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Abstract We prove that, under the condition of nontriviality, the Euler-Lagrange and
Noether equations are equivalent for a general class of scalar variational problems.
Examples are position independent Lagrangians, Lagrangians of p-Laplacian type,
and Lagrangians leading to nonlinear Poisson equations. As applications we prove
certain propositions concerning the nonlinear Poisson equation and its generalisa-
tions, and the equivalence of admissible and inner variations for the systems under
consideration.
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1 Introduction

Alikakos in [1] presented a method for the derivation of monotonicity formu-
las and Derrick-Pohozaev identities [5] related to nonlinear variational problems,
using energy-momentum tensors. The method was applied to the nonlinear Poisson
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system and extended in a systematic fashion to a larger class of Lagrangians [2,
7]. This method is more general than the previously used, as the starting point is
Noether’s equations [10], whereas previously used methods start from the Euler-
Lagrange equations. Of course, Noether’s equations are a weaker hypothesis than the
Euler-Lagrange equations for C2 functions. A simple proof of this fact is given in
Counterexample 1 below (see also [9], Chapter 3), which is based on trivial solutions
of Noether’s equations.

However, for a large class of Lagrangians, in the nontrivial classical (C2) solu-
tions, it turns out that the Euler-Lagrange and Noether’s equations are equivalent.
The proof of this statement is the target of this paper. In particular, Theorem 1 proves
that, for the Lagrangian of the nonlinear Poisson equation, every nontrivial classical
solution of Noether’s system is necessarily a solution of the Euler-Lagrange equation.
Theorem 2 provides an extension of this theorem to more general Lagrangians. In
Section 2 there is a short account of inner variations, energy-momentum tensors and
other prerequisite material, serving mainly to introduce the notation. More details on
these topics are found in [7, 9].

Aside from their mathematical interest, these results are of importance to the-
oretical physics, for they provide a link between the Lagrangian and Noetherian
formulations of physics ([8], 52-3; [3], 11.4, p. 17). This paper concerns the purely
technical mathematical-analytical aspects of the subject, leaving the applications to
physics for subsequent work.

2 Noether’s Equations

In this section we summarize background material, which is necessary for the state-
ment and proof of the main results, and serves as a means for the introduction of the
notation used [9].

2.1 General Notation

Throughout this paper � is a domain (open, connected subset) of R
N , unless

otherwise stated. The following abbreviated notation

u,i = ∂u
∂xi

is used for partial derivatives. Einstein’s summation convention applies everywhere,
unless otherwise stated.

Cr(�) is the set of r times continuously differentiable functions in � and Cr(�)

the set of restrictions to � of r times continuously differentiable functions in R
N .

The set of r times continuously differentiable, RM (or CM ) valued functions in � is
denoted by Cr(�)M and the corresponding set of restrictions to � of r times con-
tinuously differentiable functions in R

N , Cr(�)M . D(�) denotes the set of real (or
complex) C∞ functions on � with compact support in � and D(�)M the set of RM

(or CM ) valued C∞ functions on � with compact support in �.
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2.2 Variational Functionals

We will be considering (nonlinear) functionals J : C1(�)M → R, M ∈ N, of the
form

J (u) :=
∫

�

L(x, u(x), Du(x))dx, (VF)

where � is a bounded domain of RN , L(x, y, z) a Lagrangian

L : � × R
M × R

N ·M → R,

L ∈ C1(� × R
M × R

N ·M) and u ∈ C1(�)M .

A function u ∈ C1(�)M is a critical point of J when

δJ (u)v := d
dt

J (u + tv)
∣∣
t=0 = 0 ∀v ∈ D(�)N .

The derivative δJ (u)v is the variation of J at u in direction v.
When u ∈ C2(�)M , an easy calculation shows

δJ (u)v =
∫

�

δL(u) · vdx

where δL(u) = (δL(u)i)i=1,··· ,M is the vector field with components

δL(u)i =
(
Lyi

− ∂
∂xj

Lzij

)∣∣∣
(x,u(x),Du(x))

. (2.1)

We will refer to δL as the Euler-Lagrange derivative. Every critical point u ∈
C2(�)M of J satisfies the Euler-Lagrange equations

δL(u) = 0.

