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Abstract The classical result of concentration of the Gaussian measure on the sphere
in the limit of large dimension induces a natural duality between Gaussian and spher-
ical models of spin glass. We analyse the Legendre variational structure linking the
free energies of these two systems, in the spirit of the equivalence of ensembles of
statistical mechanics. Our analysis, combined with the previous work (Barra et al., J.
Phys. A: Math. Theor. 47, 155002, 2014), shows that such models are replica sym-
metric. Lastly, we briefly discuss an application of our result to the study of the
Gaussian Hopfield model.
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1 Introduction and Main Result

The equivalence between Gaussian measure and uniform measure on the sphere, in
the limit of large dimension, is nowadays a classical argument, shared by probability
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and mathematical physics. It goes back traditionally to Poincaré and we refer to the
paper [10] for a detailed mathematical and historical discussion.

Roughly, the probabilistic idea is that the spherical measure of cylindrical sets
approaches the Gaussian one when the dimension becomes infinite (see e.g. [17]).
Physically this means that for a gas of non interacting particles, therefore with a fixed
kinetic energy, the single particle velocity is distributed according to the Maxwell-
Boltzmann statistics in the thermodynamic limit.

For spin systems, the intimate connection between Gaussian and spherical models
has been noticed since their first systematic introduction by Berlin and Kac in [7] for
ferromagnetic systems. In the present paper we are going to investigate this relation
for spin glasses.

We will consider a system of N soft spins zi ∈ R, i = 1...N interacting through
the mean field disordered Hamiltonian:

HN(z, J ) := − 1√
N

∑

(i,j)

Jij zizj . (1)

In the whole paper we make the following hypothesis on the disorder:

H The random matrix Jij is in the Symmetric Wigner Ensemble. In addition we

assume that there is a θ > 0 such that E

[
e
θ
(

Jij√
N

)2]
< ∞ ∀i, j N -uniformly.

Then (see for instance [1, 24]) {Jij /
√

N} can be diagonalised and Spect[J ] :=
Spect

[{
Jij√
N

}]
∈ R. Furthermore E[Jij ] = 0 and E[Jij Jhk] = J 2δihδjk for a certain

constant J 2 > 0, and

(1) There is a λ̄ > 0 such that ∀a > λ̄

P (|λ| � a) � C1e
−θa2N, (2)

for any λ ∈ Spect[J ] and two constants C1, θ > 0;

(2) The distribution of eigenvalues of
{
Jij /

√
N
}
converges for N → ∞ to the

semicircle law

ρ(λ) = 2
√

λ̄2 − λ2

πλ̄2
.

We denote by λ̄ := max Spect[J ] = √
J 2 the largest eigenvalue of

{
Jij /

√
N
}
.

We will be concerned here about two kind of distributions for the N continuous
spin z1, . . . , zN , namely the uniform distribution on theN dimensional sphere inRN ,
SR

√
N , centred in the origin with radius R

√
N , or spherical distribution σR,N(z) and

the standard Gaussian distribution γN(z).
Our interest in the topic comes from the theory of neural networks. In collaboration

with A. Barra and F. Guerra we have proven that, in the case of Gaussian distributed
patterns, the free energy of the Hopfield model can be written as a convex sum of
the free energy of the Sherrington-Kirkpatrick (SK) model and a suitably defined
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Gaussian spin glass [5]. This decomposition holds exactly in the high temperature
regime and in the replica symmetric approximation. We stress that the same feature
had been already observed in other bipartite spin glasses (see [3]).

For these reasons in [4] a model of Gaussian distributed spins with disordered
interaction has been studied. More precisely, let zi ∈ R, i = 1...N , be i.i.d. random
(soft) spin N (0, 1) variables, and let them interact through the Hamiltonian (1). In
such a model the divergence of the partition function arises quite naturally at low
temperature, so one needs to introduce the regularised

Z
g
N(β, λ) :=

∫

RN

dz1...dzN

e−‖z‖2/2

(2π)N/2
e

(
−βHN(z,J )− β2

4N ‖z‖4+ λ
2 ‖z‖2

)

, (3)

for λ ∈ R, such that EZ
g
N(β, 0) = 1 for Gaussian distributed disorder. The associated

quenched pressure is

A
g
N(β, λ) := 1

N
E logZ

g
N(β, λ), Ag(β, λ) := lim

N
A

g
N(β, λ). (4)

In [4] we have approached the problem from a nowadays usual perspective in
spin glass theory, after the celebrated results by Guerra and Talagrand on the SK
model (for which we refer to [14] and [23]). We have studied the Edward Anderson
order parameter, i.e. the replicas overlap, by using Guerra’s interpolation. The main
achievement contained in the paper is that the broken replica symmetry (RSB) bound
does not improve the replica symmetric (RS) one, that is:

A
g
RS(β, λ) = −1

2
log((1 − λ + β2q̄)) + β2q̄

(1 − λ + β2q̄)
+ β2

4
q̄2, (5)

with the RS order parameter given by q̄ = 0 for β � 1 − λ and q̄ = β−(1−λ)

β2

otherwise.
Originally, at least on the mathematical side, this model has been introduced and

completely solved by Ben Arous, Dembo and Guionnet in [6]. In the first part of their
paper the equilibrium properties of the model are analysed via the construction of a
large deviation principle. We provide here a different strategy to derive the formula
for the free energy obtained in [6].

