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Abstract We consider a semilinear heat equation with exponential nonlinearity in
R
2. We prove that local solutions do not exist for certain data in the Orlicz space

expL2(R2), even though a small data global existence result holds in the same space
expL2(R2). Moreover, some suitable subclass of expL2(R2) for local existence and
uniqueness is proposed.
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1 Introduction and Main Results

In this paper we consider the Cauchy problem for a semilinear heat equation
{

∂tu − �u = f (u) in (0, ∞) × R
N

u(0, x) = u0(x) in R
N , (1.1)
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where u(t, x) : (0, ∞) × R
N → R is the unknown function, f is the nonlinearity

and u0 is the given initial data.
It is well known that if the initial data u0 ∈ L∞(RN) and the nonlinear term

f ∈ C1(R) with f (0) = 0 then there exists T (u0) > 0 and a unique solution

u ∈ L∞ (
0, T ; L∞(RN)

)
of (1.1) (cf. [12]). On the other hand, the first result with

a singular initial data is due to Weissler [24, 25]. He considered the Cauchy problem
with power nonlinearities{

∂tu − �u = |u|p−1u in (0, ∞) × R
N

u(0, x) = u0(x) in R
N , (1.2)

with initial data in the Lebesgue spaces u0 ∈ Lq(RN), where p > 1 and 1 < q < ∞.
For such power type nonlinearities the scale invariance property plays an essential role.

That is, if the function u(t, x) satisfies (1.2), then for any λ > 0, the scaled function

uλ = λ
2

p−1 u(λ2t, λx)

also satisfies (1.2). Moreover, the Lq norm is invariant under this scaling if and only if

q = qc := N(p − 1)

2
.

With regard to this critical exponent, one can classify the existence and uniqueness
results of the (1.2) into the following two cases:
Case 1. If q ≥ qc and q > 1 or q > qc and q ≥ 1, Weissler [24] and

Brezis-Cazenave [4] proved that for any u0 ∈ Lq(RN) there exists a pos-
itive time T = T (u0) and a unique function u ∈ C

([0, T ]; Lq(RN)
) ∩

L∞
loc(0, T ; L∞(RN)) which is a solution of (1.2).

Case 2. If q < qc, Weissler [24] and Brezis-Cazenave [4] indicated that there exists
no local solution in any suitable weak sense. Moreover, it is proved by
Haraux-Weissler [7] that uniqueness does not hold for u0 = 0 if 1 + 2

N
<

p < N+2
N−2 . Tayachi [21] generalized this result to parabolic equations with a

nonlinear gradient term.
When q ≥ p it is meaningful to consider weak solution u ∈ C([0, T ], Lq(RN)) in
the integral sense

u(t) = et�u0 +
∫ t

0
e(t−s)�|u(s)|p−1u(s)ds, (1.3)

where et� is the standard heat evolution operator (see [24, 25]) and to study the prob-
lem of uniqueness in the larger class of functions belonging to C

([0, T ]; Lq(RN)
)

(unconditional uniqueness). Brezis-Cazenave [4] proved unconditional uniqueness
for q > qc, q ≥ p and for q = qc, q > p. In the double critical case q = qc = p,
namely p = q = N

N−2 , Ni-Sacks [14] proved that unconditional uniqueness does
not hold on the unit ball in RN . In [22] Terraneo extended this non-uniqueness result
to the whole space RN for suitable initial data.

Finally, in the critical case q = qc and N ≥ 3 Weissler [25] proved a global
existence result under a smallness assumption on the initial data. Some generaliza-
tion to a semilinear parabolic equation with a nonlinear gradient term was done by
Snoussi-Tayachi-Weissler [20].
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If we consider the doubly critical case (p = q = qc = N
N−2 ) in 2 dimension, one

can observe that the critical index qc becomes infinite. This implies that any power
nonlinearity 1 < p < ∞ behaves like Case 1. Namely, for every power nonlinearity
one can choose a Lebesgue space Lq where the well-posedness for the Cauchy prob-
lem (1.3) can be proved. However, if we consider some nonlinear term with higher
growth than any power type nonlinearity, e.g. an exponential nonlinearity, Weissler’s
result only holds on L∞ (at least in the category of Lebesgue spaces). Therefore one
can wonder if there is any critical space and nonlinearity for 2-D problems.

From this standpoint, Ibrahim-Jrad-Majdoub-Saanouni [9] considered the fol-
lowing 2-D case, which is critical in regard to the energy method and the critical
Trudinger embedding [23]:{

∂tu − �u = ±u(eu2 − 1) in (0, ∞) × R
2,

u(0, x) = u0 in R
2,

(1.4)

where u0 ∈ H 1(R2). They proved a local existence result and uniqueness. More-
over, a global existence for the defocusing case and a blow up result for the focusing
case were discussed. It is worth to comment that exponential nonlinearities in the
framework of Sobolev spaces for nonlinear dispersive partial differential equations
were considered in several works in the literature, see for example [5, 8, 10, 13] and
references therein.

On the other hand, it is expected that the problem (1.4) for the heat equation can be
solved in spaces which are defined by an integrability of functions such as Lebesgue
spaces. In this respect, the Orlicz space expL2 was considered in [11, 19] as an
extension of the class of Sobolev spaces. The Orlicz space expL2 is defined as the
set of all functions u which belong to L1

loc(R
2) and which satisfy

∫
R2

(
exp

( |u(x)|
λ

)2

− 1

)
dx < ∞

for some λ > 0, and the norm is given by the Luxemburg type

‖u‖expL2(R2) := inf

{
λ > 0; ∫

R2

(
exp

( |u(x)|
λ

)2 − 1

)
dx ≤ 1

}
. (1.5)

We recall that Trudinger’s inequality shows that H 1(R2) ⊂ expL2(R2) (see [1,
15, 18, 23].) Therefore, one of the virtues of the use of Orlicz spaces is that it is
possible to consider the critical problem in 2-D (1.4) in a larger space than H 1(R2).
Indeed, in [11, 19] global existence is proved for (1.4) under a smallness assumption
on u0 in expL2(R2).

