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Abstract We study the dynamics of an elastic body whose shape and position evolve
due to the gravitational forces exerted by a pointlike planet. The main result is that,
if all the deformations of the satellite dissipate some energy, then under a suitable
nondegeneracy condition there are only three possible outcomes for the dynamics:
(i) the orbit of the satellite is unbounded, (ii) the satellite falls on the planet, (iii) the
satellite is captured in synchronous resonance i.e. its orbit is asymptotic to a motion in
which the barycenter moves on a circular orbit, and the satellite moves rigidly, always
showing the same face to the planet. The result is obtained by making use of LaSalle’s
invariance principle and by a careful kinematic analysis showing that energy stops
dissipating only on synchronous orbits. We also use in quite an extensive way the fact
that conservative elastodynamics is a Hamiltonian system invariant under the action
of the rotation group.
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1 Introduction

In this paper, we study the dynamics of an elastic satellite interacting with a pointlike
planet. Precisely, we study the dynamics of an elastic body, moving in the gravita-
tional field generated by a pointlike mass. We consider the equations of motion of
continuum mechanics, with body forces due to the gravitational fields and internal
traction arising from the body deformation, without introducing any further approx-
imation. We prove that, if the internal structure of the satellite is such that any
deformation dissipates some energy and if a suitable nondegeneracy condition is
satisfied, then the dynamics of the system has only three possible final behaviors:

(i) the orbit of the satellite is unbounded;
(ii) the satellite falls on the planet;

(iii) the satellite is captured in synchronous resonance.

By item (iii) we mean that the shape of the body reaches a final configuration, that
its center of mass moves on a circular orbit and that it always shows the same face to
the planet, i.e. the planet is at rest in a frame comoving with the satellite.

Concerning the inner structure of the body we make as few assumptions as pos-
sible. Precisely we assume that the stress tensor is the sum of two terms, the first
one being conservative, i.e. it is the L2 gradient of a “stored energy functional”, and
a second one being nonconservative. On the second term we only assume that, as a
consequence of its presence, there is dissipation of energy at any time at which the
time derivative of the Cauchy Green stress tensor does not vanish.

The idea of the proof is to use LaSalle’s principle (see [15]), which is a general-
ization of Lyapunov theorem. LaSalle’s principle ensures that any precompact orbit
approaches an invariant set which is contained in the manifold where the Lie deriva-
tive of the energy vanishes. The core of the paper consists in characterizing such an
invariant set. Since in such an invariant set the dynamics is conservative, it turns out
that a convenient framework for our study is that of Hamiltonian systems with sym-
metry as developed for example in [19] or, in a form directly useful for our problem,
in [23].

So we start by writing down the Lagrangian and the Hamiltonian of the con-
servative part of the system and then we add to the equations of motions the
nonconservative forces.

Then we start analyzing the nondissipating manifold ND, namely the subman-
ifold of the phase space in which dissipation vanishes. We first prove that ND
consists of rigid motions, and then we show that the motions laying on ND are actu-
ally circular orbits. Finally we show that they are relative equilibria of the reduced
Hamiltonian system obtained by exploiting the rotational invariance of the original
Hamiltonian. At this point the application of LaSalle’s principle would allow to con-
clude that the orbit is asymptotic to a manifold obtained by taking the union of all
the synchronous orbits. In order to prove that the system is actually asymptotic to a
single synchronous orbit we exploit the conservation of angular momentum and we
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assume a nondegeneracy property stating that the relative equilibria are isolated. This
property is discussed in detail in Section 4 and we show that it is typically fulfilled.

The present result still has some quite strong limitations. The main one is that we
do not discuss existence and uniqueness for the Cauchy problem of the equations we
study, which is not known (see below for a discussion of this point). Here we limit
ourselves to assuming that the system we study is well posed and we defer to further
work the actual proof of such a property.

The second limitation of our result rests in the fact that we assume that the system
is described by differential equations. This means that we do not consider the case
where the system is described by an integrodifferential equation with delay, a case
which can occur in elasticity. The case we have in mind is the one in which the
dissipation is of the kind of that appearing in Navier Stokes equation. We expect that
our theory can be extended to the case with delay, but for sure the methods should be
adapted.

The study of the gravitational interaction between a deformable body and a point-
like mass traces its origin back to the pioneering work by Darwin [7, 8]. His work
shows that, in some approximation, the effect of the internal dynamics of the satel-
lite is just that of producing an effective dissipating effective force on the orbital and
spin degrees of freedom of the satellite. Darwin’s work was subsequently general-
ized by Kaula [13] and many other authors (for instance, [2, 12, 18, 20]). Critical
reviews of the work by Darwin, Kaula and followers can be found in [9–11]. How-
ever, the Darwin-Kaula procedure is heuristic and, from a mathematical point of view,
its range of validity is far from being clear. For this reason, in the present paper (as
in [6]), the point of view is that of starting from first principles in order to obtain
a rigorous mathematical proof of the phenomena under consideration. While in [6]
we gave a result of local asymptotic stability (i.e. asymptotic stability of the syn-
chronous rotation when the initial conditions are close to the synchronous rotation)
for a spherically symmetric satellite, the present paper deals with the global dynamics
of a satellite of arbitrary shape. However, the case of a spherically symmetric satellite
is not included in the setting of the present paper, since it violates our non-degeneracy
assumption (see also Remark 9).

