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Abstract The Quantum Heisenberg Ferromagnet can be naturally reformulated in
terms of interacting bosons (called spin waves or magnons) as an expansion in the
inverse spin size. We calculate the first order interaction correction to the free energy,
as an upper bound in the limit where the spin size S → ∞ and βS is fixed (β being
the inverse temperature). Our result is valid in two and three spatial dimensions. We
extrapolate our result to compare with Dyson’s low-temperature expansion. While
our first-order correction has the expected temperature dependence, in higher orders
of the perturbation theory cancellations are necessary.
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1 Introduction and Main Result

We consider the ferromagnetic quantum Heisenberg model on a volume �L =
[0, L]d ∩ Z

d in spatial dimension d = 2 or 3, with nearest neighbour interaction. It
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is described by the Hamilton operator

H�L
:=

∑

〈x,y〉⊂�L

(
S2 − Sx · Sy

)

acting on the Hilbert space
⊗

x∈�L
C
2S+1. The sum is over unordered nearest neigh-

bour pairs in �L, and Sx = (S1
x , S2

x , S3
x) is a spin-S operator (where 2S ∈ N),

i. e. satisfying the commutation relations [Sj
x , Sk

y ] = δx,y i
∑3

l=1 εjklS
l
x for j, k ∈

{1, 2, 3}, x, y ∈ �L, (with εjkl the totally antisymmetric symbol) and the condition
(Sx)

2 = (S1
x)2 + (S2

x)2 + (S3
x)2 = S(S + 1). The quantity we are interested in is the

free energy in the thermodynamic limit,

f (S, β) := lim
�L→∞ f (S, β, �L), f (S, β, �L) := − 1

βLd
log tr e−βH�L ,

where β is the inverse temperature. This model is of great importance for the
understanding of ferromagnetism, which poses a challenging mathematical problem,
namely the spontaneous breaking of continuous symmetries.

In this note we are interested in the spin-wave approximation, which goes back to
Bloch in 1930 [1]. Bloch noticed that the low-energy excitations of the Heisenberg
model can be approximately described as independent bosonic modes with energy
given by the dispersion relation ε(k) := ∑d

j=1 2(1 − cos(kj )), and thus was able to
predict the behaviour of the thermodynamic quantities at low temperature.

Let us recall this theory in modern language. The ground states of the Heisenberg
model at zero temperature are states in which all spins point parallel, while the direc-
tion is arbitrary. W. l. o. g. we can take the ground state to have all spins pointing in
the −z-direction, i. e.

|gs〉 =
⊗

x∈�L

|−S〉x, where |−S〉x ∈ C
2S+1, S3

x |−S〉x = −S|−S〉x.

Spin waves (or magnons) are excitations of the form

|k〉 := (2SLd)−1/2
∑

x∈�L

eik·xS+
x |gs〉 =: (2S)−1/2S+

k |gs〉,

with a momentum k ∈ 2π
L
Z

d (taking in this introduction for simplicity periodic
boundary conditions). These states are normalized eigenstates of the Hamiltonian,

H�L
|k〉 = Sε(k)|k〉.

Treating the model as a system of non-interacting bosons with energy Sε(k), one
arrives at the following prediction for the free energy:

f (S, β) 	 1

β

∫

[−π,π ]d
ddk

(2π)d
log(1 − e−βSε(k))

∼ β− d+2
2 S− d

2

∫
ddk

(2π)d
log(1 − e−k2) as β → ∞. (1.1)

Unfortunately, the spin-wave excitations do not actually behave like indepen-
dent bosonic modes; the states with more than one spin wave—i. e. constructed by
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applying more than one operators S+
k —are neither eigenstates of the Hamiltonian nor

orthogonal. This problem is treated more systematically by the Holstein-Primakoff
mapping [18] of spin operators on bosonic operators: defining the spin raising and
lowering operators S+

x := S1
x + iS2

x and S−
x := S1

x − iS2
x , one introduces the mapping

on bosonic creation and annihilation operators a∗
x and ax by

S+
x = √

2Sa∗
x

[
1 − a∗

xax

2S

]1/2
, S−

x = √
2S

[
1 − a∗

xax

2S

]1/2
ax, S3

x = a∗
xax − S.

(1.2)
The creation and annihilation operators act on the subspace of bosonic Fock space

where the number of bosons per lattice site x ∈ �L, nx := a∗
xax , is restricted to be

at most 2S. The Hamiltonian becomes

H�L
= S

∑

〈x,y〉⊂�L

(
−a∗

x

√
1− nx

2S

√
1− ny

2S
ay −a∗

y

√
1− ny

2S

√
1− nx

2S
ax + nx + ny − 1

S
nxny

)
.

(1.3)
The Hamiltonian is then formally expanded in nx

2S , a procedure that is expected to
lead to good approximations if S is large or if the expected occupation numbers are
small, i. e. at low temperature. The leading term is given by

H�L
	 S

∑

〈x,y〉⊂�L

(a∗
x − a∗

y)(ax − ay),

the second quantized Laplacian on the lattice, giving rise to the free-boson picture
and the expressions (1.1). In this paper, we are interested in the residual interaction
between spin waves as given through the higher orders terms of the expansion of
the Hamiltonian. The corrections due to interactions have given rise to considerable
discussions in the physics community, a topic that we shall discuss further after the
statement of our theorem.

There are three scaling regimes which are important in the study of the Heisenberg
model. Physically most important is the limit of low temperature β → ∞ and fixed
S; it is however very difficult to study. In fact, only recently has the leading order of
the free energy been rigorously derived [7] (non-optimal bounds were proved earlier
in [5, 28]). On the other extreme there is the classical scaling regime, defined by
βS2 fixed and S → ∞. In this scaling, convergence to the classical Heisenberg
model has been proven [20] (for non-zero magnetic field also in [2]). For the classical
Heisenberg model in three dimensions, it was proven that it has a critical temperature
of order unity [11, 12]. This suggests that by going to the intermediate scaling regime

β̃ := βS fixed, S → ∞ (1.4)

we can study the ferromagnetic phase in a regime that is more accessible (since the
residual interaction between spin waves in this regime is of order S−1) than the low
temperature regime, and still governed by quantum theory. For d = 3, the leading
order of the free energy in this regime has been obtained in [6]. (This regime was
introduced and compared to the classical regime in [2], where the leading order in
the case of non-zero magnetic field was derived. In this context also the important
random walk representation of the Heisenberg model was developed [3, 4].)
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In this note we calculate an upper bound on the free energy which includes inter-
action effects to first order in the intermediate scaling regime (1.4). Our result is valid
in two and three dimensions.

