
Math Phys Anal Geom (2017) 20: 2
DOI 10.1007/s11040-016-9228-7

Twisted Spectral Triple for the Standard Model
and Spontaneous Breaking of the Grand Symmetry

Agostino Devastato1,2 ·Pierre Martinetti1,2,3,4

Received: 25 January 2016 / Accepted: 12 October 2016 / Published online: 21 December 2016
© Springer Science+Business Media Dordrecht 2016

Abstract Grand symmetry models in noncommutative geometry, characterized by a
non-trivial action of functions on spinors, have been introduced to generate minimally
(i.e. without adding new fermions) and in agreement with the first order condition an
extra scalar field beyond the standard model, which both stabilizes the electroweak
vacuum and makes the computation of the mass of the Higgs compatible with its
experimental value. In this paper, we use a twist in the sense of Connes-Moscovici to
cure a technical problem due to the non-trivial action on spinors, that is the appear-
ance together with the extra scalar field of unbounded vectorial terms. The twist
makes these terms bounded and - thanks to a twisted version of the first-order condi-
tion that we introduce here - also permits to understand the breaking to the standard
model as a dynamical process induced by the spectral action, as conjectured in [23].
This is a spontaneous breaking from a pre-geometric Pati-Salam model to the almost-
commutative geometry of the standardmodel,with twoHiggs-like fields: scalar and vector.
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1 Introduction

Noncommutative geometry [NCG] provides a description of the standard model of
elementary particles [SM] in which the mass of the Higgs − at unification scale �

− is a function of the other parameters of the theory, especially the Yukawa coupling
of fermions [9]. Assuming there is no new physics between the electroweak and
the unification scales (the “big desert hypothesis”), the flow of this mass under the
renormalization group yields a prediction for the Higgs observable mass mH . It is
well known that in the absence of new physics the three constants of interaction fail
to meet at a single unification scale, but form a triangle which lays between 1013 and
1017 GeV. The situation can be improved by taking into account higher order terms
in the NCG action [22], or gravitational effects [21]. Nevertheless, the prediction of
mH is not much sensible on the precise choice of the unification scale. Since the
beginning of the model in the early 90’ [14, 15], for � between 1013 and 1017GeV
this prediction had been around 170GeV, a value ruled out by Tevratron in 2008.
Consequently, either the model should be abandoned, or the big desert hypothesis
questioned.

The recent discovery of the Higgs boson with a mass mH � 126Gev suggests the
big desert hypothesis should be questioned. There is indeed an instability in the elec-
troweak vacuum which is meta-stable rather than stable (see [5] for the most recent
update). There does not seem to be a consensus in the community whether this is an
important problem or not: on the one hand the mean time of this meta-stable state
is longer than the age of the universe, on the other hand in some cosmological sce-
nario the meta-stabililty may be problematic [26, 27]. Still, the fact that mH is almost
at the boundary value between the stable and meta-stable phases of the electroweak
vacuum suggests that “something may be going on”. In particular, particle physicists
have shown how a new scalar field suitably coupled to the Higgs - usually denoted σ

- can cure the instability (e.g. [13, 25]).
Taking into account this extra field in the NCG description of the SM induces

a modification of the flow of the Higgs mass, governed by the parameter r = kν

kt

which is the ratio of the Dirac mass of the neutrino and of the Yukawa coupling of
the quark top. Remarkably, for any value of � between 1012 and 1017 Gev, there
exists a realistic value r � 1 which brings back the computed value of mH to
126 Gev [8].

The question is then to generate the extra field σ in agreement with the tools of
noncommutative geometry. Early attempts in this direction have been done in [37],
but they require the adjunction of new fermions (see [38] for a recent state of the
art). In [8], a scalar σ correctly coupled to the Higgs is obtained without touching
the fermionic content of the model, simply by turning the Majorana mass kR of the
neutrino into a field

kR → kR σ. (1.1)
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Usually the bosonic fields in NCG are generated by inner fluctuations of the
geometry. However this does not work for the field σ because of the first-order
condition

[[D, a], J b∗J−1] = 0 ∀a, b ∈ A (1.2)

where A and D are the algebra and the Dirac operator of the spectral triple of the
standard model, and J the real structure.

In [11, 12] it was shown how to obtain σ by an inner fluctuation that does not sat-
isfy the first-order condition, but in such a way that the latter is retrieved dynamically,
as a minimum of the spectral action. The field σ is then interpreted as an excitation
around this minimum. Previously in [23] another way had been investigated to gen-
erate σ in agreement with the first-order condition, taking advantage of the fermion
doubling in the Hilbert space H of the spectral triple of the SM [32, 35, 36].

More specifically, under natural assumptions on the representation of the algebra
and an ad-hoc symplectic hypothesis, it is shown in [7] that the algebra in the spectral
triple of the SM should be a sub-algebra ofC∞(M)⊗AF , whereM is a Riemannian
compact spin manifold (usually of dimension 4) while

AF = Ma(H) ⊕ M2a(C) a ∈ N. (1.3)

The algebra of the standard model

Asm := C⊕H⊕ M3(C) (1.4)

is obtained fromAF for a = 2, by the grading and the first-order conditions. Starting
instead with the “grand algebra” (a = 4)

AG := M4(H) ⊕ M8(C), (1.5)

one generates the field σ by a inner fluctuation which respects the first-order condi-
tion imposed by the part DM of the Dirac operator that contains the Majorana mass
kR [23]. The breaking to Asm is then obtained by the first-order condition imposed
by the free Dirac operator

/D := /∂ ⊗ IF (1.6)

where IF is the identity operator on the finite dimensional Hilbert spaceHF on which
acts AG.

Unfortunately, before this breaking not only is the first-order condition not
satisfied, but the commutator

[ /D, A] A ∈ C∞(M) ⊗ AG (1.7)

is never bounded. This is problematic both for physics, because the connection 1-
form describing the gauge bosons is unbounded; and from a mathematical point
of view, because the construction of a Fredholm module over A and Hochschild
character cocycle depends on the boundedness of the commutator (1.7).
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In this paper, we solve this problem by using instead a twisted spectral triple
(A,H, D, ρ) [17]*. Rather than requiring the boundedness of the commutator, one
asks that there exists an automorphism ρ of A such that the twisted commutator

[D, a]ρ := Da − ρ(a)D (1.8)

is bounded for any a ∈ A. Accordingly, we introduce in Def. 3.1 a twisted first-order
condition

[[D, a]ρ, Jb∗J−1]ρ := [D, a]ρJb∗J−1 − Jρ(b∗)J−1[D, a]ρ = 0 ∀a, b ∈ A.

(1.9)
We then show that for a suitable choice of a subalgebra B ofAG, a twisted fluctuation
of /D + DM that satisfies (1.9) generates a field σ - slightly different from the one of
[8] - together with an additional vector field Xμ.

Furthermore, the breaking to the standard model is now spontaneous, as conjec-
tured by Lizzi in [23]. Namely the reduction of the grand algebra AG to Asm is
obtained dynamically, as a minimum of the spectral action. The scalar field σ then
plays a role similar as the one of the Higgs in the electroweak symmetry breaking.

Mathematically, twists make sense as explained in [17], for the Chern character
of finitely summable spectral triples extends to the twisted case, and lands in ordi-
nary (untwisted) cyclic cohomology. Twisted spectral triples have been introduced
to deal with type III examples, such as those arising from transverse geometry of
codimension one foliation, and have been used in various context since, like quan-
tum statistical dynamical systems [31]. It is quite surprising that the same tool gives
a possibility to implement in NCG the idea of a “bigger symmetry beyond the SM”.
The main results of the paper are summarized in the following theorem.

Theorem 1.1 LetH be the Hilbert space of the standard model described in Section
2.1. There exists a sub-algebra B of the grand algebra AG containing Asm together
with an automorphism ρ of C∞(M) ⊗ B such that

i) T := (C∞(M) ⊗ B,H, /D + DM ; ρ) is a twisted spectral triple satisfying the
twisted 1st-order condition (1.9);

ii) twisted fluctuations of /D + DM by C∞(M) ⊗ B are parametrized by a scalar
field σ and a vector field Xμ;

iii) the spectral triple of the standard model is obtained from T by minimizing the
potential of the vector field Xμ induced by the spectral action coming from a
twisted fluctuation of /D;

iv) the spectral triple of the standard model is also obtained by minimizing the
potential induced by the spectral action of a twisted fluctuation of the whole
Dirac operator /D + DM . Such a fluctuation provides a potential for the scalar
field σ , which is minimum when /D +DM is fluctuated by C∞(M)⊗ASM , that
is when σ is the constant field kR .

*Also called σ -triple, but to avoid confusion with the field σ , we denote by ρ the automorphism called σ

in [17].
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Explicitly, B is a sub-algebraH2 ⊕C
2 ⊕ M3(C) of AG. Labeling the two copies

of the quaternions and complex algebras by the left/right spinorial indices l, r and
the left/right internal indices L/R, that is

B = H
l
L ⊕H

r
L ⊕C

l
R ⊕C

r
R ⊕ M3(C), (1.10)

the automorphism ρ is the exchange of the left/right spinorial indices:

ρ ( ql
L, qr

L, cl
R, cr

R, m) → (qr
L, ql

L, cr
R, cl

R, m) (1.11)

where m ∈ M3(C) while the q’s and c’s are quaternions and complex numbers
belonging to their respective copy ofH andC.

The paper is organized as follows. In Section 2 we recall briefly the spectral triple
of the standard model (Section 2.1), the tensorial notation used all along the paper
(Section 2.2), and the results of [23] on the grand algebra (Section 2.3). We discuss
the unboundedness of the commutator (1.7) in Section 2.4. Section 3 deals with the
twist. It begins with the definition of the twisted first-order condition in Def. 3.1. In
Section 3.1 we fix the representation of the grand algebra, which differs from the
one used in [23]. It is used in Section 3.2 to build a twisted spectral triple with the
free Dirac operator (Prop. 3.4). In Section 3.3 the twisted first-order condition for
DM yields the reduction to the algebra B and the construction of the spectral triple
T (Prop. 3.5). This proves the first point of theorem 1.1. In Section 4 we compute
the twisted fluctuations DX of the free Dirac operator /D (Section 4.2), and Dσ of the
Majorana-Dirac operator DM (Section 4.3). This yields the additional vector field
in Prop. 4.1, and the extra scalar field σ in Prop. 4.4, proving the second point of
theorem 1.1. In Section 5, after some generalities on the spectral action in Section 5.1,
we compute the generalized Lichnerowicz formula for the twisted-fluctuated Dirac
operator in Section 5.2. The comparison with the non-twisted case is made in Section
5.3. The dynamical reduction of B to the standard model by minimizing the potential
of the additional vector field is obtained in Section 5.4. The potential of the scalar
field is treated in Section 5.5, and the potential of interaction between the vector and
the scalar field in Section 5.6. These results are discussed in Section 6. In Section 6.1
we stress how twisting the almost commutative geometry of the SM may open the
way to models where the algebra is not the tensor product of a manifold by a finite
dimensional geometry. This justifies the choice of the representation of AG made in
the present paper, but we show in Section 6.2 that the results are the same with the
representation used in [23].

2 Standard Model and the Grand Algebra

2.1 The Spectral Triple of the Standard Model

The main tools of NCG [18] are encoded within a spectral triple (A,H, D) whereA
is an involutive algebra acting on a Hilbert spaceH, andD is a selfadjoint operator on
H. These three elements come with two more operators, a real structure J [19] and
a Z2-grading � that are generalizations to the noncommutative setting of the charge
conjugation and the chirality operators of quantum field theory. These five objects
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satisfy a set of properties guaranteeing that given any spectral triple with A unital
and commutative, then there exists a closed Riemannian spin manifold M such that
A = C∞(M) [20]. These conditions still make sense in the noncommutative case
[14], hence the definition of a noncommutative geometry as a spectral triple where
the algebra A is non necessarily commutative.