On the other hand, the spherical model of spin glass was introduced by Kosterlitz,
Thouless and Jones in [16], where the authors gave the form of the free energy. It
turns out to be RS and their method, although the proof passes over some mathemat-
ical details, is rigorous. Then Crisanti and Sommers have studied the p-spin case in
[9] and successively Talagrand has proved in all the details the validity of the general
Crisanti-Sommers solution in [22].

The Spherical Model is defined as follows: let zi ∈ R, i = 1, . . . , N be N i.i.d.
random spin variables distributed according to σR,N , and let them interact via the
Hamiltonian (1). The partition function is defined as

Z
sf
N (β, R) :=

∫

RN

dσR,N(z)e−βHN(z,J ). (6)
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To this partition function it is associated the pressure:

A
sf
N (β, R) := 1

N
E logZ

sf
N , Asf (β, R) := lim

N
A

sf
N (β, R). (7)

Since it depends in fact by R2, we will also denote the pressure as Asf (β, R2) (in the
literature one finds λ̄, R = 1). The results of Crisanti, Sommers and Talagrand, along
with later works on the subject ([12, 19, 20]), deal with Gaussian disorder. However
we will see that this assumption can be relaxed in the sense of hypothesisH (see also
[6]).

The main result of the present work is the following

Theorem The pressure of the spherical model converges in the thermodynamic limit
a.s. to

Asf (β, R2) = min
q�βλ̄

(
qR2 − 1

2

∫
ρ(λ) log(q − βλ) − 1

2
logR2 − 1

2
− 1

2
log 2

)
.

(8)
The pressure of the Gaussian model converges in the thermodynamic limit a.s. to

Ag(β, λ) = max
R2∈(0,∞)

(
Asf (β, R2) − β2R4

4
+ (λ − 1)R2

2
+ 1

2
logR2 + 1

2

)
. (9)

Remark 1 Formula (9) can be interpreted as an ordinary Legendre transforma-
tion between Ag(β, λ) and Asf (β, R2). As it can be easily verified, the Legendre
transformation is well-defined and involutive, and we have the inverse formula

Asf (β, R2) = min
λ∈R

(
Ag(β, λ) + β2R4

4
+ (1 − λ)R2

2
− log(R) − 1

2

)
. (10)

In this way the duality between the two models is completely specified.

Remark 2 By direct calculations from (8) we obtain the following explicit expres-
sions for Asf (β, R):

Asf (β, R2) =
⎧
⎨

⎩

1
4

(
β
βc

)2
β � βc,

β
βc

− 1
2 log

(
β
βc

)
− 3

4 β � βc,
(11)

with a discontinuity of the third derivative in βc := (λ̄R2)−1; then, by plugging (11)
in (9), after the optimisation we get

Ag(β, λ) =
{

− 1
2 log(1 − λ) β < 1 − λ,

− 1
2 log(β) + βq̄

2 + β2q̄2

4 , β � 1 − λ,
(12)

with q̄(β, λ) := β−(1−λ)

β2 .



Math Phys Anal Geom (2015) 18: 10 Page 5 of 19 10

Therefore, by a direct comparison with the results in [4], we can conclude that
both the spherical and the Gaussian models are entirely replica symmetric.

In Section 2 we will prove the theorem. Our strategy consists of three steps:

(1) We obtain the variational formula (8) for the pressure of the spherical model;
(2) We introduce suitable extensions and restrictions respectively of the Spherical

and Gaussian model to a spherical shell and show the uniform convergence of
the pressure of the spherical shell model to the spherical one;

(3) We prove the Legendre duality (9), by slicing R
N into spherical shells and

proving concentration of the Gaussian Gibbs measure on a particular one. This
allows to relate the pressures of the Gaussian and spherical models on the shells
and then to get (9), taking properly the limits.

Finally, in Section 3, we will discuss some implications of our result on the rep-
resentation of the pressure for the Hopfield model obtained in [5] and we will add
some conclusive remarks.

With a little abuse of notation, throughout the paper we will indicate the random
Gibbs state always with ω, without distinguish the Gaussian or spherical Gibbs mea-
sure. However it will be always clear by the context to which one this symbol is
referred. Furthermore the area of the spherical surface of radius R in R

N SR will be
denoted by |SR|.

