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Abstract We construct explicit Darboux transformations for a generalized
Schrödinger-type equation with energy-dependent potential, a special case of which
is the stationary Klein–Gordon equation. Our results complement and generalize
former findings (Lin et al., Phys Lett A 362:212–214, 2007).

Keywords Generalized Schrödinger equation · Energy-dependent potential ·
Darboux transformation · Klein–Gordon equation

Mathematics Subject Classifications (2010) 81Q05 · 34A05

1 Introduction

Energy-dependent potentials appear in various contexts of Quantum Mechanics and
affine areas. They can be found in the magneto-hydrodynamic model of the dynamo
effect [15], in hydrodynamics [19, 32], in the Hamiltonian formulation of relativis-
tic quantum mechanics [8, 24], in the area of quantum wells and semiconductors
[6, 23, 25, 30], in models of heavy quark systems [11], and many more. In non-
relativistic Quantum Mechanics, the presence of energy-dependent potentials forces
theoretical adjustments, such as the way the norm is obtained and the form of the
completeness relation [12]. Mathematically, handling a spectral problem associated
with, say, the Schrödinger equation for an energy-dependent potential, becomes more
much complicated than in the usual case of Sturm–Liouville type. Since the first
step in solving spectral problems is finding the general solution of the underlying
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equation, it is a principal issue to construct methods that allow for the generation
of such solutions. Already existing methods that have proved useful for handling
the Schrödinger equation with an energy-independent potential, can usually not
transferred to the energy-dependent context. An example for such a method is the
Darboux transformation [9], which has become famous as the mathematical engine
of the quantum-mechanical supersymmetry (SUSY) formalism [7]. Besides the latter
field of application, the formalism of Darboux transformations has been general-
ized to work for a large variety of linear and nonlinear models, such as nonlinear
Schrödinger equations, the sine-Gordon equation, the Korteweg-de-Vries equation
and many more, see [1, 14, 22] for detailed discussions. While Darboux transforma-
tions have been mainly constructed for the single-variable case, a series of results
have been obtained for two- and higher dimensional Schrödinger equations. The for-
malism arises as an extension of the conventional SUSY formalism and was first
established in [2–4]. In contrast to its above mentioned counterparts, this higher-
dimensional version of the Darboux transformation can generate full solutions of
spectral problems. After its first introduction, the formalism was extended in many
ways, a complete review of which is beyond the scope of this note. As examples let us
mention the introduction of higher-order transformations [5] and an arbitrary metric
[13], the combination of which led to the construction of non-separable Schrödinger
equations that render exactly-solvable [16, 17]. A further way of generalizing the
conventional Darboux transformation has been found by considering matrix equa-
tions [21] and multi-component equations of Dirac type. As examples, let us mention
recent results that concern the (1 + 1)-dimensional Dirac equation [31], its stationary
counterpart [10], and corresponding findings in two variables [26]. While the poten-
tials considered in the previously mentioned systems are independent of the energy,
the purpose of the present note is to develop a Darboux formalism for Schrödinger-
type equations with energy-dependent potentials. In fact, the Darboux transformation
in its standard form is not applicable to such potentials, except in very particular
cases. One of these cases takes place if the potential depends linearly on the energy
[29], another case is given by potentials that depend on the energy’s square root [20].
While linear energy-dependence can be subsumed under the usual case, the Darboux
transformation constructed in [20] is essentially different. The latter case is espe-
cially interesting, as by an energy reparametrization the corresponding Schrödinger
equation can be converted into a Klein–Gordon equation, which, as is well-known,
depends quadratically on the energy. It is interesting to note that the Darboux transfor-
mation constructed in [20] allows for a slight generalization to an effective mass-type
Schrödinger equation [27]. Therefore, the purpose of the present note is to study
whether the results obtained in [20] admit an extension to a fully generalized linear
Schrödinger equation which contains the effective mass setting as a special case. We
will give a positive answer to this question and state Darboux transformation as well
as the transformed potentials in explicit form. As a byproduct, we obtain Darboux
transformations for the stationary Klein–Gordon equation, which to the best of our
knowledge have not been constructed earlier. The remainder of this paper is orga-
nized as follows: in Section 2 we review the main findings from [20] and summarize
our results in Section 3, the proof of which is done in Section 4. The final Section 5
is devoted to the stationary Klein–Gordon equation and its Darboux transformation.