Among these conditions, the ones that play an important role in this work are the
first-order condition (1.2), the boundedness and the grading conditions

[D, a] ∈ B(H), [�, a] = 0 ∀a ∈ A, (2.1)

as well as the order-zero condition

[a, Jb∗J−1] = 0 ∀a, b ∈ A. (2.2)

A gauge theory is described by an almost commutative geometry

A = C∞(M) ⊗ AF , H = L2(M, S) ⊗ HF , D = /∂ ⊗ IF + γ 5 ⊗ DF , (2.3)

which is the product of the canonical spectral triple
(
C∞(M), L2(M, S), /∂

)
asso-

ciated to a oriented closed spin manifold M of (even) dimension m, by a finite
dimensional spectral triple

(AF ,HF , DF ). (2.4)

Here L2(M, S) is the space of square integrable spinors on M, and†

/∂ = −i

m∑

μ=1

γ μ∇S
μ with ∇S

μ = ∂μ + ωS
μ (2.5)

is the Dirac operator with γ μ = γ μ† the selfadjoint Dirac matrices and ωS
μ the spin

connection. The chirality operator γ 5 is a grading of L2(M, S) which commutes
with C∞(M) and anticommutes with /∂ . The notation is justified assuming M has
dimension 4 (what we do from now on, for simplicity and obvious physical reasons):
γ 5 is then the product of the four Dirac matrices.*

The choice of the finite dimensional spectral triple (2.4) is dictated by the phys-
ical contents of the theory. For the SM, the algebra is Asm given in (1.4), whose
group of unitary elements yields the gauge group of the standard model. The finite
dimensional Hilbert space HF is spanned by the particle content of the theory. The
standard model has 96 such degrees of freedom: 8 fermions (electron, neutrino, up
and down quarks with three colors each) for N=3 generations and two chiralities L,
R, plus antiparticles. Therefore one takes

HF = HR ⊕ HL ⊕ Hc
R ⊕ Hc

L = C
96

. (2.6)

†Strictly speaking /∂ is not selfadjoint but essentially selfadjoint. We ignore this distinction and it is
implicitly assumed all along the paper that we work with its closure.
*Most of the results presented in this paper should work in arbitrary even dimension: for the construction
of real twisted spectral triples and their twisted fluctuation, this has actually been shown in [34]; for the
spectral action, this still needs to be checked. In odd dimension there may be some subtleties due to the
grading, that need to be further investigated.
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The finite dimensional Dirac operator DF = D0 + DR is a 96 × 96 matrix where

D0 :=

⎛

⎜⎜
⎝

08N M0 08N 08N
M†

0 08N 08N 08N
08N 08N 08N M̄0

08N 08N MT
0 08N

⎞

⎟⎟
⎠ and DR :=

⎛

⎜⎜
⎝

08N 08N MR 08N
08N 08N 08N 08N
M†

R 08N 08N 08N
08N 08N 08N 08N

⎞

⎟⎟
⎠ . (2.7)

The matrix M0 contains the Yukawa couplings of fermions, the Dirac mass of neu-
trinos, the Cabibbo matrix and the mixing matrix for neutrinos. The matrix MR

contains the Majorana mass of neutrinos. Explicitly

M0 =
(

Mu 04
04 Md

)
⊗ IN MR =

(
MR 04
04 04

)
⊗ IN (2.8)

where, for the first generation, Mu contains the Yukawa coupling of the up quark and
the Dirac mass of νe, Md contains the down quark and the electron masses, and MR

the Majorana mass of νe. The structure is repeated for the other two generations.
The real structure

J = J ⊗ JF (2.9)

acts as the charge conjugation operator J = iγ 0γ 2cc on L2(M, S), and as

JF :=
(

0 I16N
I16N 0

)
cc (2.10)

onHF , where it exchanges the blocksHR ⊕HL of particles with the blockHc
R ⊕Hc

L

of antiparticles. The grading is

� = γ 5 ⊗ γF where γF :=

⎛

⎜⎜
⎝

I8N
−I8N

−I8N
I8N

⎞

⎟⎟
⎠ . (2.11)

The operators γF , JF and DF are such that J 2
F = I, JγF = −γF JF , JF DF =

DF JF , meaning that the finite part of the spectral triple of the standard model has
KO-dimension 6 [3, 9]. Meanwhile the continuous part of the spectral triple has
KO-dimension 4, that is J 2 = −I, J γ 5 = γ 5J and J /∂ = /∂J .

Gauge fields are obtained by fluctuating the operator D by A, that is substituting
it with the covariant Dirac operator

DA := D + A + JAJ−1 (2.12)

where

A =
∑

i

ai[D, bi] ai, bi ∈ A (2.13)

is a selfadjoint 1-form of the almost commutative manifold.
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As stressed in the introduction, the field σ cannot be generated by a fluctuation of
the Majorana part

DM := γ 5 ⊗ DR (2.14)

of the Dirac operator, because [DR, a] = 0 for any a ∈ Asm. The obstruction has its
origin in the first-order condition. Indeed one easily checks [23] that for any a, b ∈
C∞(M) ⊗ AF

[[DM, A], J b∗J−1] = 0 if and only if [DM, A] = 0. (2.15)

Hence the necessity to make the first-order condition more flexible [12], or to enlarge
the algebra one is starting with, in order to have enough space to generate the field
σ without violating the first-order condition. This enlargement is made possible by
mixing the internal degrees of freedom of HF with the spinorial degrees of freedom
of L2(M, S). This has been done in [23] and is recalled in the next two paragraphs.

2.2 Mixing of Spinorial and Internal Degrees of Freedom

The total Hilbert space H of the almost commutative geometry (2.3) is the tensor
product of four dimensional spinors by the 96-dimensional elements of HF . Any of
its element is a C

384-vector valued function on M. From now on, we work with
N = 1 generation only, and consider instead 384/3 = 128 components vector. The
total Hilbert space can thus be written - at least in a local trivialization - in two ways:

H = L2(M, S) ⊗ HF or H = L2(M) ⊗ HF (2.16)

whereHF � C
128 takes into account both external (i.e. spin) and internal (i.e. particle)

degrees of freedom. We label the basis of HF with a multi-index sṡCIα where:

s, ṡ are the four spinor indices: s = r, l runs over the right, left parts and ṡ = 0̇, 1̇
over the particle, antiparticle parts of the spinors.

C indicates whether we are considering “particles” (C = 0) or “antiparticles”
(C = 1).

I is a “lepto-color” index: I = 0 identifies leptons while I = 1, 2, 3 are the three
colors of QCD.

α is the flavor index. It runs over the set uR, dR, uL, dL when I = 1, 2, 3, and
νR, eR, νL, eL when I = 0.

On this basis, an element � of H has components �CI
sṡα ∈ L2(M). The position of

the indices is arbitrary: � evaluated at x ∈ M is a column vector, so all the indices
are row indices. An element A in B(H) is a 128× 128 matrix whose coefficients are
function of M , and carries the indices

A = A
CtIṫβ
DsJṡα (2.17)

where D, t, J, ṫ , β are column indices with the same range as C, s, I, ṡ, α.
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This choice of indices yields the chiral basis for the Euclidean Dirac matrices:†

γ μ =
(
02 σμ

σ̃ 02

)

st

, γ 5 = γ 1γ 2γ 3γ 0 =
(
I2 02
02 −I2

)

st

, (2.18)

where for μ = 0, 1, 2, 3 one defines

σμ = {
I2, −iσi,

}
, σ̃ μ = {

I2, iσi

}
(2.19)

with σi , i = 1, 2, 3 the Pauli matrices. Explicitly,

σ 0 = I2, σ 1 = −iσ1 =
(

0 −i

−i 0

)

ṡ ṫ

, σ 2 = −iσ2 =
(
0 −1
1 0

)

ṡ ṫ

, σ 3 = −iσ3 =
(

−i 0
0 i

)

ṡ ṫ

.

The free Dirac operator /∂ extended to H according to (1.6) acts as ‡

/D := δ
CIβ
DJα/∂ = −i

(
δ
Iβ
Jα γ μ∇S

μ 064
064 δ

Iβ
Jα γ μ∇S

μ

)

CD

. (2.20)

In tensorial notation, the charge conjugation operator is

J = iγ 0γ 2cc = i

(
σ̃ 2 02
02 σ 2

)

st

cc = −iηt
sτ

ṫ
ṡ cc, (2.21)

while

JF =
(

0 I16
I16 0

)

CD
cc, (2.22)

hence
(J�)CIsṡα = −iηt

s τ ṫ
ṡ ξC

D δ
Iβ
Jα �̄DJ

t ...tβ (2.23)

where for any pair of indices x, y ∈ [1, ..., n] one defines
ξx
y =

(
0n In

In 0n

)
, ηx

y =
(
In 0n

0n −In
)

, τ x
y =

(
0n −In
In 0n

)
. (2.24)

The chirality acts as γ 5 = ηt
sδ

ṫ
ṡ on the spin indices, and as γF = ηC

D δIJ η
β
α on the

internal indices:
(��)CIsṡα = ηt

sδ
ṫ
ṡ ηC

D δIJ η
β
α �DJ

t ṫβ
. (2.25)

2.3 The Grand Algebra

Under natural assumptions (irreducibility of the representation, existence of a sepa-
rating vector), a “symplectic hypothesis” and the requirement that theKO-dimension

†The multi-index st after the closing parenthesis is to recall that the block-entries of the γ ’s matrices are
labelled by indices s, t taking values in the set {l, r}. For instance the l-row, l-column block of γ 5 is I2.
Similarly the entries of the σ ’s matrices are labelled by ṡ, ṫ indices taking value in the set

{
0̇, 1̇

}
: for

instance σ 20̇
0̇ = σ 21̇

1̇ = 0.
‡We use Einstein summation on alternated up/down indices. For any n pairs of indices (x1, y1), (x2, y2),
... (xn, yn), we write δ

y1y2...yn
x1x2...xn

instead of δ
y1
x1 δ

y2
x2 ...δ

yn
xn
. For the tensorial notation to be coherent, /∂ and γ μ

should carry lower sṡ and upper t ṫ indices. We systematically omit them to facilitate the reading.
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is 6, the most general finite algebra that satisfies the conditions for the real structure
is [7]

AF = Ma(H) ⊕ M2a(C) a ∈ N, (2.26)

acting on a Hilbert space of dimension 2(2a)2. To have a non-trivial grading on
Ma(H) the integer a must be at least 2, meaning the simplest possibility isM2(H) ⊕
M4(C). The dimension of the Hilbert space is thus 2(2 · 2)2 = 32, which is precisely
the dimension of HF for one generation. The grading condition [a, �] = 0 imposes
the reduction to the left-right algebra,

ALR := HL ⊕ HR ⊕ M4(C), (2.27)

and the order one condition [[DF , a], J b∗J−1] = 0 reduces further the algebra to
Asm in (1.4).

The case a = 3 requires an Hilbert space of dimension 2(2 · 3)2 = 72, which has
no obvious physical interpretation so far.

For a = 4, the dimension is 2(2 · 4)2 = 128, which turns out to be precisely
the dimension of the “fermion doubled” space HF . In other terms, the mixing of
the internal and the spin degrees of freedom provides exactly the space required to
represent the “grand algebra”

AG = M4(H) ⊕ M8(C). (2.28)

Any elements of AG is seen as a pair of 8 × 8 complex matrices Q ∈ M4(H), M ∈
M8(C), each having a block structure of four 4 × 4 matrices

Q =
(

Q1
1 Q2

1
Q1

2 Q2
2

)
, M =

(
M1

1 M2
1

M1
2 M2

2

)
(2.29)

where Q
j
i ∈ M2(H) and M

j
i ∈ M4(C) for any i, j = 1, 2. By further imposing all

the conditions defining a spectral triple, one intends to find back the algebra Asm of
the standard model acting suitably on HF . This imposes that Q acts on the particle
subspace C = 0, trivially on the lepto-color index I, meaning the complex com-
ponents of each of the four 4 × 4 matrices Q

j
i are labelled by the flavor index α.

Similarly, one asks that M acts on antiparticles C = 1, trivially on the flavor index,
meaning the components of each of the four M

j
i are labelled by the lepto-color index

I. Thus any element (Q, M) ∈ AG acts on HF as

δ0JCI Q
jβ
iα + δ

1β
Cα M

jJ
i I . (2.30)

The representation of C∞(M) ⊗ AG is obtained viewing Q
jβ
iα , M

jJ
i I no longer as

constants but as L2 functions on M.
There is still some freedom on how to label the blocks of the matrices Q and M .

One simply needs indices i, j that live on the sṡ spinorial space, take two values
each and are compatible with the order-zero condition (2.2). The natural choice is to
label the blocks of either Q or M by the chiral index s = r, l and the other blocks
by the (anti)-particle index ṡ = 0̇, 1̇ (although in principle one could also consider
combinations of them). In [23] we chose to label the quaternions by the anti-(particle)
index and the complex matrices by the chiral index,

Q = Q
ṫβ
ṡα, M = MtJ

sI . (2.31)
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The reduction of AG to the algebra of the standard model is then obtained as
follows

AG = M4(H) ⊕ M8(C) (2.32)

⇓ grading condition

A′
G = M2(H)L ⊕ M2(H)R ⊕ Ml

4(C) ⊕ Mr
4 (C)

⇓ 1st-order for the Majorana-Dirac operator DM

A′′
G = (HL ⊕ H

′
L ⊕CR ⊕C

′
R) ⊕ (C

l ⊕ Ml
3(C) ⊕C

r ⊕ Mr
3 (C)) with CR = C

r = C
l

⇓ 1st-order for the free Dirac operator /D

Asm = C⊕H⊕ M3(C)

(2.33)

The interest of the grand algebra is the possibility to generate the field σ thanks to
a fluctuation of the Majorana mass term DM (2.14) which respects the first-order
condition imposed by this same Majorana mass term. Namely, and this has to be put
in contrast with (2.15), one has that [23]

for A ∈ A′′
G, [DM, A] is not necessarily zero. (2.34)

2.4 Unboundedness of the Commutator

The breaking AG → A′
G → A′′

G deals with the finite dimensional part of the spec-
tral triple. The final breaking A′′

G → Asm is driven by the free Dirac operator and
requires the product with the manifold. However, as explained in [24], there is no
spectral triple for C∞(M) ⊗ AG (nor with A′

G or A′′
G) because the commutator

[ /D, A] of any of its element with the free Dirac operator is never bounded. This can
be seen from eq. (5.3) in [23] and has been pointed out to us by W. v. Suijlekom. In
order to have bounded commutators, the action of AG on spinors has to be trivial.

Proposition 2.1 Let AF be a finite dimensional algebra acting on the Hilbert space
HF in (2.16). For any A ∈ C∞(M) ⊗ AF , the commutator [ /D, A] is bounded iff
AF acts as the identity operator on the spinor indices sṡ. In particular, the biggest
sub-algebra of C∞(M) ⊗ AG acting as in (2.30) and whose commutator with /D is
bounded is C∞(M) ⊗ (M2(H) ⊕ M4(C)).