2.3 Inner Variations

Inner variations are a special kind of variations. Let I =] − δ, δ[, δ > 0. Fix a
u ∈ C1(�)M and a set of diffeomorphisms (ξ t )t∈I, ξ t : � → �. The functions

ũ(x, t) := u(ξ t (x)), t ∈ I

are an inner variation of u. More precisely, we have the following definition.

Definition 1 A) Let h ∈ D(�)N , δ > 0 and I =] − δ, δ[. A set of diffeomorphisms
(ξ t )t∈I of � having the properties (i) - (iii) below and such that the function ξ :
� × I → � , ξ(x, t) = ξ t (x) is C∞-differentiable, is called an inner variation of �

in direction h or which is defined by h:

(i) ξ0 = id�, i.e. ξ0(x) = x in �.
(ii) Dtξ(x, 0) = h(x), x ∈ �.
(iii) ξ t |∂� = id∂�, i.e. ξ t (x) = x, x ∈ ∂�.
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B) Let J be a functional satisfying (VF), u ∈ C1(�)M , h ∈ D(�)N and (ξ t
h)t∈I

the inner variation of � defined by h. The set of functions

u◦ξ t
h, t ∈ I

is called the inner variation of u in direction h. The derivative

dJ (u)h := d
dt

J (u◦ξ t
h)

∣∣
t=0 , (2.2)

is called the inner variation of the functional J at u in direction h.

For the calculation of inner variations the following proposition is used.

Proposition 1 Let J be a functional satisfying (VF) and u ∈ C1(�)M . The inner
variation of J at u is given by

dJ (u)h =
∫

�

(
uk,iLzkj

hi,j − Ldivh − Lxi
hi

)
dx, h ∈ D(�)N, (2.3)

where the L, Lxi
:= ∂L

∂xi
, Lzkj

:= ∂L
∂zkj

are taken at the point (x, u(x), Du(x)), i.e.

L = L(x, u(x), Du(x)), Lxi
= Lxi

(x, u(x), Du(x)) etc.

The proof consists in considering the function ϕ(t) := J (u ◦ ξ t ), applying the
change of integration variable x = ηt (y), where ηt is the inverse function of ξ t ,
differentiating with respect to t and interchanging differentiation with integration.
For the details see [7].

The definition of an inner variation of � (Definition 1(A)) is essentially a special
case of the more general definition of a variation for manifolds, rectifiable sets and
varifolds [11] (16, p. 80).

2.4 Energy-Momentum Tensor

On using the notation

dL(u)h := uk,iLzkj
(·, u, Du)hi,j − L(·, u, Du)hi,i − Lxi

(·, u, Du)hi (2.4)

the expression for the inner variation of J can be written compactly as

dJ (u)h =
∫

�

dL(u)hdx, h ∈ D(�)N . (2.5)

When Lx = 0, formula (2.4) simplifies further to

dL(u)h := uk,iLzkj
hi,j − Lδijhi,j = (uk,iLzkj

− Lδij )hi,j .

This motivates the following definition of the energy-momentum tensor.

Definition 2 Let J be a functional satisfying (VF). The energy-momentum tensor of
the variational problem specified by J , is defined by

Tij (x, y, z) = zkiLzkj
(x, y, z) − δijL(x, y, z) (2.6)

where x = (xi)i=1,··· ,N ∈ �, y = (yk)k=1,··· ,M ∈ R
M , z = (zki)k=1,··· ,M;i=1,··· ,N ∈

R
NM .
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Remark 1 The above definition holds for general variables (x, y, z) ∈ � × R
M ×

R
NM . Given any vector field u ∈ C1(�)M we have the tensor field

Tij (x) = Tij (x, u(x), Du(x)) = uk,iLzkj
(x, u(x), Du(x)) − δijL(x, u(x), Du(x)),

(2.7)
for which we use the same symbol. Again, in this formula it is not necessary that u

be a solution of the Euler-Lagrange equations.