Let t > 0 and et� be the heat evolution operator given by

et�u0(x) :=
∫
R2

1

4πt
e− |x−y|2

4t u0(y)dy.

We remark that the evolution operator et� : expL2(R2) → expL2(R2) is
bounded, however et� is not continuous at t = 0 in expL2(R2) (see [11]).

We stress that for a function u belonging to expL2(R2) the nonlinear term
f (u) = u(eu2 − 1) might not be defined in the distributional sense (for example for
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a function u as in (2.4) with large norm). Nevertheless if we consider any initial data
with small norm in expL2(R2) and we look for solutions with small norm, namely
u ∈ L∞(0, T ; expL2(R2)) with supt∈(0,T ) ‖u(t)‖expL2 < ε for a well-chosen ε > 0,
then

f (u) = u(eu2 − 1) ∈ L∞(0, T ; L1(R2)).

Therefore, in the framework of solutions of small norm in expL2(R2) it is
meaningful to consider the solutions in the sense of distribution.

Definition 1.1 (Weak solution) Let u0 ∈ expL2(R2) and T ∈ (0, ∞) we say that
the function u : [0, T ) → expL2(R2) such that u ∈ C

(
(0, T ); expL2(R2)

)
and

u(t) → u0 in weak∗topology is a weak solution of the differential (1.1) if u verifies
the (1.1) in the sense of distribution with u(0) = u0.

We recall that u(t) → u0 in weak∗ sense if and only if

lim
t→0

∫
R2

(
u(t, x)φ(x) − u0(x)φ(x)

)
dx = 0 for every φ ∈ L1(logL)

1
2 (R2), (1.6)

where L1(logL)
1
2 (R2) is a predual space of expL2(R2).

The space L1(logL)
1
2 (R2) is defined by

L1(logL)
1
2 (R2) =

{
f ∈ L1

loc(R
2) :

∫
R2

|f (x)| log1/2(2 + |f (x)|)dx < ∞
}

.

(See [3, 17]).
Moreover in the framework of solutions of small norm in expL2(R2) one can

consider the integral equation

u(t) = et�u0 +
∫ t

0
e(t−s)�f

(
u(s)

)
ds (1.7)

for any t ∈ (0, T ) and one can prove that any function u ∈ L∞(0, T ; expL2(R2))

which verifies the integral equation for any t ∈ (0, T ) with u(t) → u0 in
weak∗topology for t → 0 belongs to C((0, T ); expL2(R2)). Therefore u is a weak
solution of the differential equation (1.1) with u(0) = u0 (see [11, 19]).

By using the integral formulation (1.7) one has

Proposition 1.1 ([11, 19]) There exists ε > 0 such that for every u0 ∈ expL2(R2)

with ‖u0‖expL2 ≤ ε, there exists a solution u ∈ L∞(0, ∞; expL2(R2)) of the Cauchy

problem (1.7)-(1.6) with f (u) = ±u(eu2 − 1).

This small data global existence result suggests that the critical space for problem
(1.4) is expL2(R2). Therefore, a local existence in expL2(R2)without any smallness
assumption might be expected.

However, in this paper we obtain a negative answer for this question. More-
over, we will propose some suitable subclass of expL2(R2) for local existence and
uniqueness.
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Definition 1.2 (expL2-classical solution (see [16])) Given u0 ∈ expL2(R2) and
T ∈ (0, ∞) we say that the function u : [0, T ) → expL2(R2) such that u ∈
C((0, T ); expL2(R2)) ∩ L∞

loc(0, T ; L∞(R2)) and u(t) → u0 in weak∗topology is a
expL2−classical solution of (1.1) in [0, T ) if u is C1 in t ∈ (0, T ) and C2 in x ∈ R

2,
and u is a classical solution of the (1.1) for t ∈ (0, T ).

We obtain the following non-existence result:

Theorem 1.1 Assume that the nonlinear term f is continuous, f (x) ≥ 0 if x ≥ 0,
and

lim inf
η→∞

(
f (η)e−λη2

)
> 0 (1.8)

for some λ > 0.
Then, there exist some initial data u0 ∈ expL2(R2), u0 ≥ 0 such that for every

T > 0 the Cauchy problem (1.1) has no nonnegative expL2-classical solution in
[0, T ).

Theorem 1.1 says that local solutions do not exist for certain data in expL2(R2)

even though a small data global existence result holds in the same space expL2(R2).
This type of non-existence result of nonnegative solution for power type nonlinear-

ities was proved by Brezis-Cazenave [4]. Their method is based on an approximation
of the Dirac delta function by L1 functions. It seems difficult to apply their methods
to our problem since such an approximation does not hold in expL2(R2). We give a
different and direct proof in Section 3.

We remark that the set of smooth and compactly supported functions C∞
0 (R2) is

not dense in expL2(R2) (see Section 2). In order to consider the existence of local
solutions and uniqueness, we introduce the closure of C∞

0 (R2) in expL2(R2);

expL2
0(R

2) :=
{
u ∈ expL2(R2) : there exists {un}∞n=1 ⊂ C∞

0 (R2)

such that limn→∞ ‖un − u‖expL2 = 0

}
.

Moreover, it is known that

H 1(R2) � expL2
0(R

2) � expL2(R2).

We summarize some properties of expL2(R2) and expL2
0(R

2) in the next section
(see also [2, 17]).

Taking the initial data in the class expL2
0(R

2), we will prove local existence and
uniqueness. We assume the nonlinear continuous term f satisfies the following: there
are constants C, λ > 0 such that

|f (x) − f (y)| ≤ C|x − y|
(
eλx2 + eλy2

)
(1.9)

for every x, y ∈ R, and f (0) = 0. Remark that no assumption on a behavior of f

near 0 is needed since we consider time local existence. Typical examples satisfying
(1.9) are

f (u) = ±ueu2 , ±(eu−1), ±|u|p−1u for every 1 ≤ p < ∞, and their combination.
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Also in this framework we can introduce the notion of weak solution as in Defini-
tion 1.1. Since C∞

0 (R2) is dense in expL2
0(R

2), et� becomes a strongly continuous
semigroup in expL2

0(R
2). Therefore in the definition of the weak solution the con-

vergence of the solution u(t) to the initial data u0 is a strong convergence in expL2.
Moreover one can prove that the Cauchy problem (1.1) admits the equivalent integral
formulation (1.7) in the standard sense (see Proposition 4.1).