Proof In tensorial notation, a generic element of AF is A = A
CtIṫβ
DsJṡα . For any such A,

by (2.20) and omitting the indices st ṡ ṫ for the Dirac matrices, one gets

[ /D, A] = [δCIβDJα
/∂,A

CtIṫβ
DsJṡα] = −i[δCIβDJαγ μ, A

CtIṫβ
DsJṡα]∇S

μ − iγ μ[∇S
μ, A

CtIṫβ
DsJṡα]. (2.35)

This is bounded iff the first term in the r.h.s. is zero. The only matrices that commute
with all the Dirac matrices are the multiple of the identity, hence [ /D, A] is bounded
iff A = λδt ṫ

sṡA
CIβ
DJα for some scalar λ. This means Q

jβ
iα = λδt ṫ

sṡQ
α
β ∈ M2(H) and

M
jJ
iI = λδt ṫ

sṡM
J
I ∈ M4(C) in (2.30).
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In other terms, in order to build a spectral triple with the grand algebra (that is
a = 4 in (2.26)), one has to consider its subalgebra given by a = 2, that acts without
mixing spinorial and internal indices. This of course is not interesting from our per-
spective, since the aim of the grand algebra is precisely to mix spinorial with internal
degrees of freedom. A solution is to consider instead twisted spectral triples. They
have been introduced in [17] precisely to solve the problem of the unboundedness
of the commutator, which may occur in very elementary situations such as the lift
to spinors of a conformal transformation. Using twists to make [ /D, A] bounded has
been suggested independently to the second author by J.-C. Wallet, and to the first
author by W. v. Suijlekom, who also brought our attention to ref. [17].

3 Twisting the Standard Model

A twisted spectral triple is a triple (A,H, D) whereA is an involutive algebra acting
on a Hilbert space H and D a selfadjoint operator on H with compact resolvent,
together with an automorphism ρ of A such that

[D, a]ρ = Da − ρ(a)D (3.1)

is bounded for any a ∈ A. It is graded if, in addition, there is a selfadjoint operator
� of square I which commutes the algebra and anticommutes with D.

As far as we know, the other conditions satisfied by a spectral triple have not
been adapted to the twisted case yet. As long as the commutator between the algebra
and the Dirac operator is not involved, one can keep the definitions of an ordinary
spectral triple, for instance the order-zero condition. In the 1st-order condition (1.2)
it is natural to substitute [D, a] with the twisted commutator [D, a]ρ . The question
is whether to twist the commutator with Jb∗J−1 as well. As explained in [17, Prop.
3.4], the set �1

D of twisted 1-forms, that is all the operators of the form

A =
∑

i

bi[D, ai]ρ, (3.2)

is a A-bimodule for the left and right actions

a · ω · b := ρ(a)ωb ∀a, b ∈ A, ω ∈ �1
D. (3.3)

Therefore it is natural to twist the commutator with JbJ−1. As pointed out below
proposition 3.5, this choice is also the one which is efficient for our purposes. Fur-
thermore we assume that ρ is a ∗-automorphism that commutes with the real structure
J (more on that matter is discussed in the conclusion), which permits to define the
twisted version of the 1st-order condition as follows.

Definition 3.1 A twisted spectral triple (A,H, D, ρ) with real structure J satisfies
the twisted 1st-order condition if and only if

[[D, a]ρ, JbJ−1]ρ = [D, a]ρ JbJ−1 − Jρ(b)J−1[D, a]ρ = 0 ∀a, b ∈ A. (3.4)
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When ρ = ρ−1 (which will be the case here), requiring that ρ is a ∗-automorphism
is equivalent to the unitary condition (3.4) of [17].

3.1 Representation

For reasons explained in Section 6.1, it is convenient to work with the other natural
representation of the grand algebra than the one used in [23]. Namely instead of
(2.31) one asks that quaternions carry the chiral index s of spinors while the complex
matrices carry the (anti)-particle index:

Q = Qtβ
sα, M = MṫJ

ṡI . (3.5)

Explicitly, the representation of the grand algebra AG is

Q =
(

Qr
r Ql

r

Qr
l Ql

l

)

st

∈ M4(H), M =
(

M 0̇
0̇

M 1̇
0̇

M 0̇
1̇

M 1̇
1̇

)

ṡ ṫ

∈ M8(C), (3.6)

where for any s, t ∈ {l, r} and ṡ, ṫ ∈ {
0̇, 1̇

}
one defines

Qt
s =

⎛

⎜⎜
⎝

Qta
sa Qtb

sa Qtc
sa Qtd

sa

Qta
sb Qtb

sb Qtc
sb Qtd

sb

Qta
sc Qtb

sc Qtc
sc Qtd

sc

Qta
sd Qtb

sd Qtc
sd Qtd

sd

⎞

⎟⎟
⎠

αβ

∈ M2(H), Mṫ
ṡ =

⎛

⎜⎜⎜
⎝

Mṫ0
ṡ0 Mṫ1

ṡ0 Mṫ2
ṡ0 Mṫ3

ṡ0
Mṫ0

ṡ1 Mṫ1
ṡ1 Mṫ2

ṡ1 Mṫ3
ṡ1

Mṫ0
ṡ2 Mṫ1

ṡ2 Mṫ2
ṡ2 Mṫ3

ṡ2
Mṫ0

ṡ3 Mṫ1
ṡ3 Mṫ2

ṡ3 Mṫ3
ṡ3

⎞

⎟⎟⎟
⎠

IJ

∈M4(C).

Here we use a, b, c, d to denote the value of the flavor index α. On the remaining
indices, Q and M act trivially, that is as the identity operator. The representation of
A = (Q, M) ∈ AG on HF is thus

A
CtIṫβ
DsJṡα =

(
δCṫI
0ṡJ Qtβ

sα + δC1 MṫI
ṡJδ

tβ
sα

)
=

(
δṫI
ṡJ Q

tβ
sα 064

064 MṫI
ṡJ δ

tβ
sα

)

CD

. (3.7)

One easily checks the order-zero condition (2.2): with A = (R, N) ∈ AG, a
generic element of the opposite algebra is

JAJ−1 = −JAJ =
(

−δ
tβ
sα (τ N̄τ )ṫIṡJ 064
064 δṫI

ṡJ (ηR̄η)
tβ
sα

)

CD

(3.8)

where the bar denotes the complex conjugate and we used

JRJ := (τ 2)ṫṡ (ηR̄η)tβsα = −δṫ
ṡ (ηR̄η)tβsα, JNJ := (η2)ts (τ N̄τ )ṫIṡJ = δt

s(τ N̄τ )ṫIṡJ.

(3.9)
Obviously (3.7) commutes with (3.8).

Lemma 3.2 The biggest subalgebra of C∞(M) ⊗ AG that satisfies the grading
condition (2.1) and has bounded commutator with /D is the left-right algebra ALR

given in (2.27).
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Proof By (2.25), for the quaternion sector [�,A] = 0 amounts to asking
[ηt

sη
β
α , Q

tβ
sα] = 0. This imposes

Q =
(

Qr
r 04

04 Ql
l

)

st

(3.10)

where

Qr
r =

(
qr
R 02
02 qr

L

)

αβ

, Ql
l =

(
ql
R 02
02 ql

L

)

αβ

with qr
R, qr

L, ql
R, ql

L ∈ H. (3.11)

For matrices, one asks [δṫI
ṡJ, M

ṫI
ṡJ] = 0 which is trivially satisfied. So the grading

condition [�,A] = 0 imposes the reduction of AG to

BLR := (H
l
L ⊕H

r
L ⊕H

l
R ⊕H

r
R) ⊕ M8(C). (3.12)

For A = (Q, M) ∈ C∞(M) ⊗ BLR , the boundedness of the commutator §

[ /D, A] =
(

δI
J [/∂,Q] 064
064 δ

β
α [/∂,M]

)

CD

(3.13)

means that

[/∂,Q] = −iγ μ(∇S
μQ)−i[γ μ, Q]∇S

μ and [/∂,M] = −iγ μ(∇S
μM)−i[γ μ, M]∇S

μ

(3.14)
are bounded, where (∇s

μQ) := (∂μQ) + [ωS
μ, Q] and similarly for (∇s

μM). This
is obtained if and only if Q and M commute with all the Dirac matrices, i.e. are
proportional to δt ṫ

sṡ . For Q this means Qr
r = Ql

l in (3.10), hence the reductions

H
r
R ⊕H

l
R → HR, H

r
L ⊕H

l
L → HL. (3.15)

For M , this means that all the components Mṫ
ṡ in (3.6) are equal, that is the reduction

M8(C) → M4(C). (3.16)

Therefore BLR is reduced to ALR , acting diagonally on spinors.

This lemma is nothing but a restatement of Prop. 2.1 in the peculiar representa-
tion (3.7) and taking into account the grading condition. Nevertheless, it is useful to
have it explicitly, in order to understand how to get rid of the unboundedness of the
commutator. It is also worth stressing the difference with the representation (2.31),
for which the grading breaks both matrices and quaternions and reduces AG to A′

G.
Here only quaternions are broken by the grading.

To cure the unboundedness of the commutator, the idea we propose is the follow-
ing: impose the reduction (3.16) by hand, and deal with the unboundedness of [/∂,Q]
thanks to a twist. This is a “middle term solution”: imposing by hand both reduc-
tions (3.16) and (3.15) is not interesting from the grand algebra point of view, since
it brings us back to an almost commutative geometry where spinorial and internal

§To lighten notation, we omit the trivial indices in the product (hence in the commutators) of operators.
From (3.5) one knows that Q carries the indices sα while γ μ carries sṡ, hence [/∂,Q] carries indices sṡα

and should be written [δβ
α /∂, δṫ

ṡQ]. As well, [/∂,M] carries indices sṡI and holds for [δJ
I
/∂, δt

sM].
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indices are not mixed; solving both the unboundedness of [/∂,Q] and [/∂,M] by a
twist yields some complications discussed in Section 6.1. The remarkable point is
that this middle term solution is sufficient to obtain the σ -field by a fluctuation that
respects the twisted first-order condition of definition 3.1.

3.2 The Twist and the First-order Condition for the Free Dirac Operator

Imposing (3.16) on the grand algebra AG reduced by the grading to BLR yields

B′ := (H
l
L ⊕H

r
L ⊕H

l
R ⊕H

r
R) ⊕ M4(C). (3.17)

An element A = (Q, M) of B′ is given by (3.7) where Q is as in (3.10) while M in
(3.5) is proportional to δṫ

ṡ :

M = δṫ
ṡM

I
J ∈ M4(C). (3.18)

The algebra B′ contains the algebra of the standard model Asm, and still has a part
(the quaternion) that acts in a non-trivial way on the spin degrees of freedom. In this
sense B′ is still from the grand algebra side, even if it is “not so grand”.

Let ρ be the automorphism of (H
l
L ⊕ H

r
L ⊕ H

l
R ⊕ H

r
R) that exchanges Qr

r and
Ql

l in (3.10), that is the exchange

H
r
R ↔ H

l
R, H

r
L ↔ H

l
L. (3.19)

This means in components

ρ

((
Qr

r 04
04 Ql

l

)

st

)
=

(
Ql

l 04
04 Qr

r

)

st

. (3.20)

Lemma 3.3 Denote by the same letter the extension of ρ to C∞(M)⊗ (H
l
L ⊕H

r
L ⊕

H
l
R ⊕H

r
R). For any μ one has

γ μQ = ρ(Q)γ μ, γ μρ(Q) = Qγ μ. (3.21)

Thus
[/∂,Q]ρ = −iγ μ(∇S

μQ). (3.22)

Proof Writing explicitly the δ’s, one gets

γ μQ =
(

δ
β
α

(
02 σμ

σ̃μ 02

)

st

)((
Qr

r 04
04 Ql

l

)

st

δṫ
ṡ

)
=

(
08 σμQl

l

σ̄ μQr
r 08

)

st

=
((

Ql
l 04

04 Qr
r

)

st

δṫ
ṡ

) (
δ
β
α

(
02 σμ

σ̃μ 02

)

st

)
= ρ(Q)γ μ.

(3.23)

The second part of (3.21) follows because ρ2 = I. (3.22) comes from

[/∂,Q]ρ = −iγ μ(∇S
μQ) − i[γ μ, Q]ρ∇S

μ,

where the second term is zero by (3.21).

We still denote by the same letter the extension of ρ to C∞(M) ⊗ B′:
ρ((Q, M)) := ((ρ(Q), M). (3.24)
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Proposition 3.4 (C∞(M) ⊗B′,H, /D, ρ) together with the grading � in (2.11) and
the real structure J in (2.9) is a graded twisted spectral triple which satisfies the
twisted first-order condition of definition 3.1.

Proof Let A = (Q, M) ∈ C∞(M) ⊗ B′. The twisted version of (3.13) is

[ /D, A]ρ =
(

δI
J [/∂,Q]ρ 064

064 δ
β
α [/∂,M]

)

CD

. (3.25)

From (3.18) and (3.7) M commutes with γ μ, so that the second equation in (3.14)
reduces to

[/∂,M] = −iγ μ(∇S
μM), (3.26)

which is a bounded operator. By lemma 3.3, [/∂,Q]ρ = −iγ μ(∇S
μQ) is bounded as

well. Hence (C∞(M)⊗B)′,H, /D, ρ) together with � form a graded twisted spectral
triple.