We remark that the result of the present paper rules out the possibility that peri-
odic orbits different from synchronous resonance exist. This is quite surprising, since
many celestial bodies are known to be not in spin orbit resonance or to be in a
spin-orbit resonances different from the synchronous one (for example Mercury).
We think that this is due to the fact that our result is valid as time goes to infi-
nite and in particular it tells nothing on the time scale needed in order to relax to
equilibrium, which might be much longer then the age of the solar system. Never-
theless we find interesting from a conceptual point of view that the only possible
asymptotic states can be characterised completely and furthermore that they are so
simple.

In Section 2 we state the main result of the present paper: to this end, we recall
the Lagrangian formalism for elastodynamics, we write down the related Cauchy
problem and we formulate the nondegeneracy assumption. Section 3 is devoted to
the proof of the main result: we recall the statement of LaSalle’s invariance princi-
ple, prove that the only solutions which dissipate no energy are synchronous orbits
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and apply La Salle principle to our system. Finally, in Section 4 we discuss the
nondegeneracy assumption and we prove that typically it is fulfilled.

2 Statement of the Main Result

2.1 The Setting

We study the dynamical system consisting of:

(i) a pointlike mass M (which we will sometimes call “planet”), which is at rest
and which is chosen as the origin of a system of coordinates;

(ii) an elastic body, free to move in space; we will call this extended body
“satellite”.

To deal with elastodynamics we use the framework of [19] and [23] from which
we take some notations and formalism, that we now recall.

We denote by B ⊂ R
3 the reference configuration of an elastic body and assume

that B is open and bounded with a smooth boundary ∂B. We define the configuration
space Q to be a Banach space of maps1 ζ : B → R

3. Typically in elastodynamics
one assumes Q ⊂ Hs(B) with s large enough; we will come back later to this point,
for the moment we simply assume that ζ admits as many derivatives as needed.

In the conservative case, classical three dimensional elasticity is a Lagrangian sys-
tem, the Lagrangian L : TQ → R is the difference of kinetic and potential energy.
In our case there are also some dissipative forces that will be added to the Lagrange
equations. As usual TQ � Q ⊕ Q is the tangent bundle to Q.

We start by writing down the conservative part of the system. The Lagrangian L
of the system is defined by

L = K − Ug − Usg − Ue , (2.1)

where

K(ζ̇ ) := 1

2

∫
B

ρ0(x)
∣∣ζ̇ (x)

∣∣2
d3x (2.2)

Ug(ζ ) :=
∫
B

ρ0(x)Vg(ζ(x))d3x , (2.3)

Usg(ζ ) :=
∫
B

ρ0(x)V ζ
sg(ζ(x))d3x , (2.4)

Ue(Dζ) :=
∫
B

W(x, Dζ(x))d3x , (2.5)

1Actually we should restrict ourselves to the manifold of the maps s.t. det Dζ > 0, however we will
consider this as a condition on the domain of definition of the system.
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the functions Vg , V
ζ
sg are defined by

Vg(χ) := −kM

|χ | , (2.6)

V ζ
sg(χ) := −1

2

∫
B

kρ0(x)
|ζ(x) − χ |d

3x , (2.7)

and W is the stored energy function; k is the universal gravitational constant, and
ρ0 ∈ C∞(B) the density of the body in the reference configuration.2 The stored
energy function is assumed to depend on ζ only through the deformation gradient
F := Dζ ≡ {∂ζ i/∂xa}. We assume that W is frame independent in the sense that

W(x,F) = W(x, RF) for all R ∈ SO(3) . (2.8)

As shown in [23] this implies that the Kirchoff stress tensor, namely

τ i
j = ∂ζ i

∂xa

∂W

∂(∂ζ j /∂xa)
(sum over a understood) , (2.9)

is symmetric.
Assuming the stress free boundary condition, namely

∂W

∂(∂ζ j /∂xa)
na

∣∣∣∣
∂B

= 0 , (2.10)

where n ≡ (n1, n2, n3) is the external normal to ∂B, one deduces the standard
Lagrange equations:

ρ0ζ̈ = −∇ζL ≡ −ρ0
∂Vg

∂χ
(ζ ) − ρ0

∂V
ζ
sg

∂χ
(ζ ) + ∂

∂xa

∂W

∂(∂ζ/∂xa)
, (2.11)

where ∇ζL ≡ (∇ζ 1L, ∇ζ 2L, ∇ζ 3L) is as usual the gradient with respect to the L2

scalar product3 and is given by the expression at r.h.s. of (2.11).

