
Math Phys Anal Geom (2013) 16:89–108
DOI 10.1007/s11040-012-9122-x

Amoebas of Complex Hypersurfaces
in Statistical Thermodynamics

Mikael Passare · Dmitry Pochekutov ·
August Tsikh

Received: 15 April 2012 / Accepted: 14 September 2012 / Published online: 4 October 2012
© Springer Science+Business Media Dordrecht 2012

Abstract The amoeba of a complex hypersurface is its image under the loga-
rithmic projection. A number of properties of algebraic hypersurface amoebas
are carried over to the case of transcendental hypersurfaces. We demonstrate
the potential that amoebas can bring into statistical physics by considering
the problem of energy distribution in a quantum thermodynamic ensemble.
The spectrum {εk} ⊂ Z

n of the ensemble is assumed to be multidimensional;
this leads us to the notions of multidimensional temperature and a vector of
differential thermodynamic forms. Strictly speaking, in the paper we develop
the multidimensional Darwin–Fowler method and give the description of the
domain of admissible average values of energy for which the thermodynamic
limit exists.
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1 Introduction

The amoeba of a complex hypersurface V defined in a Reinhardt domain
is the image of V in the logarithmic scale. The notion of the amoeba of
an algebraic hypersurface, introduced in [1], plays a fundamental role in the
study of zero distributions of polynomials in C

n. Over the last decade, the
amoeba proved to be a useful tool and a convenient language in the diverse
questions such as the classification of topological types of simple Harnack
curves [2], the description of phase diagrams of dimer models [3, 4], the
study of the asymptotic behavior of solutions to multidimensional difference
equations [5]. Adelic (non-archimedean) amoebas turned out to be helpful in
the computation of nonexpansive sets for dynamical systems [6].

The main purpose of the present paper is to demonstrate the advantages of
using amoebas in statistical physics. As an example of such usage we consider
the statistical problem of finding the preferred states of a thermodynamic
ensemble when its spectrum is discrete.

In the classical formulation of this problem, which was studied by Maxwell
et al., it is assumed that the energy levels occupied by the ensemble systems
form a one-dimensional spectrum {εk} ⊂ R (see, for example, [7, 8]). By
contrast, we consider the case of a multidimensional spectrum {εk} ⊂ R

n for
n > 1. Then such important notions as temperature and the differential ther-
modynamic form become vector quantities. Our point of view is closely related
to interpretations of the moment map in the context of thermodynamical
formalism that were explored in a recent paper [9] by M. Kapranov.

In fact, the major part of the paper is devoted to the generalization of the
asymptotic Darwin–Fowler method [10, 11], that gives a way to describe a state
of a quantum thermodynamic ensemble with a multidimensional spectrum.
For this purpose, we introduce the notion of an amoeba of a general (not
only algebraic) complex hypersurface and describe the structure of the amoeba
complement (Theorem 1). Next, we prove an asymptotic formula (Theorem 2)
for diagonal Laurent coefficients of a meromorphic function; the polar hyper-
surface, its amoeba and the logarithmic Gauss mapping are significantly used
in the proof.

There are two main reasons motivating to apply amoebas to the asymptotic
investigations of Laurent coefficients of meromorphic functions in several
complex variables. First, the connected components of the amoeba com-
plement are in one-to-one correspondence with the Laurent expansions of
a meromorphic function centered at the origin and define the domain of
convergence of the corresponding series. Second, by the multidimensional
residues, the asymptotics of the Laurent coefficients is given by the oscillating
integral over a chain on a polar hypersurface V. In the logarithmic scale the
critical points of the phase function of such an integral comprise the contour
of the amoeba of V.