We now examine the twisted first-order condition (3.1). Let B = (R, N) ∈
C∞(M) ⊗ B′. A generic element of the algebra opposite to C∞(M) ⊗ B′ is

JBJ−1 = −JBJ =
(

δ
tβ
sαN̄ 064
064 δṫJ

ṡIR̄

)

CD

(3.27)

where we used (3.8) and noticed that for R as in (3.10) and N as in (3.18) one has

(ηR̄η)tβsα = R̄tβ
sα, (τ N̄τ )ṫIṡJ = −N̄ ṫI

ṡJ. (3.28)

As well, one has

Jρ(B)J−1 = −Jρ(B)J =
(

δ
tβ
sαN̄ 064
064 δṫJ

ṡIρ(R̄)

)

CD

. (3.29)

Thus [ /D, A]ρJBJ−1 − Jρ(B)J−1[ /D, A]ρ is a diagonal matrix with components

[δI
J [/∂,Q]ρ, δtβ

sαN̄], δβ
α [/∂,M] δṫI

ṡJR̄ − δṫI
ṡJρ(R̄) δβ

α [/∂,M]. (3.30)

The first term vanishes because the only non-trivial index carries by N̄ is IJ. The
second term is (omitting the deltas and a global −i factor)
(

08 σμ(∂μM)

σ̄μ(∂μM) 08

)

st

(
R̄r

r 08
08 R̄l

l

)

st

−
(

R̄l
l 08

08 R̄r
r

)

st

(
08 σμ(∂μM)

σ̄μ(∂μM) 08

)

st

=
(

08 [σμ(∂μM), R̄l
l ][

σ̄ μ(∂μM), R̄r
r

]
08

)

st
(3.31)

which vanishes because R’s only non-trivial index is αβ while
[
σ̄ μ(∂μM), R̄r

r

]
is

proportional to δ
β
α .

3.3 Twisted First-order Condition for the Majorana-Dirac Operator

We individuate a subalgebra B of B′ such that a twisted fluctuation of theMajorana-
Dirac operator DM in (2.14) by B satisfies the twisted first-order condition. Since
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we are working with one generation of fermions only, in (2.7) the Majorana mass
matrix MR is �

β
αkR , where

� =
(
1 0
0 03

)
(3.32)

denotes the projection on the first component. Therefore

DM = γ 5DR = ηt
s δṫ

ṡ�
Iβ
Jα

(
0 kR

k̄R 0

)

CD

. (3.33)

In this equation the product γ 5DR is intended with the convention of the footnote

p.12, namely this is the tensorial notation γ 5t ṫ

sṡDR
βID
JαC in which we omit the indices.

In practice, this amounts to omit the tensor product symbol in γ 5⊗DR , which makes
sense because of our choice of viewing the total Hilbert space no longer as the tensor
product of spinors by HF . These distinctions may seem pedantic here, but they will
be important later on, when writing the product γ μXμ for a vector field Xμ that no

longer commutes with the Dirac matrices: γ μXμ will hold for γ μtṫ
sṡ Xμ

βID
JαC, while

γ μ ⊗ Xμ will no longer make sense.

Proposition 3.5 A subalgebra of B′ which satisfies the twisted first-order condition

[[DM, A]ρ, JBJ−1]ρ = 0 (3.34)

is
B := H

l
L ⊕H

r
L ⊕C

l
R ⊕C

r
R ⊕ M3(C). (3.35)

Proof Consider first the subalgebra

B̃ := (H
l
L ⊕H

r
L ⊕C

l
R ⊕C

r
R) ⊕ (M3(C) ⊕C) (3.36)

of B′ obtained by asking that ql
R, qr

R in (3.11) are diagonal quaternions, namely

ql
R =

(
cl
R 0

0 c̄l
R

)

, qr
R =

(
cr
R 0
0 c̄r

R

)
with cl

R, cr
R ∈ C; (3.37)

while M in (3.18) is of the form

M = δṫ
ṡ

(
m 0
0 M

)

IJ
with m ∈ C,M ∈ M3(C). (3.38)

This means that while Q carries non-trivial indices ṡ, α, the action of M is non-trivial
only in the I index. Define similarly B = (R, N) ∈ B̃ with components dl

R, dr
R ∈ C,

n ∈ C, N ∈ M3(C). For any A, B ∈ B̃, one has from (3.33) where we write

DM := ηt
s δṫ

ṡ �
Iβ
Jα, (3.39)

and (3.7) (omitting the deltas)

[DM, A]ρ =
(

064 kR(DMM − ρ(Q)DM)

k̄R(DMQ − MDM) 064

)

CD

. (3.40)



2 Page 18 of 43 Math Phys Anal Geom (2017) 20: 2

By (3.27), (3.29) one obtains

[[DM,A]ρ , JBJ−1]ρ =
⎛

⎜
⎝

064 kR

(
(DMM−ρ(Q)DM)R̄−N̄(DMM − ρ(Q)DM)

)

k̄R

(
(DMQ−MDM)N̄−ρ(R̄)(DMQ−MDM)

)
064

⎞

⎟
⎠

CD

.

The terms entering the upper-right components of this matrix are (omitting a global
kR factor)

N̄DMM = (N̄�M)ṫIṡJ(η�)tβsα =
(
n̄m 04
04 n̄m

)

ṡ ṫ

⊗
(

� 04
04 −�

)

st

, (3.41)

N̄ρ(Q)DM = (N̄�)ṫIṡJ (ρ(Q)η�)tβsα =
(

n̄ 04
04 n̄

)

ṡ ṫ

⊗
(
cl
R 04
04 − cr

R

)

st

, (3.42)

DMMR̄ = (�M)ṫIṡJ (η�R̄)tβsα =
(

m 04
04 m

)

ṡ ṫ

⊗
(
d̄r
R 04
04 −d̄l

R

)

st

, (3.43)

ρ(Q)DMR̄ = (�δ)ṫIṡJ (ρ(Q)η�R)tβsα =
(

� 04
04 �

)

ṡ ṫ

⊗
(
cl
R d̄r

R 04
04 −cr

R d̄l
R

)

st

, (3.44)

where we defined

m :=
(

m 0
0 03

)

IJ
, cr

R =
(

cr
R 0
0 03

)

αβ

, cl
R =

(
cl
R 0
0 03

)

αβ

(3.45)

and similarly for dr
R , d

l
R and n. Collecting the various terms, one finds that the upper-

right component of [[DM, A]ρ, JBJ−1]ρ vanishes if and only if

(cl
R − m)(d̄r

R − n̄) = 0, (cr
R − m)(d̄l

R − n̄) = 0. (3.46)

Similarly, for the lower-left component of [[DM, A]ρ, JBJ−1]ρ one has

ρ(R̄)MDM = (�M)ṫIṡJ(ρ(R̄)η�)tβsα =
(

m 04
04 m

)

ṡ ṫ

⊗
(

d̄l
R 04
04 −d̄r

R

)

st

, (3.47)

ρ(R̄)DMQ = (�δ)ṫIṡJ (ρ(R̄) η�Q)tβsα =
(

� 04
04 �

)

ṡ ṫ

⊗
(

cr
R d̄

l
R 04

04 −cl
R d̄

r
R

)

st

, (3.48)

MDMN̄ = (M�N̄)ṫIṡJ (η�)tβsα =
(

n̄m 04
04 n̄m

)

ṡ ṫ

⊗
(

� 04
04 −�

)

st

, (3.49)

DMQN̄ = (�N̄)ṫIṡJ (η�Q)tβsα =
(

n̄ 04
04 n̄

)

ṡ ṫ

⊗
(

cr
R 04
04 −cl

R

)

st

, (3.50)

yielding the same condition (3.46). Hence the twisted first-order condition is satisfied
as soon as

cr
R = m, dr

R = n, (3.51)
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which amounts to identify Cr
R with C. Hence the reduction of B′ to B as defined in

(3.35).

One could identify Cl
R with C, instead of Cr

R , without changing the result. As
discussed before definition 3.1, one might also consider a first-order condition where
only the commutator with D is twisted, that is

[[DM, A]ρ, JBJ−1] = 0. (3.52)

This is not pertinent in our case however, for this amounts to permuting R̄l
l with R̄r

r

in - and only in - the second term in (3.31), which then no longer vanishes as soon as
Rr

r �= Rl
l .

Proposition 3.5 deals only with the finite dimensional part of the spectral triple.
However (3.34) is still satisfied with A, B ∈ C∞(M)⊗B (though, strictly speaking,
one can no longer talk of “twisted first-order condition for DM”, for on L2(M) ⊗
C

128 the operator DM does not have a compact resolvent). Proposition 3.4 is true for
the subalgebra C∞(M) ⊗ B. Therefore the twisted first-order condition (3.4) with
C∞(M) ⊗ B is true for /D + DM since it is true for /D and DM independently. This
proves the first statement of theorem 1.1.

4 Twisted-Covariant Dirac Operators

The twisted spectral triple

(C∞(M) ⊗ B, L2(M) ⊗ C
128, /D + DM ; ρ) (4.1)

of theorem 1.1 solves the problem of the non-boundedness of the commutators
[ /D, A] raised by the non-trivial action of the grand algebra on spinors. But to be of
interest, this spectral triple should preserve the property the grand algebra has been
invented for, that is generating the field σ by a fluctuation of DM , or a twisted ver-
sion of it. As shown in this section this is indeed the case, because although B is not
so grand (it is smaller than AG), it is neither too small (C∞(M) ⊗ B still has non
trivial action on spinors).

4.1 Twisted Fluctuation

In analogy with gauge fluctuation of almost commutative geometries described in
Section 2.1, we call twisted fluctuation of D by C∞(M) ⊗ B the substitution of
D = /D + DM with

D
A

= D +A+ J A J−1 (4.2)

whereA is twisted 1-form

A = Bi[D, Ai]ρ Ai, B
i ∈ C∞(M) ⊗ B. (4.3)
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We do not require A to be selfadjoint, we only ask that D
A

is selfadjoint and call
it twisted-covariant Dirac operator. It is the sum D

A
= DX + Dσ of the twisted-

covariant free Dirac operator

DX := /D + /A + J /AJ−1 /A := Bi[ /D, Ai]ρ (4.4)

with the twisted-covariant Majorana-Dirac operator

Dσ := DM +AM + JAMJ−1
AM := Bi[DM, Ai]ρ. (4.5)

In this section, we compute explicitly DX and Dσ , and show that they are
parametrized by a vector field Xμ and a scalar field σ .

In the following, Ai = (Qi, Mi) and Bi = (Ri, Ni) are arbitrary elements of
C∞(M) ⊗ B, where i a summation index and

Qi =
(

Qr
ri 04

04 Ql
li

)

st

, Mi = δṫ
ṡ

(
cr
i 0
0 Mi

)

IJ
(4.6)

with¶ Mi ∈ M3(C) and

Qr
ri =

(
qr
Ri 02
02 qr

Li

)

αβ

, Ql
li =

(
ql
Ri 02
02 ql

Li

)

αβ

(4.7)

with ql
Li ∈ H

l
L, q

r
Li ∈ H

r
L and

qr
Ri = diag (cr

i , c̄
r
i ), ql

Ri = diag (cl
i , c̄

l
i ) with cr

i ∈ C
r
R, cl

i ∈ C
l
R. (4.8)

The components Ri, Ni of Bi are defined similarly, with

dri ∈ C
r
R, dli ∈ C

l
R, rri

L ∈ H
r
L, rri

L ∈ H
l
L and Ni ∈ M3(C). (4.9)

4.2 Twisted-covariant Free Dirac Operator DX

The twisted fluctuations (4.4) of the free Dirac operator /D in (2.20) by C∞(M) ⊗B
are parametrized by a vector field.

Proposition 4.1 One has
DX = /D + /X (4.10)

with

/X := −iγ μ
Xμ , Xμ :=

(
Xμ 064
064 −X̄μ

)

CD

, (4.11)

where we define the bounded-operator valued vector field ‖

Xμ := δI
J ρ(Ri)∇S

μQi − δβ
α N̄ i∇S

μM̄i (4.12)

¶In all this section, the components of the matrices are functions on M. To lighten notation we write
M3(C) instead of C∞(M) ⊗ M3(C). The same is true for the various copies of H and C.
‖To lighten notations we omit the parenthesis around (∂μQi) and (∂μM̄i ): the latter are bounded operators
and act as matrices, not as differential operators.
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which commutes with γ 5 and twisted-commutes with γ ν , that is for all μ, ν one has

γ μXν = ρ(Xν)γ
μ, γ μρ(Xν) = Xνγ

μ. (4.13)

Proof Given Ai = (Qi, Mi) and Bi = (Ri, Ni) in B, one gets from (3.25), (3.26)
and (3.21)

/A = −iBi[ /D, Ai]ρ = −i

(
δI
J γ μρ(Ri)∇S

μQi 064
064 δ

β
α γ μNi∇S

μMi

)

CD

(4.14)

where we used that Ni commutes with γ μ and Riγ μ = γ μρ(Ri) (lemma 3.3). By
(2.23) one gets

J /AJ−1 = −J /AJ = i

(
δ
β
α γ μN̄i∇S

μM̄i 064
064 δI

J γ μρ(R̄i)∇S
μQ̄i

)

CD

(4.15)

where we used that J anti-commutes with the γ ’s matrices and commutes with ∇S
μ
**

so that, inserting J 2 = −I before ∇S
μ, one obtains

J (γ μNi∇S
μMi)J = γ μ(JNiJ )∇S

μ(JMiJ ) = γ μN̄i∇S
μM̄i , (4.16)

J (γ μρ(Ri)∂μQi)J = γ μ(J ρ(Ri)J )∇S
μ(JQiJ ) = γ μρ(R̄i)∇S

μQ̄i . (4.17)

In both equations above the last term comes from (3.9), noticing that ρ(Ri) and
Qi are now diagonal in the st index and so commute with η, while Ni, Mi are
proportional to δṫ

ṡ , hence commute with τ . Summing up (4.14) and (4.15), one obtains

/A + J /AJ−1 = −iγ μ
Xμ (4.18)

with Xμ as in (4.12).
Xμ commuting with γ 5 is a consequence of the breaking of AG by the grading

condition and can be checked explicitly using (4.7) and (3.7). (4.13) follows by direct
calculation, writing explicitly Xμ in the st indices

Xμ = δIṫJṡ

(
Ril

l ∇r
μQ r

ir 04
04 Rir

r ∇ l
μQ l

il

)

st

− δ
βt ṫ
αsṡ N̄

i∂μM̄i =: δṫ
ṡ

(
Xr

μ 032
032 Xl

μ

)

st

, (4.19)

where ∇r,l
μ := ∂μ + ωr,l

μ are defined by the explicit form of the spin connection

ωμ = −4�b
μaγ

aγb =
( −4�b

μaσ
aσ̃b =: ωr 02
02 −4�b

μaσ̃
aσb =: ωl

)

st

. (4.20)

**{J , γ μ} = i(γ 0γ 2γ̄ μ + γ μγ 0γ 2)cc = 0 because γ̄ μ = −γ μ for μ = 1, 3, γ̄ μ = γ μ for μ = 0, 2.
That J commutes with the spin covariant derivative ∇S

μ is a classical result, see e.g. [39, Prop. 4.18].
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with �b
μa the Christoffel symbols in the orthonormal basis.