2.5 Noether’s Equations

Let u ∈ C2(�), which is not necessarily a solution of the Euler-Lagrange equations
and Tij (x) = Tij (x, u(x), Du(x)). By the definition of energy-momentum tensor

Tij,j = ∂
∂xj

(
uk,iLzkj

− δijL
)

= uk,ijLzkj
+ uk,i

∂
∂xj

Lzkj
− Lxi

− Lyk
uk,i − Lzkj

uk,ij

=
(

∂
∂xj

Lzkj
− Lyk

)
uk,i − Lxi

where L = L(x, u(x), Du(x)), Lyk
= Lyk

(x, u(x), Du(x)) and Lzkj
=

Lzkj
(x, u(x), Du(x)). From this we obtain

Tij,j + Lxi
=

(
∂

∂xj
Lzkj

− Lyk

)
uk,i (2.8)

which motivates the following definition.

Definition 3 The system of second order partial differential equations

Tij,j (x, u(x), Du(x)) + Lxi
(x, u(x), Du(x)) = 0

or in index-free notation

divT (x, u(x), Du(x)) + Lx(x, u(x), Du(x)) = 0 (2.9)

is called Noether’s equations.

The inner critical points of J , defined by dJ (u) = 0, i.e. dJ (u)h = 0 ∀h ∈
D(�)N , satisfy Noether’s equations. By (2.8) every solution u ∈ C2(�) of the
Euler-Lagrange equations is a solution of Noether’s equations. The converse of
this statement is in general not true. Giaquinta and Hildebrandt [9] presented the
following simple counterexample to demonstrate this.

Counterexample 1 Let F ∈ C1(R), F �= const. and

J (u) :=
∫

�

F(u(x))dx, u ∈ C2(�) ∩ C1(�).

The energy-momentum tensor is calculated by (2.6)

T = −F(u)I,
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and Noether’s (2.9) reduce to
F ′(u)Du = 0.

It is obvious that every constant function u = c0 is a solution of this system, but
not of the Euler-Lagrange equations, which for this functional assume the form

F ′(u) = 0.

We will show in the next two sections that only trivial counterexamples are
possible for a large class of Lagrangians.

3 Nonlinear Poisson Equation

The nonlinear Poisson equation, see (3.3) below, in a bounded domain � is the Euler-
Lagrange equation of a variational functional J (see (VF) of Section 2.2) with the
Lagrangian

L(u, z) = 1
2 |z|2 + F(u), (3.1)

where z corresponds to Du when u is a C1 function and F : R → R. When F ∈
C1(R), J clearly conforms to requirements (VF).

Theorem 1 Let � be a bounded domain of RN , F ∈ C1(R), L a Lagrangian of
the form (3.1) and u ∈ C2(�) ∩ C1(�) a non-trivial classical solution of Noether’s
equations

div T (u, Du) = 0. (3.2)

where T is the energy-momentum tensor corresponding to the Lagrangian L, with
components Tij = u,iu,j −δijL . Then u is a solution of the Euler-Lagrange equation

�u = F ′(u) (3.3)

in �.

Remark 2 By (2.8), (3.2) is equivalently written in the form

(�u − F ′(u))Du = 0. (3.4)

The non-triviality condition Du �= 0 means Du is not identically 0, i.e. there is a
x0 ∈ � such that Du(x0) �= 0.

Proof Let u be a solution of (3.2) and set

A0 := {x ∈ � : Du(x) = 0}
and

A1 := {x ∈ � : Du(x) �= 0}.
Obviously A0 is closed in �, A1 is open and A0 ∪ A1 = �. It is clear that (3.3) is

satisfied in A1. We have to show (3.3) is also satisfied in A0.
Step 1. Let D be the subset of � in which the Euler-Lagrange (3.3) is satisfied, i.e.

