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Abstract In this paper, we derive Li-Yau gradient estimates for the positive solution
of a nonlinear parabolic equation u; = Au—qu—au(Inu)®, where g is a C? function
and a, o are constants, on a complete manifold (M, g) with bounded below Ricci
curvature. The results generalize classical Li-Yau gradient estimates and some recent
works on this direction.
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1 Introduction

In this paper, we consider a parabolic equation of the type

<A —q(x,t) — %) u(x,t) =au(x,t) (In(u(x, 1)))*, (1.1)
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274 X.Zhu, Y. Li

on M x (0, 00), where a, o are constants, and g is a C? function defined on M x
(0, 00). We sometimes write u(x, t) as u and g (x, t) as g, etc, also write % as o;.

Gradient estimates is one of the fundamental tools in studying nonlinear partial
differential equations from geometry. Li and Yau [6] obtained a gradient estimate,
called Li-Yau estimate, for heat equation

(A— %) u(x,t) =0, (1.2)

on M x (0, 00); that is, the (1.1) with ¢ = a = 0. Using gradient estimates, Li
and Yau proved the optimal upper and lower bounds for heat kernel. Later, this
estimate have been extended to Ricci flow by Hamilton [4], and furthermore, by
Perelman [9].

After the fundamental work of Li-Yau, there are variant estimate for heat-type
equations. One of them arises from gradient Ricci soliton (M, g, c, f); that is,

Reg = cg + V2 f, (1.3)

where (M, g) is an n-dimensional Riemannian manifold, c¢ is a constant, and f is a
smooth function. Letting u = e/, the (1.3) can be written as (see [8])

Au~+2culnu = (Ag — cn)u, (1.4)

for some constant Ag. On the other hand, Yang [13] considered the similar equation

<A—b— %) u(x,t) =au(x,t)In(u(x,t)), (1.5)

where a, b € R; moreover Qian [10] and Wu [12] studied the same (1.5) where a, b
are functions. Observe that (1.2), (1.4), and (1.5) are special cases of (1.1). For gra-
dient estimates for (1.1) under the Ricci flow, we refer to [5]. Our estimates give
more refinement than that in [5]. In a later paper [7], we will consider the gradi-
ent estimates for a more general nonlinear parabolic equation under a geometric
flow.

Throughout this paper, M is assumed to be an n-dimensional complete Rieman-
nian manifold with (possibly empty) boundary d M. We denoted by ad_u the outward
pointing unit normal vector to the boundary d M, and II the second fundamental form
of d M with respect to %

We now state our main results in this paper.

Theorem 1.1 Let (M, g) be a compact manifold with nonnegative Ricci curvature.
Suppose that the boundary oM of M is convex, i.e., the second fundamental form

@ Springer



Li-Yau Estimates for a Nonlinear Parabolic Equation on Manifolds 275

Il is nonnegative, whenever 0M # (. Let u(x,t) be a positive solution of the
equation

(A—90)u=aulnu,

on M x (0, 00) for some constant a, with Neumann boundary condition

ou
v
on dM x (0, c0).
(1) Ifa <0, then u satisfies
Vul>  u n  na
—— —alhu < — — —,
u? u 2t 2
on M x (0, c0).
(2) Ifa >0, then u satisfies
IVul?  u n
5 — —alnu < —.
u u 2t

To the general (1.1), we obtain the following Li-Yau gradient estimate.