Lemma 4.2 DX is selfadjoint, and called twisted-covariant free Dirac operator, if
and only if for any μ = 0, 1, 2, 3 one has

ρ(Xμ) = −X†
μ. (4.21)

Proof By (4.19),

γ μXμ =
(

032 σμXl
μ

σ̃μXr
μ 032

)

st

, (γ μXμ)† =
(

032 σμ(Xr
μ)†

σ̃ μ(Xl
μ)† 032

)

st

= γ μρ(X†
μ), (4.22)

where we used that Xμ commutes with the σ ’s matrices and (σμ)† = σ̃ μ. Therefore
γ μXμ is selfadjoint iff

σμ(Xr
μ)† = σμXl

μ. (4.23)

Since Tr σ̄ νσμ = 2δμ
ν and both Xr

μ and Xl
μ are proportional to δṫ

ṡ , the partial trace
on the ṡ ṫ indices of the above equation, where both side have been multiplied by σ̄ λ,
yields (Xr

μ)† = Xl
μ for any μ, that is

X†
μ = ρ(Xμ). (4.24)

The lemma is obtained noticing that by Kato-Rellich theorem DX is selfadjoint if
and only if iγ μXμ is selfadjoint, that is γ μXμ is anti-selfadjoint.

4.3 Twisted-covariant Majorana-Dirac Operator Dσ

Twisted fluctuations of the Majorana-Dirac operatorDM are parametrized by a scalar
field σ . To show that, we begin by a short calculation in tensorial notations.

Lemma 4.3 For A = (Q, M) ∈ B with components cr , cl ∈ C as in (4.8), one has

[DM, A]ρ =
(

02 kR(cr − cl)S
k̄R(cr − cl)S ′ 02

)

CD

δṫ
ṡ �

βJ
αI (4.25)

where

S =
(
1 0
0 0

)

st

, S ′ =
(
0 0
0 1

)

st

. (4.26)
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Proof Computing explicitly (3.40) with notations (3.45) and omitting kR and k̄R

yields

DMM−ρ(Q)DM = (�M)ṫIṡJ(η�)tβsα − (�δ)ṫIṡJ (ρ(Q)η�)tβsα (4.27)

=
(

m 04

04 m

)

ṡ ṫ

⊗
(

�I
J 04

04 −�I
J

)

st

−
(

�
β
α 04

04 �
β
α

)

ṡ ṫ

⊗
(

cl
R 04

04 −cr
R

)

st

=

⎛

⎜⎜⎜⎜
⎝

(
(m − cl

R) �
βJ
αI 0

0 (m − cl
R) �

βJ
αI

)

ṡ ṫ

032

032

(
−(m − cr

R) �
βJ
αI 0

0 −(m − cr
R) �

βJ
αI

)

ṡ ṫ

⎞

⎟⎟⎟⎟
⎠

st

DM
†Q−MD†

ν = (�δ)ṫIṡJ (η�Q)tβsα − (�M)ṫIṡJ(η�)tβsα (4.28)

=
(

�
β
α 04

04 �
β
α

)

ṡ ṫ

⊗
(

c̄r
R 04

04 −k̄Rcl
R

)

st

−
(

m 04

04 m

)

ṡ ṫ

⊗
(

�̄I
J 04

04 −�̄I
J

)

st

=

⎛

⎜⎜⎜⎜
⎝

(
(̄cr

R − m) �
βJ
αI 0

0 R̄(cr
R − m) �

βJ
αI

)

ṡ ṫ

032

032

(
−(̄cl

R − m) �
βJ
αI 0

0 −(̄cl
R − m) �

βJ
αI

)

ṡ ṫ

⎞

⎟⎟⎟⎟
⎠

st

.

Identifying cr
R with m following (3.51) yields the result, where we drop the index R

to match notation (4.8).

Proposition 4.4 The selfadjoint twisted fluctuation (4.5) of the Majorana-Dirac
operator DM = γ 5DR by C∞(M) ⊗ B, called twisted-covariant Majorana-Dirac
operator, is

Dσ = σγ 5DR (4.29)

where

σ = (I + γ 5φ) (4.30)

with φ a real scalar field.

Proof Let Bi = (Ri, Ni) as in (4.9). From lemma 4.3 one gets

AM = Bi[DM, Ai]ρ = φ

(
02 kR S

k̄R S ′ 02

)

CD

δṫ
ṡ �

Jβ
Iα (4.31)

where

φ := dir (cr
i − cl

i). (4.32)

One has J (Sδṫ
ṡ )J = −Sδṫ

ṡ and J (S ′δṫ
ṡ )J = −S ′δṫ

ṡ . Hence

JAMJ−1 = −JAMJ = φ̄

(
02 kRS ′

k̄RS 02

)

CD

δṫ
ṡ �

Jβ
Iα (4.33)
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so that

DM +AM +JAMJ−1 =
(

02 kR (ηt
s + φ S + φ̄ S ′)

k̄R (ηt
s + φ S ′ + φ̄S) 02

)

CD

δṫ
ṡ �

Jβ
Iα .

(4.34)
It is selfadjoint if and only if φ = φ̄. Then

Dσ := DM + AM + JAMJ−1 =
(

04 kR(γ 5 + φI4)

k̄R(γ 5 + φI4) 04

)

CD

�
Jβ
Iα , (4.35)

= (γ 5 + φI)DR. (4.36)

Factorizing by γ 5, one gets the result.

Propositions 4.1 and 4.4 prove the second statement of theorem 1.1. The field σ in
(4.30) is slightly different from the one obtained in [23] by a non-twisted fluctuation
of DM by Asm ⊗ C∞(M), namely

σ = (1 + φ)I. (4.37)

We comment on that in the conclusion.

5 Breaking of the Grand Symmetry to the Standard Model

We prove the third and fourth point of theorem 1.1 by computing the spectral action
for the twisted-covariant Dirac operator

D
A

= DX + Dσ , (5.1)

where DX and Dσ have been obtained by twisted fluctuation of /D and DM in (4.10)
and (4.29). More precisely, we show that the potential part of this action is minimum
when the Dirac operator /D + DM of the twisted spectral triple is fluctuated by a
subalgebra of C∞(M) ⊗B which is invariant under the automorphism ρ. The maxi-
mal such sub-algebra is precisely the algebra C∞(M) ⊗Asm of the standard model.
Indeed by (3.24) an element (Q, M) of B is invariant by the automorphism ρ if and
only if

ρ(Q) = Q, (5.2)

which meansHr
R = H

l
R andCr

L = C
l
L, that is (Q, M) ∈ Asm.

We begin by some recalls on the spectral action, then we establish the generalized
Lichnerowicz formula for D

A
and finally we study the potential for the vector field,

the scalar field, and their interaction.

5.1 Spectral Action

A striking application of noncommutative geometry to physics is to give a gravita-
tional interpretation of the standard model [14]. By this, one intends that the bosonic
part of the SM Lagrangian is deduced from an action which is purely geometric, that
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is which depends only on the spectrum of the covariant Dirac operator DA (2.12) of
the almost commutative geometry of the standard model. The most obvious way to
define such an action consists in counting the eigenvalues lower than a given energy
scale �. This is the spectral action [6]

S = Tr f

(
D2

A

�2

)

(5.3)

where f is a positive cutoff function, usually the (smoothened) characteristic function
on the interval [0, 1]. It has an asymptotic expansion in power series of �,

∑

n�0

f4−n �4−n an(D
2
A/�2) (5.4)

where the fn are the momenta of f and the an the Seeley-de Witt coefficients which
are nonzero only for n even. To compute these coefficients, one usually starts with
D2

A written as an elliptic operator of Laplacian type,

D2
A = −(gμν ∇S

μ ∇S
ν + αμ ∇S

μ + β), (5.5)

and introduces the covariant derivative

∇μ := ∇S
μ + ωμ (5.6)

associated with the connection 1-form

ωμ := 1

2
gμν

(
αν + gσρ�ν

σρ

)
. (5.7)

This yields the generalized Lichnerowicz formula

D2
A = −∇μ∇μ − E (5.8)

where
E := β − gμν

(
∇S

μ ων + ωμων − �ρ
μνωρ

)
. (5.9)

The coefficients an are then computed by usual technics of heat kernel. The first ones
are [30, 40]

a0 = 1

16π2

∫
dx4√g Tr (Id), (5.10)

a2 = 1

16π2

∫
dx4√g Tr

(
−R

6
+ E

)

a4 = 1

16π2

1

360

∫
dx4√g Tr (−12∇μ∇μR + 5R2 − 2RμνR

μν (5.11)

+2RμνσρRμνσρ − 60RE + 180E2 + 60∇μ∇μE + 30�μν�
μν) (5.12)

where Rμν is the Ricci tensor, −R the scalar curvature and �μν the curvature of the
connection ωμ. Applied to the spectral triple (2.3) of the standard model, fluctuated
according to (2.12), the expansion (5.4) yields the bosonic part of Lagrangian of the
standard model - including the Higgs - minimally coupled with gravity [9, Sect. 4.1].
For the fermionic action and how it is related to the spectral action see [1, 2] and for
a complete and pedagogical treatment of the subject, see the recent book [39].
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Here we compute the asymptotic expansion (5.4) for the twisted covariant Dirac
operator DA (5.1). For simplicity we restrict to the flat case gμν = δμν , so that (5.6),
(5.7) and (5.9) reduce to

∇μ = ∂μ + ωμ , ωμ = 1

2
gμνα

ν , E = β − gμν
(
∂μων + ωμων

)
, (5.13)

that is

∇μ = ∂μ + 1

2
αμ, E = β − 1

4
α · α − 1

2
∂μαμ (5.14)

where α ·α := gμνα
μαν denotes the inner product defined by the Riemannian metric.

Furthermore, in all this section, we consider fluctuations such that DX and Dσ are
selfadjoint, meaning Xμ satisfies lemma 4.2 and φ is a real field.

5.2 Lichnerowicz Formula for the Twisted-covariant Dirac Operator

We define
/X := −iγ μXμ, /ρ(X) := −iγ μρ(Xμ). (5.15)

These are selfadjoint operators since by (4.13) and lemma 4.2 one has

/X
† = i X†

μγ μ = −iρ(Xμ)γ μ = −iγ μXμ = /X, (5.16)

and similarly for /ρ(X). The same is true for

/̄X := −iγ μX̄μ, /ρ(X̄) := −iγ μρ(X̄μ). (5.17)

Similar equations hold for the field σ , by extending the automorphism ρ to B(H) as
the conjugate action of the unitary operator that exchanges the indices l and r in the
basis of H. Doing so, one gets ρ(γ 5) = −γ 5, that is

ρ(σ ) = I − γ 5φ. (5.18)

Thus σ twisted-commutes with γ μ - as Xμ in (4.13) - for the anti-commutativity of
γ μ and γ 5 yields

γ μσ = ρ(σ )γ μ, γ μρ(σ ) = σγ μ. (5.19)

The standard model algebra Asm is the subalgebra of B invariant under the twist.
To measure how far the grand symmetry is from the SM, we introduce as physical
degrees of freedom the fields

�(X)μ := Xμ − ρ(Xμ), �(σ ) := (σ − ρ(σ ))DR. (5.20)

Both are selfadjoint, �(X)μ by lemma 4.2, �(σ ) because σ and DR are selfadjoint
and commute. Moreover, by (4.13) and (5.19) one has

{
γ μ, �(X)ν

} = {
γ μ, �(σ )

} = 0, (5.21)

while γ 5 commuting with Xμ and σ guarantee that
[
γ 5, �(X)ν

]
=

[
γ 5, �(σ )

]
= 0. (5.22)

We write

ρ(Xμ) :=
(

/ρ(X) 064
064 −/ρ(X̄)

)

CD

, �(X)μ := Xμ − ρ(Xμ), (5.23)
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and in agreement with (4.10) and (4.11) written as

/X = −iγ μ
Xμ =

(
/X 064
064 − /̄X

)

CD

, (5.24)

we also define the selfadjoint operators

/ρ(X) := −iγ μρ(Xμ), /�(X) := /X − /ρ(X). (5.25)

Finally, we let
Dμ := ∂μ + ad Xμ (5.26)

denote the covariant derivative associated with the connection Xμ.