Theorem 1.1 Let d = 2 or 3, and β̃ fixed and sufficiently large. Then the free energy
is bounded above by

f (S, β)

S
� 1

β̃

∫

[−π,π ]d
ddk

(2π)d
log

(
1 − e−β̃ε(k)

)

− 1

S

1

4d

(∫

[−π,π ]d
ddk

(2π)d

ε(k)

eβ̃ε(k) − 1

)2

+ rd(S, β̃)

S2
.

for S → ∞, where ε(k) = ∑d
j=1 2(1−cos(kj )) is the spin-wave dispersion relation.

The error term1 is r2(S, β̃) � Cβ̃−2(log Sβ̃)3 and r3(S, β̃) � Cβ̃−3 (independent
of S).

The first summand—the leading order—describes free bosons (the spin waves) on
the lattice. The second summand is the first order correction due to the interaction of
spin waves. The interaction corrections and their temperature dependence have long
been controversial among physicists, with many contradictory corrections proposed,
e. g. of order β−3 or β−11/4 [19, 25, 26, 30]. Eventually Dyson mostly settled the
issue in his landmark papers [8, 9], arguing (for d = 3) that the correction is very
small for low temperature,2 namely of order β̃−5:

f (S, β)

S
= 1

β̃

∫

[−π,π ]3
d3k

(2π)3
log

(
1 − e−β̃ε(k)

)

−
[
S−1 3

128(2π)3
ζ(5/2)2 + O(S−2)

]
β̃−5 + O(β̃−11/2).

Nevertheless, the temperature dependence of the interaction corrections is being
studied up to recent years, mostly substantiating Dyson’s result by other formal
methods, e. g. an effective Lagrangian method [15, 16]. One paper that should be
highlighted is [31], which lead to Dyson’s result by a less cumbersome method of
introducing additional bosonic degrees of freedom coupled to the spin system. How-
ever, there is also work newer than Dyson’s papers which contradicts Dyson’s result;
see [14] and the list of references therein.

1We use C for constants independent of S and β̃ (and �, to be introduced later), with value possibly
changing from line to line.
2Here we are rewriting the equation [9, (131)]. The constant summands − 1

2JS2γ0 and −LS given in
Dyson’s paper vanish in our setting, since we shifted the ground state energy by the S2 in the Hamiltonian,
and since we do not have an external magnetic field. The next three summands in Dyson’s paper are an
expansion of the leading integral written here. Dyson’s −kT C3S

−1[Z5/2(βL)]2θ4 corresponds to the term
written here in square brackets; the O(S−2) is due to the S-dependence of C3.
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To compare our result with Dyson’s result we now formally think of β̃ → ∞ in
our result. Expanding ε(k) for small k we get

− 1

S

1

12

(∫

[−π,π ]3
d3k

(2π)3

ε(k)

eβ̃ε(k) − 1

)2

	−S−1 1

12

1

(2π)6

(∫

R3
d3k′ |k′|2

e|k′|2 − 1

)2

β̃−5.

Using spherical coordinates and (e|k′|2 − 1)−1 = ∑∞
n=1 e−n|k′|2 , we recover Dyson’s

result at order S−1.
Of course this argument is beyond the proven validity of our theorem because

r3(S, β̃) ∼ β̃−3. Inspection of our proof shows that r3 actually consists of two kinds
of errors: corresponding to Dyson’s kinematical interaction we have errors controlled
by β̃−S , and corresponding to Dyson’s dynamical interaction we have our main error
of order S−2β̃−3 (see Lemma 2.5). However, there is a cancellation mechanism
which is supposed (but not proven) to make the latter as small as β̃−5 and which we
discuss perturbatively in the Appendix A.

Remarks (i) Our method also provides a partial result for the case of β̃ small, but
not too small. As the prime example we choose β̃ = S−α , α ∈ [0, 1), and
with minor changes (see Remark (ii) after Lemma 2.2) obtain r3(S, β̃)/S2 =
O(S3α−2) for S → ∞ (for d = 2 with logarithmic correction). For compari-
son: in this case the leading term of f (S, β)/S is β̃−1(c0 log β̃ + c1 + c2β̃ +
. . .) 	 Sα log S and the first order correction is S−1β̃−2 	 S2α−1.

(ii) While for d = 3 the validity of spin-wave theory has long been trusted in
by physicists, it remained more disputed in d = 2, in particular since by the
Hohenberg-Mermin-Wagner theorem [10, 13, 17, 22, 27] the magnetization
vanishes.Y Our result supports the validity of spin-wave theory in d = 2 as far
as the free energy in the intermediate scaling regime is concerned. Notice also
that the (leading order) lower bound from [6] is easily checked to be valid also
for two dimensions.

(iii) Obtaining the first order correction as a lower bound remains open; even in the
intermediate scaling regime this is expected to be a very difficult problem.

2 Proof

Our proof adapts the methods used recently in [6, 7]. We use the Gibbs variational
principle and the bosonic representation of the Heisenberg model in terms of spin
waves due to Holstein and Primakoff [18]. Our trial state is a bosonic quasifree state
that we have to supplement with a cutoff on the number of bosons. In our proof we
will first remove the cutoff of the particle number. Thereafter we can use Wick’s
theorem to calculate expectation values, which enables us to bound the error terms
and calculate the correction.

To get an upper bound, we use the Gibbs variational principle, which states that

f (S, β, �) � 1

|�| trH�� + 1

β|�| tr� log�
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for all positive trace class operators � normalized to tr� = 1 (i. e. states).
Following a standard procedure, we first use the Gibbs variational principle to

break up the system into smaller boxes with Dirichlet boundary conditions. We
assume that L = k(� + 1) for some integers k and �. On the set C := {x ∈ �L :
xi = n(� + 1) for some i = 1, . . . d and n ∈ Z}, we restrict the spins in our states to
S3

x = −S. Now �L \C is a union of translates of boxes �� := [1, �]d ∩Z
d , on which

the Hamiltonian on the restricted class of states becomes

HD
��

= H��
+

∑

x∈∂��

(
S2 + SS3

x

)
. (2.5)

Here the boundary ∂�� consists of the points in �� having distance 1 from C. The
extra summand is non-negative, and so HD

��
� H��

. Due to this extra Dirichlet
restriction on the states, the variational principle yields

f (S, β,�L)�(1+�−1)−df D(S, β,��), with f D(S, β, ��) :=− 1

β�d
log tr e

−βHD
�� .