D := {x ∈ � : �u(x) = f (u(x))},
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where f := F ′. D is obviously closed in � and we have already shown that

A1 ⊂ D.

From this, keeping in mind that closures and boundaries are taken in �, it follows
immediately that A1 ⊂ D, hence also

∂A1 ⊂ D.

We will show that
∂A0 ⊂ D. (3.5)

The equality of the boundaries, ∂A0 = ∂A1, follows from the fact that each set is
the complement of the other. From this (3.5) follows immediately.

If
◦
A0 = ∅ we are finished, for A0 = ∂A0 ⊂ D. Let

◦
A0 �= ∅. By hypothesis, for

all x ∈ ◦
A0 we have Du(x) = 0, hence also D2u(x) = 0 on

◦
A0 and u(x) = const. on

connected components of A0.

Step 2. Fix x0 ∈ ◦
A0. We will show that there is a x1 ∈ ∂A0 and a continuous

curve γ : I → A0, I =]0, 1[, such that γ (0) = x0, γ (1) = x1 and γ ([0, 1[) ⊂ ◦
A0,

i.e. the curve lies in the interior of A0, with the exception of x1. Let y ∈ A1 �= ∅ by
hypothesis and α : I → � a continuous curve connecting x0 = α(0) and y = α(1).
The set

� := {α(t) : t ∈ I , α(t) ∈ ∂A0}
is not empty ([6], (3.19.9) and following Remark, p. 70). Since {t ∈ I : α(t) ∈
∂A0} = α−1(∂A0) is closed, τ := inf{t ∈ I : α(t) ∈ ∂A0}∈ α−1(∂A0), hence

x1 := α(τ) ∈ ∂A0 and it is clear that α([0, τ [) ⊂ ◦
A0. For if there were a τ1 < τ

such that y′ = α(τ1) �∈ ◦
A0, then y′ �∈ A0 and application of the same procedure for

x0, y′ ∈ A1 would yield the existence of a x′
1 = α(τ ′) ∈ ∂A0 with τ ′ < τ , which

contradicts the definition of τ . Reparametrisation of α|[0, τ ] yields γ .
Step 3. Now let u(x0) =: c0. Since x0 and x1 belong to the same connected com-

ponent of A0, we have u(x1) = c0 and f (u(x0)) = f (u(x1)) = f (c0) =: d0. Since
by (3.5) x1 ∈ D, we have

�u(x1) = f (u(x1)) = d0. (3.6)

But
�u(x1) = �u( lim

t→1− γ (t)) = lim
t→1− �u(γ (t)) = 0 (3.7)

since γ (t) ∈ ◦
A0 for all t ∈ [0, 1[. Combination of (3.6) and (3.7) yields d0 = 0,

hence
f (u(x0)) = 0. (3.8)

This means in particular

�u(x0) − f (u(x0)) = 0.

With this we have proved
◦
A0 ⊂ D, and by (3.5) A0 ⊂ D.

From the proof of this theorem we conclude without difficulty the following
corollary.
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Corollary 1 Under the assumptions of Theorem 1, if the set A0 := {x ∈ � :
Du(x) = 0} has an interior point, then f (u) = 0 on all of

◦
A0.

Proof By hypothesis A1 �= ∅. Let x0 ∈ ◦
A0. Now Steps 2 and 3 of the proof of

Theorem 1 apply and from (3.8) it follows that f (u(x0)) = 0. Since x0 was arbitrary,
the assertion is proved.

As an application, we state the following result for the nonlinear Poisson equation.

Corollary 2 Let � be a bounded domain of RN and f ∈ C(R) such that f (t) �= 0
for all t ∈ R. Then for every solution u ∈ C2(�) ∩ C1(�) of the nonlinear Poisson
equation

�u = f (u) (3.9)

the set A0 := {x ∈ � : Du(x) = 0} has no interior point.

Proof Equation (3.9) is the Euler-Lagrange equation of the functional (3.1) with

F(t) = ∫ t

0f (s)ds, for which we have F ∈ C1(R). If
◦
A0 �= ∅, by Corollary 1 we

would have f (u) = 0 on
◦
A0, which is absurd.