Remark 1 It is easy to check that, if a function U : Q → R is rotation invariant, i.e.
U(Rζ) = U(ζ ), ∀ζ ∈ Q, ∀R ∈ SO(3), then

[∇U ](Rζ ) = R∇U(ζ ) . (2.12)

All the terms of the Lagrangian have this property.

Since the Lagrangian is independent of time, the energy

H = K + Ug + Usg + Ue , (2.13)

is formally conserved for the system (2.11) with the boundary conditions (2.10).
Furthermore, since the Lagrangian is invariant under the group action

Q × SO(3) → Q (2.14)

(ζ, R) �→ Rζ ,

2Of course we assume that ρ0(x) �= 0 ∀x ∈ B.
3i.e. it is defined by dL(ζ )h = 〈∇L(ζ );h〉L2 for all h ∈ Q.
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by Nöther’s theorem the quantity

L :=
∫
B

ζ(x) × ρ0(x)ζ̇ (x)d3x , (2.15)

is conserved for the system. Of course L coincides with the total angular momentum.
In order to get the equations governing the non conservative dynamics one has

simply to add the nonconservative forces,4 G = G(ζ, ζt ) i.e. to substitute equation
(2.11) with the equation

ρ0ζ̈ = −∇ζL − G . (2.16)

In order to write down the precise assumptions on G (which will be given in the
next subsection) we have also to introduce the (right) Cauchy Green deformation
tensor C := (Dζ)T Dζ or, componentwise

Cij =
∑
a

∂ζ i

∂xa

∂ζ j

∂xa
. (2.17)

As it is well known C is symmetric, positive definite and allows to write Dζ in the
polar decomposition form Dζ(x) = R(x)

√
C(x), where R(x) ∈ SO(3) is a rotation

matrix.

2.2 The Cauchy Problem

In the following we will always denote by y ≡ (ζ, ζ̇ ) ∈ TQ � Q ⊕ Q a point in the
space of initial data for our system (which we keep distinct from the phase space, in
which the velocities will be substituted by the momenta).

The problem of existence of solutions for the system (2.11), (2.16) has been widely
studied in literature, in particular we point out the papers[21, 22] (see also [14] and
[16]) in which existence and uniqueness has been proved for equations of the from
(2.16), but with Dirichlet boundary conditions. Subsequently the theory of parabolic
differential equations has been widely developed (see e.g.[17]), however we were not
able to find in literature results for the case of stress free boundary conditions. The
main difficulty being that they turn out to be “nonlinear boundary conditions”. So the
problem of proving well posedness and dissipation of energy for this case seems to
be still open and we plan to investigate it elswehere. Here we will limit ourselves to
assuming the needed well-posedness properties. So we give the following definition:

Definition 1 Given y0 ∈ TQ, a positive T and a function y ∈ C2((0, T ); TQ) we
say that it is a solution of the system (2.16), (2.10) with initial datum y0, if it fulfills
the equations and the boundary conditions for all t ∈ (0, T ) and one has

lim
t→0+ y(t) = y0 .

4by this notation we mean that G is a function of the functions ζ , ζt , not of their value ζ(x), ζt (x), so it
can also depend on an arbitrary number of spatial derivatives of such functions.
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Then we also need the following definitions:

Definition 2 A solution is said to be impacting (in the future) if

inf
t>0

dist(ζ(B, t), 0) = 0 .

Definition 3 A configuration is said to be non singular if det[Dζ ] > 0.

Definition 4 A solution y(t), t ∈ (0, T ) is said to be regular if it is non impacting
and the corresponding configuration is non singular for all times. An initial datum
y0 ≡ (ζ0, ζ̇0) is regular if dist(ζ0(B), 0) > 0 and det[Dζ0] > 0.

Definition 5 A regular solution y(t), t ∈ (0, ∞) is said to be precompact if, for
any increasing sequence {tn} ⊂ (0, ∞) there exists a subsequence {tnk

} s.t. the limit
limk→+∞ y(tnk

) exists and the limit is non singular.

Assumption 1 We assume that

(i) for all regular initial data y0 ∈ TQ, the Cauchy problem for the system (2.16)
with the boundary conditions (2.10) is locally well-posed;

(ii) let y(t) be a non-impacting solution. Then its time of existence is infinite and
it is forever non singular.

(iii) Any regular solution fulfilling supx∈B,t>0 |ζ(x, t)| < ∞ is precompact;
(iv) the angular momentum L is conserved along the solutions; the Lie derivative

of the energy (2.13) is nonpositive and vanishes if and only if Ċ = 0, where C

is the Cauchy Green tensor (cf. Eq. (2.17)).

Remark 2 One expects the nonconservative equations we are studying to behave
like parabolic equations, for which Assumption 1 is typically fulfilled. In particular,
for the motion of a deformable body with Dirichlet boundary conditions, the well-
posedness and precompactness assumptions (i) and (iii) hold as a consequence of
[21, 22]. The case of stress free boundary conditions introduces a further technical
difficulty, since roto-translations of the body produce a degeneration of the linearised
operator. However we expect that this problem can be overcome, also applying more
recently developed tools, like the ones in [17].