2 Proof of the Theorem

2.1 Pressure of the Spherical Model

Our first goal is to obtain formula (8), that appeared originally in [16].
In primis we diagonalise the interaction, as it is usual for this kind of models [6,

11, 16], in virtue of their rotational symmetry:

HN −→ −
∑

i

λiz
2
i . (13)

Let us introduce the annealed pressure

asf (β, R) := lim
N

1

N
logEZ

sf
N . (14)

To begin with, we get a rough bound on the annealed pressure, and so (by Jensen
inequality) to the quenched one. It will result helpful to define the events

Ba :=
{

max
i=1,...,N

|λi | < a

}

for fixed N (that we omit in the notations) and each a � λ̄, and its complementary
Bc

a . In the following we will denote with IB the indicator function of the set B. Thus
we have the following
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Proposition 1 The pressure of the spherical model is bounded and

lim sup
N

A
sf
N � asf � max

(
βλ̄R2,

β2R4

θ

)
. (15)

Proof Let us fix any a > λ̄. It is

E

[
eβ
∑

i λiz
2
i

]
= E

[
eβ
∑

i λiz
2
i IBa

]
+ E

[
eβ
∑

i λiz
2
i IBc

a

]
.

For the first addendum on the r.h.s. we easily get the bound

E

[
eβ
∑

i λiz
2
i IBa

]
� eβR2aN . (16)

For the second one we decompose Bc
a = ⋃

k�1 Bk with

Bk :=
{
ak � max

i=1,...,N
|λi | � a(k + 1)

}
.

Therefore using (2) we have

E

[
eβ
∑

i λiz
2
i IBc

a

]
=
∑

k�1

E

[
eβ
∑

i λiz
2
i IBk

]

�
∑

k≥1

eβR2Na(k+1)
E[IBk

]

� C1

∑

k�1

e2βR2Nak−θNa2k2

� C1a
√
2πθNeβ2R4N/θ .

Hence, neglecting the terms vanishing in the limit, we readily get for every a > λ̄

asf (β, R) � lim
N

1

N
log
(
eβR2aN + C1a

√
2πθNeβ2R4N/θ

)

= max

(
βR2a,

β2R4

θ

)
,

The inequality is satisfied also by taking the infimum on a > λ̄, whence (15) follows.

The first consequence of the previous Proposition is the following

Lemma 1 We have

E

[
A

sf
N (β, R)IBc

λ̄

]
= O (e−N) . (17)
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Proof At first we note that the pressure (before expectation) has bounded gradient
w.r.t. the λi with full probability, since

1

N
∂λi

logZ
sf
N = β

N
ω
(
z2i

)
. (18)

Then we have

(
E

[
A

sf
N IBc

λ̄

])2
� P

(
Bc

λ̄

)
E

[
A2

N

]

= P
(
Bc

λ̄

)(
VarρN

(
A

sf
N

)
+
(
E

[
A

sf
N

])2)

� P
(
Bc

λ̄

) (
‖∇A

sf
N ‖22 +

(
E

[
A

sf
N

])2))

� P
(
Bc

λ̄

) (
β2R4 + a2sf

)
,

where we have exploited Poincaré inequality w.r.t. the empirical measure of the
eigenvalues and (18). Due to Proposition 1, we obtain (17) by the decay (2).

Remark 3 Because of Lemma 1 the partition function can be easily bounded by

Z
sf
N (β, R) � eβλ̄R2N.

Therefore

1

N
E

[
logZ

sf
N (β, R)

∣∣∣ max
i=1,...,N

|λi | � λ̄

]
� λ̄R2,

and so

lim sup
N

A
sf
N (β, R) � βλ̄R2. (19)

This bound, albeit still rather coarse, improves the annealed one for small tempera-
ture.

Now we are ready to prove formula (8). In the past literature, the common
way to face this kind of problems relied on a direct calculation of the partition
function. Several techniques can be implemented for this task: the original one by
Berlin-Kac (see [7], appendix B) and a variant by Montroll [18] make use essen-
tially of Riemann steepest descendent method; alternatively, the moment expansion
method developed by Von Neumann in [25] certainly deserves to be mentioned.
Here we present a different and purely variational proof, which captures in our
opinion the two essential aspects of the model: 1) only the largest eigenvalue
determines the form of the free energy; 2) thermodynamics naturally forces the
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equilibrium configurations of the system on the sphere, even if we relax the spherical
constraint.

Proof of (8) From Lemma 1, we can limit ourself to consider only realisation of the
disorder with spectrum contained in an interval [−λ̄, λ̄] with full probability. Then
for every q > βλ̄ we have

Z
sf
N (β, R) = eqR2N

∫

RN

dσR,N(z)e−∑N
i (q−βλi)z

2
i

� eqR2N (2π)
N
2

|SR
√

N |
∫

RN

dNz

(2π)
N
2

e−∑N
i (q−βλi)z

2
i

= eqR2N (2π)
N
2

|SR
√

N |e
− 1

2

∑N
i log 2(q−βλi)

and so

lim sup
N

A
sf
N (β) � qR2−1

2

∫
ρ(λ) log(q−βλ)−logR−1

2
−1

2
log 2 =: Ã(q). (20)

We note that for q > βλ̄

∂2q Ã(q) = 1

2

∫
dλ

ρ(λ)

(q − βλ)2
> 0,

and so the functional Ã(q) is uniformly convex (independently of R). Furthermore
we can explicitly verify that Ã(q) is continuous for q → βλ̄, thus

lim sup
N

A
sf
N (β) � min

q�βλ̄
Ã(q).