Theorem 1.2 Suppose that f satisfies (1.9). Given any u0 ∈ expL2
0(R

2), there exist
a time T = T (u0) > 0 and a unique weak solution u ∈ C([0, T ]; expL2

0(R
2)) of

(1.7).

We comment in Remark 4.1 that the solution u in Theorem 1.2 belongs to
L∞
loc(0, T ; L∞(R2)). This implies that u is a classical solution, i.e. of class C1 in

t ∈ (0, T ) and of class C2 in x ∈ R
2, provided that in addition f ∈ C1(R).

Remark 1.1 In view of Theorem 1.1 and Theorem 1.2, it might be possible to classify
the existence and uniqueness results for a exponential nonlinearity, similar to power
type nonlinearities. Theorem 1.2 suggests that expL2

0(R
2) is a subcritical space cor-

responding to Case 1 in the classification of power type nonlinearities. It follows from
Theorem 1.1 that the Orlicz space expL2(R2) with large data is supercritical as in
Case 2, even though the global existence result in [11, 19] suggests that expL2(R2)

with small data is a critical space.

The paper is organized as follows. In Section 2 we recall some properties of
the Orlicz spaces expL2(R2) and expL2

0(R
2), and some basic properties of the

heat semigroup et� in Orlicz spaces. In Section 3 we prove the non-existence
result in Theorem 1.1 by using some explicit initial data which are typical exam-
ples of functions in expL2(R2) \ expL2

0(R
2). In Section 4 we prove a local

existence result for u0 ∈ expL2
0(R

2) by decomposing the equation into two equa-
tions, one for smooth initial data, and the other one for small initial data in
expL2(R2). The method can be found in [10]. In Section 5 we prove a uniqueness
result by direct method and we do not need any additional smoothness assumption
on f .

2 Preliminaries

In this section we give the definition and collect some properties of the spaces
expL2(R2) and expL2

0(R
2). More detailed properties of Orlicz spaces can be found

in [17] or Section 8 of [2].
We denote the Orlicz space expL2(R2) by the set

expL2(R2) :=
{
u ∈ L1

loc(R
2) :

∫
R2

(
eα|u(x)|2 − 1

)
dx < ∞ for some α > 0

}
,
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where the norm is given by the Luxemburg type (1.5). By definition, it holds

∫
R2

(
exp

(
u(x)

λ

)2

− 1

)
dx ≤ 1 if λ ≥ ‖u‖expL2 . (2.1)

We recall that expL2
0(R

2) is the closure of C∞
0 (R2) by ‖ · ‖expL2 , i.e.,

expL2
0(R

2) :=
{
u ∈ expL2(R2) : there exists {un}∞n=1 ⊂ C∞

0 (R2)

such that limn→∞ ‖un − u‖expL2 = 0

}
.

It is known that

expL2
0(R

2) =
{
u ∈ L1

loc(R
2) :

∫
R2

(
eα|u(x)|2 − 1

)
dx < ∞ for every α > 0

}
.

(2.2)
Here we give a brief proof of (2.2). Let u ∈ expL2

0(R
2) and α > 0. Then one can

take a sequence {un}∞n=1 ⊂ C∞
0 (R2) such that

‖u − un‖expL2 <
1

2
√

α

if n ∈ N is sufficiently large. Therefore, by convexity of u �→ expαu2,

∫
R2

[
exp

(
αu2

) − 1
]
dx = ∫

R2

[
exp

(
4α

(
u−un

2 + un

2

)2) − 1
]
dx

≤ 1
2

∫
R2

[
exp

(
4α (u − un)

2) − 1
]
dx + 1

2

∫
R2

[
exp

(
4α (un)

2) − 1
]
dx

≤ 1
2

∫
R2

[
exp

(
u−un‖u−un‖expL2

)2

− 1

]
dx + 1

2

∫
R2

[
exp

(
4αu2n

) − 1
]
dx

< ∞

if n ∈ N is sufficiently large.
We now prove the converse. Let u ∈ L1

loc(R
2) and suppose that∫

R2

(
eα|u(x)|2 − 1

)
dx < ∞, for every α > 0. Define

un(x) :=
{

u(x)χBn(0)(x) −n < u(x) < n

n signu(x)χBn(0)(x) otherwise.

Fix ε > 0. Lebesgue’s convergence theorem shows that

∫
R2

[
exp

(
u−un

ε

)2 − 1
]
dx

≤ ∫
{|u|>n}∩Bn(0)

[
exp

( |u|−n
ε

)2 − 1

]
dx + ∫

Bn(0)c

[
exp

( |u|
ε

)2 − 1

]
dx

→ 0

as n → ∞. Hence, there exists N ∈ N such that if n ≥ N then ‖u − un‖expL2 < ε.

This means that u ∈ E, where E denotes the closure in expL2(R2) of the space
of functions u which are bounded on R

2 and have bounded support in R
2. It is
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known that C∞
0 (R2) is dense in E (for the proof, see Theorem 8.21 in [2]), so

E = expL2
0(R

2). This completes the proof of (2.2).
Using (2.2), we easily find a typical example of a function

u ∈ expL2(R2) \ expL2
0(R

2), (2.3)

that is,

u(x) :=
⎧⎨
⎩

(
log 1

|x|
) 1

2
, |x| < 1,

0, |x| ≥ 1,
(2.4)

since
∫
R2(e

αu2 − 1)dx is finite for 0 < α < 2 but infinite for α ≥ 2.
Moreover, (2.2) shows that

L2(R2) ∩ L∞(R2) ⊂ expL2
0(R

2). (2.5)

Indeed, for every u ∈ L2(R2) ∩ L∞(R2) and every α > 0, it holds

∫
R2(e

α|u(x)|2 − 1)dx = ∑∞
k=1

αk‖u‖2k
L2k

k!
≤ ∑∞

k=1
αk(‖u‖

L2+‖u‖L∞ )2k

k!
= eα(‖u‖

L2+‖u‖L∞ )2 − 1 < ∞.