Proposition 5.1 The square of the twisted-covariant Dirac operator (5.1) is

D2
A

= − (
γ μγ ν∂μ∂ν + (α

μ
X + αμ

σ )∂μ + βX + βXσ + βσ

)
(5.27)

where

α
μ
X := i

{
/X, γ μ

}
, βX = iγ μ(∂μ /X) − /X/X, (5.28)

while
αμ

σ := iγ μγ 5�(σ ), βσ := −σ 2D2
R, (5.29)

and
βXσ := iγ μγ 5 (

Dμ(σDR) + �(σ )Xμ

)
. (5.30)

Proof One has D2
A

= D2
X + D2

σ + {DX, Dσ } . By (4.10), the first term is

D2
X = −γ μ(∂μ + Xμ) γ ν(∂ν + Xν) (5.31)

= −γ μγ ν∂μ∂ν − i
{
/X, γ μ

}
∂μ − iγ μ(∂μ /X) + /X/X (5.32)

= − (
γ μγ ν∂μ∂ν + α

μ
X∂μ + βX

)
. (5.33)

By propositions 4.1 one has

{DX, Dσ } = −i
{
γ μ∂μ, Dσ

} − i
{
γ μ

Xμ, Dσ

}
. (5.34)

From proposition 4.4, using (5.19) and
{
γ 5, γ μ

} = [γ 5, σ ] = 0, one gets

{
γ μ∂μ,Dσ

} =
{
γ μ∂μ, γ 5σDR

}
= γ μγ 5∂μσDR − γ μγ 5ρ(σ )DR ∂μ, (5.35)

= γ μγ 5 (
∂μσDR

) + γ μγ 5�(σ )DR ∂μ. (5.36)

Similarly, using that γ 5 commutes with Xμ, hence with Xμ, one has

{
γ μ

Xμ,Dσ

} =
{
γ μ

Xμ, σγ 5DR

}
= γ μ

Xμσγ 5DR + σγ 5DRγ μ
Xμ, (5.37)

= γ μγ 5[Xμ, σDR]ρ = γ μγ 5 ([Xμ, σDR] + �(σ )Xμ

)
. (5.38)

Summing (5.38) and (5.36), and using the definition (5.26) ofDμ, one rewrites (5.34)
as {DX, Dσ } = −(α

μ
σ ∂μ + βXσ ). Finally from (4.29) one has D2

σ = −βσ .
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Remarkably the contributions α
μ
σ of the anti-commutator of DX and Dσ to the

order one part of D2
A
depends on σ only, and not on X. The same is true for βσ .

The contributions α
μ
X and βX of DX depend on X only, and not on σ . Thus in the

Lichnerowicz formula for D2
A
, that is

D2
A

= −∇μ∇μ − E (5.39)

with

∇μ = ∂μ + 1

2
gμν(α

ν
X + αν

σ ), (5.40)

the bounded endormorphism E is the sum

E = EX + Eσ + EXσ (5.41)

of three terms:

EX := βX − 1

4
αX · αX − 1

2
∂μα

μ
X, (5.42)

which depends only on X,

Eσ := βσ − 1

4
ασ · ασ − 1

2
∂μασ , (5.43)

that depends only on σ , and an interaction term

EXσ := βXσ − 1

4
(αX · ασ + ασ · αX) . (5.44)

5.3 Deviation from the Non-twisted Case

We write the endomorphisms EX, Eσ and EXσ that appear in the Lichnerowicz for-
mula (5.39) of the twisted-covariant Dirac operator DA in terms of the physical
degrees of freedom �(σ ), �(X)μ defined in (5.20). This will permit to measure how
far the twisted spectral triple (4.1) is from the spectral triple of the SM, basing our
measure on the spectral action. Let us start with a technical lemma.

Lemma 5.2 One has

αX · αX = 2
{
/ρ(X), /X

} − 4/X/X + 4X · ρ(X), (5.45)

αX · ασ + ασ · αX = −2iγ μγ 5
{
2Xμ − �(X)μ, �(σ )

}
. (5.46)

Proof One has

α
μ
X · αν

X = −(/Xγ μ + γ μ /X)(/Xγ ν + γ ν /X) (5.47)

= − (
/Xγ μ /Xγ ν + /Xγ μγ ν /X + γ μ /X/Xγ ν + γ μ /Xγ ν /X

)
. (5.48)

The contraction of the second term with the metric is easily computed using
gμνγ

μγ ν = 4I:
gμν /Xγ μγ ν /X = 4/X/X. (5.49)

For the remaining terms, (4.13) written as

Xμγ ν = γ νρ(Xμ) (5.50)
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together with γ μγ ν = 2gμν
I − γ νγ μ yields

/Xγ μ = −2iρ(Xμ) − γ μ
/ρ(X), γ μ /X = −2iXμ − /ρ(X)γ μ. (5.51)

Therefore

gμν /Xγ μ /Xγ ν = −gμν /Xγ μ
(
2iρ(Xν) + γ ν

/ρ(X)
) = −2/X /ρ(X);

gμνγ
μ /Xγ ν /X = −gμν

(
2iXμ + /ρ(X)γ μ

)
γ ν /X = −2/ρ(X)/X; (5.52)

gμνγ
μ /X/Xγ ν = gμν

(
2iXμ + /ρ(X)γ μ

) (
2iρ(Xν) + γ ν

/ρ(X)
)
,

= −4X · ρ(X) − 2/ρ(X)/ρ(X) − 2/ρ(X)/ρ(X) + 4/ρ(X)/ρ(X) = −4X · ρ(X).

Hence the contraction of (5.48) by gμν yields (5.45).
To obtain (5.46), one starts with (5.28) and (5.29) together with (5.21). This gives

α
μ
Xαν

Xσ + α
μ
Xσ αν

X := − {
/X, γ μ

}
γ νγ 5�(σ ) − γ νγ 5�(σ )

{
/X, γ μ

}
, (5.53)

= − {
/X, γ μ

}
γ νγ 5�(σ ) − γ 5�(σ )γ ν

{
/X, γ μ

}
. (5.54)

By (5.51) one has

gμν

{
/X, γ μ

}
γ ν = −gμν

(
2iρ(Xμ) + γ μ

/ρ(X) + 2iXμ + /ρ(X)γ μ
)
γ ν, (5.55)

= 2/X − 4/X + 2/ρ(X) − 4/ρ(X) = −4/X + 2 /�(X), (5.56)

and similarly gμν γ μ
{
/X, γ ν

} = −4/X + 2 /�(X). Therefore (5.54) gives

αX · ασ + ασ · αX = 2
{
2/X − /�(X), γ 5�(σ )

}
= 2

{
−iγ μ(2Xμ − �(X)μ), γ 5�(σ )

}
, (5.57)

= −2iγ μγ 5 {
2Xμ − �(X)μ,�(σ )

}

where in the last line we use that γ μ anticommutes with both γ 5 and �(σ ), while γ 5

commutes with both Xμ and �(X)μ.

Proposition 5.3 One has

EX = 1

2
γ μγ ν

(
Fμν + Dν �(Xμ) + �(X)μ�(X)ν

)
, (5.58)

EXσ = iγ μγ 5
(

Dμ(σDR) − 1

2
[Xμ,�(σ )] + 1

2

{
3Xμ − �(X)μ,�(σ )

})
(5.59)

Eσ = �(σ )2 − σ 2D2
R − i

2
γ μγ 5∂μ�(σ ). (5.60)

where

Fμν := (∂μXν) − (∂νXμ) + [Xμ,Xν] (5.61)

is the field strength of Xμ
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Proof By (5.42), (5.28) and lemma 5.2 one gets

EX = i

2

[
γ μ, (∂μ /X)

] − 1

2

{
/ρ(X), /X

} − X · ρ(X). (5.62)

One further computes, writing �μ for �(X)μ,

− 1

2

{
/ρ(X), /X

} − X · ρ(X) = 1

2

(
γ μρ

(
Xμ

)
γ ν

Xν + γ μ
Xμγ νρ (Xν) − (

γ μγ ν + γ νγ μ
)
Xμρ (Xν)

)
,

= 1

2
γ μγ ν

(
Xμ�ν + ρ(Xμ)ρ(Xν) − Xνρ(Xμ)

)
,

= 1

2
γ μγ ν

(
Xμ�ν + (Xμ − �μ)(Xν − �ν) − Xν(Xμ − �μ)

)
,

= 1

2
γ μγ ν

([Xμ,Xν ] + �μ�ν + [Xν ,�μ]) . (5.63)

As well,

i

2

[
γ μ, (∂μ /X)

] = γ μ(∂μγ ν
Xν) − (∂μγ ν

Xν)γ
μ,

= γ μγ ν
(
∂μXν − ∂νρ(Xμ)

) = γ μγ ν
(
∂μXν − ∂νXμ + ∂ν�μ

)
. (5.64)

The sum of (5.64) and (5.63) gives (5.58).
From (5.44), (5.29) and lemma 5.2 one obtains

EXσ = iγ μγ 5 (
Dμ(σDR) + �(σ )Xμ

) + iγ μγ 5
{
Xμ − 1

2
�(X)μ, �(σ )

}
. (5.65)

(5.59) then follows writing

�(σ )Xμ = 1

2

{
Xμ, �(σ )

} − 1

2

[
Xμ, �(σ )

]
(5.66)

To prove (5.60) one uses {�(σ ), γ ν} = [
�(σ ), γ 5

] = 0 to compute

gμνα
μ
σ αν

σ = −gμνγ
μγ 5�(σ )γ νγ 5�(σ ) = −gμνγ

μγ ν�2(σ ) = −4�2(σ ).

(5.67)
Thus βσ − 1

4ασ ·ασ = �2(σ )−σ 2D2
R and (5.60) follows from (5.43) and (5.29).

In order to interpret proposition 5.3, it is instructive to confront with the non-
twisted case. When the finite dimensional algebra AF of an almost-commutative
geometry acts trivially on spinors, the full covariant Dirac operator is

DA = DY + γ 5 ⊗ DR, (5.68)

where DY := −iγ μ∇Y
μ is the covariant Dirac operator of a U(AF )-bundle over the

spin bundle of M, associated with the covariant derivative ∇Y
μ := ∇S

μ + Yμ defined

by a connection one-form Yμ = δt ṫ
sṡ Y

IβD
JαC whose action on spinor indices is trivial.

One gets

D2
A = D2

Y + D2
R +

{
/DY , γ 5 ⊗ DR

}
. (5.69)
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Because

[γ μ,Yν] = 0, (5.70)

one has D2
Y = −γ μγ ν∇Y

μ∇Y
ν . Using γ μγ ν = gμν

I+ 1
2γ

μγ ν − 1
2γ

νγ μ, the square of
DY is rewritten as the sum of the Laplacian and the field strength Fμν = [

Yμ,Yν

]
,

namely

D2
Y = −gμν∇Y

μ∇Y
ν − 1

2
γ μγ νFμν. (5.71)

The second term in (5.69) is D2
R = |kR|2I and the third is −iγ μγ 5[Yμ, DR].

Therefore the Lichnerowicz formula for the covariant non-twisted Dirac operator is

D2
A = −gμν∇Y

μ∇Y
ν − 1

2
γ μγ νFμν + |kR|2I− iγ μγ 5[Yμ, DR]. (5.72)

In the twisted case, summing up the terms in Prop. 5.3 one obtains from (5.39)

D2
A

= −gμν∇μ∇ν − 1

2
γ μγ ν

(
Fμν + Dν �(X)μ + �(X)μ�(Xν)

)
(5.73)

+ σ 2D2
R − �(σ )2 − iγ μγ 5

(
Dμ(σDR) − 1

2
Dμ�(σ )

)
(5.74)

− i

2
γ μγ 5 {

3Xμ − �(X)μ, �(σ )
}
. (5.75)

There are several important differences with the non-twisted case:

• In (5.73), the covariant derivative of �(X)ν and its potential �(X)μ�(X)ν can
be traced back to the Lichnerowicz formula for the twisted-covariant free Dirac
operator,

D2
X = −gμν∇X

μ ∇X
ν − EX where ∇X

μ := ∇S
μ + 1

2
αX

μ . (5.76)

These new terms arise because in the twisted case (5.70) no longer holds, instead
one has (4.13), that is

[γ μ, Xν]ρ = [Xν, γ
μ]ρ = 0. (5.77)

• The appearance of the covariant derivative of σDR in (5.74) is not surprising. It is
already there in (5.72), where the last term is nothing but the covariant derivative
of σDR for σ the constant field 1. Similarly |kR|2 in (5.72) is the potential term
σ 2D2

R in (5.74) for σ = 1.
• In (5.74) the scalar �(σ ) is described by a dynamical term −Dμ�(σ ) and a

potential −�(σ )2, whose sign are opposite to the similar terms for σ .
• The interaction between Xμ and �(σ ) is not totally absorbed in the covariant

derivative Dμ. There remains in (5.75) an potential of interaction
{
3Xμ, �(σ )

}
.

As well, there is a potential of interaction
{
�(X)μ, �(σ )

}
between the extra

scalar field and the additional vector field.