Since the functional on the r.h.s. is uniformly convex in q, there is a unique point q̄

where the minimum is attained.
The reverse bound is slightly less direct. Let us consider for each ε > 0 the spher-

ical shell around the radius R
√

N (as defined in (31)) and its complementary set,
denoted by Sεc. Since Sε

R
√

N
∪ Sεc = R

N , it holds

εZsh
εN = eq̄R2N (2π)

N
2

|SR
√

N |
∫

RN

dNz

(2π)
N
2

e−∑N
i (q−βλi)z

2
i −

−eq̄R2N (2π)
N
2

|SR
√

N |
∫

Sεc

dNz

(2π)
N
2

ze−∑N
i (q−βλi)z

2
i .
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We can use the Chernoff bound to estimate the second addendum. In fact, for every
μ, η > 0 we have

∫

Sεc

dNz

(2π)
N
2

ze−∑N
i (q−βλi)z

2
i

� exp

⎡

⎣N

⎛

⎝μ
(
R2 − ε

N

)
− 1

2N

∑

j

log(q − βλj + μ) − 1

2
log 2

⎞

⎠

⎤

⎦

+ exp

⎡

⎣N

⎛

⎝−η
(
R2 + ε

N

)
− 1

2N

∑

j

log(q − βλj − η) − 1

2
log 2

⎞

⎠

⎤

⎦ .

The r.h.s. of the last inequality is o(e−N) if ε
N

→ ∞ when N → ∞, so it
does not contribute to the thermodynamics. Therefore we can neglect ε growing
at those scales, by setting ε = ε̃N , ε̃ positive and independent by N . Thus, by a
straightforward computation, we get as N → ∞

lim inf
N

Ash
ε̃,N � max

(
Ã(q), A1

ε̃ (μ; q), A2
ε̃ (η; q)

)
, (21)

with

A1
ε̃ (μ; q) =(q+μ)R2−ε̃μ− 1

2

∫
dλρ(λ) log(q−βλ+μ)− 1

2
− 1

2
log 2−logR;(22)

A2
ε̃ (η; q) =(q−η)R2−ε̃η− 1

2

∫
dλρ(λ) log(q−βλ−η)− 1

2
− 1

2
log 2−logR. (23)

Our aim is to show that, for some q, Ã(q) is greater than these other two quantities.
We have

d1(q; μ) := Ã(q)−A1
ε̃ (μ; q)=−μ(R2−ε̃)+ 1

2

∫
dλρ(λ) log

(
q − βλ + μ

q − βλ

)
;(24)

d2(q; μ) := Ã(q)−A2
ε̃ (η; q)=η(R2+ε̃)+ 1

2

∫
dλρ(λ) log

(
q − βλ − η

q − βλ

)
. (25)

As a function of μ, d1(q; μ) is continuos and differentiable, it vanishes in μ = 0 and
moreover limμ→+∞ d1(q, μ) = −∞. So it can assume positive values (in particular
a positive maximum) if and only if the derivative in μ = 0 is positive, that is

0 < −(R2 − ε̃) + 1

2

∫
dλ

ρ(λ)

q − βλ
= ε̃ − ∂qÃ(q), (26)

where we have used that in the μ− derivative of d1(q; μ) it appears exactly the
derivative ∂qÃ(q) (see the explicit analysis below).

Analogously d2(q; η) is zero in the origin and it approaches +∞ for η → +∞.
Thus it is always positive, provided that ∂ηd2(q; η)

∣∣
η=0 � 0, i.e.

0 � (R2 + ε̃) + 1

2

∫
dλ

ρ(λ)

q − βλ
= ε̃ + ∂qÃ(q). (27)
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Conditions (26) and (27) must be satisfied together; so we seek a q̃ such that for any
ε̃ > 0 it is

−ε̃ � ∂qÃ(q)|q=q̃ < ε̃.

This simply means that q̃ = q̄, viz. the unique stationary point of Ã(q). With this
choice of q, relation (21) gives

lim inf
N

Ash
ε̃,N (β) � min

q�βλ̄
Ã(q) ε̃uniformly, (28)

so we can send ε̃ → 0 obtaining (8).
Let us look more thoroughly at Ã(q). The first derivative reads

∂qÃ(q) = R2 − 1

2

∫
dλ

ρ(λ)

q − βλ
;

hence we see that for β < (λ̄R2)−1 the derivative changes sign from negative to
positive in a point q̄ given by the equation

√(
q̄R2

2

)2

−
(

βλ̄R2

2

)2

= q̄R2

2
− β2λ̄2R4

2
, (29)

which is solved by q̄ = 1
2R2

(
1 + β2λ̄2R4

)
.

