous if
and only ing(El,m (k1.m)) = 0.

@ Springer
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Proof From (16) we have
Agsl,m(Kl,n1) =1~ DEj—2m(t ®2 Kim) +m@m — 1) E; m—2(kim ®2 7). (38)
Then by iterating (38) we get
(A Bl (k1m) =

(/2] [m/2]

'm!k!
2 2 T apim — agypigt e Ok @24 1. (39)

p=0 p+q=k
On the other hand from (27), we obtain
. [1/211m/2] lim! . N
S*E = B ll+m_217_2¢] _ t2 -1 prq
EZCREDIPD (—2p)(m — 29)!plq! (3¢ -D)
p=0 ¢=0
X El—Zp,m—Zq (T®p ®2p Ki,m ®2g T®q)- (40)

Then in view of (39), (40) becomes

SCE) m(ktm)

[(I+m)/2]

1 | k -
= Z F[I_Fm 2k(§(t2 - 1)) (A(Q;)kdl,m(lcl,Wl)
k=0 ’
[@+m)/2] 1 .
=Bl + 30 G = D) AG) B
k=1 :

It then follows that E; , (1,,) is (I + m)—homogeneous if and only if

[(I+m)/2] 1 1 .
Y TG E = D) A Bk m) = 0. (41)
k=1 ’

Hence, using the fact that { Py (X) = X7 2K(X2— 1)k, k=1,2,--- ,[(I+m)/2]}
is a linearly independent family of polynomials, one can show that (41) holds if and
only if

A Brmlam) =0, Vhk=1,2,---,[(+m)/2].

This implies in particular that A(Q; &1,m(k;,m) = 0. The converse is straightforward
by Euler’s theorem. O
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