One may be puzzled by the presence of two distinct covariant derivatives in the
Lichnerowicz formula for D

A
: ∇μ in the Laplacian and Dμ that encodes the dynam-

ics of the fields �(X)μ and �(σ ). In the non-twisted case this is the same covariant
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derivative ∇Y
μ which plays both roles. However, because we switch gravitation off††

and consider the flat case, in the heat kernel expansion of the spectral action the
covariant derivative ∇μ only appears through the term ∇μ∇μE (in a4). The latter is
interpreted as a boundary term (see [16, Rem.1.155]) and we shall not take it into
account in this paper. Doing so, only one covariant derivative remains, Dμ. This
makes sense from our perspective: the fields �(X)μ and �(σ ) are viewed as “exci-
tations” generated by the twist, living on a background gauge theory with connection
1-form Xμ; so their dynamics is encoded by Dμ, not by ∇μ.

The remaining Seeley-de Witt coefficients are a0, which is not affected by the
twist and is interpreted as the cosmological constant (which recently turns out to be
quantized, see [10]) and the integral of the trace of E (in a2) and E2 (in a4) for E

given in (5.41). In other terms the potential is the part of

V := �2f2 TrE + 1

2
f0TrE

2 (5.78)

that does not depend on the covariant derivative Dμ. We analyze this potential below,
dividing it into three pieces: the potential V (X) of the vector field, V (σ ) of the scalar
field, and a potential of interaction V (X, σ ).

5.4 The Vector Field and the Breaking to the Standard Model

The potential V (X) is the part of V that depends on �(X)μ and not on its derivative,
that is

V (X) = �2f2 TrE
0
X + 1

2
f0Tr (E

0
X)2, (5.79)

where E0
X := 1

2γ
μγ ν�(X)μ�(X)ν is read in (5.58). One rewrites it as

E0
X = 1

2
/�
2
(X), (5.80)

thanks to (5.21) which guarantees that γ ν anti-commutes with �(X)μ for all μ.

Proposition 5.4 The potential V (X) is never negative and vanishes iff �(X)μ = 0
for any μ.

Proof Since /�(X) is selfadjoint, E0
X and (E0

X)2 are positive. Thus their trace is never
negative, and vanishes if and only if E0

X = (E0
X)2 = 0. This condition is equivalent

to
�(X)μ = 0 ∀μ. (5.81)

Indeed, since
{
γ ν, �(X)μ

} = 0 one has

Tr(γ μγ ν�(X)μ�(X)ν) = Tr(γ μ�(X)μ�(X)νγ
ν) = Tr(γ νγ μ�(X)μ�(X)ν)

(5.82)

†† Our aim in this paper is to understand how the twist allows to generate the field σ . That is why for
simplicity we consider the flat case. The curved case, which should be similar, will be studied elsewhere.
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where the last equality comes from the tracial property. Therefore

TrE0
X = 1

4
(Tr(γ μγ ν�(X)μ�(X)ν) + Tr(γ νγ μ�(X)μ�(X)ν)), (5.83)

= 1

2
gμν Tr(�(X)μ�(X)ν) = 1

2

∑

μ

Tr
(
�2(X)μ

)
. (5.84)

Since �(X)μ is selfadjoint, �2(X)μ is positive. Its trace is never negative and van-
ishes if and only if �(X)μ is zero. The same is true for the sum in (5.84), meaning
that TrE0

X - hence E0
X - vanishes if and only if �(X)μ = 0 for all μ.

The proposition is obtained noticing that f0 and f2 are positive numbers.

Condition (5.81) is equivalent to �(X)μ = 0 for any μ. To obtain the breaking
to the standard model, one needs to check that the vanishing of �(X)μ, that is the
invariance of Xμ under the twist, implies the invariance of its components Ri, Qi .

Lemma 5.5 The biggest unital subalgebra of B ⊗ C∞(M) for which any combina-
tion

Xμ = δI
J ρ(Ri) ∂μQi − δβ

α N̄ i∂μM̄i (5.85)

is invariant under the twist is ASM ⊗ C∞(M).

Proof Let G be any subalgebra of B⊗C∞(M) such that any linear combination Xμ

with (Ri, Ni) and (Qi, Mi) in G is invariant under the automorphism ρ. This means
in particular that for X = R∂μQ−Q∂μR with R, Q arbitrary elements in G, one has

ρ(Xμ) − Xμ = ρ(R)∂μQ − R∂μρ(Q) = 0. (5.86)

Taking R = I, this implies

∂μ(Q − ρ(Q)) = 0. (5.87)

So any element of G is (Q, M) where

Q =
(

Qr
r 0
0 Qr

r + c

)

st

(5.88)

with c a constant. For G to be an algebra, (5.88) must be true also for Q2, that is there
must exists a constant c′ such that

Q2 =
(

(Qr
r)

2 0
0 (Qr

r)
2 + c2 + 2cQr

r

)

st

=
(

(Qr
r)

2 0
0 (Qr

r)
2 + c′2

)

st

. (5.89)

This is possible if and only if c = c′ = 0. Thus ρ(Q) = Q for any (Q, M) ∈ G.
The proposition follows from the identification of Asm as the biggest ρ-invariant
sub-algebra of B.

This proves the third statement of theorem 1.1, namely the breaking of grand sym-
metry to the standard model is dynamical, and induced by the minimal of the spectral
action of the twisted-covariant free Dirac operator DX.
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5.5 The Scalar Field

The part of the potential containing only the extra scalar field and not the vector field
is

V (σ ) := �2f2 TrE
0
σ + 1

2
f0 Tr (E

0
σ )2, (5.90)

where
E0

σ := �2(σ ) − σ 2D2
R (5.91)

is read in (5.60). Compared to V (X) which contains only �(X)μ and not Xμ, the
potential V (σ ) contains both σ and�(σ ). This gives two possibilites for minimizing:

Either one considers only �(σ ) as degree of freedom. The potential then reduces
to

V (�(σ )) := �2 f2 Tr(�
2(σ )) + 1

2
f0 Tr(�

4(σ )). (5.92)

Since�(σ ) is selfadjoint, this potential is positive and vanishes if and only if�(σ ) =
0. Going back to the the definition (5.20) of �(σ ), this means

σ = ρ(σ ) = I. (5.93)

Or one may prefer to take into account the whole potential (5.90), including the
term in σ . In this case it is easier to take as degree of freedom the field φ.

Lemma 5.6 The potential of the scalar field is

V (σ ) = C4 φ4 + C2 φ2 + C0 (5.94)

where C4 := 36|kR|4f0, C2 := 8|kR|2(3�2f2 − |kR|2f0), C0 :=
8|kR|2

( |kR |2
2 f0 − �2f2

)
.

Proof By (4.30), (5.18) and (5.20) one has

E0
σ =

(
(3φ2 − 1)I4 − 2γ 5φ

)
D2

R. (5.95)

From (3.33),
D2

R = |kR|2 δDC �
Iβ
Jα (5.96)

so that γ 5D2
R has zero trace. Hence

TrE0
σ = (3φ2 − 1) Tr

(
I4 ⊗ D2

R

)
= 8|kR|2 (3φ2 − 1). (5.97)

Squaring (5.95) one gets

(E0
σ )2 =

(
(3φ2 − 1)2I4 + 4φ2

I4 − 2γ 5φ(3φ2 − 1)
)

D4
R (5.98)

whose trace is
Tr (E0

σ )2 = 8|kR|4
(
(3φ2 − 1)2 + 4φ2

)
. (5.99)

The result follows from (5.90).

At a large unification scale� it is reasonable to assume that (see e.g. [39, §11.3.2])

3�2f2 � f0|kR|2. (5.100)
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Together with the positivity of f0 this shows that V (σ ) is minimum when φ = 0, and
one is led to the same conclusion (5.93) obtained by minimizing V (�(σ )).

The invariance (5.93) of σ under the twist implies that Dσ = DM , so that one is
back to the Dirac operator of the standard model. However this does not imply the
reduction of the algebra to the one of the standard model. Indeed, from (4.32) the
vanishing of φ means cr

R = cl
R , so that the bigger subalgebra of C∞(M) ⊗ B for

which any fluctuation yields a ρ-invariant σ is

C∞(M) ⊗ (Hl
L ⊕ H

r
L ⊕ C ⊕ M3(C)), (5.101)

which contains, but is different from C∞(M) ⊗ Asm.

5.6 Potential of Interaction

We now consider the remaining part of the potential, that is the interaction term
V (X, σ ) between the scalar and the vector fields. Writing V (X, σ ) explicitly in
(5.106) below, it will become clear it is easier to minimize it together with the
potential V (X), which will be done in prop. 5.9.

Let

E0
Xσ := i

2
γ μγ 5 {

Hμ, �(σ )
}

with Hμ := 3Xμ − �(X)μ (5.102)

denote the part of EXσ in (5.59) that does not depend on the covariant derivative
of the fields. The potential of interaction is made of all the terms in the trace of
E0

X + E0
σ + E0

Xσ and its square that depend on both X and σ .

Lemma 5.7 E0
Xσ is selfadjoint and traceless.

Proof Since γ μ anti-commutes with �(σ ) and γ 5, one has

E0
Xσ = 1

2
γ 5 [

/H, �(σ )
]
. (5.103)

Therefore

TrE0
Xσ = 1

2
Tr γ 5 [

/H, �(σ )
] = −1

2
Tr

[
/H, �(σ )

]
γ 5 = −1

2
Tr γ 5 [

/H, �(σ )
]

(5.104)

where the first equality come from
{
γ 5, /H

} = [
γ 5, �(σ )

] = 0 and the second from
the tracial property. Thus TrE0

Xσ = −TrE0
Xσ ,and so vanishes. The selfadjointness

follows from the commutation properties of γ 5 and the selfadjointness of /H and
�(σ ).

Furthermore EX and Eσ depend solely on X and σ , so the potential of interaction
reduces to the trace of the part of (E0

X +E0
σ +E0

Xσ )2 that contains products of X and
σ , namely

E2
Xσ +

{
E0

X, E0
σ

}
+

{
E0

X, E0
Xσ

}
+

{
E0

σ , E0
Xσ

}
. (5.105)
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The last two terms are traceless because E0
X and E0

σ are diagonal in the CD

indices (see (5.80, 5.24, 5.25) and (5.95, 5.96)) while E0
Xσ is off-diagonal (being

the commutator of a diagonal and an off-diagonal matrice). By the tracial property
Tr

{
E0

X, E0
σ

} = 2 TrE0
XE0

σ , hence the potential of interaction is

V (X, σ ) := 1

2
f0 Tr (E

0
Xσ )2 + f0 TrE

0
XE0

σ . (5.106)

Lemma 5.8 One has

TrE0
XE0

σ = 1

2
(3φ2 − 1)Tr

(
/�
2
(X)D2

R

)
. (5.107)

Proof By (5.80) and (5.95) one has

E0
XE0

σ = 1

2
(3φ2 − 1) /�

2
(X)D2

R − φ /�
2
(X)γ 5D2

R. (5.108)

The result amounts to show that the second term has vanishing trace. To see it, let use
(5.23), (5.24) and (5.96) to write

/�
2
(X)γ 5D2

R = |kR|2
(

/�
2
(X) γ 5 �

βJ
αI 064

064 − /�
2
(X̄) γ 5 �

βJ
αI

)

CD

. (5.109)

One has

�(X)μ = δṫ
ṡ

(
Xl

μ − Xr
μ 032

032 Xr
μ − Xl

μ

)

st

=: δṫ
ṡ

(
�μ 032
032 −�μ

)

st

, (5.110)

so that

/�(X) = −i

(
032 −σμ�μ

σ̄μ�μ 032

)

st

, /�
2
(X) =

(
σμσ̃ ν�ν�μ 032

032 σ̃ μσ ν�μ�ν

)

st

.

(5.111)
Hence

Tr
(

/�
2
(X) γ 5 �

βJ
αI

)
= Tr

(
σμσ̃ νXl

μXr
ν 032

032 −σ̃ μσ νXr
μXl

ν

)

st

(5.112)

= Tr
(
σμσ̃ νXl

μXr
ν

)
− Tr

(
σ̃ μσ νXr

μXl
ν

)
= Tr

(
σμσ̃ νXl

μXr
ν

)
− Tr

(
σ̃ νσμXr

νX
l
μ

)

which vanishes by the trace property and the commutation of [Xl
μ, σμ] = [Xl

μ, σ ν] =
0. The same is true for Tr

(
/�
2
(X̄) γ 5 �

βJ
αI

)
, so that (5.109) has zero trace.

By lemma 5.7, (E0
Xσ )2 is positive, hence its trace is never negative and minimal

whenE0
Xσ is zero. However TrE0

XE0
Xσ is not necessarily bounded from below, which

makes difficult to minimize the potential of interaction alone. In fact it is easier to
minimize it together with the potential V (X) of the vector field.
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Proposition 5.9 The potential

V ′(X, σ ) := V (X) + V (X, σ ) (5.113)

is never negative and vanishes if and only if �(X)μ = 0 for all μ.