Corollary 3 Let � be a bounded domain of RN , F ∈ C1(R), g ∈ C(∂�) a non-
constant function and H := {u ∈ C2(�) ∩ C1(�) : u|∂� = g}. Then the Euler-
Lagrange and Noether equations for the Lagrangian (3.1) are equivalent in H.

Proof It follows immediately by Theorem 1, since every u ∈ H is non-trivial.

Remark 3 We have restricted the above discussion to bounded domains, only for the
sake of convenience. Indeed, this hypothesis serves to maintain integrability in (VF),
and guarantees the validity of the interchange of differentiation and integration. The
same purpose also serves the hypothesis u ∈ C1(�), with the exception of Corollary
3. Thus, the above results, with proper modifications, are applicable to unbounded
domains as well.

4 More General Lagrangians

We proceed to generalizing the results of the previous section by considering
Lagrangians of the form L(x, u, z), which, along with (VF), satisfy the condition (H)
below. Again, u is a scalar function and argument z corresponds to ∇u.

Lxizi
(x, u, 0) = 0 for all x, u.

Lxiu(x, u, 0) = 0 forall x, u andall i = 1, · · · , N. (H)
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Example 1 (i) All Lagrangians which are independent of x satisfy (H). In particu-
lar the Lagrangians of classes I and II in [2] satisfy (H).

(ii) Lagrangians of the form

L(x, u, z) = 1
2ϕ(x, u)|z|2 + F(u),

where ϕ : � × R → R, satisfy (H).

Recall the definition of the Euler-Lagrange derivative, formula (2.1).

Theorem 2 Let � be a bounded domain of RN , L ∈ C2(�×R×R
N) a Lagrangian

satisfying (H) and u ∈ C2(�) ∩ C1(�) a non-trivial classical solution of Noether’s
equations

div T (x, u, Du) + Lx(x, u, Du) = 0. (4.1)

Then u is a solution of the Euler-Lagrange equation
∂

∂xj
Lu,j

− Lu = 0 (4.2)

in �.

Remark 4 By (2.8), (4.1) is equivalently written in the form(
∂

∂xj
Lu,j

− Lu

)
u,i = 0

or in index-free notation
δL(u) · Du = 0. (4.3)

Notice that (4.1) is a second order system of partial differential equations in u and
(4.2) is a single second order partial differential equation in u.

Proof The proof begins exactly as the proof of Theorem 1 up to Step 3 where the
proof of existence of the curve γ is complete, with the obvious modification

D := {x ∈ � : δL(u)(x) = 0}.
For fixed x0 ∈ ◦

A0 let u(x0) =: c0. Further let f := Lu. Since x0 and x1 belong to
the same connected component of A0, we have u(x1) = c0 and by (H)

f (x0, u(x0), 0) = f (x1, u(x0), 0) = f (x0, c0, 0) =: d0. (4.4)

We have
∂

∂xi
Lzi

(x, u, Du)

∣∣∣
x0

= Lxizi
(x0, c0, 0) + Luzi

(x0, c0, 0)u,i(x0) +
Lzizj

(x0, c0, 0)u,ij (x0)

= Lxizi
(x0, c0, 0) = 0 (4.5)

by (H). Since by (3.5) x1 ∈ D, we have in a similar fashion

∂
∂xi

Lzi
(x, u, Du)

∣∣∣
x1

= Lxizi
(x1, c0, 0) + Luzi

(x1, c0, 0)u,i(x1) +
Lzizj

(x1, c0, 0)u,ij (x1)

= Lxizi
(x1, c0, 0) = f (x1, c0, 0) = d0 (4.6)
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where the second equality from the end follows from the Euler-Lagrange equation:

∂
∂xi

Lzi
(x, u, Du)

∣∣∣
x1

= Lu(x1, u(x1), Du(x1)) = f (x1, c0, 0).