Theorem 1.2 Let (M, g) be a complete manifold with boundary M. Assume that
p € M and the geodesic ball B, (2R) does not intersect dM. We denote by —K (2R)
with K(2R) > 0, a lower bound of the Ricci curvature on the ball B,(2R). Let
q(x,t) be a function defined on M x [0, T| which is C? in the x-variable and C' in
the t-variable. Assume that

Ag <O(2R), |Vq|<y(2R),

on B,(2R) x [0, T] for some constants 6 (2R) and y (2R). If u(x,t) is a positive
solution of the equation

d
<A—q—5)“=au(lnu)“, a >0, (1.6)

on M x (0, T] for some constant a, then for any B > 1 and € € (0, 1), on B,(R),
u(x, t) satisfies the following estimates:

(1) fora >0, we have

np> (At ymp’ n’g*ct
2(1 — et 2(1 —¢) 4e(1 —e)(B — 1)R?
np2K +a(B — D% ool
(1-e -1

npaale =111l + (B0 + (B — DyInp?
26-D —e) 20 —¢) '

IVfI* = Bfi — Bq — Baf® <
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(2) fora <0, we have

np? (A + y)np? n?p*c?
2(1 — o)t 2(1—¢) 4e(1 —e)(B— DR2
np*K — (B — Dalf* el

IVfI* = Bfi — Bg — Baf® <

I-eB-D
n (B + (B — DyInp?
2(1—¢) '

Here f(x,t) := log(u(x, 1)), | floo := maxy | f|, and A = [2C} + (n — 1)CF(1 +
R\/E) + Cz]/R2 for some positive constants C1, C3.

When o« = 1, the above theorem recovers the main result in [10, 12]. As an
application, we prove the gradient estimate for the elliptic equation

(A —qu =au(lnu)®, a >0, 1.7
where u is a positive solution.
Corollary 1.3 Let (M, g) be a complete non-compact n-dimensional Riemannian

manifold. Suppose that u(x, t) is a positive solution on M of the (1.7). Assume that

(a) the Ricci curvature of (M, g) is bounded from below by —K, for some constant
K >0, and

(b) there exists a constant 0, and a function y (t) such that |Vq| < y and Agq < 0
on M.

Then
(1) fora >0, we have

|Vul?

u?

_ a—2
~ Balnw® < g+ (g +al(Inuy® | + 2Pl = Lldn) '°°) np?

28-1

+

np*K N (B0 + (B — 1)y Inp?
B—1 2 '

on M forall B > 1.
(2)  fora <0, we have

|Vul?

- — Batnu)® < g+ (£ = Saltnw ') np?
nB2K 186 + (B~ DyIng?
S +\/ 5 ,

on M forall B > 1.
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In particular, if u is a positive solution of the equation (A — q)u = au lnu, then

(1’)  fora > 0, we have a lower bound

u}exp|:—z—<1+21)n,3—
a a

nBK 1 ([B6+(B— 1)y]n>“2
B-—Da a ( 2 ’

on M forall B > 1.
(2°)  fora < 0, we have a upper bound

_ 1/2
ugexp[—g+(l_1)nﬂ_ K L0 ) }

2 2a (B—Da 2
on M forall B > 1.
Remark 1.4 When ¢ is a constant, Theorem 1.1 reduces to Theorem 1.1 in [13].
Corollary 1.3 give a much better bound for a positive solution of (1.7) on M if g =
0, @ = 1 and the Ricci curvature of M is nonnegative (compared with Corollary 1.6

in [10] and Corollary 1.2 in [13]). In fact, in this case, takingg =y =6 = K =0,
we have

u>e (@>0), or u<e’? (a<0).

Note that our constant a is actually the constant —a used in [10, 13].

2 Gradient Estimates

Suppose that u (x, t) is a positive solution of (1.1). Let
f(x,t) :=In(u(x, t)). 2.1

Then the (1.1) now can be written as (A — &;) f = —|V f|> + ¢ +af. We would like
to consider a more general situation:

(A=3) f=—IVIP+q+af 22)
where o > 0.
Lemma 2.1 Let f(x, t) be a smooth function on M x [0, 00) satisfying (2.2), where a

is a constant, « is a positive constant, and q is a C? function defined on M x (0, c0).
For any given B > 1, the function

Fi=1(IVf1 = Bfi - Ba — Bas). 23)
satisfies the inequality
(A=3)F > —2(Vf,VF) - ; —2Kt|VfI* + % (|Vf|2 —q—fi— af“)2
— BtAg —2(B — D1(V £, Vq) —2(8 — Diaaf*~ |V f|? 24)

— praa(a = D2V [ = aarf* (<IV S+ fi + g +af*).
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where —K (x), with K(x) > 0, is a lower bound of the Ricci curvature tensor of M
at the point x € M, and f; := 0; f.