On the other hand for β > 1
λ̄R2 the derivative is always a positive function ((29)

is never satisfied). This means that the minimum is attained in the extremum of the
interval of definition, i.e. q̄ = βλ̄. Thus we have that the critical point is defined by
βc = 1

λ̄R2 as a singular point of the minimiser function of Ã(q).
Finally we notice that, since AN is a convex and Lipschitz continuous function of

λi , with a certain constant L(λ̄), it has to satisfy Talagrand inequality

P

(∣∣∣∣
1

N
logZ

sf
N − AN

∣∣∣∣ � ε

)
� e

−N ε2

L(λ̄)2 . (30)

So we get convergence in probability and by Borel–Cantelli lemma also convergence
a.s. follows.

2.2 Models on Spherical Shells

Let us introduce the spherical shell of radius R > 0 and thickness ε > 0

Sε
R :=

{
z1, ..., zN ∈ RN : R − ε

2
< ‖z‖ � R + ε

2

}
, (31)

such that
⋃

R Sε
R = R

N ∀ε > 0. The spherical shell partition function is defined as

Zsh
N,ε(β, J, RN) := 1

ε

∫

Sε
RN

dz1...dzN

|SRN
| e−βHN(z,J ), (32)

where HN(z, J ) is given by (1) and RN is a given sequence of radii. It turns out to
be a fuzzy version of the spherical model, since, for RN = R

√
N ,

lim
ε→0

Zsh
N,ε(β, J, R

√
N) = Z

sf
N (β, J, R). (33)
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We can alternatively define

Zsh
N,ε(β, J, R) :=

∫

RN

dz1...dzN

δε(‖z‖ = R
√

N)

|SR
√

N | e−βHN(z,J ),

denoting as δε the generic mollified projector on the sphere. The two approaches are
equivalent and they become identical if we take

δε = χ([R − ε/2, R + ε/2])/ε,
where χ(·) is the characteristic function of an interval in the radial coordinates. We
will use this notation below.

The pressure of the model is given by

Ash
N,ε(β, RN) = 1

N
E logZsh

N,ε, (34)

and we have straightforwardly

lim
ε→0

Ash
N,ε(β, R

√
N) = A

sf
N (β, R) ⇒ lim

N
lim
ε→0

Ash
N,ε(β, R

√
N) = Asf (β, R), (35)

given by (8). The next Lemma allows us to interchange to limits.

Lemma 2 It holds

lim
N→∞ lim

ε→0
Ash

N,ε(β, R
√

N) = lim
ε→0

lim
N→∞ Ash

N,ε(β, R
√

N) = Asf (β, R) (36)

Proof By the mean-value theorem of integration, we can write

Ash
N,ε(β, RN) = A

sf
N (β, RN,ε), (37)

for some RN,ε ∈ [RN − ε/2, RN + ε/2]. In this way, setting RN = R
√

N , we can
estimate the difference

∣∣∣Ash
N,ε(β, RN) − A

sf
N (β, R)

∣∣∣ =
∣∣∣Asf

N (β, RN,ε) − A
sf
N (β, R)

∣∣∣

=
∣∣∣∣∣
1

N
E log

(
Z

sf
N (β, J, RN,ε)

Z
sf
N (β, J, R)

)∣∣∣∣∣ . (38)

Now, using the properties of the spherical integral, we can turn the problem of
integration on a different radius into a more treatable shift in temperature. We have

Z
sf
N (β, J, RN,ε) =

∫

‖z‖=RN,ε

dz

|SRN,ε
|e

−βHN(z,J ) =
∫

‖z‖=RN

dz

|SRN
|e

−β
R2

N,ε

R2
N

HN(z,J )

,

so that

1

N
E log

(
Z

sf
N (β, J, RN,ε)

Z
sf
N (β, J, R)

)
= 1

N
E logω

(
e−βCε

NH
)

, (39)
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where we have isolated the ε -dependence in the term Cε
N := R2

N,ε

R2
N

− 1 = O(ε/
√

N).

Finally, because of Lemma 1 we have

1

N
E logω

(
e−βCε

NH
)

= 1

N
E logω

(
eβCε

N

∑N
i=1 λiz

2
i

)
� βR2λ̄Cε

N . (40)

Therefore
∣∣∣Ash

N,ε(β, RN) − A
sf
N (β, R)

∣∣∣ =
∣∣∣Asf

N (β, RN,ε) − A
sf
N (β, R)

∣∣∣

= O(ε/
√

N), (41)

whence the Lemma follows.

Remark 4 We notice that the second equality of (36) holds even before taking the
ε → 0 limit. Therefore we have also shown that, as N → ∞, the spherical shell
model (of radius R

√
N and thickness ε) and any other spherical model defined inside

the shell have the same free energy of a spherical model with radius R
√

N .