Note that we have omitted a step involving a continuity argument along γ as t →
1−. From the first of (H) and γ (t) ∈ ◦

A0 for all t ∈ [0, 1[ we obtain
Lxizi

(x1, c0, 0) = Lxizi
( lim
t→1− γ (t), u( lim

t→1− γ (t)), Du( lim
t→1− γ (t)))

= lim
t→1− Lxizi

(γ (t), u(γ (t)), Du(γ (t)))

= lim
t→1− Lxizi

(γ (t), c0, 0) = 0.

Combination of this equation with (4.6) yields d0 = 0, hence by (4.4)

f (x0, c0, 0) = 0.

This means in particular

∂
∂xi

Lzi
(x, u, Du)

∣∣∣
x0

− f (x0, u(x0), Du(x0)) = Lxizi
(x0, c0, 0) − f (x0, c0, 0) = 0.

With this we have proved
◦
A0 ⊂ D and by (3.5) A0 ⊂ D.

Corollaries 1 and 2 transfer to the general Lagrangians conforming to (H), with
the obvious modifications:

Corollary 4 Under the assumptions of Theorem 1, if the set A0 := {x ∈ � :
Du(x) = 0} has an interior point, then Lu = 0 on all of

◦
A0.

Corollary 5 Let � be a bounded domain of RN and Lu(x, u, z) �= 0 in �×R×R
N .

Then for every solution u ∈ C2(�) ∩ C1(�) of the partial differential equation in u

∂
∂xj

Lu,j
− Lu = 0

the set A0 := {x ∈ � : Du(x) = 0} has no interior point.

Remark 3 and Corollary 3 hold as they are.

Example 2 We consider the Lagrangian of p-Laplacian type [4]

L(u, z) = 1

2
ϕ(|z|2) + F(u)

where F ∈ C(R) and ϕ ∈ C2(R+) such that ϕ(0) = 0 and ϕ′(s) � 0 ∀s � 0, which
satisfies condition (H). The energy-momentum tensor for this Lagrangian is given by

Tij = ϕ′(|Du|2)u,iu,j − δij

(
1

2
ϕ(|Du|2) + F(u)

)
.
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By Corollary 3 the PDE

div (ϕ′(|Du|2)Du ⊗ Du) − D

(
1

2
ϕ(|Du|2) + F(u)

)
= 0

and
∂

∂xi

(
ϕ′(|Du|2) ∂u

∂xi

)
= F ′(u)

with the boundary condition u|∂� = g, where g ∈ C(∂�) is a non-constant function,
are equivalent.

5 Application: Equivalence of Admissible and Inner Variations

The C2 solutions of Euler-Lagrange (respectively Noether) equations are critical
(respectively inner critical) points of the corresponding variational functional. Since
each inner variation h gives rise to an admissible variation [7]

w = Du · h,

the question arises if these two types of variation are equivalent. Notice that the set
of inner variations is smaller than the set of admissible variations. The next theorem
gives an answer to this question.

Theorem 3 Let J be a variational functional with Lagrangian L ∈ C2(�×R×R
N)

satisfying (H) and u ∈ C2(�) ∩ C1(�) a nontrivial function. Then the variational
problem

δJ (u)v = 0 ∀v ∈ D(�) (5.1)
is equivalent to the problem

δJ (u)w = 0 ∀w ∈ I(�) (5.2)
where I(�) := {Du · h : h is an inner variation of u}. In simple words one can
consider only inner variations of u in Problem (5.1).

Proof Equation (5.2) follows immediately from (5.1) when u is C∞. Otherwise w ∈
C1

c (�) while (5.1) requires v ∈ D(�). In this case the proof follows by a simple
density argument. For the converse, if (5.2) is valid, then δJ (u)Du · h = 0 for all
h ∈ D(�)N . By the fundamental lemma of calculus of variations δJ (u)Du = 0,
hence u is a solution of Noether’s equations and by Theorem 2 also a solution of the
Euler-Lagrange equation. Since u is C2, this means u is a critical point of J , i.e. (5.1)
is satisfied.
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