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Abstract We study the asymptotics of the difference of the ground-state energies
of two non-interacting N-particle Fermi gases in a finite volume of length L in the
thermodynamic limit up to order 1/L. We are particularly interested in subdomi-
nant terms proportional to 1/L, called finite-size energy. In the nineties (Affleck,
Nuc. Phys. B 58, 35–41 1997; Zagoskin and Affleck, J. Phys. A 30, 5743–5765
1997) claimed that the finite-size energy is related to the decay exponent occurring in
Anderson’s orthogonality. We prove that the finite-size energy depends on the details
of the thermodynamic limit and is therefore non-universal. Typically, it includes an
additional linear term in the scattering phase shift.

Keywords Schrödinger operators · Scattering phase shift · Spectral asymptotics

Mathematics Subject Classifications (2010) Primary 81Q10; Secondary 34L25

1 Introduction

Given two non-interacting N-particle Fermi gases, which differ by a local scattering
potential, and are confined to the finite interval (0, L) ⊂ (0, ∞), one can ask for
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two intimately connected asymptotics. The first one is the asymptotics of the scalar
product of the two ground states 〈�N

L , �N
L 〉, which we call the ground-state overlap

in the sequel. The second related question is the asymptotics of the difference of the
ground-state energies E′N

L − EN
L . Both in the thermodynamic limit at some given

Fermi energy E, i.e. N/L → ρ(E) > 0. Here, ρ is the integrated density of states
of the unperturbed one-particle Schrödinger operator. These asymptotics are related
to physical situations where a sudden change by a static scattering potential occurs,
e.g. the Fermi edge singularity or the Kondo effect, see [2].

On the one hand, [3] claims in the case of a Dirac-δ perturbation that the ground-
state overlap vanishes as

〈�N
L , �N

L 〉 ∼ L−ζ(E)/2, (1.1)

where

ζ(E) := 1

π2
δ2(

√
E) (1.2)

and δ is equal to the s-wave scattering phase shift. For a proof of this see [10]. It
turns out that the decay exponent ζ(E) is independent of the particular thermody-
namic limit chosen, at least in the case of a Dirac-δ perturbation. In more general
settings only upper bounds on the ground-state overlap are known, see [7–9, 14, 15].
In the physics literature the behaviour (1.1) is referred to as Anderson’s orthogonality
catastrophe.

On the other hand, restricting ourselves to systems on the half-axis and the family
of thermodynamic limits

N

L
+ a

L
= ρ(E), (1.3)

where a ∈ R is a parameter, the difference of the ground-state energies admits the
asymptotics

E′N
L − EN

L =
∫ E

−∞
dx ξ(x) +

√
Eπ

L
xa
FS(E) + o

( 1

L

)
(1.4)

as N, L → ∞ such that (1.3) holds. Here, ξ is the spectral shift function for the
pair of the corresponding infinite-volume one-particle Schrödinger operators. In the
physics literature the first term is sometimes called the Fumi term and xa

FS(E) the
finite-size correction or energy, see [1]. For models on the half line with a local
perturbation, the finite-size correction xa

FS(E) appearing in the energy difference is
claimed to be closely related to the decay exponent ζ(E) occurring in Anderson’s
orthogonality, see [1, 2, 19].

In this note we give a short and elementary proof of the correct asymptotics
of the difference of the ground-state energies for systems on the half axis which
differ by a short-range scattering potential in the thermodynamic limit, see The-
orem 2.2. The proof also applies for a perturbation by a Dirac-δ perturbation. It
turns out that the finite-size energy xa

FS(E) is non-universal and depends on the
particular choice of the parameter a in the thermodynamic limit in (1.3). More-
over, there is precisely one choice of the particle number and system size, i.e.
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a = 1/2 in (1.3), such that the finite-size energy is equal to the Anderson expo-
nent (1.2). This particular choice was also used in a computation of the finite-size
energy in [19, App. A]. However, for other choices of the thermodynamic limit
an additional linear term in the spectral shift function, or equivalently in the scat-
tering phase shift occurs, see Corollary 2.4 below. In contrast, it is proved in
[10] that the decay exponent ζ(E) in (1.1) is independent of the choice of the
constant a in the thermodynamic limit (1.3). Thus, we doubt a fundamental con-
nection between the finite-size energy (1.4) and the decay exponent in Anderson’s
orthogonality (1.1).