Darboux Transformations and the Klein–Gordon Equation 181

2 Preliminaries: The Conventional Case

For the sake of completeness, we summarize the results from [20]. Consider the
following two stationary Schrödinger equations in atomic units:

� ′′ − (E2 + E V0 + U0) � = 0, (1)

�′′ − (E2 + E V1 + U1) � = 0, (2)

where � = �(x), � = �(x) denote the respective solutions, the constant E stands
for the energy, and Vj = Vj (x), Uj = Uj (x) for j = 0, 1 are the components of the
energy-dependent potentials. Let h = h(x) be an auxiliary solution of (1) at energy
λ �= E, such that h and � are linearly independent. Then (1) and (2) are related to
each other via the Darboux transformation

D(�) =
√

1

2 h′
h

− V0 − 2 λ

[(
−h′

h
+ λ − E

)
� + � ′

]
, (3)

that is, � = D(�) solves (2), if the potential terms in (1) and (2) fulfill the following
constraints:

V1 = V0 + d

dx
log

(
2

h′

h
− V0 − 2 λ

)
, (4)

U1 = U0 +
√

2
h′
h

− V0 − 2 λ

×
⎡
⎢⎣ d2

dx2

(√
1

2 h′
h

− V0 − 2 λ

)
+ 2

d

dx

⎛
⎜⎝ λ − h′

h√
2 h′

h
− V0 − 2 λ

⎞
⎟⎠
⎤
⎥⎦ . (5)

Thus, given an auxiliary solution h and a solution � of (1), the Darboux transfor-
mation (3) generates a solution of (2), together with the corresponding transformed
potential components (4) and (5).

3 Results and Discussion

We are concerned with extending the Darboux transformation (3), such that it
becomes applicable to a generalization of the Schrödinger equation (1). We will
first state this generalized Darboux transformation, give the transformed potentials
associated with it and afterwards discuss its special cases.

3.1 The Generalized Darboux Transformation

Consider the following pair of generalized Schrödinger equations

f � ′′ + g � ′ − (E2 + E V0 + U0) � = 0, (6)

f �′′ + g �′ − (E2 + E V1 + U1) � = 0, (7)
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where the same notation as in (1), (2) is used. In addition, the coefficients f = f (x)

and g = g(x) are assumed to be arbitrary smooth functions. Let h is a solution of our
initial equation (6) at energy λ �= E, such that h and � are linearly independent and
define the Darboux transformation of a solution � to (6) as follows:

D(�) =
√√√√ 2 f

3
2 h

4 f h′ − h
[
f ′ − 2 g + 2

√
f (2 λ + V0)

]
×

[(
−h′

h
+ λ − E√

f

)
� + � ′

]
. (8)

Then the function � = D(�) is a solution of (7), provided the following constraints
between the potential components in (6) and (7) are satisfied:

V1 = V0 − 2
√

f
w′

1

w1
, (9)

U1 = U0 + w′
1 f ′

w1
+ 2 w′′

1 f

w1
+ 2

√
f

w′
2

w1
, (10)

where the functions w1 and w2 are defined by

w1 =
√

2
√

f h

4 f h′ − h
[
f ′ − 2 g + 2

√
f (2 λ + V0)

] , (11)

w2 =
(

λ − g

2
√

f
+ f ′

4
√

f
−

√
f h′

h

)
w1. (12)

Thus, as in the conventional case, the Darboux transformation (8) maps solutions of
the initial equation (6) onto solutions of its transformed counterpart (7).

3.2 Special Cases

Our generalized Schrödinger equation (6) encompasses several particular cases, three
of which we will now mention.

