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Abstract We study the asymptotics of the difference of the ground-state energies
of two non-interacting N-particle Fermi gases in a finite volume of length L in the
thermodynamic limit up to order 1/L. We are particularly interested in subdomi-
nant terms proportional to 1/L, called finite-size energy. In the nineties (Affleck,
Nuc. Phys. B 58, 3541 1997; Zagoskin and Affleck, J. Phys. A 30, 5743-5765
1997) claimed that the finite-size energy is related to the decay exponent occurring in
Anderson’s orthogonality. We prove that the finite-size energy depends on the details
of the thermodynamic limit and is therefore non-universal. Typically, it includes an
additional linear term in the scattering phase shift.
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1 Introduction

Given two non-interacting N -particle Fermi gases, which differ by a local scattering
potential, and are confined to the finite interval (0, L) C (0, c0), one can ask for
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two intimately connected asymptotics. The first one is the asymptotics of the scalar
product of the two ground states (&, ¥ 2’ ), which we call the ground-state overlap
in the sequel. The second related question is the asymptotics of the difference of the
ground-state energies E’LN —FE iv . Both in the thermodynamic limit at some given
Fermi energy E,i.e. N/L — p(E) > 0. Here, p is the integrated density of states
of the unperturbed one-particle Schrodinger operator. These asymptotics are related
to physical situations where a sudden change by a static scattering potential occurs,
e.g. the Fermi edge singularity or the Kondo effect, see [2].

On the one hand, [3] claims in the case of a Dirac-§ perturbation that the ground-
state overlap vanishes as
(@, Wy ~ L7452 (1.1)
where

1
((E) = ;SWE) (1.2)

and § is equal to the s-wave scattering phase shift. For a proof of this see [10]. It
turns out that the decay exponent ¢ (E) is independent of the particular thermody-
namic limit chosen, at least in the case of a Dirac-§ perturbation. In more general
settings only upper bounds on the ground-state overlap are known, see [7-9, 14, 15].
In the physics literature the behaviour (1.1) is referred to as Anderson’s orthogonality
catastrophe.

On the other hand, restricting ourselves to systems on the half-axis and the family
of thermodynamic limits
N4 _ 1.3)
where a € R is a parameter, the difference of the ground-state energies admits the
asymptotics

E E 1
EN - EV =/_ dx £(x) + C”x;S(E) +0<Z) (1.4)

as N, L — oo such that (1.3) holds. Here, & is the spectral shift function for the
pair of the corresponding infinite-volume one-particle Schrodinger operators. In the
physics literature the first term is sometimes called the Fumi term and x%(E) the
finite-size correction or energy, see [1]. For models on the half line with a local
perturbation, the finite-size correction x{ ¢(E) appearing in the energy difference is
claimed to be closely related to the decay exponent ¢ (E) occurring in Anderson’s
orthogonality, see [1, 2, 19].

In this note we give a short and elementary proof of the correct asymptotics
of the difference of the ground-state energies for systems on the half axis which
differ by a short-range scattering potential in the thermodynamic limit, see The-
orem 2.2. The proof also applies for a perturbation by a Dirac-6 perturbation. It
turns out that the finite-size energy xpg(E) is non-universal and depends on the
particular choice of the parameter a in the thermodynamic limit in (1.3). More-
over, there is precisely one choice of the particle number and system size, i.e.
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a = 1/2 in (1.3), such that the finite-size energy is equal to the Anderson expo-
nent (1.2). This particular choice was also used in a computation of the finite-size
energy in [19, App. A]. However, for other choices of the thermodynamic limit
an additional linear term in the spectral shift function, or equivalently in the scat-
tering phase shift occurs, see Corollary 2.4 below. In contrast, it is proved in
[10] that the decay exponent ¢(E) in (1.1) is independent of the choice of the
constant a in the thermodynamic limit (1.3). Thus, we doubt a fundamental con-
nection between the finite-size energy (1.4) and the decay exponent in Anderson’s
orthogonality (1.1).