2 Model and Results

We consider a measurable non-negative potential V ≥ 0 on the half line (0, ∞)

satisfying ∫ ∞

0
dx V (x)

(
1 + x2

)
< ∞. (2.1)

Moreover, let L > 1 and −	L be the negative Laplacian on the interval (0, L)

with Dirichlet boundary conditions. Then, we define the finite-volume one-particle
Schrödinger operators

HL := −	L and H ′
L := −	L + V. (2.2)

Here, V is understood as its canonical restriction to the interval (0, L). These oper-
ators are densely defined and self-adjoint operators on the Hilbert space L2((0, L)).
Both have compact resolvents and thus admit an ONB of eigenfunctions. We denote
the corresponding non-decreasing sequences of eigenvalues, counting multiplicities,
by λL

1� λL
2 � · · · and μL

1� μL
2 � · · · . Note that λL

n = (
nπ
L

)2, n ∈ N, see e.g.
[16]. Moreover, we write H := −	 and H ′ := −	 + V for the corresponding
infinite-volume operators on L2((0, ∞)) with Dirichlet boundary conditions at the
origin.

Given N ∈ N, the induced (non-interacting) finite-volume fermionic N-particle
Schrödinger operators ĤL and Ĥ ′

L act on the totally antisymmetric subspace∧N
j=1 L2((0, L)) of the N-fold tensor product space and are given by

Ĥ
(′)
L :=

N∑
j=1

I ⊗ · · · ⊗ I ⊗ H
(′)
L ⊗ I ⊗ · · · ⊗ I, (2.3)

where the index j determines the position of H
(′)
L in the N-fold tensor product of

operators. The corresponding ground-state energies are given by the sum of the N

smallest eigenvalues

EN
L :=

N∑
k=1

λL
k and E′N

L :=
N∑

j=1

μL
j . (2.4)
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We are interested in the difference of the ground state energies in the thermodynamic
limit at a given Fermi energy E > 0. Thus, given E > 0 and the number of particles
N ∈ N, we choose the system length L such that

N

L
→

√
E

π
=: ρ(E), (2.5)

where ρ is the integrated density of states of the infinite-volume operator H .

For k > 0 we denote by δ(k) the scattering phase shift corresponding to the pair
of operators H and H ′ at the energy k2 > 0. Since V ≥ 0, the phase shift is non-
positive, i.e. for k > 0

δ(k) ≤ 0. (2.6)

Then, the scattering matrix for the pair H and H ′ at the energy E equals S(E) =
exp

(
2iδ(

√
E)

)
. Note that on the half line, the scattering matrix is just a complex

number of modulus 1. For a definition of the phase shift see e.g. Appendix A, [17,
Chapter. XI.8] or [6].

Remark 2.1. (i) Let ξ be the spectral shift function for the pair of operators H

and H ′. Then, we have the identity [5]
1

π
δ(

√
E) = −ξ(E), (2.7)

for every E > 0.
(ii) We define for E > 0

ζ(E) := 1

π2
δ2(

√
E). (2.8)

This constant equals the decay exponent found in [10] which determines the
asymptotics of the exponent in Anderson’s orthogonality, i.e. the asymptotics
(1.1) of the scalar product of the ground states of the pair of operators ĤL and
Ĥ

(′)
L in the thermodynamic limit.

Using the notation of Remark 2.1, our main result is the following:

Theorem 2.2. For all Fermi energies E > 0 the difference of the ground-state
energies admits the asymptotics

E′N
L − EN

L = − 1

π

∫ (
Nπ
L

)2

0
dx δ(

√
x) +

√
E

L

(
− δ(

√
E) + 1

π
δ2(

√
E)

)
+ o

( 1

L

)

=
∫ E

0
dx ξ(x) +

∫ (
Nπ
L

)2

E

dx ξ(x) +
√

Eπ

L

(
ξ(E) + ζ(E)

) + o
( 1

L

)
(2.9)

as N, L → ∞, and N
L

→
√

E
π
.
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Remark 2.3. Since ξ is continuous, see Lemma 3.2 below,

∫ (
Nπ
L

)2

E

dx ξ(x) =
((Nπ

L

)2 − E

)
ξ(E) + o

((Nπ

L

)2 − E
)

(2.10)

as N, L → ∞, and N
L

→
√

E
π

> 0. This immediately implies that the asymptotics
depends on the rate of convergence of the thermodynamic limit and that the finite-
size energy defined in (1.4) is non-universal. In general, the first-order correction to
the difference of the ground-state energies may even be L dependent.