Proof Differentiating (2.3) we have
ViF =1 (290 fV,V, f = BVi f; - BVig — Baaf* Vi f).
Then the Laplace of F equals
AF = V'V;F
2|V + 209 s AV - o - pag

— paa((@ = Df*2IVFP+ AR .

Using the Ricci formula yields
AV, f = ViAf + RijV f,
from which the Laplacian of F can be simplified as
2
AF = 1[2|V2f| 4+ 2(Vf, VAS) +2RIe(V £,V ) = BAS) — B
— paa (@ =D 2VfPR+ 2 ar) |
2
> 1 Z(Af?+2AV L VAR = 2KIVfIP = BAS) = PAq

— paa (@ =2V R+ 27 ar) |

since [V2£2 > D2 Recall from (2.2) that

n

Af = —IVfP+q+ fi +af®
F
=-———@B=-Dla+fi+af).
Therefore,
2t 2 o 2
AF > = (\VfP =g~ fi—af*)
n

—2t<Vf,V(§ +B—-Dg+ fi +af"‘))>

—2Kt|VfI* —1B (—? - B-D@+ fi +af°‘)) — BtAq

t
— paat [(@— Df* VP + fo7Af ]

Since

F o F F a—1
(7+(ﬂ—1)(q+ft+af)> - T B =D+ futaafTfo),

t
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and
F 2 o
7= VST — Bfi — Bg — Baf”,
we obtain

2t
AF > —
n

2
(1VF2=a—fi—af*) —2AVLVF) =28 = DIV LV fi)
= 2(B = DV f. Vg) = 2 = Dtaaf*" |V f* = 2K1|V f1? + BF,
— B(IVS12 = Bfi = Ba — Baf™) + BB — Digi + BB — Difu

+1B(B — Daaf*~' f; — ptAq
— Baat(a — 1) f22V f1? = Baatf27IAS.
On the other hand,
Fi = |Vf* = Bfi — Bq — Baf*®
1 (IV f12 = Bfu — Pas — Paaf* ™' fi).

Combining above two formulas we conclude that

2 2 2
A=0)F > = (VP —q—fi—af*) —2AVLVF) = (8= D3|V /]
—2(B — DV f. Vq) = 28 — Dtaaf*" |V f1? = 2K1|V f|?
+ B = (V= Bf: = Ba — Baf*) +1B(B — Daaf*~
+ (8= D1 (4IVS12 = B — Bai — Bacaf*™' ;) = Bt g
— B(IVF1 = Bf: — Ba — Baf™) + BB — Dita, + BB — Difu
— Baat(@ = D) f* IV f* - paaf ' Af
F 2 2
= ~AVSVF) =~ = 2KV P+ (V0P g - fi - af®)

— BtAg —2(B — DIV f.Vq) — 2(B — Dtaaf* |V f?
— Baat(@ — D f* 2V f? = paaf*" Af.
Now, (2.4) immediately follows from (2.2). O

2t
n

Theorem 2.2 Let (M, g) be a compact manifold with nonnegative Ricci curvature.
Suppose that the boundary OM of M is convex, i.e., the second fundamental form Il
is nonnegative, whenever M # (. Let u(x, t) be a positive solution of the equation

(A—90)u=aulnu,
on M x (0, o0) for some constant a, with Neumann boundary condition

Bu_

5 — Y,

on oM x (0, c0).
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280 X.Zhu, Y. Li

(1) Ifa <0, then u satisfies

n
— -t —alnu < o= 2.5)

on M x (0, c0).
(2) Ifa >0, then u satisfies
Vul> u

n
" —;—alnu % (2.6)

Proof Settingg = 0,0 =8 =1,and K = 0in Lemma 2.1 yields

(A=) F > —2(Vf,VF) - 5+ — (VP fi- af)2+at (V2= fi —af)

F‘ 2F2
= _2<vf,VF>—7+—t+aF
n

_ 2(VfVF)+2F F n+ant
N ’ nt 2 2 )

mmF_qNN fi —af).