Thus, our generalization of the Darwin–Fowler method (Section 7) is
grounded on Theorems 1 and 2. Theorem 3 provides the asymptotics of the
average values for occupation numbers of energy εk from a given spectrum.
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These average values are expressed by the Laurent coefficients of the mero-
morphic function constructed by means of the partition function of an ensem-
ble. Although Theorem 3 requires tricky integration techniques, its statement
is a quite expected generalization of the Darwin–Fowler results. This is not
the case with Theorem 4, which is totally inspired by the geometry brought
in our investigation by the theory of amoebas. Theorem 4 gives the answer to
the question whether an average energy of an ensemble permits the thermo-
dynamical limit. Namely, the domain of admissible average energies coincides
with the interior of the convex hull of the spectrum.

Working on this paper, we became certain that further development of the
thermodynamical formalism will stimulate research in the theory of amoebas
and tropical geometry. Other convincing examples are recent papers [9, 12].

In conclusion, we want to express our admiration for our friend and coau-
thor Mikael Passare, who died tragically in September 2011. Mikael was one of
the pioneers of studying the amoebas and coamoebas of complex algebraic sets
and a keen researcher of their properties. Since the late 1990s, on numerous
occasions he emphasized the significance of these notions and vigorously
encouraged and provided support of any kind to us and many mathematicians
interested in algebraic tropical geometry.

2 Amoebas of Complex Hypersurfaces

For convenience we shall denote by (C×)n the set (C \ {0})n.

Definition 1 [1] The amoeba AV of a complex algebraic hypersurface

V = {z ∈ (C×)n : Q(z) = 0}
(or of the polynomial Q) is the image of V under the mapping Log : (C×)n →
R

n that is determined by the formula

Log : (z1, . . . , zn) �→ (log |z1|, . . . , log |zn|).

The term amoeba is motivated by the specific appearance of AV in the case
n = 2. It has a shape with thin tentacles going off to infinity (see Fig. 1). The
complement R

n \ AV consists of a finite number of connected components,
which are open and convex [1]. The basic results on amoebas of algebraic
hypersurfaces can be found in [2, 13–15].

We denote by NQ the Newton polytope of the polynomial Q, that is, the
convex hull in R

n of all the exponents of the monomials occurring in the
polynomial Q. For each integer point ν ∈ NQ we define the dual cone Cν to
the polytope NQ at the point ν to be the set

Cν =
{

s ∈ R
n : 〈s, ν〉 = max

α∈NQ

〈s, α〉
}

.
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Fig. 1 The Newton polytope
(left) and the amoeba with its
complement components Eν

(right) for the polynomial
Q(z)=z2

1z2−4z1z2+z1z2
2+1

We recall that the recession cone of a convex set E ⊂ R
n is the largest cone

that after a suitable translation is contained in E. The connection between
the combinatorics of the Newton polytope NQ of the polynomial Q and the
structure of the complement of the amoeba AV is described by the following
result.

Theorem [13] On the set {E} of connected components of the complement R
n \

AV there exists an injective order function

ν : {E} → Z
n ∩ NQ

such that the dual cone Cν(E) to the Newton polytope at the point ν(E) is equal
to the recession cone of the component E.

This means that the connected components of the complement R
n \ AV can

be labelled as Eν by means of the integer vectors ν = ν(E) ∈ NQ (see Fig. 1).
The value ν(E) of the order function allows two interpretations. On the one

hand, ν(E) is the gradient of the restriction to E of the Ronkin function for the
polynomial Q (see [14]). The Ronkin function is a multidimensional analogue
of Jensen’s function and finds numerous applications in the theory of value
distribution of meromorphic functions. On the other hand, the components
of the vector ν(E) are the linking numbers of the basis loops in the torus
Log−1(x), for any x ∈ E, and the hypersurface V (see [13] or [2]).

Remark The set vertNQ of vertices of the polytope NQ belongs to the image
of the order function ν. In other words, for each vertex β ∈ NQ there is a
component Eβ with recession cone Cβ ([1, 16]). The existence of components
Eν corresponding to other integer points ν ∈ NQ \ vertNQ depends on the
coefficients of the polynomial Q.