Letting k → ∞, we obtain the following bound for the thermodynamic limit:

f (S, β) � (1 + �−1)−df D(S, β, ��).

This bound holds for any integer �, and we will later choose � = β̃dS2 (or more
precisely the nearest integer) to optimize the error bounds.

The next step is to rewrite the Hamiltonian (2.5) through the Holstein-Primakoff
mapping (1.2). Leaving aside for a moment the Dirichlet boundary condition, recall
the Hamiltonian (1.3). We consider the formal Taylor expansion w. r. t. the small
parameter 1/S,

H��
= S

[ ∑

〈x,y〉⊂��

(
−a∗

xay − a∗
yax + nx + ny

)

+ 1

S

∑

〈x,y〉⊂��

(
a∗
x

(nx

4
+ ny

4

)
ay + a∗

y

(ny

4
+ nx

4

)
ax − nxny

)
+ R��

]
,

=: S
(
T��

+ I��
+ R��

) =: H0,��
+ SR��

. (2.6)

Here T��
contains the terms which are formally of order unity and I��

the terms
formally of order S−1, andR��

is the remainder. The term T��
is the second quantiza-

tion of the discrete Laplacian. We will show that I��
gives the interaction correction,

whereas the contribution of R��
is estimated to be of order 1/S2 and thus negligible.

Including the Dirichlet boundary term from (2.5) in the Laplace operator,
i. e. setting T D

��
:= T��

+ ∑
x∈∂��

(
S + S3

x

)
, we similarly get HD

��
=

S
(
T D

��
+ I��

+ R��

)
=: HD

0,��
+ SR��

. In particular, I��
and R��

are unchanged

by the addition of Dirichlet boundary conditions to the Hamiltonian.
In our proof we will obtain an upper bound on f D(S, β, ��) using the trial state

�D = Pe
−β̃T D

�� P

tr e
−β̃T D

�� P

, P =
∏

x∈��

1(nx � 2S), (2.7)
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in the Gibbs variational principle for f D(S, β, ��). The projection P ensures that we
are in the subspace of bosonic Fock space where there are at most 2S particles per
site; thus it is valid to use the bosonic formulas for the Hamiltonian equivalently to the
formulas in terms of spin operators. (In [7] a similar trial state was used, projecting
on occupation numbers nx � 1; projecting on nx � 2S has the advantage of giving
exponential decay w. r. t. S in Lemma 2.2.)

2.1 Bounding the Error Terms

By Gibbs’ variational principle

f D(S, β, ��) �
1

�d
trHD

��
�D + 1

β�d
tr�D log�D.

Inserting the expression (2.7) for the trial state we obtain

f D(S, β, ��) �
S

�d
tr

(
T D

��
+ I��

+ R��

) Pe
−β̃T D

�� P

tr e
−β̃T D

�� P

+ 1

β�d
tr

Pe
−β̃T D

�� P

tr e
−β̃T D

�� P

logPe
−β̃T D

�� P

− 1

β�d
log tr e

−β̃T D
�� P .

From [7, (4.22)] we have the inequality

trPe
−β̃T D

�� P logPe
−β̃T D

�� P = tr e
−β̃T D

��
/2

Pe
−β̃T D

��
/2
log e

−β̃T D
��

/2
Pe

−β̃T D
��

/2
,

� tr e
−β̃T D

��
/2

Pe
−β̃T D

��
/2
log e

−β̃T D
�� = −β̃ trPe

−β̃T D
�� T D

��
.

For the expectation values and their normalization we introduce the notation

〈·〉 = tr · e
−β̃T D

��

tr e
−β̃T D

��

, 〈·〉P = tr · Pe
−β̃T D

�� P

trPe
−β̃T D

��

, NP = tr e
−β̃T D

��

trPe
−β̃T D

��

.

Dividing by S, we thus obtain

f D(S, β, ��)

S
� 1

�d
〈T D

��
+I��

〉P + 1

�d
〈R��

〉P − 1

�d

tr T D
��

e
−β̃T D

�� P

tr e
−β̃T D

�� P

− 1

β̃�d
log tr e

−β̃T D
�� P,

=: I + II + III + IV.

Before analysing terms I through IV, we establish some crucial lemmas. We
reprove bounds on the expected number of bosons at site x ∈ ��, ρ(x) = 〈nx〉 =
tr nxe

−β̃T D
�� / tr e

−β̃T D
�� (c. f. [7] for another proof for d = 3), and use them to show

that 〈1 − P 〉 is exponentially decaying as S → ∞.

Lemma 2.1 The number of bosons at lattice site x, ρ(x) = 〈nx〉, is bounded by

sup
x∈��

ρ(x) � π3/2

8
ζ(3/2)β̃−3/2 (d = 3) and sup

x∈��

ρ(x)�4πβ̃−1 log(�) (d = 2).

(2.8)
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(For d = 2 we have to assume 2β̃ > 1 > 2β̃/(� + 1). The constant 4π is a rather
rough estimate.)

Proof We use the Fourier transform of the creation and annihilation operators. It is
given by

a∗
x =

∑

k∈�∗
�

ϕk(x)a∗
k , ax =

∑

k∈�∗
�

ϕk(x)ak, �∗
� = π

� + 1
{1, 2, . . . , l}d, (2.9)

where the ϕk are the orthonormal eigenfunctions of the discrete Lapla-
cian with Dirichlet boundary conditions on the box ��, i. e. ϕk(x) =
2d/2(� + 1)−d/2 ∏d

j=1 sin
(
xj kj

)
. Their normalization is such that

2
�+1

∑�
xi=1 sin (xiki) sin

(
xik

′
i

) = δki ,k
′
i
and

∑
x∈��

ϕk(x)ϕk′(x) = δk,k′ . Thus we
find

ρ(x) = tr nx

e
−β̃T D

��

tr e
−β̃T D

��

=
∑

k∈�∗
�

|ϕk(x)|2 1

eβ̃ε(k)−1
�

(
2

π

)d ∑

k∈�∗
�

(
π

� + 1

)d 1

eβ̃ε(k)−1
.