Remark 2.3 implies for the particular family of thermodynamic limits considered
in the introduction:

Corollary 2.4 (Finite-size energy). For a given Fermi energy E > 0, some particle
number N ∈ N and a ∈ R we choose the system length L such that

N + a

L
:=

√
E

π
. (2.11)

Then, the 1/L-correction in (2.9), which is called the finite-size energy introduced in
(1.4), is

xa
FS(E) = (

1 − 2a
)
ξ(E) + ζ(E). (2.12)

Thus,

(i) for the particular choice a = 1
2 the finite-size energy is

xFS(E) = ζ(E), (2.13)

(ii) whereas for the choice a = 0 the finite-size energy equals

xFS(E) = ξ(E) + ζ(E). (2.14)

Remark 2.5. (i) In our case of V ≥ 0 the integrals in Theorem 2.2 may start from
0, since δ(x) = 0 for x ≤ 0.

(ii) The first term in the expansion is not surprising since

E
′N
L − EN

L =
∫ E

−∞
dx ξL(x) + o (1) , (2.15)

where ξL is the finite-dimensional spectral shift function and∫ E

−∞
dx ξL(x) →

∫ E

−∞
dx ξ(x) (2.16)

as L → ∞, see [11] or [4] for definitions and details.
(iii) The same result with the completely analogous proof holds also for a Dirac-δ

perturbation or s-wave scattering in three dimensions which is considered in
[10]. In the special case of the Neumann and Dirichlet Laplacian H := −	N
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and H ′ := −	D on L2((0, ∞)) the proof is even simpler since the phase shift
is energy independent

δ(
√

E) = π

2
(2.17)

and one easily obtains the a-dependence in Corollary 2.4.
(iv) We choose V ≥ 0 since we want to avoid bound states or zero-energy reso-

nances. Moreover, the integrability assumption (2.1) on V ensures sufficient
regularity of the phase shift δ.

(v) Our result allows also a conclusion for the same problem on R with a symmet-
ric perturbation V because in this case the problem is reduced to two problems
on the half axis with either Neumann or Dirichlet boundary condition at the
origin.

3 Proof of Theorem 2.2

We start with a lemma relating the eigenvalues of the pair of finite-volume operators.

Lemma 3.1. Let δ be the phase shift for the pair of operators H and H ′ then the nth
eigenvalues of HL and H ′

L satisfy

√
μn = √

λn − δ(
√

μn)

L
+ o

( 1

L2

)
, (3.1)

where the error depends only on the potential V .

This follows directly from introducing Prüfer variables in the theory of Sturm-
Liouville operators.

We have to investigate the behaviour of δ at k = 0 to obtain suitable error
estimates.

Lemma 3.2. Let δ be the phase shift corresponding to the operators H and H ′.
Then, δ ∈ C2((0, ∞)) and there exists a constant c, depending on the potential V ,
such that for all k > 0

(i) |δ(k)| ≤ cmin{k, 1
k
}, in particular δ ∈ L∞((0, ∞)).

(ii) δ′ ∈ L∞((0, ∞)),
(iii) |δ′′(k)| ≤ c

k
.

Moreover,

(iv) we have the following expansion of the phase shift

δ(
√

μn) = δ(
√

λn) − δ′(
√

λn)δ(
√

λn)

L
+ F(

√
λn)

L2
, (3.2)
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where the remainder term obeys for x > 0
∣∣F(x)

∣∣ ≤ c
(1
x

+ 1
)

(3.3)

for some constant c depending on the potential V .