There is a bijective correspondence between the connected components
{Eν} of the complement R

n \ AV and the Laurent expansions (centered at
the origin) of an irreducible rational fraction F(z) = P(z)/Q(z) (see [1, Sec-
tion 6.1]). The sets Log−1(Eν) are the domains of convergence for the cor-
responding Laurent expansions. One may therefore label such an expansion
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using the components of the amoeba complement, or using the integer points
in the Newton polytope. For instance, the Taylor expansion of a function that
is holomorphic at the origin will always correspond to the vertex of the Newton
polytope NQ with coordinates (0, . . . , 0).

In Sections 5–7 we shall see that, when working with partition functions, one
needs to consider amoebas also of non-algebraic complex hypersurfaces. Let
Q be a Laurent series in the variables z = (z1, . . . , zn):

Q(z) =
∑

α∈A⊂Zn

aαzα .

We assume that its domain of (absolute) convergence G is non-empty, and
that Q(z) 	≡ 0. We shall also make the assumption that Q does have zeros in
G ∩ (C×)n. Let

V = {z ∈ G ∩ (C×)n : Q(z) = 0}
be the hypersurface given by the zeros of the analytic function Q(z). The
amoeba for V is defined as in the algebraic case: AV = Log(V).

We introduce the notation G = Log(G) for the image of the convergence
domain G of the series Q. It is well known that G is a convex domain. In the
algebraic case, when Q is a polynomial, the set G is all of R

n, and the amoeba
AV is a proper subset of G. In the general case it may well happen that there
is an equality AV = G. To avoid this situation, we require that the summation
support A of the series Q lies in some acute cone, that is, the closure N of the
convex hull ch(A) does not contain any lines.

Theorem 1 If for the series Q the set N = ch(A) does not contain any lines, then
the complement G \ AV is non-empty. To the set {ν} of vertices of the polyhedron
N there corresponds a family {Eν} of pairwise distinct connected components of
the complement G \ AV. The dual cone Cν to N at the vertex ν coincides with the
recession cone for Eν .

Proof The assumption of the theorem implies that the set of the vertices
vert(N ) is non-empty. The argument is similar to the one for the algebraic
case (when Q is a polynomial and G = R

n) that is given in [13, 16]. First, one
shows that for each vertex ν ∈ N a suitable translation of the cone Cν is disjoint
from AV , so that one can associate with the vertex ν the component Eν of the
complement G \ AV that contains this translated cone. Here the only difference
is that, when G 	= R

n, one must show that the translated cones are contained
in G. This follows from the fact that the dual cones Cν at the vertices of N all
lie in the cone −C∨(N ), where C∨(N ) is the dual cone of the recession cone
C(N ) of N , together with the multidimensional Abel lemma [17], which says
that the cone −C∨(N ) lies in the recession cone of the domain G.

Next, just as in [16], one associates to the collection of n-cycles �ν =
Log−1(xν), with the point xν taken in the translation of Cν , a collection of de
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Rham dual n-forms ωμ which are meromorphic in G ∩ (C×)n with poles on V.
Namely, we choose

ωμ = 1

(2π i)n
· aμzμ

Q(z)
· dz1

z1
∧ . . . ∧ dzn

zn
, μ ∈ vert(N )

(recall that aμ is the Laurent coefficient of Q). For points z ∈ �ν we have
|aνzν | > |gν(z)|, where gν(z) = Q(z) − aνzν . Indeed, choosing a complex curve
z = tb = (tb 1 , . . . , tb n) with integer b from the interior of Cν , we see that in the
series

Q(tb ) =
∑
α∈A

aαt〈α,b〉

the maximum of exponents 〈α, b〉 is attained only for α = ν. For |t|  1 we
have Log tb = b · log |t| ∈ G, and thus the series Q(tb ) converges and

|aν t〈ν,b〉| > |gν(tb )|.

The same inequality holds for any shifted such curve z = c · tb with |c j| = 1,
j = 1, . . . , n, and therefore the required inequality holds on �ν .