The Klein–Gordon Equation The first particular case is the stationary Klein–Gordon
equation

� ′′ +
[
(e − v)2 − (m + s)2

]
� = 0, (13)

for vector and scalar potentials v and s, respectively. Furthermore, the positive con-
stant m stands for the mass and e denotes the energy. If we expand the terms in (13),
we obtain the form

� ′′ +
[
e2 − 2 e v + v2 − m2 − 2 m s − s2

]
� = 0, (14)
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which can be subsumed under the generalized Schrödinger equation (6), provided the
following settings are made:

f = 1 g = 0 E = −i e V = 2 i v U = m2 + 2 m s + s2 + 1

2
v2.

(15)
These settings render (6) in the form of our Klein–Gordon equation (14) or, equiva-
lently, in its form (13). We will study this special case of our Schrödinger equation
(6) in Section 5.

The Effective Mass Equation Next, let us mention the self-adjoint form attained for
g = f ′, which arises in the situation of an energy-independent potential for f = 1,
or as the effective mass equation for f = 1/(2m), where m = m(x) is a positive,
smooth function:

1

2 m
� ′′ − m′

2 m2 � ′ − (E2 + E V0 + U0) � = 0.

Darboux transformations for this equation have already been constructed [27], but
only work if the solutions and potentials involved meet a certain, nontrivial constraint,
which comes on top of the constraints (9) and (10) that the potentials must fulfill.
Our present Darboux transformation (8) does not require any additional constraint to
be fulfilled and generalizes its counterpart constructed in [27].

D(�) =
√√

2 (4 m h′ − h m′)
h

√
m

− 4 m V − 8 λ m

×
[(

−h′

h
+ √

2 m (λ − E)

)
� + � ′

]
.

For the sake of brevity we omit to show the explicit form of the potential components
(9) and (10) in the present case of an effective mass.

Weighted Energy Another special case of (6) is given by the equation

f � ′′ + g � ′ − (E2 W + E V0 + U0) � = 0,

where W = W(x) is an arbitrary weight function for the energy. This equation is
obtained from (6) simply via multiplication by a suitable factor, such that the Darboux
transformation (8) maintains its form.

3.3 Reduction to the Conventional Case

Let us briefly verify that the expressions we gave for the Darboux transformation
and the transformed potential components simplify correctly to their well-known,
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conventional forms if f = 1 and g = 0 is taken. Starting with the Darboux
transformation (8), we get

D(�) =
√√√√ 2 f

3
2 h

4 f h′ − h
[
f ′ − 2 g + 2

√
f (2 λ + V0)

]
×

[(
−h′

h
+ λ − E√

f

)
� + � ′

]
f=1
g=0
↓=

√
h

2 h′ − h (2 λ + V0)

[(
−h′

h
+ λ − E

)
� + � ′

]

=
√

1

2 h′
h

− V0 − 2 λ

[(
−h′

h
+ λ − E

)
� + � ′

]

= D(�),

so the Darboux transformation (8) reduces correctly to the conventional expression
(3). In order to see how the transformed potentials (9) and (10) reduce, let us first
apply f = 1, g = 0 to the functions w1 and w2, as given in (11) and (12):

w1

f=1
g=0
↓=

√
h

2 h′ − h (2 λ + V0)
,

w2

f=1
g=0
↓=

(
λ − h′

h

)
w1.

On substituting the first of these functions into (9) and integrating once on the right
hand side, we arrive immediately at (4). Next, we plug the simplified functions w1
and w2 into the potential component (10), which then becomes

U1 = U0 + 1

w1
(w′′

1 + 2 w′
2)

= U0 +
√

2
h′
h

− V0 − 2 λ

×
⎡
⎢⎣ d2

dx2

(√
1

2 h′
h

− V0 − 2 λ

)
+ 2

d

dx

⎛
⎜⎝ λ − h′

h√
2 h′

h
− V0 − 2 λ

⎞
⎟⎠
⎤
⎥⎦ .