(2.10)
Case d = 3: The function f (k) := (eβ̃ε(k) − 1)−1 is monotonically decreasing in

k1, k2 and k3; thus ( π
�+1 )

3 ∑
k∈�∗

�
f (k) is a lower Riemann sum and as such bounded

above by the integral of f on [0, π ]3. The integral is seen to be order β̃−3/2 using
ε(k) � 4|k|2/π2 and substituting k′ = β̃1/2 2

π
k; the numerical constant is obtained

switching to spherical coordinates and using
∫ ∞
0 k2(exp(k2) − 1)−1dk =

√
π

4 ζ(3/2).
Case d = 2: Again the sum is a lower Riemann sum. However, the integral

diverges at the origin, so we only use it as an upper bound outside the box [0, π
�+1 ]2;

inside the box we keep the original summand:

ρ(x) �
(
2

π

)2 ∫

[0,π]2\Bπ/(�+1)(0)
d2k

1

eβ̃ε(k)−1
+

(
2

π

)2 1

e
β̃ε

(
( π

�+1 , π
�+1 )

)

−1

(
π

�+1

)2

.

(We have actually enlarged the integral a bit by not excluding [0, π
(�+1) ]2 but only the

ball Bπ/(�+1)(0) to simplify the further estimates.) Some basic rough estimates yield
the constant.

Remarks For d = 3, the estimate can be slightly improved to supx∈��
ρ(x) �

(2/π)3/2ζ(3/2)β̃−3/2, estimating the lattice heat kernel through the asymptotics of a
modified Bessel function [7, (4.15)ff]. However, this approach fails for d = 2, and
for this reason we stick with the estimate presented here.

Lemma 2.2 (Exponential Decay of 〈1 − P 〉) With C the respective constant from
(2.8), we have

〈1−P 〉 � e�3(2S+1)
(
Cβ̃−3/2

)2S
(d = 3) and 〈1−P 〉 � e�2(2S+1)

(
Cβ̃−1 log(�)

)2S
(d = 2),

i. e. for large enough β̃ we have exponential decay as S → ∞.
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Remarks 1. With our later choice � = S2β̃d , this Lemma provides exponential
decay of 〈1 − P 〉 as S → ∞. Our method fails for d = 1 since then ρ(x) ∼ �

and consequently we lose the exponential decay.
2. For small β̃ and d = 3, we find the better bound ρ(x) � 8πβ̃−1 by expanding

the exponential in (2.10). For the particular case β̃ = S−α , this bound implies
〈1 − P 〉 � C�3(2S + 1)e−S1−α/4π . In this case the best pick for � turns out to
be � = S2.

Proof of Lemma 2.2 Recall that P = ∏
x∈��

1(nx � 2S). Thus its expectation value
is the probability that on all lattice sites x we have nx � 2S, i. e. 〈P 〉 = P(∀x ∈ �� :
nx � 2S). Consequently

〈1 − P 〉 = P(∃x ∈ �� : nx > 2S) �
∑

x∈��

P(nx > 2S) =
∑

x∈��

〈1(nx > 2S)〉.
(2.11)

We bound the step function by an exponential to see that for all λ > 0 we have
〈1(nx > 2S)〉 � 〈eλnx 〉e−λ2S . Now denoting by : · : the normal-ordered product (i. e.
all a∗s to the left of the as), we have 〈eλnx 〉 = 〈: exp(g(λ)a∗

xax) :〉; this is proven
taking the trace in a basis of eigenvectors of nx . Expanding the normal-ordered
exponential and using that by Wick’s theorem 〈a∗

x · · · a∗
xax · · · ax〉 = n!〈a∗

xax〉n, we
obtain

〈eλnx 〉 = 1

1 − g(λ)ρ(x)
,

where g(λ) := eλ − 1. Minimizing (1 − g(λ)ρ(x))−1 e−λ2S w. r. t. λ, we easily find3

〈1 − P 〉 �
∑

x∈��

2S + 1

1 + ρ(x)

(
2S + 1

2S

ρ(x)

1 + ρ(x)

)2S

�
∑

x∈��

(2S + 1)eρ(x)2S.

Finally we use Lemma 2.1 to bound ρ(x).

As a corollary we prove that NP 	 1, up to an error of order β̃−S .

Corollary 2.3 Let �, S, β̃ such that 〈1 − P 〉 � 1/2. Then

1 � NP � 1 + 2e�d(2S + 1)
(
Cβ̃−d/2

)2S
(log �)(3−d)2S.

Proof We haveNP = (1 − 〈1 − P 〉)−1 � 1+2〈1−P 〉 as long as 〈1−P 〉 � 1/2.

We are now ready to analyse terms I through IV.

Term I We remove the projection so that we can later calculate the expectation value
using Wick’s theorem.

I = 〈HD
0,��

〉P
S�d

= NP

S�d
〈HD

0,��
〉 − NP

S�d
〈HD

0,��
(1 − P) + (1 − P)HD

0,��
P 〉.

3For points x ∈ �� with ρ(x) = 0 we can’t minimize, but the estimate is trivially true.
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Later we are going to show that the kinetic part of 〈HD
0,��

〉 is cancelled by a con-
tribution from term III, and only the expectation value of I��

remains. Expectation
values containing (1 − P) are small by the following lemma.

Lemma 2.4 There exists C > 0 such that
∣∣∣∣
1

S�d
〈HD

0,��
(1 − P) + (1 − P)HD

0,��
P 〉

∣∣∣∣ � C〈1−P 〉1/2 sup
x∈��

(ρ(x)+ 1)3/2ρ(x)1/2.

Proof By Cauchy-Schwarz
∣∣∣〈HD

0,��
(1−P)+(1−P)HD

0,��
P 〉

∣∣∣� 〈1−P 〉1/2〈(HD
0,��

)2〉1/2+〈1−P 〉1/2〈P(HD
0,��

)2P 〉1/2.
(2.12)

Let us denote by (x, y) ⊂ �� all ordered nearest neighbour pairs. Notice that the
boundary term can be written as

∑
x∈∂��

(
S2+SS3

x

) = ∑
x∈∂��

Snx . Using Cauchy-
Schwarz

(HD
0,��

)2 � S2
∑

(x,y)⊂��

∑

(x′,y′)⊂��

(−a∗
xay +nx

)(−a∗
x′ay′ +nx′

)+
∑

x∈∂��

∑

x′∈∂��

S2nxnx′

+
∑

(x,y)⊂��

∑

(x′,y′)⊂��

(
a∗
x

nx +ny

4
ay − nxny

2

)(
a∗
x′

nx′ +ny′

4
ay′− nx′ny′

2

)
.