This also shows that

‖u‖expL2 ≤ 1√
log 2

(‖u‖L2 + ‖u‖L∞
)
. (2.6)

Using these spaces, we prepare some basic estimates of the heat semigroup.

Proposition 2.1 For every 2 ≤ p < ∞, the following inequality holds:

‖u‖Lp ≤
{
�

(p

2
+ 1

)} 1
p ‖u‖expL2 ,

where � is the gamma function

� (p) :=
∫ ∞

0
xp−1e−xdx.

Proof of Proposition 2.1 If p is a natural number then the inequality is proved imme-
diately by Taylor expansion. The general case can be proved by a minor modification
(see [19]).

Proposition 2.2 Let 1 ≤ p ≤ q ≤ ∞, then the following estimates hold.

‖et�u0‖Lq ≤ t
−

(
1
p

− 1
q

)
‖u0‖Lp for u0 ∈ Lp(R2), t > 0, (2.7)

‖et�u0‖expL2 ≤ ‖u0‖expL2 for u0 ∈ expL2(R2), t > 0, (2.8)

et�u0 ∈ C([0, T ]; expL2
0(R

2)) for u0 ∈ expL2
0(R

2). (2.9)
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Proof of Proposition 2.2 The Lp-Lq estimate for the heat semigroup (2.7) is well
known. We only prove (2.8) and (2.9). The first inequality is shown by the Lp-Lp

estimate (2.7) and Taylor expansion. Indeed, for any λ > 0, we have

∫
R2

(
exp

(
et�u0

λ

)2 − 1

)
dx = ∑∞

k=1

‖et�u0‖2k
L2k(R2)

k!λ2k

≤ ∑∞
k=1

‖u0‖2k
L2k(R2)

k!λ2k
= ∫

R2

(
exp

(
u0
λ

)2 − 1
)

dx.

(2.10)

Therefore we obtain

‖et�u0‖expL2 = inf

{
λ > 0; ∫

R2

(
exp

(
et�u0

λ

)2 − 1

)
dx ≤ 1

}

≤ inf
{
λ > 0; ∫

R2

(
exp

(
u0
λ

)2 − 1
)

dx ≤ 1
}

= ‖u0‖expL2 .

This proves (2.8).
We turn to prove (2.9). By (2.10) and (2.2), et�u0 ∈ expL2

0(R
2) for every t > 0

if u0 ∈ expL2
0(R

2). Thus it remains to prove continuity,

lim
t→0

‖et�u0 − u0‖expL2 = 0.

Since u0 ∈ expL2
0(R

2), there exist {un}∞n=1 ⊂ C∞
0 (R2) such that limn→∞ ‖un −

u0‖expL2 = 0. By (2.6) and (2.8), it holds

‖et�u0 − u0‖expL2 ≤ ‖et�(u0 − un)‖expL2 + ‖et�un − un‖expL2 + ‖un − u0‖expL2

≤ 1√
log 2

(‖et�un − un‖L2 + ‖et�un − un‖L∞
) + 2‖un − u0‖expL2 .

Since un ∈ C∞
0 (R2), we see that

lim
t→0

(‖et�un − un‖L2 + ‖et�un − un‖L∞) = 0.

Hence
lim sup

t→0
‖et�u0 − u0‖expL2 ≤ 2‖un − u0‖expL2

for every n ∈ N. This proves (2.9).

Proposition 2.3 Let u ∈ C([0, T ]; expL2
0(R

2)). Then for every α > 0 there holds(
eαu2 − 1

)
∈ C([0, T ]; L1(R2)).

Proof of Proposition 2.3 Let u ∈ C([0, T ]; expL2
0(R

2)). It follows from (2.2) that(
eαu2 − 1

)
∈ L1(R2)

for every α > 0 and t ∈ [0, T ].
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It remains to prove the continuity in the time variable. We follow an idea from [9].
Fix t ∈ [0, T ] and a sequence such that tn → t as n → ∞. Define ũn := u(tn). We
prove (

eαũ2n − 1
)

→
(
eαu2 − 1

)
in L1(R2)

for every α > 0. Set Un := ũn − u. A simple calculation shows

eαũ2n − eαu2 =
(
eαu2 − 1

) {(
eαU2

n − 1
) (

e2αuUn − 1
) +

(
eαU2

n − 1
)

+ (
e2αuUn − 1

)}
+

((
eαU2

n − 1
) (

e2αuUn − 1
) +

(
eαU2

n − 1
)

+ (
e2αuUn − 1

))
.

Hence it suffices to prove

eαU2
n − 1 → 0 in Lp(R2),

e2αuUn − 1 → 0 in Lp(R2),

for every 1 ≤ p < ∞. Recall that ‖Un‖expL2 → 0 as n → ∞, since u ∈
C([0, T ]; expL2

0(R
2)). Indeed, Taylor expansion and Proposition 2.1 show that∥∥∥eαU2

n − 1
∥∥∥p

Lp
≤ C

∫
R2

(
eαpU2

n − 1
)

dx

= C
∑∞

k=1
(αp)k

k! ‖Un‖2kL2k

≤ C
∑∞

k=1(αp)k‖Un‖2kexpL2

≤ C
αp‖Un‖2

expL2

1−αp‖Un‖2
expL2

→ 0 as n → ∞.

Similarly, ∥∥e2αuUn − 1
∥∥p

Lp ≤ C
∫
R2

(
e2αp|u||Un| − 1

)
dx

≤C
∑∞

k=1
(2αp)k

k! ‖u‖k
L2k‖Un‖k

L2k

≤ C
∑∞

k=1(2αp)k‖u‖k
expL2‖Un‖k

expL2

≤ C
2αp‖u‖expL2‖Un‖expL2

1−2αp‖u‖expL2‖Un‖expL2

→ 0 as n → ∞.

This completes the proof.

3 Proof of Theorem 1.1

To prove Theorem 1.1, we first construct an initial data which has diverging
integrability.