In analogy we can restrict the Gaussian model on the shell with a proper cut off:

Z
gsh
N,ε(β, J, λ, RN) := 1

ε

∫

Sε
RN

dz1...dzN

(2π)N/2
e

(
−βHN(z,J )− β2

4N ‖z‖4+ (λ−1)
2 ‖z‖2

)

,

A
gsh
N,ε(β, λ, RN) := 1

N
E logZ

gsh
N,ε. (42)

As in the previous case we have that

Z
gsh
N,ε(β, J, λ, RN) =

∫

RN

dz1...dzN

(2π)N/2
δε(‖z‖ = RN)e

(
−βHN(z,J )− β2

4N ‖z‖4+ (λ−1)
2 ‖z‖2

)

.

(43)
Let us consider now, for a certain R > 0, a spherical and a Gaussian model on the
same spherical shell centered on RN = R

√
N . Since we can fix the term ‖z‖2 =

R2N in the Gibbs measure of the Gaussian model, with a small error O(ε),

A
gsh
N,ε(β, λ, R

√
N) − Ash

N,ε(β, R
√

N) = −β2

4
R4 + λ − 1

2
R2 +

+ 1

N
log

(
SN√
2π

N

)
+ O(ε/N)

and, in virtue of Lemma 2,

A
gsh
N,ε(β, λ, R

√
N) = A

sf
N (β, R) − β2

4
R4 + λ − 1

2
R2 + logR + 1

2
+ oN(1), (44)

where oN(1) stands for a vanishing term, uniformly in ε, in the thermodynamic limit,

being limN
1
N
log

(
SN√
2π

N

)
= logR + 1

2 .
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2.3 Equivalence of Spherical and Gaussian Ensemble

In the last step of our analysis we exploit the equivalence of ensembles of statis-
tical mechanics (a classical reference is [21]), here seen as spherical and Gaussian
ensembles. Hereafter for simplicity we will set once for all λ̄ = 1.

Let us introduce the annealed pressure for the Gaussian model

ag(β, λ) := lim
N→∞

1

N
logEZ

g
N . (45)

Then we have the following

Proposition 2 We have the following bounds:

lim sup
N

A
g
N(β, λ) � a

g
N(β, λ) � max

(
1

2

(
2 + λ

β

)2

, −1

2
log(1 − λ)

)
. (46)

Remark 5 The annealed bound is finite for λ < 1, as shown also in [4].

Proof We proceed exactly as in the proof of Proposition 1: at first we use Jensen
inequality to exchange the logarithm and the expectation with respect to the quenched
disorder; then we compute

E
[
Z

g
N(β, λ)

] = E
[
Z

g
N(β, λ)IBa

]+ E
[
Z

g
N(β, λ)IBc

a

]
.

For the first addendum we profit from the boundedness condition of the spectrum.
We have that the maximum of the function

exp

(
β‖z‖2 − β2

4N
‖z‖4 + λ

2
‖z‖2

)

is attained for ‖z‖2 = N
2β+λ

β2 and it is equal to exp

[
N
2

(
2 + λ

β

)2]
. Thus we have

E
[
Z

g
N(β, λ)IBa

]
� exp

[
N

2

(
2 + λ

β

)2
]

. (47)

For the second addendum we can repeat the argument of Proposition 1 to obtain

E
[
Z

g
N(β, λ)IBc

a

]
�
∫

RN

dNz

(2π)
N
2

e− 1−λ
2 ‖z‖2 = e− N

2 log(1−λ). (48)

Recollecting the contribution given by (47) and (48), we have (46) in the limit N →
∞.
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Then we want to show that the Gibbs measure of the Gaussian Model is con-
centrated on a ball of radius growing as

√
N . To this purpose, fixed two arbitrary

numbers δ > 0 and R > 0, we set

TN(δ, R) :=
{
z1, ..., zN ∈ R

N : ‖z‖2N � R2N1+δ
}

, (49)

Z
g

‖z‖2�R2N1+δ :=
∫

TN (δ,R)

dz1...dzN

e−‖z‖2/2

(2π)N/2
e

(
−βHN(z,J )− β2

4N ‖z‖4+ λ
2 ‖z‖2

)

. (50)

So we are ready to establish the subsequent

Lemma 3 Let us fix arbitrarily R > 0. For every δ > 0

Z
g

‖z‖2�R2N1+δ = O
(
e−N1+δ

)
. (51)

Proof For any � ⊆ R
N we define

π
β,λ
N (�) := 1

Z
g
N

∫

�

γN(z) exp

(
β

N∑

i

λiz
2
i + λ‖z‖2 − β

4N
‖z‖4

)
. (52)

Let Eπ be the expectation w.r.t. the density π
β,λ
N and R, δ > 0 fixed. Using the

Chernoff bound we get for every μ > 0

π
β,λ
N (‖z‖2 � R2N1+δ) � e− μ

2 R2N1+δ

Eπ

[
eμ‖z‖2] . (53)