(1) a < 0. In this case we claim that F < 5 — @ If not at the maximum point
(x0, 2p) of F on M x [0, T] for some T > 0, we have

n ant _ n
F(xo, ———>=>0.
(xo0, t0) > ) 7>
Consequently, #p > 0. If xq is an interior point of M, we conclude from (xg, #p) being
a maximum point of F in M x [0, T'] that
AF(xp,10) <0, VF(xg,%0) =0, F(xo,7)=0.

Together with the proved inequality (A —9;)F > —2(V f, VF) + zn—f(F -5+ “T”’),
we arrive at
2 anty
0> —F(xo, t0) | F(xo0,20) — 5 + —
nto 2
By the assumption, it implies that F (xo, 7o) < 7 — % a contradiction.
Therefore we proved that x is on the boundary of M. Now the strong maximum
principle tells us

oF
—(x0, 10) > 0.
ov

Let ey, -, e, where e, := 9/0dv, be an orthonormal frame field on M, and f;
means the covariant differentiation in the e; direction. Calculate

2 ) fifiv=(v—afs | =2t Y fifut2f fo—(fv—afe.

I<jsn I<jsn—1

Since u,, = 0 on dM, it follows that f, = 0 on dM and hence

Fy=2t > fifj==20 Y hufife=—2LVf V),

1<j<n—1 1<) k<n—1
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Li-Yau Estimates for a Nonlinear Parabolic Equation on Manifolds 281

because of fj, = — 3 <r<n—1 1jk [k, Where hjj are components of the second
fundamental form of d M. Evaluating at the point (xg, fp), we get

IV £,V f)(xo, 10) <0,

which contradicts the convexity of M. Hence, F < 5 — %

(2) a = 0. Since the right side of (2.6) is positive, we may assume without loss of
generality that F > 0. In this case we obtain

AaVF> - 2VrvEy 4+ 2 (F "
(A=0)F = -2V, >+E< _§>’

which reduces to the case in [6] and by the same computation we conclude that
F < 5. O

Theorem 2.3 Let (M, g) be a complete manifold with boundary 0 M. Assume that
p € M and the geodesic ball B,(2R) does not intersect d M. We denote by —K (2R)
with K(2R) > 0, a lower bound of the Ricci curvature on the ball By(2R). Let
q(x, 1) be a function defined on M x [0, T which is C? in the x-variable and C" in
the t-variable. Assume that

Ag <O(2R), [Vql <y(Q2R),

on B,(2R) x [0, T] for some constants 6 (2R) and y (2R). If u(x,t) is a positive
solution of the equation

d
<A—q—5)u=au(lnu)“, a >0, 2.7

on M x (0, T] for some constant a, then for any B > 1 and € € (0, 1), on Bp(R),
u(x, t) satisfies the following estimates:

(1) fora >0, we have

Y e o oa np? (A + y)np? n’g*Ct
VP =Bfi=Ba=Paf” < 50— Y 50— T xd—o@ -DR
nB?K +a(B — DI f* ool

I—aB-1
nBacle — 11| £ \/[/39 +(B— ylnp?

26— D1 —¢) 2(1 —€)

(2)  fora <0, we have
np* (A +y)np* n*g*Ct
2(1 — e)t 2(1 —¢€) 4e(l —€)(8 — 1R?
nB*K — 5B — Dal f* ool
(1-eB-1

(B0 + (B — DyInp?
21 —e) ‘

IVfI* = Bfi — Bg — Baf® <
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282 X.Zhu, Y. Li

Here f(x,t) := log(u(x, 1)), | floo := maxy | f], and A = [2C? + (n — NC}(1 +
R\/f) + C2]/R2 for some positive constants C1, C3.