Lemma 3.1 Let α > 0 and

u0(x) :=
⎧⎨
⎩ α

(
log 1

|x|
) 1

2
, |x| < 1,

0, |x| ≥ 1.
(3.1)
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Then, for every λ > 0, there exists some α̃ > 0 such that∫ ε

0

∫
Br(0)

exp
(
λ(et�u0)

2
)

dxdt = ∞,

for every α > α̃, ε > 0, and r > 0, where Br(0) ⊂ R
2 is the ball centered at the

origin with radius r > 0.

Proof of Lemma 3.1 Fix 0 < r̃ < r so that if x ∈ Br̃(0) then B|x|(3x) ⊂ B1(0).
Clearly∫ ε

0

∫
Br(0)

exp
(
λ(et�u0)

2
)

dxdt ≥
∫ ε

0

∫
Br̃ (0)

exp
(
λ(et�u0)

2
)

dxdt

and for x ∈ Br̃(0) there holds

et�u0(x) =
∫

B1(0)

1

4πt
e− |x−y|2

4t u0(y)dy ≥ α

∫
B|x|(3x)

1

4πt
e− |x−y|2

4t

(
log

1

|y|
) 1

2

dy.

Since y ∈ B|x|(3x), it holds 2|x| ≤ |y| ≤ 4|x| and |x| ≤ |x − y| ≤ 3|x| and this
implies

et�u0(x) ≥ α

∫
B|x|(3x)

1

4πt
e− |x−y|2

4t

(
log

1

|y|
) 1

2

dy ≥ Cα
|x|2
t

e− 9
4

|x|2
t

(
log

1

4|x|
) 1

2

(3.2)
for some C > 0. Now choose ε̃ < ε small so that every 0 < t < ε̃ satisfies B√

t (0) ⊂
Br̃(0). This and (3.2) imply that∫ ε

0

∫
Br̃ (0)

exp
(
λ(et�u0)

2
)
dxdt ≥ ∫ ε̃

0

∫
B√

t (0)\B√
t/2(0)

exp
(
λ(et�u0)

2
)
dxdt

≥ ∫ ε̃

0

∫
B√

t (0)\B√
t/2(0)

exp
(
λC2α2 log 1

4|x|
)

dxdt

= C̃
∫ ε̃

0 t1− λC2α2
2 dt

for some C̃ > 0. If α is large enough, the integral in the last line goes to infinity and
therefore∫ ε

0

∫
Br̃ (0)

exp
(
λ(et�u0)

2
)

dxdt =
∫ ε̃

0

∫
B√

t (0)\B√
t/2(0)

exp
(
λ(et�u0)

2
)

dxdt = ∞.

(3.3)
This proves Lemma 3.1.

Using Lemma 3.1, we prove the non-existence of any nonnegative expL2(R2)-
classical solution.

Proof of Theorem 1.1 Recall that u0 defined in (3.1) belongs to expL2(R2) for every
α > 0. By contradiction we assume that there exists T > 0 and a nonnegative
expL2(R2)-classical solution u to (1.1). For any t > 0, s > 0, t + s < T we have

u(t + s) ≥ et�u(s)
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since u is a expL2(R2)-classical solution. Considering s → 0, we have u(t + s) →
u(t). On the other hand, combining the facts that

e− |x−·|2
4t ∈ L1(R2) ∩ L∞(R2) ⊂ L1(logL)

1
2 (R2)

for every x ∈ R
2 and u(s) converges in weak∗-topology to u0 (see (1.6)), we obtain

et�u(s, x) =
∫
R2

e− |x−y|2
4t

4πt
u(s, y)dy →

∫
R2

e− |x−y|2
4t

4πt
u0(y)dy = et�u0(x) (s → 0).

Thus we have

u(t) ≥ et�u0 ≥ 0. (3.4)

Here we use that the initial data u0 defined in (3.1) is nonnegative. Since u is
a classical solution of (1.1) for t ∈ (0, T ), we obtain by multiplying (1.1) by ξ ∈
C∞
0 (R2), ξ ≥ 0 on R2 and ξ ≥ 1 on Br(0) that

d

dt

∫
R2

uξdx +
∫
R2

u(−�ξ) =
∫
R2

f (u)ξdx ≥
∫

Br(0)
f (u)dx.

Therefore for 0 < σ < T ′ < T we have∫
R2u(T ′)ξdx−∫

R2 u(σ)ξdx+∫ T ′
σ

∫
R2 u(s)(−�ξ)dxds ≥ ∫ T ′

σ

∫
Br(0)

f (u(s))dxds.

Letting σ → 0, since u belongs to L∞(0, T ′; expL2(R2)) and u(t) → u0 in
weak∗ topology, we have
∫
R2

u(T ′)ξdx −
∫
R2

u0ξdx +
∫ T ′

0

∫
R2

u(−�ξ)dxds ≥
∫ T ′

0

∫
Br(0)

f (u(s))dxds,

and therefore ∫ T ′

0

∫
Br(0)

f (u)dxds < ∞. (3.5)

On the other hand, assumption (1.8) shows that there are some positive constants
C > 0 and η0 > 0 such that

f (η) ≥ eλη2 (3.6)

for every η > η0. Now take r̃ < r and ε̃ < T ′ as in the proof of Lemma 3.1. Then
the inequality (3.2) shows that

et�u0(x) ≥ C

(
log

1

4
√

t

) 1
2 ≥ η0 (3.7)

if t > 0 is small enough and x ∈ B√
t (0) \ B√

t/2(0) ⊂ Br̃(0). It follows from (3.4),
(3.6), and (3.7) that

∫ T ′

0

∫
Br(0)

f (u)dxds ≥
∫ ε̃

0

∫
B√

t (0)\B√
t/2(0)

exp
(
λ(et�u0)

2
)

dxdt. (3.8)

This contradicts (3.5) and (3.3) if α > 0 is sufficiently large.
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4 Proof of Existence of Theorem 1.2

In this section we prove the existence of a solution of (1.1) in C([0, T ]; expL2
0(R

2))

for some T > 0. We emphasize that also in this framework as in the case of solutions
of small norm the Cauchy problem (1.1) admits the equivalent integral formulation
(1.7).