In particular we choose max(0, λ − 1) < μ � λ. In addition we have

logEπ

[
eμ‖z‖2] = log

∫

TN (δ,R)

dz1...dzN

e−‖z‖2/2

(2π)N/2
e

(
−βHN(z,J )− β2

4N ‖z‖4+ λ
2 ‖z‖2

)

−N logZ
g
N(β, λ)

= N[AN(β, λ − μ) − AN(β, λ)].
Therefore

Z
g

‖z‖2�R2N1+δ � exp
[
−μR2N1+δ + NAN(β, λ − μ)

]

= exp
[
−N1+δ

(
μR2 − N−δAN(β, λ − μ)

)]

� exp

[
−N1+δ max

μ∈(0,λ]

(
μR2 − N−δAN(β, λ − μ)

)]
,

and, because of the annealed bound (46), we obtain (51).

Finally we can proceed with the

Proof of (9) We will show that the r.h.s. of (9) is an upper and a lower bound for
Ag(β, λ).
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We start with the lower bound. Let us define R̄ as the radius where it is reached
the unique maximum of (9) and let us abbreviate hereafter Sε

R := Sε

R
√

N
. We have

that

Z
g
N(β, λ; J ) =

∫

RN

dz1...dzN

e−‖z‖2/2

(2π)N/2
e

(
−βHN(z,J )− β2

4N ‖z‖4+ λ
2 ‖z‖2

)

�
∫

Sε

R̄

dz1...dzN

e−‖z‖2/2

(2π)N/2
e

(
−βHN(z,J )− β2

4N ‖z‖4+ λ
2 ‖z‖2

)

� e
N

(
(λ−1)

2 R̄2− β2

4 R̄4+ 1
N
log |S

R̄
√

N
|− 1

2 log(2π)

)

×
(∫

Sε

R̄

dz1...dzN

ε|SR̄
√

N | e(−βHN(z,J ))

)

and then ∀ε,

A
g
N(β, λ) � (λ − 1)

2
R̄2 − β2

4
R̄4 + 1

N
log |SR̄

√
N | − 1

2
log(2π)

+Ash
N,ε(β, R̄

√
N). (54)

We take the lim inf over N on the left, and just the limit for N → ∞ on the right. By
using Lemma 2 and the computation 1

N
log |SR̄

√
N | − 1

2 log(2π) → log R̄ + 1
2 , we

eventually obtain the r.h.s. of (9) as a lower bound:

lim inf
N

A
g
N(β, λ) � max

R∈(0,∞)

(
Asf (β, R)− β2R4

4
+ (λ − 1)R2

2
+ logR + 1

2

)
. (55)

In order to get the reverse bound, for an arbitrary δ > 0 we decompose R
N =

TN(δ)∪T c
N(δ). In virtue of Proposition 3 the integration over TN(δ) does not give any

thermodynamical contribution to the free energy. Consequently, for simplicity, we
can consider as configuration space just T c

N(δ). Then we look at a generic partition
of T c

N(δ) into Nδ/2ε shells of thickness 2ε and we estimate

Z
g
N � Nδ

2ε
max

R∈[0,Nδ]

⎛

⎝
∫

Sε
R

dz1...dzN

e−‖z‖2/2

(2π)N/2
e

(
−βHN(z,J )− β2

4N ‖z‖4+ λ
2 ‖z‖2

)⎞

⎠

= Nδ

2ε
max

R∈[0,Nδ]

⎛

⎝e
N

(
(λ−1)

2 R2− β2

4 R4+ 1
N
log SN

R − 1
2 log(2π)

)
+oN (1)

×
∫

Sε
R

dz1...dzN

ε|SR
√

N | e(−βHN(z,J ))

⎞

⎠ .
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Thus

A
g
N � δ

N
log

(
N

2ε

)

+ max
R∈[0,Nδ]

(
(λ − 1)

2
R2 − β2

4
R4 + 1

N
log |SR

√
N |

−1

2
log(2π) + Ash

N,ε(β, R
√

N) + oN(1)

)
.

Again we take N → ∞: the lim sup on the left and the limit on the right. Here
we note that it is possible to exchange the limit with the max, since the functional
converges uniformly in R in each bounded subset of R and tends to −∞ as R → ∞
for all N . Thus we get the reverse inequality:

lim sup
N

A
g
N(β, λ) � max

R∈(0,∞)

(
Asf (β, R)− β2R4

4
+ (λ − 1)R2

2
+logR+ 1

2

)
. (56)

Now we notice that the pressure of the spherical model Asf (β, R) depends in fact
on R2:

Z
sf
N (β, R) =

∫

‖z‖2=R2N

dz1...dzN

|SR
√

N | e−β
∑

i λiz
2
i

=
∫

‖z̄‖2=N

dz̄1...dz̄N

|SN | e−βR2∑
i λi z̄

2
i

= Z
sf
N (βR2, 1),

by the simple change of variables Rz̄ = z. So we have

Asf (β, R) = Asf (βR2, 1),

and

Ag(β, λ) = max
R2∈(0,∞)

(
Asf (βR2, 1) − β2R4

4
+ (λ − 1)R2

2
+ logR2 + 1

2

)
. (57)

3 Conclusions and Outlooks

In this paper we have analysed the relation between Gaussian and spherical spin
glass models. In particular we have pointed out precisely their duality in terms of
Legendre structure, or equivalence of Gaussian and spherical ensembles. Our work
consequently permits to deal deliberately with one or the other model in further
studies.