Proof As before, we set f = logu and F = t(|Vf|> — Bf; — Bg — Baf®). As in
[2, 6, 8, 13], we let @(r) be a C? function defined on [0, 00) such that

50 = {0 gy
and
—CI<FOF ) <0, G = -0
for some positive constants Cy, Cp. If r(x) := dist(p, x) denotes the distance

between p and x, we set

P(x) = ﬁ(LI:)) .

Using Calabi’s argument (see, e.g., [1, 3, 11]), we may assume without loss of gen-
erality that ¢(x) is smooth in the ball B,(2R). Then by the Laplacian comparison
theorem (see [11]) we have

IVel? _ Ci

cr (i =DCIA+RVE) + C
gp X R27 .

Ag > e

Combining Lemma 2.1 with A(¢pF) = A¢p - F +2(Ve, VF) + ¢ - AF yields

_ 2
N e PRI C)

R2
F 2 2
+o[F =2V VF) = = 2KV P (19 7P f = g = af®)
= BtAg =28 = DV f.Vq) = 2(B — Draaf* |V fI?
— prac(e = D VP + Baraf*™ (IVF2 = fi—q - af*) ]
B _F|:(n— 1)C12(1+Rx/f)+C2:| 2 2F|Vo)?

o + (Ve VpF) -
F 2 2
+o[F =2V VE) = = 2KV P (19 7P fr - g - af)

— BtAq —2(B — DtV f,Vq) — 2(B — Dtaaf* |V f|?
—Braa(e — D f* 2V [P+ Bataf* (IVf12 = fi =g —ar®) |.

Fixa T’ < T. Let (xg, fo) be a point in M x [0, T'] where ¢ F achieves its maximum.
We may assume that (¢ F)(xp, #9) > O (so that 75 > 0), otherwise it is clear. Ay
(x0, to), we have

V(pF)(x0,10) =0, (¢F)i(x0,20) =0, A(pF)(xo, 1) < 0.
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Li-Yau Estimates for a Nonlinear Parabolic Equation on Manifolds 283

An obvious consequence is Vo - F + ¢ - VF = 0 at the point (xg, #p). From the
inequality |Vg|?/¢ < C?/R? and introducing a constant

2C + (n — DCH(1 + RVK) + C3

A= R , (2.8)
we obtain the following inequality
2t 2 F
0> —AF +2F (VL Vo) + =g (V= fi—q —af*) — =
0
— 2K109|V fI” = BlopAg — 2(B — Diog(V f, Vq) (2.9

—2(8 — Dtpagaf* 'V f|* — Btoaga(a — 1) f* 2|V f|?
+ Batogaf*~ (1Y = fi = q —af®),
at (xg, tp). Set (see [2, 13])

2
— IV f1*(x0, to) >0
F(xo, t0)
We calculate

5 o _Mt()—l
IVfI"—fi—q—af —F(M 5o )

and c
1
(V£ V9) SIVSIVel < =621V ),
at the point (xg, f9). Simplifying (2.9) at (xg, #p) yields
_ 2
0> —AF — &¢1/2M1/2F3/2 + 2t ) [I+(B . ZI)IUO]
R B %
— Brogb — 2(B — Diopy F'2u'? — 2(8 — Divagaf*~ ' uF
— Broaga(a — 1) f* > uF + apaf*~'[1 + (B — Duto] F.
Multiplying by ¢#y on both sides, we have

F
F2 %—2K¢0¢MF

AFngp > —ZC—I;%”%‘“F” —@’F + %[1 + (B = Dungl’ F?

= 2(t09)*[K + a(B — Daf* "uF + atop®af* ' [1 + (B — Digu] F (2.10)
— Btog)*0 — 2(B — D)(t09)*y (uF)'/* — Bltop) *ac(e — 1) f* i F.