This is the desired expression (5). In summary, our Darboux transformation (8) and
the transformed potentials (9) and (10) reduce correctly to the known expressions (3),
(4) and (5) that take place in the conventional case.
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3.4 Comparison with Other Darboux Transformations

The formalism we have introduced in the previous section is a special case of a
Darboux transformation for linear, second-order equations in a single variable. All
Darboux transformations for such equations are related to each other, as we will now
see by discussion of former results and comparison with the present findings. The
simplest type of equation in the class we are focusing on here, is the conventional,
stationary Schrödinger equation in one dimension.

� ′′ + (E − V ) � = 0, (16)

where the energy E is a real constant and �, V are functions of a single scalar
variable. Note that the potential V does not depend on E. The original Darboux
formalism, developed in [9], applies by means of the Darboux operator

L = −h′

h
+ d

dx
. (17)

Here, h = h(x) is a solution of an auxiliary equation that has the form (16), but for
an arbitrary energy. The Darboux transformation for (16), governed by the operator
(17), has been applied particularly in the context of the quantum-mechanical SUSY
formalism, see [7] for an overview. The Schrödinger equation (16) is a special case of

f � ′′ + g � ′ + (E − V ) � = 0, (18)

for parameter functions f and g in the real scalar variable x. As before, the potential
V does not depend on the energy E. The generalized Schrödinger equation (18) that
encompasses effective-mass models [18] and allows for linearly energy-dependent
potentials [12], admits the Darboux operator

L = √
f

(
−h′

h
+ d

dx

)
, (19)

where h = h(x) solves (18) for an arbitrary energy. It has been shown that the Dar-
boux operators (17) and (19) are conjugate mappings, related to each other through
a point transformation [29]. While in both Schrödinger equations (16) and (18) the
potential is independent of the energy, in [20] a Darboux transformation applicable
to certain forms of energy-dependent potentials was introduced. Details on the latter
model are summarized in Section 2 of this work, in particular, the initial equation and
the associated Darboux operator are displayed in (1) and (3), respectively. Recently,
we were able to show [28] that the latter Darboux operator can be understood as its
conventional counterpart (17) for a function h that solves an equation different from
(1). Finally, in the present note we use the latter concept for constructing a Darboux
transformation that applies to generalized equations with energy-dependent poten-
tials of the form (6). Hence, we have seen that the Darboux transformation (8) is
related to its counterparts, applying to Schrödinger equations and their linear general-
izations. Finally, it should be pointed out that the Darboux formalisms for nonlinear,
multi-component or matrix equations can be entirely different from the schemes that
are associated with the above Schrödinger equations, as they involve e.g. matrix
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methods like Lax pairs [14, 21]. An exception is given by Dirac-type equations of the
form (

M ∂x + N ∂y + W
)

� = 0, (20)

where M , N and W are 4 × 4 matrix functions that depend on two real scalar vari-
ables x and y. The function � = �(x, y) is a four-component solution vector, which
allows application of the following Darboux operators [26]:

Lx = ∂x − ux u−1 Ly = ∂y − uy u−1. (21)

Here, u is a 4 × 4 matrix function that solves the auxiliary equation

M ux + N uy + W u − u C = 0,

where the 4 × 4 matrix C depends only on x (first Darboux operator in (21) or only
on y (second Darboux operator in (21). Similar results for the single-variable case
have been reported in [10, 31]. Hence, for equations of the form (20) in one and two
dimensions, the Darboux formalism is similar to its counterpart that is studied in the
present note.