It is worthwhile to remark that the explicit representation (12) coincides with the
RS approximation exhibited in [4]. This enables us to complete the picture, by iden-
tifying q̄ with the Edward-Anderson order parameter of the model. We have that
replica symmetry holds in the whole phase diagram and the transition is between a
high temperature phase and a RS one. It is ruled by the value of the overlap, that is
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fixed to zero in {(β, λ) : β < 1 − λ, λ < 1} and to q̄ otherwise. This holds true for
random interactions in the Wigner ensemble with a sub-Gaussian tail, according to
the hypothesis H.

We stress that our approach, reminiscent of the earliest works in spin glasses,
albeit apparently more general, does not give naturally this picture. Practically, we
do not know a priori the significance of the minimiser q̄. We need the scheme of
[4] for giving a complete interpretation to our results in terms of the correct order
parameter (i.e. the overlap). Of course, Legendre duality permits us to transfer all
these considerations to the spherical spin glass as well.

Lastly, we examine the relation between the Gaussian and spherical models
and the (analogical) Hopfield model of neural networks. The analogical Hopfield
Model is defined as follows: consider N Bernoulli spin r.vs σi interacting via the
Hamiltonian

HN = − 1

N

K∑

μ=1

N∑

i,j

ξ
μ
i ξ

μ
j σiσj (58)

where ξ
μ
i are K N (0,1) i.i.d. quenched random vectors in R

N (or patterns) with
limN K/N = α ∈ R

+. One is interested as usual to the pressure of the model defined
as

AH (β, α) = lim
N,K

1

N
E log

∑

σ

e−βHN .

In the original formulation in the celebrated paper by Hopfield [15], the random
patterns were Bernoulli ±1 r.vs. The two versions are in fact supposed to be quali-
tatively different [13], and we refer to [8] and [23] for an exhaustive account on the
topic.

By a Gaussian transformation we can map the Hopfield model in a bipartite spin
glass with Bernoulli and Gaussian spin:

− 1

N

K∑

μ=1

N∑

i,j

ξ
μ
i ξ

μ
j σiσj −→ − 1√

N

K∑

μ=1

N∑

i

ξ
μ
i σizμ.

With this approach, it has been shown in [5] that the pressure of the analogical Hop-
field Model, at least in RS regime, can be written as a convex combination of the
pressure of a SK model and the one of a Gaussian model, calculated at different
suitable temperatures. More precisely, let us define for q̄H > 0

β1 :=
√

αβ

1 − β(1 − q̄H )
, (59)

β2 := 1 − β(1 − q̄H ). (60)

We have proven that, fixed β1 and β2 as in (59) and (60), the replica symmetric
approximation of the quenched pressure of the analogical neural networks ARS

H (β, α)

can be linearly decomposed as follows:

ARS
H (β, α) = ARS

SK(β1) − 1

4
β2
1 + αAg(β2, β), (61)

where we denoted by ARS
SK(β1) the RS approximation of the SK model.
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Now we can rephrase this result in terms of the spherical model by means of
the duality we have established. We note that the radius of the spherical model has
a definite meaning in the context of neural networks, being the self-overlap of the
Gaussian spins p11 := 1

k

∑K
i=1 z2i . This is known to be self averaging and related to

the internal energy [2]:

lim
N→∞

〈HN 〉
N

= α

2β
(1 − 〈p11〉) . (62)

We have

Corollary For β1 and β2 as in (59) and (60), the replica symmetric approximation of
the quenched pressure of the analogical neural networks can be linearly decomposed
as follows

ARS
H (β, α) = ARS

SK(β1) − 1

4
β2
1 + αAsf (β2,

√
p11)

+ α

2
(β − 1) 〈p11〉 − αβ2

2

4

〈
p2
11

〉
+ α

2
(1 + log 〈p11〉). (63)

Here we stress that, even though the r.h.s. of (61), (63) are in fact unaffected by the
choice of the randomness according to the hypothesis H, the decomposition by itself
has been proven only in the case of Gaussian disorder. We do not know in particular
whether it can be extended to the original Hopfield model with ±1 patterns.

In conclusion, the invariance properties under rotations of the Hopfield model, and
so its connection with rotationally invariant spin glasses, are indubitably suggestive.
They have been certainly already investigated, but probably they still can be useful
tools in order to shed more light on its mathematical structure.
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