Remark 3 A situation in which Assumption 1 is fulfilled is that in which the space Q
is finite dimensional. A typical situation we have in mind is that in which the space
Q is composed by maps obtained by cutoff from some of the maps belonging to
the original infinite dimensional configuration space. For example one could decide
to keep only a finite (arbitrarily large) number of spherical harmonics of the maps
describing the configuration.

2.3 The Nondegeneracy Assumption

In the following (see Section 3.2) we will prove that the nondissipating orbits are
relative equilibria of the Hamiltonian system obtained by Legendre transforming the
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Lagrangian (2.1). We are now going to recall the notion of relative equilibrium and
to state the nondegeneracy condition we need.

Define the momentum

π := ρ0ζ̇ , (2.18)

then the Hamiltonian of the system coincides with the function H given by (2.13),
where however K is defined in terms of the momentum π by

K :=
∫
B

|π(x)|2
2ρ0(x)

d3x ; (2.19)

and the Lagrange equations (2.11) are equivalent to the Hamilton equations of (2.13).
The Hamiltonian is invariant under the action of the symmetry group SO(3)

defined by

Rz ≡ R(π, ζ ) := (Rπ, Rζ) , (2.20)

and the total angular momentum L (written in terms of positions and momenta) is the
corresponding conserved quantity. Then one can use Marsden-Weinstein reduction
procedure, that can be summarized as follows.

(1) Fix a value L0 of L and consider the manifold

ML0 := {z ≡ (π, ζ ) : L(z) = L0} ;
(2) Consider the subgroup GL0 ⊂ SO(3) leaving invariant ML0 , namely the group

of the rotations around the axis L0. Consider the quotient manifold ML0/GL0 .
Such a manifold has a natural symplectic structure. Furthermore, the Hamilto-
nian H defined in (2.13) and the corresponding Hamilton equations pass to the
quotient with respect to the action of GL0 and therefore define a Hamiltonian
system on ML0/GL0 .

We denote by HL0 the Hamiltonian of such a reduced system.

Definition 6 The critical points of HL0 are called relative equilibria of the Hamilto-
nian system H, at angular momentum L0.

Definition 7 A relative equilibrium is said to be topologically nondegenerate if it is
not an accumulation point of relative equilibria with the same angular momentum.

By abuse of notation, a representative ze of the equivalence class of a relative
equilibrium is also called a relative equilibrium of H.

Remark 4 It is well known (see e.g. [1]) that ze is a relative equilibrium if and only
if the Hamiltonian vector field of H at ze is tangent to the orbit of SO(3) through ze.

Remark 5 If ze is a relative equilibrium then the corresponding orbit z(t) (under the
flow of the Hamiltonian system H) is formed by relative equilibria. In the nondegen-
erate case there are no other relative equilibria with the same angular momentum in
a neighborhood of the orbit ∪t z(t).
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Of course a relative equilibrium ze corresponding to a value L0 of L is topologi-
cally nondegenerate if and only if the same is true for the relative equilibrium Rze,
where R ∈ SO(3) is arbitrary.

Definition 8 A value � ∈ R of the modulus of the angular momentum is said to
be nondegenerate if all the relative equilibria with angular momentum L satisfying
|L| = � are topologically nondegenerate relative equilibria of H.

Remark 6 In Section 4 we will comment on this condition and show that it is in
general fulfilled.

2.4 The Main Result

With the definitions and concepts introduced in the previous subsections, our main
result can be rigorously stated as follows.

Theorem 1 Under Assumption 1, let y(t) be a solution of equation (2.16) with the
boundary condition (2.10), and let � be the corresponding value of the modulus of
the angular momentum. Assume that � is nondegenerate, then one and only one of
the following three (future) scenarios occurs:

(i) the trajectory of B is unbounded;
(ii) the solution impacts the planet;
(iii) the solution is asymptotic to a synchronous non-dissipating orbit, which is a

relative equilibrium with angular momentum �.

3 Proof of Theorem 1

3.1 LaSalle’s Invariance Principle

In order to study the dynamics of the system, we make use of LaSalle’s invariance
principle which is a refinement of the classical Lyapunov’s theorem. We now recall
its statement and proof.

Let Y be a Banach space and let U ⊂ Y be open. Consider a system of differential
equations

ẏ = f (y) y ∈ U , (3.1)

We denote by ϕ the flow of (3.1), which we assume to be locally well defined.

Definition 9 Let γ be the orbit of (3.1) with initial condition y0. A point η is said to
be an ω-limit point of γ if there exists a sequence of times tn → +∞ such that

lim
n→+∞ ϕtn(y0) = η . (3.2)

Definition 10 The ω-limit set of an orbit γ is defined as the union of all the ω-limit
points of γ .
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Definition 11 A solution y(t) ⊂ U , t ∈ (0, ∞) is said to be precompact if, for
any increasing sequence {tn} ⊂ (0, ∞) there exists a subsequence {tnk

} s.t. the limit
limk→+∞ y(tnk

) exists and belongs to U .