Hence, the meromorphic function 1/Q(z) can be developed into a geomet-
ric progression

1

Q(z)
=

∞∑
k=0

(−1)k gk
ν (z)

(aνzν)k+1

uniformly converging on �ν , and one has

∫
�ν

ωμ =
∞∑

k=0

(−1)k

(2π i)n

∫
�ν

aμzμ

aνzν
·
(

gν(z)

aνzν

)k

· dz1

z1
∧ . . . ∧ dzn

zn
.

The leading term of Q(z) with respect to the orders, defined by weight vectors
from Cν , is equal to aνzν . This yields that all the integrals in the sum vanish
for ν 	= μ, and if ν = μ, the only one nonzero summand occurs for k = 0 and
equals 1. Therefore,

∫
�ν

ωμ = δνμ,

and by the de Rham duality [18] the cycles �ν , ν ∈ vertN are linearly indepen-
dent in the homology group Hn((G ∩ (C×)n) \ V). The cycles Log−1(x) for x
from the same connected component of G \ AV are homologically equivalent;
this implies that the connected components {Eν}ν∈vert(N ) are pairwise distinct.
Since the n-dimensional cones of a fan dual to C(N ) coincide with the cones
Cν and Cν ⊂ Eν , one has that Cν coincides with the recession cone for Eν . ��
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3 The Amoeba Contour and the Logarithmic Gauss Mapping

In Section 2 we saw that certain information about the position of the amoeba
of a complex hypersurface is given by the combinatorics of the integer points
of the Newton polytope (or polyhedron) of the polynomial (or series) that
defines this hypersurface. Here we shall describe an object associated with the
amoeba that reflects the differential geometry of the hypersurface. The study
of this object can be carried out with more analytic methods.

The contour CV of the amoeba AV is defined (see [15]) as the set of critical
values of the mapping Log : V → R

n, that is, the mapping Log restricted to
the hypersurface V. We observe that the boundary ∂AV is included in the
contour CV , but the inverse inclusion does not hold in general. Note that the
contour of an amoeba for a simple Harnack curve coincides with the boundary
of the amoeba [2, 5] (the amoeba of a simple Harnack curve is depicted on
Fig. 1). Herewith, a real section V ∩ R

2 of a Harnack curve consists of fold
critical points of the projection Log : V �→ AV . Figure 2 depicts the amoebas
of two complex curves whose contours do not correspond to their boundaries.
In these, the points a, b , c and d are the images of Whitney pleats.

We recall (see [2, 19]) that the logarithmic Gauss mapping of a complex
hypersurface V ⊂ (C×)n is defined to be the mapping

γ = γV : reg V → CPn−1,

which to each regular point z ∈ reg V associates the complex normal direction
to the image log(V) at the point log(z). (Here log, in contrast to Log, denotes
the full complex coordinatewise logarithm.) The image γ (z) does not depend

Fig. 2 The amoebas and their contours for the graphs of polynomials 1 − 2z − 3z2 (left) and 1 +
z + z2 + z3 (right, the normal line l to ∂ E0,1 with a directional vector q and points x, y illustrate
the proof of Theorem 2)
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on the choice of a branch of log and it is given in coordinates by the explicit
formula [2]:

γ (z) = (
z1 Q′

z1
(z) : . . . : zn Q′

zn
(z)

)
.

The connection between the contour CV and the logarithmic Gauss mapping
is given as follows.

Proposition 1 [2] The contour CV is expressed by the identity

CV = Log
(
γ −1(RPn−1)

)
.

In other words, the mapping γ sends the critical points z of Log
∣∣
V to real

direction γ (z) which is orthogonal to the contour CV at Log z.

The inverse z = γ −1(q) of the logarithmic Gauss mapping is given by the
solutions to the system of equations{

Q(z) = 0 ,

qnz jQ′
z j

− q jzn Q′
zn

= 0 , j = 1, . . . , n − 1 .
(1)

For a fixed vector q ∈ Z
n∗ = Z

n \ {0} the solutions to system (1) consist of
the points z ∈ V at which the Jacobian of the mapping (Q(z), zq) has rank � 1,
which means that the following statement holds.