Proposition 4.1 Let T > 0 and u0 be in expL2
0(R

2). If u belongs to
C([0, T ]; expL2

0(R
2)), then u is a weak solution of (1.1) if and only if u(t) satisfies

the integral (1.7) for any t ∈ (0, T ).

Proof of Proposition 4.1 The key estimate of the proof is the property that for any
u ∈ C([0, T ]; expL2

0(R
2)) then f (u) ∈ C([0, T ]; Lp(R2) for all 1 ≤ p < ∞ (see

Proposition 2.3). Therefore the integral on the right hand side of (1.7) is well defined
(see [4, 6]).

In order to find a solution we will apply a fixed point argument to (1.7). To this
end, we apply a decomposition developed in [10].

Let u0 ∈ expL2
0(R

2). Then, for every ε > 0 there exists u1 ∈ C∞
0 (R2) such that

‖u0 − u1‖expL2 < ε.

We define u2 := u0 − u1. Now we divide the problem into the following two
problems. One is a semilinear heat equation with smooth initial data

{
∂tv − �v = f (v) in (0, ∞) × R

2,

v(0) = u1 ∈ C∞
0 (R2) in R

2,
(4.1)

and the other one is a semilinear heat equation with small data in expL2

{
∂tw − �w = f (w + v) − f (v) in (0, ∞) × R

2,

w(0) = u2, ‖u2‖expL2 < ε, in R
2.

(4.2)

We now construct local solutions of (4.1) and (4.2) separately.

Lemma 4.1 Let u1 ∈ L2(R2) ∩ L∞(R2). Then there exist a time T > 0 and a
solution v ∈ C([0, T ]; expL2

0(R
2)) ∩ L∞(0, T ; L∞(R2)) of (4.1).

Lemma 4.2 Let ε > 0 small enough. Then, for any v ∈ L∞(0, T ; L∞(R2)), there
exist a time T̃ = T̃ (u2, ε, v) > 0 and a solution w ∈ C([0, T̃ ]; expL2

0(R
2)) of (4.2).

Clearly if v and w are solutions of (4.1) and (4.2) respectively, then u := v + w is
a solution of (1.7).

4.1 Proof of Lemma 4.1

In this subsection, we prove Lemma 4.1.
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Proof of Lemma 4.1 We apply a standard contraction mapping argument. Let M > 0
and define

YM,T :=
{
v ∈ C([0, T ]; expL2

0(R
2))∩L∞(0, T ; L∞(R2)) : ‖v‖YT

≤ M+‖u1‖L2 +‖u1‖L∞
}
,

where ‖v‖YT
:= ‖v‖L∞(0,T ;L2(R2)) + ‖v‖L∞(0,T ;L∞(R2)), and set

�(v) := et�u1 +
∫ t

0
e(t−s)�

(
f

(
v(s)

))
ds.

We prove that if T > 0 is small enough then � is a contraction map from YM,T to
itself. First we prove that there exists some C independent of T such that

‖�(v1) − �(v2)‖YT
≤ CT ‖v1 − v2‖YT

(4.3)

for every v1, v2 ∈ YM,T . Clearly, for q = 2 or q = ∞ it holds

‖�(v1) − �(v2)‖L∞(0,T ;Lq) ≤ ∫ T

0 ‖f (v1) − f (v2)‖Lq ds ≤ T ‖f (v1) − f (v2)‖L∞(0,T ;Lq).

(4.4)
Moreover,

‖f (v1) − f (v2)‖Lq ≤ C
(∑

i=1,2

∫
R2 |v1 − v2|qeλqv2i dx

) 1
q

≤ C
∑

i=1,2 eλ‖vi‖2L∞ ‖v1 − v2‖Lq .

(4.5)

Combining (4.4) and (4.5), we obtain the desired estimate (4.3).
Now take v2 = 0 in (4.3). Then we see

‖�(v)‖YT
≤ CT ‖v‖YT

+ ‖u1‖L2 + ‖u1‖L∞ . (4.6)

The inequality (4.6) shows that if v ∈ YM,T and u1 ∈ L2(R2) ∩ L∞(R2)

then �(v) ∈ L∞(0, T ; L2(R2) ∩ L∞(R2)). This and (2.5) implies �(v) ∈
L∞(0, T ; expL2

0(R
2)). Moreover the density of C∞

0 (R2) in expL2
0(R

2) implies
�(v) ∈ C([0, T ]; expL2

0(R
2)). Now, choosing T = T (M) > 0 small enough again,

(4.6) and (4.3) show that � is a contraction map from YT,M to itself. Thus, contrac-
tion mapping arguments imply that there is a solution v ∈ C([0, T ]; expL2

0(R
2)) of

(4.1).

4.2 Proof of Lemma 4.2

Let M̃, T̃ > 0, and define

W
M̃,T̃

:= {w ∈ C([0, T̃ ]; expL2
0(R

2)) : ‖w‖
L∞(0,T̃ ;expL2(R2))

≤ M̃}.
To prove Lemma 4.2, we begin with the following useful lemma.

Lemma 4.3 Let v ∈ L∞(0, T̃ ; L∞(R2)) and w1, w2 ∈ W
M̃,T̃

. For any 2 ≤ q < ∞,

and for sufficiently small M̃ there exists a constant C = C(‖v‖L∞(L∞), M̃, q) > 0
such that

‖f (w1+v)(t)−f (w2+v)(t)‖Lq ≤ C(‖v‖L∞(L∞), M̃, q)‖w1(t)−w2(t)‖expL2 , for any t ∈ (0, T ).
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Proof of Lemma 4.3 Let q ≥ 2. By the assumption (1.9) on f , we have

‖f (w1 + v) − f (w2 + v)‖Lq

≤ C
(∑

i=1,2

∫
R2 |w1 − w2|qeλq(wi+v)2dx

) 1
q

≤ C
∑

i=1,2

(∫
R2 |w1 − w2|qe2λqw2

i +2λqv2dx
) 1

q

≤ Ce2λq‖v‖L∞(L∞)

(
2‖w1 − w2‖Lq + ∑

i=1,2

(∫
R2 |w1 − w2|q

(
e2λqw2

i − 1
)

dx
) 1

q

)
.