2 Model and Results

We consider a measurable non-negative potential V > 0 on the half line (0, c0)
satisfying

/Ooode(x) (1 —|—x2> < 0. @.1)

Moreover, let L > 1 and —A be the negative Laplacian on the interval (0, L)
with Dirichlet boundary conditions. Then, we define the finite-volume one-particle
Schrodinger operators
Hp = —ApL and H; :=—-AL+V. (2.2)

Here, V is understood as its canonical restriction to the interval (0, L). These oper-
ators are densely defined and self-adjoint operators on the Hilbert space L2((0, L)).
Both have compact resolvents and thus admit an ONB of eigenfunctions. We denote
the corresponding non-decreasing sequences of eigenvalues, counting multiplicities,
by Ab<al < oo and ph< pd < -+ Note that 2} = (%)2, n € N, see e.g.
[16]. Moreover, we write H := —A and H' := —A + V for the corresponding
infinite-volume operators on L2((0, 00)) with Dirichlet boundary conditions at the
origin.

Given N € N, the induced (non-interacting) finite-volume fermionic N-particle
Schrodinger operators Hy and H; act on the totally antisymmetric subspace
/\;v:l L%((0, L)) of the N-fold tensor product space and are given by

N
I:Iz/)Z=21®"'®I®H£)®I®'”®I’ 2.3)
=1

where the index j determines the position of H 2/) in the N-fold tensor product of
operators. The corresponding ground-state energies are given by the sum of the N
smallest eigenvalues

N

N
EY =) " and EN:=> puk (2.4)
k=1 j=1
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We are interested in the difference of the ground state energies in the thermodynamic
limit at a given Fermi energy E > 0. Thus, given E > 0 and the number of particles
N € N, we choose the system length L such that
ﬁ — E =: p(E), 2.5)
L b4
where p is the integrated density of states of the infinite-volume operator H.

For £k > 0 we denote by & (k) the scattering phase shift corresponding to the pair
of operators H and H' at the energy k> > 0. Since V > 0, the phase shift is non-
positive, i.e. for k > 0

8(k) <0. (2.6)

Then, the scattering matrix for the pair H and H’ at the energy E equals S(E) =
exp (Zi S(WE )). Note that on the half line, the scattering matrix is just a complex
number of modulus 1. For a definition of the phase shift see e.g. Appendix A, [17,
Chapter. XI.8] or [6].

Remark 2.1. (i) Let & be the spectral shift function for the pair of operators H
and H'. Then, we have the identity [5]
1
—SWE) = —£(E), 2.7
for every E > 0.
(ii)) We define for E > 0
1
C(E) = 252(\@). (2.8)

This constant equals the decay exponent found in [10] which determines the
asymptotics of the exponent in Anderson’s orthogonality, i.e. the asymptotics
(1.1) of the scalar product of the ground states of the pair of operators Hy and
H 2/) in the thermodynamic limit.

Using the notation of Remark 2.1, our main result is the following:

Theorem 2.2. For all Fermi energies E > 0 the difference of the ground-state
energies admits the asymptotics

2
) 1 (7)) VE 1 1
EN _EV - —;/0 dx 8(v/X) + T< —8(VE) + ;(82(\/15)) +0<Z)

E ) E 1
[ dxs<x>+/(L) b6+ e+ e) +o(L) @9
0 E

JE

asN,L—>oo,and%—> .
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Remark 2.3. Since £ is continuous, see Lemma 3.2 below,

/E(NL”)Z dx £(x) = ((%)2 - E)é(E) + o((%)2 ~E) (2.10)

as N, L — oo, and % — ‘/TE > 0. This immediately implies that the asymptotics
depends on the rate of convergence of the thermodynamic limit and that the finite-
size energy defined in (1.4) is non-universal. In general, the first-order correction to
the difference of the ground-state energies may even be L dependent.