(2.13)

We now focus on the second summand of (2.12) (the first summand is simpler) and
estimate it using (2.13). The contribution of the first term of (2.13) can by Cauchy-
Schwarz be estimated as

〈PS2
∑

(x,y)⊂��

∑

(x′,y′)⊂��

a∗
xaya

∗
x′ay′P 〉 � 2dS2�d

∑

(x,y)⊂��

〈P(nxny + nx)P 〉;

the other contributions of (2.13) similarly. Since P commutes with all the operators
nx , we can now drop it for an upper bound. Now let us extend the definition of ρ to

ρ(x, y) := 〈a∗
yax〉 = tr a∗

yax

e
−β̃T D

��

tr e
−β̃T D

��

(so that ρ(x) = ρ(x, x)).

Then Wick’s theorem, followed by Cauchy-Schwarz |ρ(x, y)| � ρ(x)1/2ρ(y)1/2,
yields

2dS2�d
∑

(x,y)⊂��

〈nxny + nx〉 � 2dS2�d
∑

(x,y)⊂��

(ρ(x)ρ(y)+ρ(x, y)ρ(y, x)+ρ(x))

� 8d2S2�2d sup
x∈��

(ρ(x) + 1) ρ(x).

Term II This is an error term of order S−2. As the only error term that is not
exponentially small, it constitutes the biggest error in our main theorem.
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Lemma 2.5 There exists C > 0 such that

|II| =
∣∣∣∣
1

�d
〈R��

〉P
∣∣∣∣ �

NP

S2
C sup

x∈��

(ρ(x) + 1)ρ(x)2.

Proof According to (2.6), on the subspace with at most 2S bosons per site

R��
=

∑

(x,y)⊂��

a∗
x

[(
1 − nx

4S
− ny

4S

)
−

√
1− nx

2S

√
1 − ny

2S

]
ay =:

∑

(x,y)⊂��

a∗
xAx,yay.

We have again shortened the expression by writing it as a sum over all ordered
nearest-neighbour pairs (x, y).

As an operator Ax,y � 0; to see this, notice that it depends only on nx and ny ,
which can be diagonalized simultaneously. Consequently (forψ a vector with at most
2S particles per site)

|〈ψ, R��
ψ〉| =

∣∣∣∣
∑

(x,y)⊂��

〈ψ, a∗
xA

1/2
x,yA

1/2
x,yayψ〉

∣∣∣∣ �
∑

(x,y)⊂��

〈ψ, a∗
xAx,yaxψ〉,

and analogously for expectation values 〈·〉P . Again diagonalizing nx and ny simulta-

neously, and using that
√
1 − t � 1 − t

2 − t2

2 for all t ∈ [0, 1], we find

Ax,y � 1

8S2

(
n2x + n2y

)
.

We then write a∗
x(n2x + n2y)ax = nx(nx − 1)2 + nxn

2
y . Now, since nx and ny both

commute with P , we can drop the P s for an upper bound, arriving at

1

�d
〈R��

〉P � 1

�d

1

8S2

∑

(x,y)⊂��

tr
(
nx(nx − 1)2 + n2ynx

) e
−β̃T D

��

tr e
−β̃T D

��

tr e
−β̃T D

��

tr e
−β̃T D

�� P

.

Using Wick’s theorem this is expanded in terms of ρ(x), ρ(y), and ρ(x, y), and
then estimated.

Term III This splits into a term which cancels the 〈T D
��

〉 of Term I, and an error
term, i. e.

III = −NP

�d
〈T D

��
〉+ NP

�d
〈T D

��
(1 − P)〉,

∣∣∣∣
1

�d
〈T D

��
(1−P)〉

∣∣∣∣ � 〈1−P 〉1/2
(

1

�2d
〈(T D

��
)2〉

)1/2

.

Using the momentum space creation/annihiliation operators and Wick’s theorem,
we find

1

�2d
〈(T D

��
)2〉 =

⎛

⎝ 1

�d

∑

k∈�∗
�

ε(k)

eβ̃ε(k) − 1

⎞

⎠
2

+ 1

�2d

∑

k∈�∗
�

ε(k)2eβ̃ε(k)

(
eβ̃ε(k) − 1

)2 � Cβ̃−2,

by (crudely) estimating ε(k)(eβ̃ε(k) − 1)−1 � β̃−1 supx>0 x(ex − 1)−1, and similarly
for the second sum.
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Term IV We have

IV = − 1

β̃�d
log tr e

−β̃T D
�� + 1

β̃�d
logNP .

Taking parts I through IV together, we obtain

f D(S, β, ��)

S
� − 1

β̃�d
log tr e

−β̃T D
�� + 1

�d
〈I��

〉 + E,

where the terms collected in the error E can be estimated as

|E | � (NP −1)
〈I��

〉
�d

+ logNP

β̃�d
+C〈1−P 〉1/2

[
sup
x∈��

(ρ(x)+1)3/2 ρ(x)1/2+NP β̃−1

]

+CNP

S2
sup
x∈��

(ρ(x) + 1)2ρ(x).

Furthermore, the integral approximation of the leading term is

− 1

β̃�d
log tr e

−β̃T D
�� = 1

β̃�d

∑

k∈�∗
�

log
(
1−e−β̃ε(k)

)
� 1

β̃

∫

[−π,π ]d
ddk

(2π)d
log

(
1−e−β̃ε(k)

)
+ C

β̃2�

and thus, employing Lemmas 2.1 through 2.3, we arrive at the following proposition:

Proposition 2.6 (Preliminary upper bound) The free energy has the upper bound

f D(S, β, ��)

S
� 1

β̃

∫

[−π,π ]d
ddk

(2π)d
log

(
1 − e−β̃ε(k)

)
+ 1

�d
〈I��

〉 + E ′,

where the error term E ′ satisfies

|E ′| � C

β̃2�
+C

[
�d(2S+1)

(
Cβ̃−d/2

)2S
log(�)(3−d)(2S+4)

]1/2(〈I��
〉+1

)+C(log �)(3−d)3

β̃dS2
.

From the last term we see that the error in the best case will be of order β̃−dS−2

(for d = 2 with a logarithmic correction); to make also the first term and the error
from Proposition 2.7 (see below) that small we need to choose � = S2β̃d . The middle
term is exponentially small in S (provided β̃ is so large that Cβ̃−d/2 < 1, c. f. Lemma
2.2).

To complete the proof of our theorem, it remains to calculate 〈I��
〉.

2.2 Evaluating the Energy Correction

Here we calculate �−d〈I��
〉. With periodic boundary conditions this is formally sim-

ple, but involves infinities for k = 0. As before, for the rigorous proof we have
Dirichlet boundary conditions, making the evaluation somewhat more complicated.
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In particular, we will find finite-size errors (smaller by 1/� compared to the leading
‘bulk’ term).