Proposition 2 A point w ∈ reg V is a critical point for the monomial function
zq|V if and only if the logarithmic Gauss mapping takes the value q at w, that is,
γ (w) = q.

Notice that if V is the graph of a function of n variables z = (z1, . . . , zn), so
that it is the zero set of the function Q(z, w) = w − f (z), then the logarithmic
Gauss mapping is given in the affine coordinates s j = q j/qn+1, j = 1, . . . , n of
CPn by the formula

z j

f ′
z j

f
= −s j , j = 1, . . . , n . (2)

4 Asymptotics of Laurent Coefficients

Let E be a connected component of the amoeba complement with smooth
boundary ∂ E. The cone generated by the outward normals to ∂ E will be called
the component cone of E and denoted by KE. It is clear that KE is a cone over
the image of ∂ E under the ordinary Gauss mapping σ : ∂ E → Sn−1.

Definition 2 The smooth boundary ∂ E of a connected component E is said to
be simple if for each x ∈ ∂ E the real torus Log−1(x) intersects V in a unique
point, and if moreover the logarithmic Gauss mapping γ of the hypersurface
V is locally invertible at this intersection point.
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The following Proposition is a consequence of the triangle inequality (see
for the details [20]) and exhibits a class of simple boundaries in the case where
V = � f is the graph over the convergence domain of a power series f (z) =∑
α∈A⊂Nn

ωαzα .

Proposition 3 If 0̄ ∈ A, the coef f icients ωα are positive, and the set A generates
the lattice Z

n as a group, then the boundary of the component E0̄,1 of the
complement of the amoeba A� f is simple.

In Proposition 3 it is essential that coefficients ωα are positive, as follows
from the example of the polynomial f = 1 − 2z1 − 3z2

1 (see Fig. 2). Namely,
the preimage of the inner point of the arc (a, b) ⊂ ∂ E0,1 consists of two points
on the graph �f , and the boundary point a or b have one preimage on �f , but
the logarithmic Gauss mapping has no inverse at a and b .

Convexity and smoothness of ∂ E implies that each point x ∈ ∂ E is the
preimage x = σ−1(q) of a point q ∈ KE.

We consider the expansion of the meromorphic function F = P(z)/Q(z) in
a Laurent series

F(z) =
∑
α∈Zn

cαzα (3)

that converges in the preimage Log−1(E) of a complement component E of the
amoeba of the polar hypersurface V = {z : Q(z) = 0} of F. For a fixed q ∈ Z

n∗
we define a diagonal sequence cq·k = c(q1,...,qn)·k of the Laurent coefficients cα

from (3).

Theorem 2 Let the boundary ∂ E be simple. Then for each q ∈ Z
n∗ ∩ KE the

diagonal sequence {cq·k} has the asymptotics

cq·k = k
1−n

2 · z−q·k(q) · {
C(q) + O(k−1)

}
(4)

as k → +∞. Here z(q) = V ∩ Log−1(σ−1(q)), and the constant C(q) vanishes
only when P(z(q)) = 0.

Proof The idea of the proof is to choose the cycle of integration Log−1(x) in
the Cauchy formula

cq·k = 1

(2π i)n

∫
Log−1(x)

F(z)

zq·k
dz1

z1
∧ . . . ∧ dzn

zn
, x ∈ E , (5)

for those x that lie near the point y = Log z(q) ∈ ∂ E on the line l = {y + qt : t ∈
R}, which is transversal to ∂ E (see Fig. 2). In view of the assumed simplicity of
∂ E, the torus Log−1(y) ⊂ Log−1(l) intersects V in a unique point, and Log−1(l)
intersects V in a neighborhood of z(q) along an (n − 1)-dimensional chain h ⊂
V. By means of residue theory one shows (see [21] for the case n = 2) that, as
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a function of the parameter k, the integral (5) is asymptotically equivalent, as
k → +∞, to the oscillatory integral