Remark 2.3 implies for the particular family of thermodynamic limits considered
in the introduction:

Corollary 2.4 (Finite-size energy). For a given Fermi energy E > 0, some particle
number N € N and a € R we choose the system length L such that
N E
ta. _VE @.11)
L b4
Then, the 1/ L-correction in (2.9), which is called the finite-size energy introduced in
(1.4), is

x$g(E) = (1 —2a)&(E) + {(E). (2.12)
Thus,

(i) for the particular choice a = % the finite-size energy is

xps(E) = ¢(E), (2.13)
(i1) whereas for the choice a = O the finite-size energy equals
xps(E) = §(E) + C(E). (2.14)

Remark 2.5. (i) Inourcase of V > 0 the integrals in Theorem 2.2 may start from
0, since 8(x) = 0 forx <O0.
(i) The first term in the expansion is not surprising since

E
E/ —Eiv=/ dx &, (x) +0(1), (2.15)

where &/, is the finite-dimensional spectral shift function and

E E
/ dxéL(x)—>/ dx £(x) (2.16)

as L — oo, see [11] or [4] for definitions and details.

(iii)) The same result with the completely analogous proof holds also for a Dirac-§
perturbation or s-wave scattering in three dimensions which is considered in
[10]. In the special case of the Neumann and Dirichlet Laplacian H := —AN
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and H' := —AP on L2((0, 00)) the proof is even simpler since the phase shift
is energy independent

S(WE) = % 2.17)

and one easily obtains the a-dependence in Corollary 2.4.

(iv) We choose V > 0 since we want to avoid bound states or zero-energy reso-
nances. Moreover, the integrability assumption (2.1) on V ensures sufficient
regularity of the phase shift §.

(v) Our result allows also a conclusion for the same problem on R with a symmet-
ric perturbation V because in this case the problem is reduced to two problems
on the half axis with either Neumann or Dirichlet boundary condition at the
origin.

3 Proof of Theorem 2.2

We start with a lemma relating the eigenvalues of the pair of finite-volume operators.

Lemma 3.1. Let § be the phase shift for the pair of operators H and H' then the nth
eigenvalues of Hy, and H; satisfy

1) n 1
Jin =/l — (*/L““_)+o(ﬁ), (3.1)

where the error depends only on the potential V.

This follows directly from introducing Priifer variables in the theory of Sturm-
Liouville operators.

We have to investigate the behaviour of § at k = 0 to obtain suitable error
estimates.

Lemma 3.2. Let § be the phase shift corresponding to the operators H and H'.
Then, § € C2((0, 00)) and there exists a constant c, depending on the potential V,
such that for all k > 0

(1) |8(k)| < ¢ min{k, %}, in particular § € L*°((0, 00)).
(i) 8 € L*®((0, 00)),
(i) 18" (K)| < £.

Moreover,

(iv) we have the following expansion of the phase shift

8" (VA)S(VAn)  F(
S (/i) = 8(/m) — («/_)L(\/_)Jr (V)

L2

; (3.2
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where the remainder term obeys for x > 0

|F(o)| < c(% +1) (3.3)

for some constant ¢ depending on the potential V.

Lemma 3.1 and 3.2 are well known to experts in the theory of Sturm-Liouville
operators. Unfortunately, we did not find a precise reference. For convenience, we
prove both results in Appendix A. The third ingredient to the proof of Theorem 2.2
is the following:

Lemma 3.3. (Euler-MacLaurin)

(i) Let f € C'((0, 00)) then

g n

T2t () =/0 ax 700 +0( 251 £ s(op)y  G9
(i) Let f e c2((0 00)) with " € L™ ((0, 00)) then

1 Zf / dx f(x) + —/O[de F(x) +0(%). (3.5)

The proof of this lemma is elementary, see also [13, Chapter XIV].

Proof of Theorem 2.2 Using Lemma 3.1, we obtain

ZN: (tn — hn) = i(_%/m(m) + 52(*/@) +of N) (3.6)
n=1

L L?

n=1

On the other hand Lemma 3.2 (iv) provides

N 28 28 (LA (SR 82 (S
(3.6):2(— (\/_)\/_+ (V) («/_)«/_+ (\/_))

L L? L2

Y G(a) +o(55). 3.7

where

G(x) = ( — 28/(x)52(x) 2xF(x) + — ((8 ()C)(S()c))2 + 28(x)F(x))