Remark 7 It is well known that the ω-limit of a precompact orbit is a connected set
(see e.g. [1]).

LaSalle’s invariance principle can be stated as follows:

Theorem 2 Suppose that H : U → R is a real-valued smooth function, such that
LfH(y) ≤ 0, ∀y ∈ U , where Lf is the Lie derivative. Let I be the largest invariant
set contained inND := {

y ∈ U |LfH(y) = 0
}
, then the ω-limit of every precompact

orbit is a non-empty subset of I.

Proof Let γ := {
ϕt (y0)|t > 0

}
be a precompact orbit, and let Γ ⊂ U be the ω-

limit of γ . We prove now that Γ is invariant. Indeed, let η ∈ Γ , then there exists a
sequence tn → +∞ such that ϕtn(y0) → η. But we have

ϕt (η) = ϕt ( lim
n→+∞ ϕtn(y0)) = lim

n→+∞ ϕt+tn (y0) ∈ Γ .

We prove now that the ω-limit is contained in ND. Let η0 ∈ Γ . Then there exists
a sequence tn → +∞ such that ϕtn(y0) → η0. Now, let

c := H(η0) = lim
n→+∞H[ϕtn(y0)] .

Since H[ϕt (y0)] is a time-nonincreasing function, limn→+∞ H[ϕtn(y0)] = c is inde-
pendent of the subsequence tn, and thus H = c on the whole Γ . By the invariance of
Γ it follows that LfH = 0 on Γ , and therefore γ ⊂ I.

3.2 Non-Dissipating Orbits

Consider the non dissipating manifold defined by

ND := {
y ∈ Q ⊕ Q : Ḣ(y) = 0

}
, (3.3)

where, for short we denoted by Ḣ(y) the Lie derivative of H along the vector field
corresponding to the equations (2.16). In this section we prove that the subset I ⊂
ND invariant under the dynamics is formed by relative equilibria of the Hamiltonian
system (2.13).

Remark 8 On ND the Lagrange equations (2.11) coincide with the non conservative
equations (2.16).

First we prove that the motion of the body is rigid along any orbit in I (we think
that this should be well known, but we were not able to find a reference).
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Lemma 1 Let y ∈ C2((0, +∞),Q ⊕ Q) be a solution of (2.16) s.t. y(t) ≡
(ζ(t), ζ̇ (t)) ∈ ND ∀t ∈ (0, +∞), then, for all x, y ∈ B, one has

d

dt
|ζ(x) − ζ(y)| = 0 . (3.4)

Proof Fix two arbitrary points x, y ∈ B and consider a path γ ⊂ B connecting
x to y. Let s be the arclength parameter, so that | dγ (s)

ds
| = 1 and in the reference

configuration the path γ has length

length(γ ) =
∫

γ

ds .

The length of the deformed path ζ(γ ) is expressed in terms of the Cauchy Green
tensor C by (see e.g. [24])

length(ζ(γ )) =
∫

γ

[(
dγ (s)

ds

)T

C

(
dγ (s)

ds

)] 1
2

ds . (3.5)

Therefore, since Ċ ≡ 0, we have d
dt

[length(ζ(γ ))] ≡ 0. Now, take two arbitrary
times t0, t1 and let ζ0, ζ1 be the corresponding body configurations. We have that
ζ1 ◦ (ζ0)

−1 : ζ0(B) → ζ1(B) is a length-preserving map between the ζ0(B) ⊂ R
3

and ζ1(B) ⊂ R
3, both equipped with the restriction of the Euclidean metric on R

3.
Moreover, ζ1 ◦ (ζ0)

−1 is a diffeomorphism.
Using the fact that the segments minimize the distance it is easy to conclude the

proof of the lemma (some care is needed in order to take care of the fact that ζ1(B)

could fail to be convex).

Corollary 1 Let y = (ζ, ζ̇ ) be as in the statement of Lemma 1 then there exist ξ ∈ Q,
R ∈ C2((0, +∞), SO(3)) and Y ∈ C2((0, +∞),R3) s.t.

ζ(x, t) = R(t)(ξ(x) + Y(t)) . (3.6)

The reference frame with origin Y(t) and coordinate axes R(t)ei is usually called
comoving frame. In this frame all the points of the satellite are at rest along the orbit
y(t). In particular −Y(t) is the position of the planet M in the comoving frame.