Proposition 2.7 (First order correction) We have

1

�d
〈I��

〉 � − 1

S

1

4d

(∫

[−π,π ]d
ddk

(2π)d

ε(k)

eβ̃ε(k) − 1

)2

+ C(log �)3−d

S�
.

Proof Recall that according to (2.6) we have

I��
= 1

4S

∑

〈x,y〉⊂��

(
a∗
xa∗

xaxay +a∗
xa∗

yayay + a∗
ya∗

xaxax + a∗
ya∗

yayax − 4a∗
xa∗

yaxay

)
.

(2.14)
By Wick’s theorem

〈I��
〉 = 1

S

∑

〈x,y〉⊂��

(ρ(x)ρ(x, y)+ρ(x)ρ(y, x)− ρ(x)ρ(y) − ρ(x, y)ρ(y, x)) .

We use the Fourier representation (2.9) of a∗
x and ax to calculate ρ(y, x), giving

ρ(y, x) = tr a∗
xay

e
−β̃T D

��

tr e
−β̃T D

��

=
∑

k,k′∈�∗
�

ϕk(x)ϕk′(y) tr a∗
k ak′

e
−β̃T D

��

tr e
−β̃T D

��

=
∑

k∈�∗
�

ϕk(x)ϕk(y)
1

eβ̃ε(k) − 1
.

Thus we obtain (using the abbreviation f (k) := (eβ̃ε(k) − 1)−1)

〈I��
〉 = − 1

S

∑

〈x,y〉⊂��

∑

k,k′∈�∗
�

f (k)f (k′)
[
ϕk(x)2ϕk′(y)2 − 2ϕk(x)2ϕk′(x)ϕk′(y)

+ ϕk(x)ϕk(y)ϕk′(x)ϕk′(y)
]

= − 1

S

∑

xj =1,...,�
j=1,...,d

d∑

i=1

∑

k,k′∈�∗
�

f (k)f (k′)
(

2

� + 1

)2d

×[ d∏

j=1

sin(xj kj )
2 sin((xj + δi,j )k

′
j )

2

+ 2
d∏

j=1

sin(xj kj )
2 sin(xj k

′
j ) sin((xj + δi,j )k

′
j )

+
d∏

j=1

sin(xj kj ) sin((xj + δi,j )kj ) sin(xj k
′
j ) sin((xj + δi,j )k

′
j )

]
.
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A little regrouping of the last expression yields

〈I��
〉 = − 1

S

∑

k,k′∈�∗
�

f (k)f (k′)
(

2

�+1

)d d∑

i=1

∏

j∈{1,...,d}\{i}

⎛

⎝ 2

� + 1

�∑

xj =1

sin(xj kj )
2 sin(xj k

′
j )

2

⎞

⎠

× 2

� + 1

�∑

xi=1

[
sin(xiki)

2 sin((xi + 1)k′
i )
2 − 2 sin(xiki)

2 sin(xik
′
i ) sin((xi + 1)k′

i )

+ sin(xiki) sin((xi + 1)ki) sin(xik
′
i ) sin((xi + 1)k′

i )
]
.

(2.15)

Let us for the moment look only at the last factor of (2.15), and expand it using
sin(xiki + ki) = sin(xiki) cos(ki) + cos(xiki) sin(ki). Using Lemma 2.8(i) we find

2

� + 1

�∑

xi=1

[
sin(xiki)

2 sin((xi + 1)k′
i )
2 − 2 sin(xiki)

2 sin(xik
′
i ) sin((xi + 1)k′

i )

+ sin(xiki) sin((xi + 1)ki) sin(xik
′
i ) sin((xi + 1)k′

i )
]

= 2

l + 1

�∑

xi=1

[
sin(xiki)

2 sin(xik
′
i )
2 cos(p′

i )
2 + sin(xiki)

2 cos(xik
′
i )
2 sin(k′

i )
2

− 2 sin(xiki)
2 sin(xik

′
i )
2 cos(k′

i ) + sin(xiki)
2 sin(xik

′
i )
2 cos(ki) cos(k

′
i )

+ sin(xiki) cos(xiki) sin(xik
′
i ) cos(xik

′
i ) sin(ki) sin(k

′
i )

]
.

Thereafter we further evaluate (2.15) using Lemma 2.8(ii). Then we use the symme-
try between k and k′ to write −2 cos(k′

i ) as − cos(ki) − cos(k′
i ). After these steps we

have

〈I��
〉 = − 1

S

∑

k,k′∈�∗
�

f (k)f (k′)
(

2

� + 1

)d d∑

i=1

∏

j∈{1,...,d}\{i}

(
1

2
+ 1

4

(
δkj ,k′

j
+ δkj +k′

j ,π

))

×1

2

{
(1 − cos(ki))

(
1 − cos(k′

i )
) + δki ,k

′
i

(
cos(ki)

2 − cos(ki)
)
+ δki+k′

i ,π
cos(ki)

}
.

Next we use symmetry among k1, . . . , kd to replace the sum over i = 1, . . . , d
by a factor of d. Since deltas eliminate a sum, every factor of a delta4 is effectively

4These deltas constitute the finite-size errors mentioned before, and are a consequence of using Dirichlet
boundary conditions. (They do not appear when formally using periodic boundary conditions.)
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of order 1/�. However, for d = 2, some of the sums appearing are log �-divergent at
small k and k′. The resulting estimate is

1

�d
〈I��

〉 � − d

S�d

∑

k,k′∈�∗
�

f (k)f (k′)
(

2

� + 1

)d 1

2d
(1 − cos(k1))

(
1 − cos(k′

1)
)

+CS−1(log �)3−d�−1

= −d

S

[
1

(� + 1)d
∑

k∈�∗
�

f (k) (1−cos(k1))

]2
+CS−1(log �)3−d�−1. (2.16)

Again we use the symmetry among k1, . . . , kd , now to replace (1 − cos(k1)) by
1
2d ε(k).

It remains to employ the continuum approximation for g(k) := f (k)ε(k):
Lemma 2.9 with D1 = β̃−1 supx∈R x(ex − 1)−1 and D2 = supk∈�∗

�
|∇g(k)| �

2
√
3 supx∈R|xex + 1 − ex |(ex − 1)−2 implies

1

�d
〈I��

〉 � − 1

4dS

[∫

[0,π]d
ddk

πd

ε(k)

eβ̃ε(k) − 1

]2
+ CS−1(log �)3−d�−1.

Since ε(k) depends on k only through cos(ki), the integral remains unchanged by
any reflection ki �→ −ki . Thus the integral over [0, π ]d is the same as 2−d times the
integral over [−π, π ]d .