2 SF@8@80) + —Fz(x)> (3.8)
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L JVE

g

. _(nm\2
Since A, = (*£)",
the error

~=

, using Lemma 3.2 (i)-(iii) and (3.3), we obtain for

Li ~0(+5) (3.9)
L3 — L7 '

Note that by Lemma 3.2 the function f : x +— x4(x) fulfills the assumptions of
Lemma 3.3 (ii). Thus, we compute

X:— 25«/‘»/‘ 1 228 (nn)

N

¥ 1 7 ) N
_/O dx 28 (xm) (x7) — Z/o dx (3(xm)(x7)) +O(F>

1 CE?
_ _;/0

where we used in the last equality the convergence % — “/TE and the con-

tinuity of §. Using Lemma 3.2 we see that g x = x8(x)8(x) satis-

fies the assumptions of Lemma 3.3 (i) with ||g/||LOO((O N)) < c(l + %).
L

dx 8(J/x) — %a(ﬁ)«/ﬂr o(%) (3.10)

Therefore,

. N
> PR (L (M) (1) 21

n=1 n=1

- %/OT dx 28" (xm)8(xm) (xm) + 0(%)(1 + %)

Lﬂ(az(\/f)\/f _ /OILV dx82(xn)7r) —l—o(%), 3.11)

N JVE

where we used integration by parts, the convergence 7~ — = and the continuity of
4 in the last line. Lemma 3.2 yields the assumptions of Lemma 3.3 (i) for 4 : x
82(x) with h’ € L ((0, o0)). Thus,

N 2 11N
ZT:Z<Z;82(7)>

n=1

N
1 [T 5 1
= /0 dx 8%(xmr) + o(ﬁ). (3.12)
Summing up (3.10), (3.11), (3.12) and (3.6), (3.9) give the claim. O]
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Appendix A: Priifer Variables and the Phase Shift

Let k > 0. We consider the eigenvalue problem on (0, co)

—u" + Vu = ku, u(0) = 0. (A.1)
Introducing Priifer variables

u(x) = pyu(x) sin(6 (x)) u'(x) = kpy (x) cos(Ox (x)), (A.2)

(A.1) is equivalent to the system

1
0 =k — %V sin(6y), 0x(0) =0, (A.3)
V sin(26;)

oy = o Pw (A4)

see e.g. [18, Sec. 14.4]. We call 6; the Priifer angle. Using the Banach fixed-point
theorem, there exist absolutely continuous solutions 6; and p, > 0 of (A.3) and
(A.4). Moreover, the solution 6 is unique. We denote by

Sk(x) :=6r(x) —kx, wherek,x >0 (A.5)
the phase shift function, Then, for k > 0 the scattering phase shift § is defined by
lim 8 (x) := (k). (A.6)
X—>00

Therefore, integrating (A.3) implies
1 o
8(k) = —z/ dt V(1) sin® (6 (1)). (A7)
0

The non-linear ODE (A.3) is sometimes called the variable-phase equation, see
e.g. [6] or [17, Thm. XI.54]. We did not choose the standard Priifer variables. But
with the choice (A.2) it is particularly easy to compare the Priifer angle with the
phase-shift function and in turn with the phase shift. This was also used in [12]. We
continue with some elementary properties of the Priifer angle, respectively of the
phase-shift function for perturbations V > 0.

Proposition A.1. Let V > 0, k > 0 and fix x > 0. Then,

(1) 6k (x) is non-negative, moreover,

0 < Op(x) < kx, (A.8)
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(ii) we have

lim 6 (x) = 0, lim 6 (x) = oo, (A9)
k—0 k— 00
(iii) the functions k +— O (x) and k — S (x) are twice differentiable, i.e.
00 (x), 8(y(x) € C2((0, 00)), (A.10)
where %Gk satisfies
9 Y PAD) V (1) sin® (0 (1))
—6 = dr 1 > 0. A.ll
o1 k) /0 22(x) ( + i ) = (A1)

Proof of Proposition A.1 The first inequality in (i) follows from integrating (A.11)
with the initial condition 6 (0) = O for all K > 0. The second inequality follows from
V > 0 and the ODE (A.3).