Lemma 3.1 and 3.2 are well known to experts in the theory of Sturm-Liouville
operators. Unfortunately, we did not find a precise reference. For convenience, we
prove both results in Appendix A. The third ingredient to the proof of Theorem 2.2
is the following:

Lemma 3.3. (Euler-MacLaurin)

(i) Let f ∈ C1((0, ∞)) then

1

L

N∑
n=1

f
( n

L

)
=

∫ N
L

0
dx f (x) + O

( N

L2

)
‖f ′‖

L∞
(
(0, N

L
)
). (3.4)

(ii) Let f ∈ C2((0, ∞)) with f ′′ ∈ L∞ ((0, ∞)) then

1

L

N∑
n=1

f
( n

L

)
=

∫ N
L

0
dx f (x) + 1

2L

∫ N
L

0
dx f ′(x) + O

( N

L3

)
. (3.5)

The proof of this lemma is elementary, see also [13, Chapter XIV].

Proof of Theorem 2.2 Using Lemma 3.1, we obtain

N∑
n=1

(
μn − λn

) =
N∑

n=1

(
−2

√
λnδ(

√
μn)

L
+ δ2(

√
μn)

L2

)
+ o

( N

L2

)
(3.6)

On the other hand Lemma 3.2 (iv) provides

(3.6) =
N∑

n=1

(
−2δ(

√
λn)

√
λn

L
+ 2δ′(

√
λn)δ(

√
λn)

√
λn

L2
+ δ2(

√
λn)

L2

)

+ 1

L3

N∑
n=1

G
(√

λn

) + o
( N

L2

)
, (3.7)

where

G(x) =
(

− 2δ′(x)δ2(x) − 2xF(x) + 1

L

(
(δ′(x)δ(x))2 + 2δ(x)F (x)

)

− 2

L2
F(x)δ′(x)δ(x) + 1

L3
F 2(x)

)
. (3.8)
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Since λn = (
nπ
L

)2, N
L

→
√

E
π
, using Lemma 3.2 (i)-(iii) and (3.3), we obtain for

the error
1

L3

N∑
n=1

G
(√

λn

) = O
( 1

L2

)
. (3.9)

Note that by Lemma 3.2 the function f : x → xδ(x) fulfills the assumptions of
Lemma 3.3 (ii). Thus, we compute

N∑
n=1

− 2δ(
√

λn)
√

λn

L
= − 1

L

N∑
n=1

2δ
(nπ

L

) nπ

L

= −
∫ N

L

0
dx 2δ(xπ)(xπ) − 1

L

∫ N
L

0
dx (δ(xπ)(xπ))′ + O

( N

L3

)

= − 1

π

∫ ( Nπ
L

)2

0
dx δ(

√
x) − 1

L
δ(

√
E)

√
E + o

( 1

L

)
, (3.10)

where we used in the last equality the convergence N
L

→
√

E
π

and the con-
tinuity of δ. Using Lemma 3.2 we see that g : x → xδ(x)δ′(x) satis-
fies the assumptions of Lemma 3.3 (i) with ‖g′‖

L∞
(
(0, N

L
)
) ≤ c(1 + N

L
).

Therefore,

N∑
n=1

2δ′(
√

λn)δ(
√

λn)
√

λn

L2
= 1

L

(
1

L

N∑
n=1

2δ′ (nπ

L

)
δ
(nπ

L

) nπ

L

)

= 1

L

∫ N
L

0
dx 2δ′(xπ)δ(xπ)(xπ) + O

( N

L3

)(
1 + N

L

)

= 1

Lπ

(
δ2(

√
E)

√
E −

∫ N
L

0
dx δ2(xπ)π

)
+ o

( 1

L

)
, (3.11)

where we used integration by parts, the convergence N
L

→
√

E
π

and the continuity of
δ in the last line. Lemma 3.2 yields the assumptions of Lemma 3.3 (i) for h : x →
δ2(x) with h′ ∈ L∞ ((0, ∞)). Thus,

N∑
n=1

δ2(
√

λn)

L2
= 1

L

(
1

L

N∑
n=1

δ2
(nπ

L

))

= 1

L

∫ N
L

0
dx δ2(xπ) + O

( 1

L2

)
. (3.12)