4 Construction of the Darboux Transformation

We will now prove the statements made in the previous section by constructing the
generalized Darboux transformation (8) and the potentials (9) and (10) explicitly.
To this end, let us explain our construction by means of the commutative diagram
depicted in Fig. 1. The terms GSE1 and GSE2 stand for the generalized Schrödinger
equations (6) and (7), respectively, while SE1 and SE2 denote the conventional equa-
tions (1) and (2), respectively. Starting with the initial generalized equation in the
upper left corner of the diagram, we apply a point transformation P that takes our
equation into its conventional counterpart SE1. From there, we can apply the known
Darboux transformation D, as given in (3), and arrive at the transformed equation
SE2, displayed in the lower right corner of the diagram. Finally, we use the inverse

Fig. 1 Definition of the
Darboux transformation GSE 1 GSE 2

SE1 SE2
D

PP − 1
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point transformation P −1 for restoring the generalized form of our Schrödinger equa-
tion GSE2. In summary, the sought mapping D can be expressed as the following
composition:

D = P −1 ◦ D ◦ P.

In order to evaluate this explicitly, our first step is to construct the mapping P .
Consider the generalized Schrödinger equation (6) and perform the following point
transformation to its solution �:

�(x) = exp(F (x)) �̂(u(x)),

F =
x∫ (

f ′

4 f
− g

2 f

)
dx ′,

u =
x∫ √

1

f
dx ′, (22)

Note that in subsequent calculations we will state arguments of functions if there
is a possibility of confusing the two coordinates x and u. Now, after applying the
point transformation (22), the generalized Schrödinger equation (6) renders in the
following form:

�̂ ′′(u(x)) −
(
E2 + E V (x) + U(x) + W(x)

)
�̂(u(x)) = 0, (23)

where the function W is expressed through f , g and its derivatives as

W = g2

4 f
− g f ′

2 f
+ 3 f ′

16 f
+ g′

2
− f ′′

4
. (24)

Equation (23) is a conventional Schrödinger equation that allows for the appli-
cation of the Darboux transformation (3). Let us take an auxiliary solution ĥ of
(23) at energy λ �= E, such that �̂ and ĥ are linearly independent. The Darboux
transformation applied to �̂ then becomes

D(�̂) =
√√√√ 1

2 ĥ′
ĥ

− V0 − 2 λ

[(
− ĥ′

ĥ
+ λ − E

)
�̂ + �̂ ′

]
, (25)

such that the transformed solution �̂ = D(�̂) solves the Schrödinger equation

�̂′′(u(x)) − (E2 + E V1(u(x)) + U1(u(x)) + W(x)) �̂(u(x)) = 0. (26)

Here the transformed potential components V1 and U1 are given by expressions (4)
and (5), note that the auxiliary function h must be replaced by ĥ. Furthermore, let us
point out that V1 and U1 in (23) are expressed through the coordinate u(x), while W

is still given in terms of x. After having performed the Darboux transformation, we
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use the inverse of our point transformation (22) for reinstalling the generalized form
of our Schrödinger equation (26). We set

�̂(u(x)) = exp(−F(x)) �(x). (27)

Equation (26) is then converted into the desired generalized form (7), that is,

f (x) �′′(x) + g(x) �′(x) − (E2 + E V1(u(x)) + U1(u(x))) �(x) = 0, (28)

where the transformed potentials V1 and U1 are still expressed through the auxiliary
solution ĥ and the coordinate u(x). Let us now find our transformed solution � of
(28) in explicit form. To this end, we combine (25) and (27):

�(x) = exp(F (x)) �̂(u(x))

= exp(F (x))

√√√√ 1

2 ĥ′(u(x))

(̂h(u(x))
− V0(u(x)) − 2 λ

×
[(

− ĥ′(u(x))

ĥ(u(x))
+ λ − E

)
�̂(u(x)) + �̂ ′(u(x))

]
. (29)

Before we continue by substituting �̂, let us express the auxiliary solution ĥ of the
conventional Schrödinger equation (24) by an auxiliary solution h of the generalized
Schrödinger equation (6). The two auxiliary solutions are connected by means of our
point transformation (22), that is,

ĥ(u(x)) = exp(−F(x)) h(x).

Hence, the derivative ĥ′ changes as follows:

ĥ′(u(x)) = d

dx

[
exp(−F(x)) h(x)

] 1

u′(x)

= [ − exp(−F(x)) F ′(x) h(x) + exp(−F(x)) h′(x)
] √

f (x).