(4.7)

Here we used v ∈ L∞(0, T̃ ; L∞(R2). Fix 1 < r < ∞. Applying Hölder’s
inequality, we obtain

(∫
R2 |w1 − w2|q

(
e2λqw2

i − 1
)

dx
) 1

q ≤ C‖w1 − w2‖Lqr′
(∫

R2

(
e2λqrw2

i − 1
)

dx
) 1

qr′

(4.8)
for some constant C > 0. Recall that q ≥ 2, so 2qr ≥ 2 and qr ′ ≥ 2. It follows
from Proposition 2.1 that

‖w1 − w2‖Lqr′ ≤ C‖w1 − w2‖expL2 ,

‖w1 − w2‖Lq ≤ C‖w1 − w2‖expL2,
(4.9)

for some C > 0 depending only on q and r . Moreover, choose M̃ > 0 small so that
2λqr < 1/(M̃)2. Then, by (2.1) and ‖wi‖expL2 ≤ M̃ , it holds

∫
R2

(
e2λqrw2

i − 1
)

dx ≤
∫
R2

(
exp

(
wi

M̃

)2

− 1

)
dx ≤ 1. (4.10)

Substituting (4.8), (4.9), and (4.10) into (4.7), we obtain Lemma 4.3.

Next we prove Lemma 4.2.

proof of Lemma 4.2 Define

�(w) := et�u2 + ∫ t

0 e(t−s)� (f (w(s) + v(s)) − f (v(s))) ds.

We prove that if M̃ > 0 and T̃ > 0 are sufficiently small, then � is a contraction
map from W

M̃,T̃
to itself. To this end, we start by proving

‖�(w1)−�(w2)‖L∞(expL2) ≤ C(‖v‖L∞(L∞), M̃)
(
T̃ + T̃

1− 1
p

)
‖w1−w2‖L∞(expL2)

for every w1, w2 ∈ W
M̃,T̃

. Recall that L2 ∩ L∞ ⊂ expL2, i.e.,

‖�(w1)−�(w2)‖L∞(expL2) ≤ ‖�(w1)−�(w2)‖L∞(L2)+‖�(w1)−�(w2)‖L∞(L∞).

(4.11)
Let p > 2. Then the Lp − Lq estimates for the heat semigroup (2.7) show that

‖�(w1) − �(w2)‖L∞ ≤
∫ t

0
(t − s)

− 1
p ‖f (w1 + v) − f (w2 + v)‖Lpds.
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Applying Lemma 4.3 as q = p, we have

‖�(w1) − �(w2)‖L∞ ≤ C(‖v‖L∞(L∞), M̃)
∫ t

0 (t − s)
− 1

p ds‖w1 − w2‖expL2

≤ C(‖v‖L∞(L∞), M̃)T̃
1− 1

p ‖w1 − w2‖expL2 .

(4.12)
On the other hand, again by Lemma 4.3 as q = 2 and M̃ sufficiently small, it holds

‖�(w1) − �(w2)‖L2 ≤ C(‖v‖L∞(L∞), M̃)
∫ t

0‖w1 − w2‖expL2ds

≤ C(‖v‖L∞(L∞), M̃)T̃ ‖w1 − w2‖L∞(expL2).
(4.13)

Therefore, (4.11), (4.12), and (4.13) show that if we choose M̃ > 0 small enough,
then there is some C = C(‖v‖L∞ , M̃) > 0 such that

‖�(w1) − �(w2)‖L∞(expL2) ≤ C(‖v‖L∞ , M̃)
(
T̃ + T̃

1− 1
p

)
‖w1 − w2‖L∞(expL2)

(4.14)
for every w1, w2 ∈ W

M̃,T̃
.

We next prove that � is a map from W
M̃,T̃

to itself, provided that ‖u2‖expL2

and T̃ > 0 are sufficiently small. To this end, we first prove that �(w) ∈
C([0, T ]; expL2

0(R
2)) if u2 ∈ expL2

0(R) and w ∈ W
M̃,T̃

. The estimates (4.12)-
(4.13) with w2 = 0 show that the nonlinear term satisfies

�(w) − et�u2 ∈ L∞(0, T ; L2(R2) ∩ L∞(R2)).

Therefore, the inclusion relation (2.5) and the standard smoothing effect of the
heat semigroup imply

�(w) − et�u2 ∈ C([0, T ]; expL2
0(R

2)). (4.15)

Moreover, one can see by (2.9) that

et�u2 ∈ C([0, T ]; expL2
0(R

2)).

This and (4.15) proves �(w) ∈ C([0, T ]; expL2
0(R

2)). Now again by (4.14) with
w2 = 0, we have

‖�(w)‖L∞(expL2) ≤ ‖u2‖expL2 + C(‖v‖L∞ , M̃) × (T̃ + T̃
1− 1

p )‖w‖L∞(expL2).

(4.16)
Fix M̃ > 0 small enough so that Lemma 4.3 holds. Then choose 0 < ε < M̃/2

and T̃ = T̃ (M̃, ε, ‖v‖L∞) small enough such that � is a contraction map from W
M̃,T̃

to itself. This proves Lemma 4.2.

Proof of Theorem 1.2 We choose small T , ε, M̃, T̃ in the following order. First of
all, fix M > 0. Choose M̃ > 0 in (4.10) so that Lemma 4.3 holds. Recall that M̃

does not depend on T , ε, M, T̃ . After that, fix ε(M̃) > 0 small such that (4.16) holds.
Next one can decompose u0 = u1 + u2 with u1 ∈ C∞

0 (R2) and ‖u2‖expL2 < ε.
Then taking small T = T (M, ‖u1‖L2 , ‖u1‖L∞) > 0 in (4.3) and (4.6), we have a
solution v of (4.1). Finally we obtain a solution w of (4.2) by choosing small T̃ =
T̃ (M̃, ε, ‖v‖L∞) in (4.16) and (4.14). In conclusion, u := v +w is a solution of (1.7)
in C([0,min{T , T̃ }]; expL2

0(R
2)).