Summing up (3.10), (3.11), (3.12) and (3.6), (3.9) give the claim.
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Appendix A: Prüfer Variables and the Phase Shift

Let k > 0. We consider the eigenvalue problem on (0, ∞)

− u′′ + V u = k2u, u(0) = 0. (A.1)

Introducing Prüfer variables

u(x) = ρu(x) sin(θk(x)) u′(x) = kρu(x) cos(θk(x)), (A.2)

(A.1) is equivalent to the system

θ ′
k = k − 1

k
V sin2(θk), θk(0) = 0, (A.3)

ρ′
u = V sin(2θk)

2k
ρu, (A.4)

see e.g. [18, Sec. 14.4]. We call θk the Prüfer angle. Using the Banach fixed-point
theorem, there exist absolutely continuous solutions θk and ρu > 0 of (A.3) and
(A.4). Moreover, the solution θk is unique. We denote by

δk(x) := θk(x) − kx, where k, x > 0 (A.5)

the phase shift function, Then, for k > 0 the scattering phase shift δ is defined by

lim
x→∞ δk(x) := δ(k). (A.6)

Therefore, integrating (A.3) implies

δ(k) = −1

k

∫ ∞

0
dt V (t) sin2(θk(t)). (A.7)

The non-linear ODE (A.3) is sometimes called the variable-phase equation, see
e.g. [6] or [17, Thm. XI.54]. We did not choose the standard Prüfer variables. But
with the choice (A.2) it is particularly easy to compare the Prüfer angle with the
phase-shift function and in turn with the phase shift. This was also used in [12]. We
continue with some elementary properties of the Prüfer angle, respectively of the
phase-shift function for perturbations V � 0.

Proposition A.1. Let V � 0, k > 0 and fix x > 0. Then,

(i) θk(x) is non-negative, moreover,

0 ≤ θk(x) ≤ kx, (A.8)
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(ii) we have
lim
k→0

θk(x) = 0, lim
k→∞ θk(x) = ∞, (A.9)

(iii) the functions k → θk(x) and k → δk(x) are twice differentiable, i.e.

θ( · )(x), δ( · )(x) ∈ C2((0, ∞)), (A.10)

where ∂
∂k

θk satisfies

∂

∂k
θk(x) =

∫ x

0
dt

ρ2(t)

ρ2(x)

(
1 + V (t) sin2(θk(t))

k2

)
≥ 0. (A.11)

Proof of Proposition A.1 The first inequality in (i) follows from integrating (A.11)
with the initial condition θk(0) = 0 for all k > 0. The second inequality follows from
V � 0 and the ODE (A.3).

The first equality in (ii) is a consequence of (i). The second equality follows
directly from the ODE.

Let u(x, k) be a non-trivial solution of (A.1). Standard results provide that u and
u′ are analytic functions in the parameter k [18, Kor. 13.3]. Note that u and u′ do
not have the same zeros. Since tan

(
θk(x) = ku(x, k)/u′(x, k)

)
for u′(x, k) �= 0 and

cotan
(
θk(x)

) = u′(x, k)/(ku(x, k)) for u(x, k) �= 0, the properties (A.10) follow
from the analyticity of u. We compute(

ρ2 ∂

∂k
θ
)

x
= 2ρρx

∂

∂k
θ + ρ2 ∂

∂k
θx

= 2ρρx

∂

∂k
θ + ρ2 ∂

∂k

(
k − V sin2(θ)

k

)

= 2ρρx

∂

∂k
θ + ρ2

(
1 + V sin2(θ)

k2
− V sin(2θ)

k

∂

∂k
θ
)

= ρ2
(
1 + V sin2(θ)

k2

)
. (A.12)

Integrating the latter yields (A.11). This computation is adopted from [18, Lem.
14.16].