2π i
∫

h
res ω · e−k〈q,log z〉,

where

ω = 1

(2π i)n

P(z)

Q(z)

dz1

z1
∧ . . . ∧ dzn

zn
,

and res ω = Qω/dQ denotes the residue form for ω (see [18]). The phase
ϕ = 〈q, log z〉 = log zq has a unique critical point z(q) on h ⊂ V ∩ Log−1(l) (see
Proposition 2), at which Re ϕ attains its minimal value. A direct computation
shows that the Hessian Hess ϕ vanishes on V simultaneously with the Jacobian
of the logarithmic Gauss mapping. Since ∂ E is simple, this Jacobian is not equal
to zero at z(q), and hence z(q) is a Morse critical point for the phase ϕ. Using
the principle of stationary phase (see [22, Proposition 1.1 in Chapter V]) we
obtain formula (4) with the constant C(q) being the value at the point z(q) of
the function P/z1 · . . . · zn · Q′

zn
· (Hess ϕ)1/2. ��

5 The Thermodynamic Ensemble and its Most Probable Distribution

We consider a thermodynamic ensemble U, consisting of N copies of some
physical system. Usually (see for instance [7, 10, 11, 22] or [8]) the system is
characterized by energy values from a spectrum

0 = ε0 < ε1 < ε2 < . . . , ε j ∈ Z.

Each choice of energies in the systems of the ensemble defines a state of
the ensemble. A basic question in the study of the behavior of an ensemble
concerns the preferred states of the ensemble as N → ∞.

We will consider a more general situation where the system is characterized
by a multidimensional quantity εk = (ε1

k, . . . , ε
n
k) from a given spectrum

S = {εk}k=0,∞ ⊂ N
n,

in which we for convenience shall assume that ε0 = 0̄. Furthermore, we shall
consider spectra from the lattice Z

n that lie in acute cones in R
n ⊃ Z

n.
We introduce the quantity

W(a) = W(a0, a1, . . . ) = N!
a0!a1!a2! . . . , (6)

expressing the number of different states of the ensemble, for which exactly ak

of the systems is in the state with parameter value εk. We also say that ak is the
εk energy occupation number in the ensemble. It is clear that in (6) one should
have ∑

k

ak = N, (7)
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∑
k

akεk = E, (8)

where E = (E1, . . . , En) is the energy of the ensemble and the summation is over
the index k that enumerates the elements εk of the spectrum. The collection of
numbers a = (ak) is said to be admissible if it satisfies conditions (7) and (8).

By definition, the most probable distributions of energies among the systems
of the ensemble (for N  1) correspond to those a that occur most frequently,
that is, those that realize the maximum

max
a

W(a)

among all admissible collections a.
When considering the problem of describing the most probable energy

distributions one makes the assumption that the vector E/N = u is kept
constant, that is, the average energy u = (u1, . . . , un) of the ensemble systems
is fixed. Under this condition, vector relation (8) written out coordinatewise
gives n relations among the independent variables ak. Just as in the case
of a scalar spectrum (n = 1, see for instance [7]), following the approach of
Boltzmann, one uses the Lagrange multiplier method to find the distributions
that maximize W(a), which we write now Wu(a) (see [20] for details). The
Lagrange multipliers μ j, that correspond to the coordinate-wise connections
of vector relation (8), provide an important language for the solution of the
assigned problem. More precisely, by introducing the partition function as the
series

Z (μ) = Z (μ1, . . . , μn) =
∑

k

e−〈μ,εk〉,

we obtain the fundamental thermodynamic relations:

−∇μ log Z = u , ak = N
e−〈μ,εk〉

Z
,

where ∇μ is the gradient with respect to the variables μ.
In order to apply methods from analytic function theory and the method

of stationary phase, it is more convenient for us to consider other (complex)
coordinates z j = e−μ j , j = 1, . . . , n. In these coordinates the partition function
has the form