If we set G := ¢ F, then at the point (xg, 7o) the inequality (2.10) becomes

AtyG > —ZCT”O;NZGW — G+ n’%[l + (B — Duty)*G>

— 20i5[K +a(B — Daf* "G +apioaf* " [1 + (B — DunlG (211
— Blp10)*0 — 2(8 — Dige*y u! > G'? — rgpaa(a — 1) f**uG.

Using the inequalities, where 0 < € < 1,

2C1ty
R

np>CiguG
2¢R2[1 + (B — Dputo]*’

2
M1/2G3/2 < %[1 +(’3_ I)Mt0]2G2+
n

2u'2G'? < 1+ uG,
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284 X.Zhu, Y. Li

we simplify (2.11) as the following inequality
2(1 —¢) np*Ciiu
np? 2eR2[1 4 (B — Dutol?
= 2015[K +a(B — Daf* ' 1uG + aptoaf* '[1+ (B — DutolG
— Be?20 — (B~ Didg3y — (B — Dide3 yuG — prean(@ — 1) f*"2uG.

AfG > [14+ (8 — Dut)*G* — ¢G

or equivalently,

n,BZCftg/L
2eR?[1 4 (B — Dutol?
+ 2015 [K +a(B — Daf* u

— agtoaf* ' [1 + (B — Duto] + (B — Di2pIyu
+ Brgpac@ — 120G

+ [Be%0 + B - Deir |5

2(1 — [l + (B — Duty*G?
np?

< [At0+(p+

Note that 0 < ¢ < land 1 + (8 — 1)uto > 1. Therefore

AL=aG? g +14 np*Cligu 2015[K +a(p — Daf* '
np? 2eR2[1 + (B — Duto] [1+ (8 — Dpto]?
_agtgafe! B-Dyign  Bieacla — 1] 2u
I+ (B—Duto 1+ (B— Dty L+ (B — Dputo
+ [BO+(B— Dy (2.12)
np*Clty  2¢13[K +a(B— Dalf|*u
< |A 1
[ TR B - D) 0+ ¢-bpoP 70
__agnaf*”t  Brogaale — 1] f1*72
L+ (B — Dputo B—1

+ 180+ (B — Dyl

Before completing the proof, we recall a fact: if x2 < ax + b for some b, x > 0 and

a € R, then
a a\?2 a a
<=z b =) <= b+ - = b. 2.13
X<ty +(2) StVb+s=a+b (2.13)

If a > 01in (2.12), then from (2.12) we deduce that

G2 < AnB1 np? N n?2p*Co nplacla — 1| f1* 21
Sl2(l—¢)  2(1—€)  4e(l—e)R2B-1) 28— 1)(1 —e)

npyty | np*K +a(p— l)al.fla’l]to] G o PO+ (B Dy Inp?

2
o (2.14)
2(1 —¢) 1-e@B-1 2(1 —e)
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Li-Yau Estimates for a Nonlinear Parabolic Equation on Manifolds 285

Applying (2.13) to the inequality (2.14), we get an upper bound for G:

G < [(A tymp’  wpiCE np?(K +a(p — 1)a|fl°“1]} -
2(1 —¢) 4e(1 —€)(B— HR? d1-e@B-1
3 a=2 2
nBlacle — 1)1 T,+\/[ﬁ9+(ﬂ—l)y]nﬂ2T,+ np>
26— —¢€) 2(1 —e€) 2(1 —¢€)

since tg < T’. By the construction of ¢, we have

sup F(x,7) < sup (¢(x)F(x, 1)) < G(xo, ),
Bp(R) Bp(R)

forall t € [0, T']. Because T' < T is arbitrary, it follows that

> pe pe pare < B (AtyInp? n?pic
VIV = Bfi = Bq = Paf <2(1—e)t+ 2(l—€)  4e(1—e)(B—DR?

nB2K +a(B — Dl % sl

(I-aB-1
nplacla — 11| f* 2| L [BO+ (B = Dylnp?
2(B—1)(1 —e€) 2(1 —¢) ’
where | f |~ := maxy; | f|. Similarly, when a < 0, we have
G2 < (A + y)nB np? n?B*C%y nBK 1y
= 2(1 —¢) 2(1 —¢) + 4e(1—)R2B-1) (A—-e(B-1