The next two lemmas were used in the previous proof.

Lemma 2.8 Let k, k′ ∈ �∗
� and i = 1, . . . d .

(i) We have

�∑

xi=1

sin(xiki)
2 sin(xik

′
i ) cos(xik

′
i ) = 0.

(ii) Furthermore

2

� + 1

�∑

xi=1

sin(xiki)
2 sin(xik

′
i )
2 = 1

2
+ 1

4

(
δki ,k

′
i
+ δki+k′

i ,π

)
,

2

� + 1

�∑

xi=1

sin(xiki)
2 cos(xik

′
i )
2 = 1

2
− 1

4

(
δki ,k

′
i
+ δki+k′

i ,π

)
,

2

� + 1

�∑

xi=1

sin(xiki) cos(xiki) sin(xik
′
i ) cos(xik

′
i ) = 1

4

(
δki ,k

′
i
− δki+k′

i ,π

)
.
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Proof (i) Expanding the trigonometric functions in terms of exponentials we find

�∑

xi=1

sin(xiki )
2 sin(xik

′
i ) cos(xik

′
i ) =

�∑

xi=1

[
sin(2xi(ki − k′

i )) − sin(2xi(ki + k′
i ))

4
+ sin(2xik

′
i )

2

]
.

Due to the factor of 2 in all the arguments on the r. h. s., the summation range
contains only multiples of full phases of the sine (recall that ki = π

�+1n for some
n ∈ Z), so negative and positive parts cancel.

(ii) We simply expand into exponentials and use the finite geometric sum.

Lemma 2.9 Let g : (0, π ]n → R be bounded above by some D1 < ∞ and have
Lipschitz constant D2 < ∞. Then there exists a constant C > 0 (depending only on
the dimension n) such that

(
π

� + 1

)n ∑

k∈�∗
�

g(k) �
∫

[0,π]n
g(k)dnk − C(D1 + D2)

1

� + 1
∀� ∈ N.

Proof Due to Lipschitz continuity, for every k0 ∈ �∗
� we have

(
π

� + 1

)n [
g(k0) + D2

√
n

π

� + 1

]
� max

k∈k0+[0,π/(�+1)]n
g(k)

(
π

� + 1

)n

�
∫

k0+[0,π/(�+1)]n
g(k)dnk.

Thus (the factor �n in the numerator of the last summand being the number of boxes
in the partition, or equivalently, the number of elements of �∗

�)
(

π

� + 1

)n ∑

k0∈�∗
�

g(k0) �
∫

[π/(�+1),π ]n
g(k)dnk − πn�n

(� + 1)n
D2

√
n

π

� + 1
.

Since g is bounded above, by extending the integration range from [π/(�+1), π ]n
to [0, π ]n, we make the integral larger by a quantity of at most CD1/(�+1) for some
C < ∞ depending only on n.
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Appendix A: Cancellation at Second Order

We now consider the three dimensional case only. As explained in the beginning, the
dependence of our error bound on β̃ (order β̃−3) is not in agreement with Dyson’s
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paper, which claims that all corrections are β̃−5 and smaller. However, it was pointed
out [23] that at second order of formal perturbation theory there is a cancellation,
by which Dyson’s result is reproduced to order 1/S2 (if one corrects for a trivial
numerical imprecision [21]).

Below we reproduce the calculation of [23] in the language of modern perturbation
theory and in detail. For simplicity we work in � = Z

3 ∩ [0, �)3 with periodic
boundary conditions, i. e. the eigenfunctions of the Laplacian are �−3/2eik·x with
momenta k ∈ �∗ = 2π

�

(
Z
3 ∩ [0, �)3) (all k-sums in this appendix are over �∗). We

expand the Hamiltonian one order further than before,

H��
=: S

(
T��

+ I��
+ J��

+ R̃��

)
, i. e. R��

= J��
+ R̃��

.

Here J��
is formally of order S−2 and after normal-ordering given by

J��
= 1

32S2

∑

(x,y)⊂��

(
a∗
xa∗

ya∗
yayayay + a∗

xa∗
yayay − 2a∗

xa∗
xa∗

yaxayay + a∗
xa∗

xa∗
xaxaxay + a∗

xa∗
xaxay

)
.

Using Wick’s theorem we find the correction to f (S, β,��)/S to be

〈J��
〉

�3
= 1

4S2

3∑

i=1

[
(ρ+ρ2)

1

�3

∑

k1

f (k1) cos(k1,i )− 1

�9

∑

k1,k2,k3

f (k1)f (k2)f (k3) cos(k1,i−k2,i+k3,i )

]
,

(A.17)

where ρ = 1
�3

∑
k f (k) and f (k) = 1/(eβ̃ε(k) − 1). The biggest contribution5 is (by

writing out ρ and inserting 1 = �−3 ∑
k 1)

ρ

4S2

1

�3

∑

k1

f (k1)

3∑

i=1

cos(k1,i )= 1

16S2�9

∑

k1,k2,k3

f (k1)f (k2) [12−ε(k1)−ε(k2)]∼ β̃−3.

(A.18)

The remaining part of (A.17) is finite and of order β̃−11/2, as can be seen by
expanding the cosines, observing that the lowest terms cancel, replacing the sum by
an integral for � → ∞ and using the scaling

∫
d3k (exp(β̃|k|2) − 1)−1 ∼ β̃−3/2.

The big error (A.18) originates from the summands in J��
with four creation

and annihilation operators (which all originate from normal-ordering of the formal
expansion). Thus as an operator bound on R��

we can not expect an estimate better

5Strictly speaking this sum is infinite because the contributions of k1 = 0 and k2 = 0 are infinite as a
remnant of using periodic boundary conditions. The cancellation below also resolves this issue.
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than β̃−3. Instead we have to take into account the structure of the interacting Gibbs
state. We verify this by showing that in second order of perturbation theory, (A.18) is
cancelled up to a β̃−5-remainder.

Second Order Perturbation Theory The second order perturbation theory is given
through the Duhamel formula as

f (S, β, ��)

S
= − log tr e−βH��

β̃�3
= − log tr e−β̃T��

β̃�3
+ 1

�3
〈I��

+ J��
〉

− 1

β̃�3

∫ β̃

0
ds

∫ s

0
ds′ (〈I��

(s)I��
(s′)〉 − 〈I��

〉〈I��
〉) + O(S−3),

(A.19)

where I��
(s) := esT�� I��

e−sT�� . The contractions in momentum space (represented
in the Feynman diagrams by lines with arrow pointing from the creation to the
annihilation operator) are

〈a∗
k (s)ak′(s′)〉=δk,k′e(s−s′)ε(k)f (k) and 〈ak(s)a

∗
k′(s′)〉=δk,k′e−(s−s′)ε(k)(1+f (k)).