Lemma 2 Let y ∈ C2((0, +∞),Q ⊕ Q) be a solution of (2.16) s.t. y(t) ≡
(ζ(t), ζ̇ (t)) ∈ ND ∀t ∈ (0, +∞), then the quantity Y(t) in (3.6) evolves in such a
way that

∀i, j, k,
∂3Vg

∂χi∂χj ∂χk
(Y(t)) (3.7)

is independent of time.
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Proof Inserting the expression (3.6) in the Lagrange equations (2.11) and exploiting
the rotational invariance of the r.h.s. (cf. Remark 1) one gets the following equation
for ξ , R and Y: [

Ÿ + ( ˙̂ω + ω̂ω̂)Y + 2ω̂Ẏ + ( ˙̂ω + ω̂ω̂)ξ
]

(3.8)

= − ∂Vg

∂χ
(ξ + Y) − ∂V

ζ
sg

∂χ
(ξ) + 1

ρ0

∂
∂xa

∂W
∂(∂ζ/∂xa)

(Dξ) ,

where as usual ω̂ := RT Ṙ. Denote for short

L := ( ˙̂ω + ω̂ω̂) (3.9)

and take the time derivative of (3.8). Taking into account that ξ does not depend on
time one gets {

d

dt

[
Ÿ + LY + 2ω̂Ẏ

] + L̇ξ

}
= d

dt

[
−∂Vg

∂χ
(ξ + Y)

]
. (3.10)

Take now the derivative of such a quantity with respect to xa , one gets the
componentwise equation(∑

k

L̇i
k

∂ξk

∂xa

)
=

∑
k

d

dt

[
− ∂2Vg

∂χi∂χk
(ξ + Y)

∂ξk

∂xa

]
, (3.11)

or using the invertibility of the matrix ∂ξk

∂xa

L̇i
k = − d

dt

[
∂2Vg

∂χi∂χk
(ξ(x) + Y(t))

]
. (3.12)

This equation implies in particular that the r.h.s. is independent of x (since the l.h.s.
is also independent of x). Due to the invertibility of ξ and to the analyticity of Vg this
means that the function of χ

− d

dt

[
∂2Vg

∂χi∂χk
(χ + Y(t))

]
(3.13)

is actually independent of χ . Thus taking the derivative with respect to χj and
evaluating at χ = 0 one gets the thesis.

Lemma 3 Let y ∈ C2((0, +∞),Q ⊕ Q) be a solution of (2.16) s.t. y(t) ≡
(ζ(t), ζ̇ (t)) ∈ ND ∀t ∈ (0, +∞), then the quantity Y(t) in (3.6) is actually
independent of time.

Proof We write down explicitly (3.7). We denote
(
Y 1(t), Y 2(t), Y 3(t)

) = Y(t) and
(Y 1)2 + (Y 2)2 + (Y 3)2 = r2. One has

∂3Vg

∂(χ1)3
(Y) = 3kMY 1(5(Y 1)2 − 3r2)

r7 (3.14)

∂3Vg

∂(χ1)2∂χ2
(Y) = 3kMY 2(5(Y 1)2 − r2)

r7 (3.15)
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∂3Vg

∂(χ1)2∂χ3
(Y) = 3kMY 3(5(Y 1)2 − r2)

r7 . (3.16)

Choose now the comoving frame in such a way that Y 2 = Y 3 = 0 and Y 1 = r at
t = 0 (which is possible up to redefinition of R and ξ ). By (3.15) and (3.16), for all
t one must have

Y 2(5(Y 1)2 − r2) = 0

Y 3(5((Y 1)2 − r2) = 0

which by continuity implies (locally in time) Y 2(t) ≡ Y 3(t) ≡ 0 and Y 1(t) ≡ r(t).
Substituting in (3.14), one has

1

(Y 1(t))4
= 1

(Y 1
0 )4

,

whose only solution is Y 1(t) ≡ Y 1
0 . Then the proof follows by classical bootstrap

arguments.

Remark now that, given a non dissipating solution, one can associate to it a shape
of the body described by the function ξ(x) + Y, and the shape evolves by a rigid
motion about the fixed point M . Introduce the angular velocity which is defined as
usual as the vector ω s.t. the two operators

ω × · = ω̂

coincide. Then the velocity of the motion, in the comoving frame, is given by ω ×
(ξ + Y).

We have now that, for a non dissipating solution, ω does not depend on time.

Lemma 4 The angular velocity ω of a nondissipating solution y is independent of
time.

Proof Consider again equation (3.12). Since we now know that Y is independent of
time it follows that the operator L (cf. (3.9)) fulfills L̇ = 0. This means that, for any
vector χ one has

d

dt
[ω̇ × χ + ω × (ω × χ)] = 0 . (3.17)

To exploit such an equation take χ = ei and project the square bracket on ei . Using
standard vector identities this implies

d

dt
|ω × ei |2 = 0 ∀i .

An explicit computation shows that this implies ω̇ = 0.

Corollary 2 Let y(t) be a nondissipating solution as above, then it is the orbit of a
relative equilibrium of the system (2.13).

Proof We have proved that along a non dissipating solution ζ(t) = R(t)ζ0 with a
suitable configuration ζ0 and a rotation matrix R(t) that we can choose in such a way
that R(0) = I . It follows ζ̇ (t) = R(t)[ω × ξ ] = Rζ̇ (0). Passing to the phase space
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one gets that along such an orbit π(t) = ρ0ζ̇ (t) = R(t)π(0). This shows that the
solution is actually an orbit of the symmetry group, and this is a characterization of
being a relative equilibrium.