This gives the following expression for the ratio ĥ′/ĥ, as it appears in (29):

ĥ′(u(x))

ĥ(u(x))
= −√

f (x) F ′(x) +
√

f (x) h′(x)

h(x)
.

Finally we replace F ′ by its explicit form, which is the integrand of F in (22):

ĥ′(u(x))

ĥ(u(x))
= g(x)

2
√

f (x)
− f ′(x)

4
√

f (x)
+

√
f (x) h′(x)

h(x)
.
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Note that the solutions �̂ and � fulfill the same relation as the auxiliary functions ĥ

and h do, so we can replace the corresponding expressions in (29). The second factor
on the right hand side then changes as follows:√√√√ 1

2 ĥ′(u(x))

(̂h(u(x))
− V0(u(x)) − 2 λ

=
√√√√ 1

2
(

g(x)

2
√

f (x)
− f ′(x)

4
√

f (x)
+

√
f (x) h′(x)

h(x)

)
− V0(u(x)) − 2 λ

=
√

2
√

f (x) h(x)

2 g(x) h(x) − f ′(x) h(x) + 4 f (x) h′(x) − √
f (x) h(x) V0(x) − 2

√
f (x) h(x) λ

=
√

2
√

f (x) h(x)

4 f (x) h′(x) − h(x)
[
f ′(x) − 2 g(x) + 2

√
f (x) (2 λ + V0(x))

] .
(30)

In the same fashion we rewrite the first and the third factor on the right hand side of
(29), note that the exponentials cancel out:(

− ĥ′(u(x))

ĥ(u(x))
+ λ − E

)
�̂(u(x)) + �̂ ′(u(x))

=
[
−

(
g(x)

2
√

f (x)
− f ′(x)

4
√

f (x)
+

√
f (x) h′(x)

h(x)

)
+ λ − E

]
�(x)

+
[(

g(x)

2 f (x)
− f ′(x)

4 f (x)

)
�(x) + � ′(x)

] √
f (x)

= f (x)

[(
−h′(x)

h(x)
+ λ − E√

f (x)

)
�(x) + � ′(x)

]
. (31)

Now, on multiplying our results (30) and (31), we obtain the rewritten form of (29):

�(x) =
√√√√ 2 f

3
2 (x) h(x)

4 f (x) h′(x) − h(x)
[
f ′(x) − 2 g(x) + 2

√
f (x) (2 λ + V0(x))

]
×

[(
−h′(x)

h(x)
+ λ − E√

f (x)

)
�(x) + � ′(x)

]
,

which, as desired, coincides with expression (8). It remains to determine the explicit
form of the transformed potential components (9) and (10), which is done similarly
to the way we obtained the transformed solution (8). In the first step we take the con-
ventional potential components (4) and (5), where the solutions h and � are to be
replaced by ĥ and �̂, respectively, and all expressions are understood to be expressed
through the coordinate u(x). Next, the solutions ĥ and �̂ are substituted via the
inverse of our point transformation (22) and the derivatives with respect to u(x) are
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rewritten in terms of x. Since this process is straightforward and due to the length of
the expressions involved in the corresponding calculations, we omit to give details
here.

5 Darboux Transformations for the Klein–Gordon Equation

In Section 3 we have seen that our generalized Schrödinger equation (6) matches the
form of a stationary Klein–Gordon equation (13) if potential components and energy
are redefined according to (15). This fact allows for the application of our Darboux
transformation (8) to the Klein–Gordon equation. Consider the pair of Klein–Gordon
equations

� ′′ +
[
(e − v0)

2 − (m + s0)
2
]

� = 0, (32)

�′′ +
[
(e − v1)

2 − (m + s1)
2
]