Proof of Lemma 3.1 Let μ > 0. Consider the eigenvalue equation on [0, L]
− u′′ + V u = μu, u(0) = 0. (A.13)

We introduce Prüfer variables according to (A.2). Note that any eigenfunction u of
h′D

L corresponding to an eigenvalue μ has to fulfill u(L) = 0 due to the Dirich-
let boundary condition at L. Thus, using ρu(x) �= 0 for all x ≥ 0, we obtain
sin

(
θ√

μ(L)
) = 0. With (A.9) and (A.11) this implies for the nth eigenvalue μn of

h′D
L

θ√
μn

(L) = nπ. (A.14)
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Therefore, integrating (A.3) yields

√
μn = nπ

L
+ 1

L
√

μ
n

∫ L

0
dt V (t) sin2

(
θ√

μn
(t)

)
. (A.15)

Now, using | sin(x)| ≤ |x|, (A.8), | sin(x)| ≤ 1 and (2.1) we obtain

1√
μn

∫ ∞

L

dt V (t) sin2(θ√
μn

(t)) ≤
∫ ∞

L

dt V (t)t

≤ 1

L

∫ ∞

L

dt t2V (t) = o
( 1

L

)
. (A.16)

Then, (A.7) and
√

λn = nπ
L

give the claim.

Proof of Lemma 3.2 Part (i) follows from (A.7), (A.8) and (2.1).

Equation (A.10) implies

∂

∂k
θk(x) =

∫ x

0
dt

ρ2(t)

ρ2(x)

(
1 + V (t) sin2(θk(t))

k2

)
. (A.17)

The ODE (A.4), (A.8), the elementary inequality | sin x| ≤ |x| and (2.1) imply∣∣∣ ρ(t)

ρ(x)

∣∣∣ ≤ exp
(∫ x

t

ds sV (s)
)

≤ exp
(‖( · )V ‖1

)
< ∞. (A.18)

From this, (A.8) and | sin x| ≤ |x| we infer the existence of a constant c depending
on the potential V such that ∣∣∣ ∂

∂k
θk(x)

∣∣∣ ≤ c (1 + x) . (A.19)

Then, the above, (A.8) and dominated convergence provide δ ∈ C1((0, ∞)) with
∣∣δ′(k)

∣∣ ≤ c

∫ ∞

0
dt V (t)

(
1 + t + t2

)
. (A.20)

The assumptions on the potential give the claim.

Using (A.10), we compute as in the proof of (A.11)

(
ρ2 ∂2

∂k2
θ
)

x
= 2ρ2V

(
− sin2(θ)

k3
+ sin(2θ) ∂

∂k
θ

k2
− cos(2θ)( ∂

∂k
θ)2

k

)
. (A.21)

Using (A.8), | sin x| ≤ |x|, (A.18) and (A.19), we see
∣∣∣ ∂2

∂k2
θk(x)

∣∣∣ ≤ c̃

k
, (A.22)

where c̃ depends on V . Then dominated convergence yields δ ∈ C2((0, ∞)) and
(A.8) and (A.22) provide

∣∣δ′′(k)
∣∣ ≤ C

k

∫ ∞

0
dt V (t)

(
1 + t + t2

)
(A.23)
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for some C depending on the potential V .

To prove (iv) we use Lemma 3.1. Thus,

√
μn = √

λn + δ(
√

μn)

L
+ o

( 1

L

)
, (A.24)

Since δ ∈ C2((0, ∞)) we compute for x, y ∈ (0, ∞) with y > x and y = x + δ(y)
L

+
o
( 1

L

)

∣∣∣δ (y) − δ(x) + δ′(x)δ(x)

L

∣∣∣ ≤
∣∣∣
∫ y

x

dt
∫ t

x

dsδ′′(s)
∣∣∣ + |δ′(x)|

∣∣∣y − x + δ(x)

L

∣∣∣
≤ 1

x
|y − x|2 + ‖δ‖∞

L

∣∣∣
∫ y

x

dt δ′(t) + o
( 1

L

)∣∣∣. (A.25)

Using Lemma 3.2 (ii) and once again the recursion relation we obtain
∣∣∣δ (y) − δ(x) + δ′(x)δ(x)

L

∣∣∣ ≤
(
1
x

+ 1
)
O

(
1
L2

)
. (A.26)

The claim follows from setting x := λn and y := μn.
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14. Küttler, H., Otte, P., Spitzer, W.: Anderson’s Orthogonality Catastrophe for One-Dimensional

Systems. Ann. H. Poincaré 15, 1655–1696 (2014)
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