Thus we have that the manifold I is the union of the trajectories of all the possible
relative equilibria of the system.

3.3 End of the Proof

Applying La Salle principle to our system, with U defined to be the set of regular
configurations, we get the following Lemma.

Lemma 5 Under Assumption 1, for any solution to (2.16) with the boundary
condition (2.10), one of the following three (future) scenarios occur:

(i) the trajectory is unbounded;
(ii) the solution impacts the planet;
(iii) the solution is asymptotic to the non-dissipating invariant manifold I.

The difference with Theorem 1 is that in Lemma 5 there is no nondegeneracy
assumption on the modulus � of the angular momentum. This reflects in item (iii) of
Lemma 5, where we deduce that the solution is asymptotic to I but we cannot deduce
that the solution is asymptotic to a single non-dissipating orbit. Therefore, we now
plug in the nondegeneracy assumption and conclude the proof of Theorem 1.

End of the proof of Theorem 1 Let L0 be the initial value of the angular momentum,
then a regular bounded solution is asymptotic to

I ∩ {
(ζ, ζ̇ ) ∈ TQ : L(ζ, ζ̇ ) = L0

}
, (3.18)

but, by the nondegeneracy assumption the set (3.18) is formed by orbits which are
isolated in the invariant manifold

{
(ζ, ζ̇ ) ∈ TQ : L(ζ, ζ̇ ) = L0

}
. Thus, by Remark

7 the ω-limit set of an orbit is a single orbit in the set (3.18), i.e. a synchronous
orbit.

4 On the Nondegeneracy Assumption

The first aim of this section is to prove that if the restoring elastic forces described by
the potential (2.5) are strong enough, then the nondegeneracy of a relative equilibrium
for the system (2.1) is implied by the nondegeneracy of the relative equilibrium for a
rigid body having the shape given by the asymptotic configuration of the satellite.

For simplicity, in this section we limit the discussion at the formal level, namely
we forget all the difficulties related to the existence of unbounded operators. All what
follows is rigorous if Q is finite dimensional. It can also be made rigorous in the
case of PDEs by detailing most of the assumptions, following the ideas of [3] and
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exploiting the ellipticity properties of the elasticity tensor (see [19]), however this is
outside the aims of the present paper.

First of all, having fixed a configuration ζ̄ we introduce the dynamical system
describing the evolution of a rigid satellite with shape ζ̄ . The configuration space
SO(3) × R

3 � (R, χ) and the dynamics is obtained from the Lagrangian obtained
by restricting the Lagrangian (2.1) to the set of motions of the form

ζ(t) = R(t)[ζ̄ + χ(t)] . (4.1)

Denote by Lζ̄ such a Lagrangian. One also has a corresponding Hamiltonian system,
which is deduced from (2.1) in the standard way and whose Hamiltonian coincides
with the restriction of the Hamiltonian (2.13) to the phase space of the rigid body.
Denote by Hζ̄ the Hamiltonian of the rigid body. Such a Hamiltonian is invariant
under rotations so one can pass to the reduced system and to introduce again the
relative equilibria and define the nondegenerate relative equilibria for such a system
and a nondegenerate value of the modulus of the angular momentum.

In order to make a connection between the nondegeneracy of the relative equilibria
for rigid motions and the nondegeneracy of the elastic motions we need to specify
an assumption on the elastic potential energy Ue. Essentially we are going to assume
that the elastic potential has a very steep, isolated (up to the symmetries) minimum
at some shape.

First remark that Ue is invariant under the action

(SO(3) × R
3) × Q → Q (4.2)

((R, χ), ζ ) �→ R[ζ + χ ] ,

and, given a point ζ , consider the group orbit Gζ := (SO(3) × R
3)ζ ⊂ Q, so, if ζ̄ is

a critical point of Ue, then all the orbit Gζ̄ is critical for Ue.

Assumption 2 One has Ue = 1
ε
Ũe, and Ũe is a smooth function invariant under the

group action (4.2) with the further property that the set of its critical points is formed
by finitely many orbits Gζ (i) and each critical point is nondegenerate in the direction

transversal to the group orbit.5

Under this assumption we have the following

Proposition 1 Fix a value L0 of the angular momentum, and assume ε is small
enough; let ζ ε

e be a relative equilibrium of the Hamiltonian system H with angular
momentum L0. If (R, 0) ∈ SO(3)×R

3 is a nondegenerate relative equilibrium for the
rigid system with Hamiltonian Hζε

e
, then ζ ε

e is a nondegenerate relative equilibrium
for the elastic Hamiltonian system with Hamiltonian H .