R P AL @15)

2(1 —€) 2(1 —¢)
From (2.13), (2.15), and above argument, an upper bound for desired quantity in this
case is
nB? (A + y)np? n?p*Cc?
(1 —e) 2(1 —¢) 4e(1 —€)(B — 1)R?
np*K — 5B — Dalf*xl

\VfI* = Bfi — Bq — Baf® < 5

1-eg-10
(86 + (B — Dylnp?
2(1 —¢€) '
Hence, we complete the proof. O
When o = 1, the above theorem reduces the main result in [10, 12]. Letting

R — oo and then € — 0, we have the following
Corollary 2.4 Let (M, g) be a complete non-compact n-dimensiobal Riemanian

manifold. Suppose that u(x,t) is a positive solution on M x (0, T] of the (2.7).
Assume that
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(a) the Ricci curvature of (M, g) is bounded from below by —K, for some constant
K >0, and
(b) there exists a constant 6, and a function y (t) such that

IVgl(x.1) <y (), Agqx.1) <6
forany (x,t) e M x (0, T].
Then
(1) fora >0, we have

\Vu| o np? oy w1 ., , nB’K
— B~ palnu)® < g+ T+ (5 +aalf* 1) nf o
nBlacla — 11| f*2|x L [BE+ B Dy Inp?
2(8—1) 2 ’

onM x (0, T] forall B > 1.
(2) fora <0, we have

|Vu| o np? a i np’K
~fy — Baln)® < pg+ 5+ (5 = Gl f o) nf 4
\/ (86 + (B — Dy Ing?
+ 9
2
onM x (0, T] forall B > 1.
We now apply Corollary 2.4 to the elliptic equation
(A —q)u = au(lnu)?, (2.16)

where u is a C? function on M, by letting T — oc.

Corollary 2.5 Let (M, g) be a complete non-compact n-dimensional Riemannian
manifold. Suppose that u(x,t) is a positive solution on M of the equation (2.16).
Assume that

(a) the Ricci curvature of (M, g) is bounded from below by — K, for some constant

K >0, and
(b) there exists a constant 0, and a function y (t) such that |Vq| < y and Agq < 0
on M.
Then
(1) fora >0, we have
|W|2

aPala — 1\|(lnu>“*2|oo)nﬂz

_ Z a—1
Ba(lnu)* ﬂq—l—(z 4+ a|(lnu)* | + 26— 1)

np*K [BO + (B — DyInp?
+ 51 +\/ 7 ,

on M forall B > 1.
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(2) fora <0, we have
|Vul?

- — Batnu)® < g+ (% = Saltnw | ) nf?
nB*K 180+ (B — DyInp?
Tt 5 ,

on M forall B > 1.
In particular, if u is a positive solution of the equation (A — q)u = aulnu, then

(1’)  fora > 0, we have a lower bound

u = exp —6—1—<1+2L)n,3— — 5
a a

nBK 1 (180 +(B— Dyln\'"?
(B —Da a( ) ’

on M forall B > 1.
(2°)  fora < 0, we have a upper bound

q (1 y) npK 1<[ﬂ9+(ﬂ—1)y]n)”2
uLexp|l——+-—=— - ,
a B-Da a 2

2 2a
on M forall B > 1.

Remark 2.6 When ¢ is a constant, Theorem 2.3 reduces to Theorem 1.1 in [13].
Corollary 2.5 give a much better bound for a positive solution of (2.16) on M ifg = 0
and the Ricci curvature of M is nonnegative (compared with Corollary 1.6 in [10]
and Corollary 1.2 in [13]). In fact, in this case, taking g = y = 6 = K = 0, we have

u>e (@>0), or u<e’? (a<0).

Note that our constant a is actually the constant —a used in [10, 13].
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