The first equality in (i) is a consequence of (i). The second equality follows
directly from the ODE.

Let u(x, k) be a non-trivial solution of (A.1). Standard results provide that # and
u’ are analytic functions in the parameter k [18, Kor. 13.3]. Note that # and u’ do
not have the same zeros. Since tan (6 (x) = ku(x, k)/u’(x, k)) for u’(x, k) # 0 and
cotan (O (x)) = u'(x, k)/(ku(x, k)) for u(x, k) # 0, the properties (A.10) follow
from the analyticity of u. We compute

(pzi )x = 2ppe g+ p2 g,

ok ok ok
— 200,006 +p23( N VSinz(G))
ok ok k
_ 2pr39 +p2<1 N V sin(6) _ Vsin(26) i@)
ok k2 k ok
02
_ p2<1 + w) (A.12)
Integrating the latter yields (A.11). This computation is adopted from [18, Lem.
14.16]. O

Proof of Lemma 3.1 Let u > 0. Consider the eigenvalue equation on [0, L]
—u" +Vu = uu, u(0) = 0. (A.13)

We introduce Priifer variables according to (A.2). Note that any eigenfunction u of
h/LD corresponding to an eigenvalue p has to fulfill u(L) = 0 due to the Dirich-
let boundary condition at L. Thus, using p,(x) # O for all x > 0, we obtain
sin (9 ﬁ(L)) = 0. With (A.9) and (A.11) this implies for the nth eigenvalue w,, of
npP

0 jiin (L) = n. (A.14)
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Therefore, integrating (A.3) yields

L
. nimw )
iy =7+ Lﬁ,,/o de V(@) sin (0 (1)) (A.15)

Now, using | sin(x)| < |x|, (A.8), | sin(x)| < I and (2.1) we obtain

\/L_n Loo dr V(¢) sinz(éﬂ(t)) =< /Loo dr V ()t

IA

1o 1
Z/L dttV(t)zo(z>. (A.16)

Then, (A.7) and /A, = " give the claim. O

Proof of Lemma 3.2 Part (i) follows from (A.7), (A.8) and (2.1).
Equation (A.10) implies

d PO V (1) sin® 6k (1))
) = / Lo ). (A1)
The ODE (A.4), (A.8), the elementary inequality | sin x| < |x| and (2.1) imply
;((x)) < exp</txds sV(©) = ep(I(VIl) < oe. (A.18)

From this, (A.8) and |sinx| < |x| we infer the existence of a constant ¢ depending
on the potential V' such that

lakek(x)( <c+x). (A.19)

Then, the above, (A.8) and dominated convergence provide 8 € C!((0, o)) with
o0
|8' (k)| < c/ dt v (1+1+1%). (A.20)
0

The assumptions on the potential give the claim.
Using (A.10), we compute as in the proof of (A.11)

9* sin?(0)  sin(20)-260  cos(20)(:2-0)?
2__ = 2 — ok~ ok
(v 8k29> 20% ( R B ). @2
Using (A.8), | sinx| < |x|, (A.18) and (A.19), we see
0 ( A22
‘8k2 ()| < 2. A2)

where ¢ depends on V. Then dominated convergence yields § € C 2((0, 00)) and
(A.8) and (A.22) provide

18" (k)| < %/Oodt V(1 +1+1%) (A.23)
0
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for some C depending on the potential V.
To prove (iv) we use Lemma 3.1. Thus,
§(y/1n) 1
Vi =V + =0 o 7)), (A.24)
Since § € C%((0, 00)) we compute for x, y € (0,00) withy > xandy = x + @ +

o(1)

8/(x)8(x)‘ - 8(x)
L |- L

6. =800 +

y t
/ dt/ ds8”(s)’ + |8’(x)|’y—X+
X X

1
—ly — x>+
X

IA

18110
L

/ydt 5 (1) + 0(%)‘ (A.25)

X
Using Lemma 3.2 (ii) and once again the recursion relation we obtain

50— 800 + T < (14 1)o( ). (A26)

The claim follows from setting x := A, and y := . O
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