Proof The proof is based on ideas from Lyapunov-Schmidt decomposition (see e.g.
[3]). First of all it is useful to introduce suitable coordinates in Q in a neighborhood

5Transversal nondegeneracy means that the restriction of Ũe to any hyperplane transversal to the group
orbit has a differential which is an isomorphism.
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of ζe (following the ideas of [6]). They are constructed as follows: let � ⊂ Q be a
codimension 6 affine subspace transversal to the group orbit Gζe , then a suitable set
of coordinates about ζe is locally obtained by the map

� × SO(3) × R
3 � (ξ, R, χ) �→ R(ξ + χ) . (4.3)

We now recall (and adapt to the present situation) some results of [23]. Using the
method of Lagrange multipliers one immediately sees that the relative equilibria can
be obtained by finding the critical points of H − ω · (L − L0) under the condition

L = L0 . (4.4)

Here ω is the Lagrange multiplier. In [23] it was shown that this is equivalent to
finding the critical points of the “augmented Hamiltonian” HL0 defined by

HL0 := KL0 + UL0 , (4.5)

KL0 := 1

2

∫
B

|π − ρ0(ω × ζ )|2
ρ0

d3x , (4.6)

UL0 := U − 1

2

∫
B

ρ0 |ω × ζ |2 d3x (4.7)

again under the condition (4.4) (actually in the present case this is a straightfor-
ward computation). As pointed out in [23] the interest of this formulation is that the
equations for the critical points of HL0 take the form

πe = ρ0ω × ζe , (4.8)

∇U(ζe) + ρ0ω × (ω × ζe) = 0 . (4.9)

In particular the second equation is independent of π . This allows to study separately
(4.9). To this end we use the set of coordinates (4.3). However one has to pay attention
to the fact that in general the section � is not orthogonal to the group orbit, so first
we rewrite (4.9) in the (original) dual form:

dU(ζe)h + 〈ρ0ω × (ω × ζe);h〉L2 = 0 , ∀h ∈ Q , (4.10)

which in terms of the coordinates (4.3) takes the form (at R = I )

dχUg(ξe + χe)hχ + 〈
ρ0ω × (ω × (ξe + χe);hχ

〉
L2 = 0 , ∀hχ ∈ R

3 , (4.11)

dξ [Ug(ξe + χe) + Usg(ξe + χe) + 1

ε
Ũe(ξe + χe)]hξ (4.12)

+ 〈
ρ0ω × (ω × (ξe + χe)); hξ

〉
L2 = 0 , ∀hξ ∈ Tζe� .

which have to be solved together with

πe = ρ0ω × (ξe + χe) , (4.13)

and the condition (4.4). In particular the system (4.11), (4.13), (4.4) is identical to the
system for the reduced equilibrium of the rigid body with shape ζe, so by Assump-
tion 2 it determines uniquely (up to a finite choice) χe and ω (and πe). We analyze
now (4.12). Of course it is a perturbation of dξ Ũe = 0, whose critical points are all
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nondegenerate (as functions of ξ they are nondegenerate in the standard sense), so, by
the implicit function theorem a solution ξe of (4.12) must be close to a critical point
of Ũe and is also nondegenerate. This concludes the proof of the proposition.

So we have reduced the problem of checking nondegeneracy to the problem of
checking nondegeneracy of the relative equilibria for the motions of rigid bodies.
This problem has been studied for example in [25] who obtained a complete charac-
terization of the relative equilibria of a triaxial rigid body, provided the gravitational
potential is approximated by its quadrupole expansion. In [25] the author obtained
that, provided the distance χe of the center of mass from the planet is large enough,
there are exactly 24 families of stationary points of the reduced system. These sta-
tionary points are such that the principal axes of inertia are one pointing to M and a
second one in the plane orthogonal to the plane of motion. The number 24 appears
as the number of possible choices of the orientations of the body with prescribed
principal axes of inertia.

Remark that in particular it turns out that such critical points are nondegenerate.
Furthermore we expect that, if χe is large enough, then it should be possible to use the
implicit function theorem to prove that the critical points are nondegenerate also for
the system in which the gravitational potential is not subjected to any approximation.

Remark 9 In [6] the authors study a problem in which Assumption 2 is violated
due to the fact that the satellite is assumed to have a spherically invariant reference
equilibrium configuration. In this case the orbit is no longer asymptotic to a single
synchronous orbit; however, the result is that also in this case the orbit is asymptotic
to a synchronous resonance, but the asymptotic elastic configuration need not be
fixed, in the sense that the shape of the satellite is fixed but principal axes of inertia
could slowly rotate in the satellite.
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25. Teixidó Román, M.: Hamiltonian methods in stability and bifurcation problems for artificial

satellite dynamics. Master’s degree Thesis http://upcommons.upc.edu/pfc/bitstream/2099.1/14225/1/
memoria-8.pdf (2012)

26. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York
(1997)

http://upcommons.upc.edu/pfc/bitstream/2099.1/14225/1/memoria-8.pdf
http://upcommons.upc.edu/pfc/bitstream/2099.1/14225/1/memoria-8.pdf

	Dynamics of an Elastic Satellite
	Abstract
	Introduction
	Statement of the Main Result
	The Setting
	The Cauchy Problem
	The Nondegeneracy Assumption
	The Main Result

	Proof of Theorem 1
	LaSalle's Invariance Principle
	Non-Dissipating Orbits
	End of the Proof

	On the Nondegeneracy Assumption
	References