(A.20)

Using a∗
x = �−3/2 ∑

k eik·xa∗
k , we find the interaction operator I��

in momentum
space to be

I��
= 1

8S�3

∑

k1,k2,k3,k4

δk1+k2,k3+k4ν(k1, k2, k3, k4)a
∗
k1

a∗
k2

ak3ak4 ,

where6 ν(k1, k2, k3, k4) := ε4−2 − ε4 − ε1 + ε4−1 − ε2 + ε3−2 + ε3−1 − ε3. Notice
that we have symmetrized ν w. r. t. exchange of k1 with k2 or k3 with k4, so in Feyn-
man diagrams I��

is represented as a vertex with two equivalent outgoing and two
equivalent ingoing legs.

The second order contribution (A.19) can through Wick’s theorem be represented
by the sum of all connected Feynman diagrams having two I��

-vertices, where the
numerical factors count the number of equivalent diagrams:

6We abbreviate ε(k1) = ε1, ε(k1 − k2) = ε1−2 etc.
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Left Feynman Diagram Using the contractions (A.20) we write out the left
Feynman diagram

− 4

β̃�3

∫ β̃

0
ds

∫ s

0
ds′ 1

(
8S�3

)2
∑

k1,k2,k3,k4
k′
1,k

′
2,k

′
3,k

′
4

δk1+k2,k3+k4δk′
1+k′

2,k
′
3+k′

4
ν(k1, k2, k3, k4)ν(k′

1, k
′
2, k

′
3, k

′
4)

×δk1,k
′
4
δk2,k

′
3
δk3,k

′
2
δk4,k

′
1
e(s−s′)ε1e(s−s′)ε2e−(s−s′)ε3e−(s−s′)ε4f (k1)f (k2)(1 + f (k3))(1 + f (k4)).

The integrations over s′ and s are done explicitly, yielding

− 1

16β̃S2�9

∑

k1,k2,k3,k4

δk1+k2,k3+k4ν(k1, k2, k3, k4)
2

×
[
− β̃

ε1 + ε2 − ε3 − ε4
+ eβ̃(ε1+ε2−ε3−ε4) − 1

(ε1 + ε2 − ε3 − ε4)2

]
e−β̃ε1

1 − e−β̃ε1

e−β̃ε2

1 − e−β̃ε2

1

1 − e−β̃ε3

1

1 − e−β̃ε4
.

We observe that [eβ̃(ε1+ε2−ε3−ε4) −1]e−β̃ε1e−β̃ε2 has odd sign under simultaneous
exchange of k1 with k3 and k2 with k4, and is multiplied with an expression of even
sign, thus summing to zero. We are left with the contribution of the first summand
from the square brackets,

1

16S2�9

∑

k1,k2,k3,k4

δk1+k2,k3+k4

ν(k1, k2, k3, k4)
2

ε1 + ε2 − ε3 − ε4
f (k1)f (k2)(1 + f (k3))(1 + f (k4))

= 1

16S2�9

∑

k1,k2,k3

(2ε1−3 + 2ε2−3 − ε1 − ε2 − ε3 − ε1+2−3)
2

ε1 + ε2 − ε3 − ε1+2−3
[f (k1)f (k2) + 2f (k1)f (k2)f (k3)] .

(A.21)

(In the last line the contribution f (k1)f (k2)f (k3)f (k4) disappeared by an antisym-
metry argument.) Replacing the sum by an integral as � → ∞ and expanding
ε(k) 	 |k|2, we find that the part of (A.21) containing f (k1)f (k2)f (k3) is of order
β̃−11/2 (so for us negligible).

Right Feynman Diagram The right Feynman diagram is evaluated similarly, and
found to be

− β̃

2S2�9

∑

k1,k2,k3

(ε2−3 − ε3 − ε2) (ε2−1 − ε1 − ε2) f (k1)f (k2) (1 + f (k2)) f (k3).

(A.22)
Replacing the sum by an integral as � → ∞ and expanding ε(k) 	 |k|2, we find

that (A.22) is of order β̃−11/2 (so for us negligible).

The Cancellation As possibly big contributions remain the part of (A.21) containing
only f (k1)f (k2) and (A.18). The crucial observation [23] is that these two terms
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cancel up to terms of order β̃−5! Let us spell out the argument more carefully. The
sum of the two terms is

1

16S2�9

∑

k1,k2,k3

f (k1)f (k2)

[
12 − ε1 − ε2 +

[
(ε1 + ε2 − ε3 − ε1+2−3) + 2(ε3 + ε1+2−3 − ε2−3 − ε1−3)

]2

ε1 + ε2 − ε3 − ε1+2−3

]

= 1

16S2�9

∑

k1,k2,k3

f (k1)f (k2)

[
12 + 3ε3 + 3ε1+2−3− 4ε2−3−4ε1−3+4

(ε3 + ε1+2−3 − ε2−3 − ε1−3)
2

ε1 + ε2 − ε3 − ε1+2−3

]
.

Recalling that ε(k) = ∑3
j=1 2(1 − cos(kj )), the first part vanishes since the sum

is over all k, i. e. positive and negative parts of the cosine sum to zero:
∑

k3

[
12 + 3ε3 + 3ε1+2−3 − 4ε2−3 − 4ε1−3

] = 0.

Concerning the second part, by expanding ε(k), we find

1

16S2�9

∑

k1,k2,k3

f (k1)f (k2) 4
(ε3 + ε1+2−3 − ε2−3 − ε1−3)

2

ε1 + ε2 − ε3 − ε1+2−3

	 1

4S2�9

∑

k1,k2,k3

f (k1)f (k2)
(k1 · k2)

2

(k1 − k3) · (k2 − k3)
∼ β̃−5S−2.

This agrees with Dyson’s result at order 1/S2.
Presumably such cancellations appear at all orders in perturbation theory. In

Dyson’s work the problematic quartic terms in J��
from normal-ordering do not

appear, at the cost of working with a non-selfadjoint Hamiltonian. While this
approach is supposed to be equivalent [24, 29] to the Holstein-Primakoff approach
followed here, it has never been made completely rigorous. It remains an interesting
problem to rigorously obtain an upper bound with optimal β̃-dependence.
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