Math Phys Anal Geom (2015) 18: 29 Page 17 of 19 29

Remark 4.1 The solution in Theorem 1.2 belongs to L∞
loc(0, T ; L∞(R2)). Indeed, let

u ∈ C([0, T ]; expL2
0(R

2)) be a solution of the integral (1.7). The smoothing effect
of the heat kernel shows that et�u0 ∈ L∞(R2) for every 0 < t < T . Thus we only
have to consider the nonlinear term. Fixing p > 2, it follows from Proposition 2.3
that there exists some C̃ > λp, such that for any 0 < t < T

∫ t

0‖e(t−s)�f (u(s))‖L∞ds ≤ ∫ t

0 (t − s)
− 1

p ‖f (u(s))‖Lpds

≤ ∫ t

0 (t − s)
− 1

p
(∫

R2 |u|p exp(λpu2)dx
) 1

p ds

≤ ∫ t

0 (t − s)
− 1

p

(∫
R2(exp(C̃u2) − 1)dx

) 1
p

ds

≤ t
1− 1

p sup0<s<t

(∫
R2(exp(C̃u(s)2) − 1)dx

) 1
p

< ∞,

since u ∈ C([0, T ]; expL2
0(R

2)). This shows that u ∈ L∞
loc(0, T ; L∞(R2)). In par-

ticular, if f ∈ C1(R) the solution u ∈ C([0, T ]; expL2
0(R

2)) ∩ L∞
loc(0, T ; L∞(R2))

satisfies the (1.1) in the classical sense, i.e. C1 in t ∈ (0, T ) and C2 in x ∈ R
2.

5 Proof of Uniqueness in C([0, T ]; expL2
0(R

2))

In this section, we prove uniqueness of the solution in C([0, T ]; expL2
0(R

2)).

Proof of Uniqueness of Theorem 1.2 Let us suppose that u, v are two solutions of
(1.7) which for some T > 0 belong to C([0, T ]; expL2

0(R
2)), and with the same

initial data u(0) = v(0) = u0. Let

t0 = sup
{
t ∈ [0, T ] such that u(s) = v(s) for every s ∈ [0, t]}.

Let us suppose by contradiction that 0 ≤ t0 < T . Since u(t) and v(t) are continu-
ous in time we have u(t0) = v(t0). Let us denote ũ(t) = u(t+t0) and ṽ(t) = v(t+t0)

then ũ and ṽ verify the (1.7) on (0, T − t0] and ũ(0) = ṽ(0) = u(t0). We will prove
that there exists a positive time 0 < t̃ ≤ T − t0 such that

sup
0<t<t̃

‖ũ(t) − ṽ(t)‖expL2 ≤ C(t̃) sup
0<t<t̃

‖ũ(t) − ṽ(t)‖expL2 (5.1)

for a constant C(t̃) < 1, and so ũ(t) = ṽ(t) for any t ∈ [0, t̃]. Therefore u(t + t0) =
v(t + t0) for any t ∈ [0, t̃] in contradiction with the definition of t0. In order to
establish inequality (5.1) we control both the L2–norm and the L∞–norm of the
difference of the two solutions. Thanks to Proposition 2.1 and Hölder’s inequality for
some p, q such that 1

p
+ 1

q
= 1

2 and p > 2, we have

‖ũ(t) − ṽ(t)‖L2 ≤ ∫ t

0

∥∥∥|ũ(s) − ṽ(s)|(eλũ2(s) + eλṽ2(s))

∥∥∥
L2

ds

≤ 2
∫ t

0 ‖ũ(s) − ṽ(s)‖L2ds

+∫ t

0

(
‖ũ(s) − ṽ(s)‖Lq

∥∥∥(eλũ2(s) − 1) + (eλṽ2(s) − 1)
∥∥∥

Lp

)
ds

≤ Ct sup0<s<t ‖ũ(s) − ṽ(s)‖expL2

+C sup0<s<t ‖ũ(s) − ṽ(s)‖expL2

∫ t

0

∥∥∥(eλũ2(s) − 1) + (eλṽ2(s) − 1)
∥∥∥

Lp
ds.
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Moreover thanks to Proposition 2.3 the term in the integral is uniformly bounded
in time. Indeed,

sup0<s<T −t0

∥∥∥(eλũ2(s) − 1) + (eλṽ2(s) − 1)
∥∥∥

Lp

≤ sup0<s<T −t0

[∫
R2(e

λpũ2(s) − 1) + (eλpṽ2(s) − 1)dx
]1/p

≤ C(T , t0, ũ, ṽ) < ∞.

(5.2)

Therefore, we obtain

sup
0<s<t

‖ũ(s) − ṽ(s)‖L2 ≤ C(T , t0, ũ, ṽ) t sup
0<s<t

‖ũ(s) − ṽ(s)‖expL2 . (5.3)

In a similar way we control

‖ũ(t) − ṽ(t)‖L∞ ≤ ∫ t

0 (t − s)
− 1

p

∥∥∥|ũ(s) − ṽ(s)|
(
eλũ2(s) + eλṽ2(s)

)∥∥∥
Lp

ds

≤ 2
∫ t

0 (t − s)
− 1

p ‖ũ(s) − ṽ(s)‖Lp

+∫ t

0 (t − s)
− 1

p ‖ũ(s) − ṽ(s)‖Lq̄

∥∥∥(
eλũ2(s) − 1 + eλṽ2(s) − 1

)∥∥∥
Lp̄

ds

for some p > 2 and some q̄, p̄ such that 1
q̄

+ 1
p̄

= 1
p
. Since 2p̄ > p̄ ≥ p > 2, one

can apply an estimate similar to (5.2) via Proposition 2.1 and Proposition 2.3, and
obtain that

sup0<s<t ‖ũ(s) − ṽ(s)‖expL2 ≤ C(T , t0, ũ, ṽ) t
1− 1

p sup0<s<t ‖ũ(s) − ṽ(s)‖expL2 .

(5.4)
Therefore the two inequalities (5.3) and (5.4) imply

sup
0<s<t

‖ũ(s) − ṽ(s)‖expL2 ≤ C(T , t0, ũ, ṽ)(t
1− 1

p + t) sup
0<s<t

‖ũ(s) − ṽ(s)‖expL2 ,

and for t small enough we obtain the desired estimate.
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