� = 0, (33)

where vj = vj (x), sj = sj (x), j = 0, 1 stand for vector and scalar potentials,
respectively. The constant e denotes the energy, and m = m(x) represents the mass,
which for the sake of generality we assume to be position-dependent. Although
the Klein–Gordon equation is equivalent to our Schrödinger equation (6), the Dar-
boux transformation (8) cannot be adapted immediately, because the transformed
Schrödinger equation (7) does not necessarily take Klein–Gordon form. In particular,
the coefficient of � in (7) must match the form in (33). In order to make this happen,
let us consider the transformed potential components V1 and U1 separately. Since we
have f = 1, g = 0 in (7), the potential component V1 can be taken from (4). After
applying the settings (15) to the present case and letting λ = −iμ, we obtain

2 i v1 = 2 i v0 + d

dx
log

(
2

h′

h
− 2 i v0 + 2 i μ

)
,

v1 = v0 − 1

2
i

d

dx
log

(
2

h′

h
− 2 i v0 + 2 i μ

)
. (34)

This is the relation between the initial and the transformed vector potential of our
Klein–Gordon equations (32) and (33), respectively. In the same manner we apply
the settings (15) to the transformed potential component U1, as displayed in (5):

m2 + 2 m s1 + s2
1 + 1

2

[
v0 − 1

2
i

d

dx
log

(
2

h′

h
− 2 i v0 + 2 i μ

)]2

= m2 + 2 m s0 + s2
0 + 1

2
v2

0 +
√

2
h′
h

− 2 i v0 + 2 i μ

×
⎡
⎢⎣ d2

dx2

(√
1

2 h′
h

− 2 i v0 + 2 i μ

)
+ 2

d

dx

⎛
⎜⎝ −i μ − h′

h√
2 h′

h
− 2 i v0 + 2 i μ

⎞
⎟⎠
⎤
⎥⎦ .

(35)
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Note that the function v1 was replaced by (34). Condition (35) can be fulfilled by
solving for the transformed scalar potential s1:

s1 = −m ± √
G, (36)

where the function G = G(x) stands for the abbreviation

G = 1

2

[
v0 − 1

2
i

d

dx
log

(
2

h′

h
− 2 i v0 + 2 i μ

)]2

+ m2 + 2 m s0 + s2
0 + 1

2
v2

0 +
√

2
h′
h

− 2 i v0 + 2 i μ

×
⎡
⎢⎣ d2

dx2

(√
1

2 h′
h

− 2 i v0 + 2 i μ

)
+ 2

d

dx

⎛
⎜⎝ −i μ − h′

h√
2 h′

h
− 2 i v0 + 2 i μ

⎞
⎟⎠
⎤
⎥⎦ .

Hence, if the transformed vector and scalar potentials are constrained as in (34) and
(36), respectively, then our Darboux transformation (8) can be adapted to the Klein–
Gordon equation (32). In particular, the function

D(�) =
√

1

2 h′
h

− 2 i v0 + 2 i μ

[(
−h′

h
− i μ + i e

)
� + � ′

]
, (37)

solves the transformed Klein–Gordon equation (33), provided the conditions on the
potentials (34) and (36) are fulfilled. It should be pointed out that the Darboux trans-
formation (37) as well as the transformed potentials are in general complex functions,
as can be seen from their imaginary terms. This is not a consequence of the Klein–
Gordon equation’s structure, but comes merely from the fact that our generalized
Schrödinger equation (6) carries a negative sign in front of the term that contains
energy and potentials, while usually this term has a positive sign. In order to guaran-
tee reality of the transformed potentials or the transformed solution, a reality condi-
tion must be constructed. This, however, is beyond the scope of the present work.

6 Concluding remarks

In this note we have constructed a generalized Darboux transformation for the
Schrödinger equation with a particular energy-dependence in its potential. While
technically our transformation is fully functional and generalizes former results [19,
27], we are still to elaborate on its physical properties, such as incorporation of
boundary conditions, normalizability of the solutions, and reality of the transformed
potential. From a mathematical viewpoint, key issues concern the relation of our Dar-
boux transformation to its well-known counterpart for energy-independent potentials
and transformations of higher order. We will comment on these issues in forthcoming
work.
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