Proof We write /� for /�(X). By summing up (5.79) and (5.106) one gets

V ′(X, σ ) = �2f2

2
Tr /�

2 + f0

8
Tr /�

4 + f0

2
Tr (EXσ )2 + f0

2
(3φ2 − 1)Tr ( /�

2
D2

R), (5.114)

= Tr

(
�2f2

2
/�
2 − f0

2
/�
2
D2

R

)

+ f0

8
Tr /�

4 + f0

2
Tr (EXσ )2 + 3f0

4
φ2Tr ( /�

2
D2

R). (5.115)

Let p := δṫ ṡD
stC �

Iβ
Jα denote the projection on the non-zero entries of D2

R , so that
δṡṫ
st D

2
R = |kR|2p. The first term in (5.115) is

W(X, σ ) :=
(

�2f2

2
− 1

2
f0|kR|2

)
Tr ( /�

2
p) + �2f2

2
Tr ( /�

2
(1 − p)). (5.116)

Because /� is selfadjoint,

Tr ( /�
2
p) = Tr(p /�

2
p) = Tr

(
(p /�)(p /�)†

)
(5.117)

is positive. The same is true for Tr ( /�
2
(1 − p)). Assuming as in (5.100) that at high

energy
�2f2 � f0|kR|2, (5.118)

one gets that W(X, σ ) is never negative, and vanishes if and only if /�
2
p and /�

2
(1−

p) = 0, that is if and only if /�
2 = 0, which is equivalent to Tr�2 = 0 since �2 is

positive. By (5.84) this is equivalent to �(X)μ = 0 for any μ.
The second term in (5.115) is never negative, and vanishes when �(X)μ = 0 for

any μ. The same is true for the third term by lemma 5.8, and for the last term since

Tr ( /�
2
D2

R) = Tr
(
(DR /�)(DR /�)†

)
. (5.119)

Hence V ′(X, σ ) is never negative, and vanishes if and only if �(X)μ = 0 for any
μ.

Combining propositions 5.9 and 5.6, the whole potential V (X)+V (σ )+V (X, σ )

is zero if and only if both the scalar field σ and the vector field �(X)μ are zero. This
proves the first statement of point iii) in theorem 1.1. The second statement has been
proven below lemma 5.6.

6 Twist and Representations

We discuss the choices made in the construction of the twisted spectral triple of
the standard model: the middle-term solution consisting in imposing by hand the
reduction M8(C) → M4(C), and the representation of AG.
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6.1 Global Twist

Instead of reducing by hand BLR to B′ by imposing the reduction M8(C) → M4(C),
one could twist BLR as well. This means finding an automorphism ρ of M8(C) such
that

σμM ∂μ − ρ(M)σμ∂μ = 0, σ̄ μM ∂μ − ρ̄(M)σ̄μ∂μ = 0. (6.1)

Using σμσ̄ ν∂μ∂ν = ∇2, the first expression yields

ρ(M) = σμMσ̄ ν 1

∇2
∂μ∂ν. (6.2)

This does not define an automorphism of C∞(M) ⊗ AG. Indeed, writing Tμν ≡
1

∇2 ∂μ∂ν and M
μν
1 ≡ σμM1σ̄

ν ,one gets

ρ(M1)ρ(M2) = (
M

μν
1 Tμν

) (
M

αβ

2 Tαβ

)
(6.3)

= M
μν
1

[
Tμν, M

αβ

2

]
Tαβ + M

μν
1 M

αβ

2 TμνTαβ, (6.4)

= ρ(M1M2) + M
μν
1

[
Tμν, M

αβ

2

]
Tαβ (6.5)

where we compute

M
μν
1 M

αβ

2 TμνTαβ = σμM1σ̄
νσ αM2σ̄

β 1

∇2

1

∇2
∂μ∂ν∂α∂β

= σμM1M2σ̄
β 1

∇2
∂μ∂β

= ρ(M1M2). (6.6)

A possible solution is to look for a � product such that

ρ(M1) � ρ(M2) = ρ(M1 � M2), (6.7)

that would encode the intrinsic mixing between the manifold (space-time) and the
matrix part (gauge sector) that is the core of the Grand Symmetry. This would
also force us to consider an algebra A0 of pseudo-differential operators bigger than
C∞(M)⊗AG. This point is particularly interesting if one believes that almost com-
mutative geometries are an effective low energy description of a more fundamental
theory, based on a “truly” non-commutative algebra (that is with a finite dimensional
center). This idea has been often advertised by D. Kastler, and it could be that A0 is
not so far from the “noncommutative salmon” he aimed at fishing. All this will be
investigated in future works.

The reason why we choose the representation (3.5) instead of (2.31) as in [23] is
that while it is right that (6.2) is still in M4(C), it would not be true for an element

Q = Q
ṫβ
ṡα ∈ M2(H) that σμQσ̄ ν is still inM2(H). However, all the results presented

in this paper would also be true with the representation (2.31), as explained in the
next paragraph.
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6.2 Invariance of the Constraints

The grand algebra in the representation (3.5) is broken by the grading to [23, eq.
(3.17)]

A′
G = M2(H)L ⊕ M2(H)R ⊕ Ml

4(C) ⊕ Mr
4(C). (6.8)

To have bounded commutators with /D, we impose by hand that quaternions act
trivially on the ṡ index, yielding the reduction to

A′ := HL ⊕HR ⊕ Ml
4(C) ⊕ Mr

4(C) (6.9)

whose elements are (Q, M) where

Q = δt ṫ
sṡ

(
qR 02
02 qL

)

αβ

, M =
(

Ml
l 04

04 Mr
r

)

st

with qr ∈ H, Ml
l , M

r
r ∈ M4(C).

(6.10)
The twist ρ is still defined as the exchange of the left and right part of spinors, but it
now acts on the matrix part

ρ(M) =
(

Mr
r 04

04 Ml
l

)

st

. (6.11)

This guarantees that

[ /D, M]ρ = (/∂M) + [γ μ, M]ρ = (/∂M) (6.12)

is bounded, so that (C∞(M) ⊗ A′,H, /D + DM ; ρ) is a twisted spectral triple. The
twisted first-order condition for /D is checked as in proposition 3.4.

For the twisted first-order condition imposed by DM , one first consider the
subalgebra of A′

Ã := HL ⊕CR ⊕ Ml
3(C) ⊕C

l ⊕ Mr
3(C) ⊕C

r (6.13)

obtained by asking

qR =
(

cR 0
0 c̄R

)
with cR ∈ C (6.14)

in (6.10) and

Mr
r =

(
mr 02
02 Mr

)

IJ
, Ml

l =
(

ml 02
02 Ml

)

IJ
with Mr ,Ml ∈ M3(C), mr, ml ∈ C.

(6.15)

Let B = (R, N) ∈ B̃ be another element of Ã, with components dr , n
r , nl ∈ C

and Nr ,Nl ∈ M3(C). The double twisted commutator [[DM, A]ρ, JBJ−1]ρ is an
off-diagonal matrix with components

(DMM − QDM)R̄ − ρ(N̄)(DMM − QDM), (6.16)

(DMQ − ρ(M)DM)N̄ − R̄(DMQ − ρ(M)DM). (6.17)
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One has

ρ(N̄)DνM = (ρ(N̄)η�M)tIsJ(�δ)
ṫβ
ṡα =

(
n̄lmr 04
04 −n̄rml

)

st

⊗
(

� 04
04 �

)

ṡ ṫ

, (6.18)

ρ(N̄)QDν = (ρ(N̄)η�)tIsJ (Q�)
ṫβ
ṡα =

(
n̄l 04
04 −n̄r

)

st

⊗
(

cR 04
04 cR

)

ṡ ṫ

, (6.19)

DνMR̄ = (η�M)tIsJ (�R̄)
ṫβ
ṡα =

(
mr 04
04 −ml

)

st

⊗
(

d̄R 04
04 d̄R

)

ṡ ṫ

, (6.20)

QDνR̄ = (η�)tIsJ (Q�R̄)
ṫβ
ṡα =

(
� 04
04 −�

)

st

⊗
(

cR d̄R 04
04 cR d̄R

)

ṡ ṫ

, (6.21)

where we defined

mr :=
(

mr 0
0 03

)

αβ

, ml :=
(

ml 0
0 03

)

αβ

, cR =
(

cR 0
0 03

)

IJ
(6.22)

and similarly for nr , nl and dR . Collecting the various terms, one finds that (6.16) is
zero if and only if

(cR − mr)(d̄R − n̄l) = 0, (cR − ml)(d̄R − n̄r ) = 0 (6.23)

which are the same constraints (3.46) coming from the other representation. The
same is true for (6.17), using

R̄ρ(M)Dν = (ρ(M)η�)tIsJ (�R̄)
ṫβ
ṡα =

(
ml 04
04 −mr

)

st

⊗
(

d̄R 04
04 d̄R

)

ṡ ṫ

, (6.24)

R̄DνQ = (η�)tIsJ (R̄�Q)
ṫβ
ṡα =

(
� 04
04 −�

)

st

⊗
(

cR d̄R 04
04 cR d̄R

)

ṡ ṫ

, (6.25)

ρ(M)DνN̄ = (ρ(M)η�N̄)tIsJ(�)
ṫβ
ṡα =

(
ml n̄r 04
04 −mr n̄l

)

st

⊗
(

� 04
04 �

)

ṡ ṫ

, (6.26)

DνQN̄ = (η�N̄)tIsJ (�Q)
ṫβ
ṡα =

(
n̄r 04
04 −n̄l

)

st

⊗
(

cR 04
04 cR

)

ṡ ṫ

. (6.27)

Solving (3.46) by asking mr = cR , that is identifyingC
r andCR with a single copy

C
r
R of the complex numbers, one reduces Ã to

A := HL ⊕C
r
R ⊕C

l ⊕ Ml
3(C) ⊕ Mr

3(C). (6.28)

This algebra plays for the representation (2.31) the same role as the algebra B for
the representation (3.5). Repeating the computation of Section 4.3, one finds a scalar
field similar to σ . Thus, except for the hope of a global twist described in Section
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6.1, there is at the moment no motivation to prefer one or the other of the two natural
representations of the grand algebra.

7 Conclusion

Let us summarize our results by the following chain of breaking, to be compared with
(2.32):

AG = M4(H) ⊕ M8(C)

⇓ grading condition

BLR = (H
l
L ⊕H

r
L ⊕H

l
R ⊕H

r
R) ⊕ M8(C)

⇓ bounded commutator for M8(C)

B′ = (H
l
L ⊕H

r
L ⊕H

l
R ⊕H

r
R) ⊕ M4(C)

⇓ 1st-order for the Majorana-Dirac operator DM

B = (H
l
L ⊕H

r
L ⊕C

l
R ⊕C

r
R) ⊕ M3(C) ⊕ C with C = C

r
R

⇓ minimum of the spectral action

Asm = C⊕H⊕ M3(C)

Starting with the “not so grand algebra” B, one builds a twisted spectral triple
whose fluctuations generate both an extra scalar field σ and an additional vector field
Xμ. This is a Pati-Salam like model - the unitary of B yields both an SU(2)R and an
SU(2)L, together with an extra U(1) - but in a pre-geometric phase since the Lorentz
symmetry (in our case: the Euclidean SO(n) symmetry) is not explicit. The spectral
action spontaneously breaks this model to the standard model, in which the Lorentz
symmetry is explicit, with the scalar and the vector fields playing a role similar as
the one of Higgs field. We thus have a dynamical model of emergent geometry.

The idea that the scalar field σ is associated to the spontaneous breaking of a
bigger symmetry to the standard model had been formulated in [23], but, was not
fully implemented, because the fluctuation of the free Dirac operator by the grand
algebra AG yields an operator whose square is a non-minimal Laplacian. The heat
kernel expansion of such operators is notably difficult to compute (see [33] for recent
developments on that matter). Almost simultaneously, a similar idea has been suc-
cessfully implemented in [12], where the Pati-Salam like symmetry does not come
from a bigger algebra, but follows from relaxing the first-order condition. It would be
interesting to understand to what extend the twisted fluctuations presented here are a
particular case of those inner fluctuation without first oder condition. More generally,
the structure of the set of twisted fluctuations and of the associated twisted-gauge
transformations of A needs to be worked out. Let us mention a possibly relevant
notion of twisted connections, explained for instance in [29].

The twist ρ is remarkably simple, and its mathematical significance should be
studied more in details, in particular how it should be incorporated in the axioms
of noncommutative geometry, like the orientability condition where the commutator
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with the Dirac operator plays a crucial role. Also, the physical meaning of the twist is
intriguing: the un-twisting of B forces the action of the algebra to be the same on the
left and right components of spinors. In this sense the breaking of the grand algebra
to the standard model is a sort of “primordial” chiral symmetry breaking.

Full phenomenology and comparison with [11] require to take into account all
fermions, not only the right neutrino. This means to compute the spectral action of
/D+DM +γ 5⊗D0. This would also allow to check that our σ couples to the Higgs as
σ does in [8]. The simultaneous occurrence of both a scalar and a vector field offers
interesting perspective for physics beyond the standard model. A similar phenomena
appears in a recent proposal on how to generate the field σ in NCG [28], where it
comes together with an additional bosonic field with B − L charge.

Finally, let us mention a very recent work of Chamseddine, Connes andMukhanov
[10] where the algebra AF for a = 2 is obtained without the ad-hoc symplectic
hypothesis, but from an higher degree Heisenberg relation for the space-time coor-
dinates. It would be interesting to understand whether the case a = 4 enters this
framework.

Since the first version of this paper, the twisting of real spectral triples has been
investigated in a systematic way in [34] (see also [4] for an alternative proposition).
It has been shown that the twisted first-order condition introduced in def. 3.1 makes
sense in full generality. In particular, requiring that the automorphism ρ commutes
with the real structure simply amounts to twisting the commutator [[D, a]ρ, JbJ−1]
with the natural image of ρ in the group of automorphism of the opposite alge-
bra A◦. Furthermore, imposing as an input that the fermionic content of the theory
is not touched (meaning that both the Hilbert space and the Dirac operator remain
unchanged), it has been shown that there is no other choice for twisting an almost
commutative geometry than the exchange of the left/right components of spinors.
There is however some freedom in the doubling of the algebra, and the results
of [34] indicate that there exists at least one other model, in which the algebra
M3(C) is doubled as well. The phenomenological consequence shall be explored in a
forthcoming paper.
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