Z (z) =
∑

k

zεk =
∑
α∈S

zα1
1 · . . . · zαn

n . (9)

Analogously, the fundamental thermodynamic relations assume the form

z j

Z ′
z j
(z)

Z (z)
= u j , j = 1, . . . , n, (10)

ak = N
zεk

Z (z)
. (11)

Let us give an interpretation of these relations by the following
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Statement 1 For N  1 the occupation numbers (11) evaluated in the solutions
z(u) of (10) are the coordinates of the critical points for the function Wu(a). In
particular, the most probable distributions a = (ak) may be computed by means
of the indicated formula for suitable solutions z(u).

The comparison of formulas (10) and (2) shows that the solutions z(u) to
system (10) is the inverse image γ −1(−u) of the logarithmic Gauss mapping
γ : �Z → CPn of the graph � f of the partition function Z (z). However, the
list of links between the mathematical notions introduced in the first and the
second sections and the fundamental thermodynamic relations goes beyond
this shallow observation.

Let us point out another important link computing the critical values of the
function Wu(a). Since the logarithm is a smooth function, the critical points of
W(a) and log W(a) coincide. The latter function can be written for large N with
the help of Stirling’s asymptotic formula in the form

log W(a) = N (log N − 1) −
∑

k

ak (log ak − 1) .

The critical values of this function (under restriction E/N = u) are

log Wu = log
[
z(u)−E Z (z(u))N] = N (log Z (z(u)) − 〈u, log z(u)〉) . (12)

It is easy to check this equality substituting ak (as in Statement 1) in the
previous expression for log W(a) evaluated in the solutions z(u) of (10) and
taking into account relations (7) and (8).

We are interested in the critical values log Wu only for real u, i.e. u ∈ R
n.

The portion of a critical value attributed to one system of an ensemble, i.e. the
value

Su =: 1

N
log Wu = log Z (z(u)) − 〈u, log z(u)〉

plays a role of entropy. Since in the logarithmic scale log z = −μ one has

u = −∇μ log Z = ∇log z log Z ,

the entropy Su, as a function of u, is the Legendre transform of the logarithm
of a partition function in the logarithmic scale.

Thus, based on Proposition 1 we get the following

Statement 2 The liftings of the solutions z(u) of system (10), for u ∈ R
n ⊂ RPn,

to the graph �Z of the partition function coincide with the inverse image γ −1(−u)

of the Gauss logarithmic map γ : �Z → CPn. On the amoeba A�Z of the graph
these solutions parametrize its contour. The values Su of the entropy coincide
with the critical values of the linear function

lu(x) = xn+1 − u1x1 − · · · − unxn,

restricted to the boundary ∂ E0̄,1 of the connected component E0̄,1 of the com-
plement R

n+1 \ A�Z .
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For certain spectra S the partition function Z (z) admits an analytic contin-
uation outside the domain of convergence of its series representation (9) with
the new “twin spectra” S′ ⊂ Z

n appearing. Let us consider two examples.

Example 1 The partition function Z for the spectrum S = {0, 2, 3, 4, . . .}, n =
1, is equal to the rational function 1 + z2/(1 − z), which outside the unit disk
|z| < 1 has the development

Z = −
(

z + 1

z
+ 1

z2
+ · · ·

)
= −

∑
α∈S′

zα,

where S′ = {1, −1, −2, . . .}. We can also consider the thermodynamic relations
(10) and (11) in the complement {|z| > 1} of the unit disk. The corresponding
pieces of the amoeba of the graph of this rational function are depicted on
Fig. 3 in the middle.

On Fig. 3, the points a and c′ depict the points at infinity, where the normal
vector [−u : 1] to the contour of the amoeba at a and c′ equals [0 : 1] and [−1 :
1] respectively. The boundaries ∂ E0,1 and ∂ E1,1 have a common tangent at the
points b and b ′ (a simple computation shows that the normal vector [−u0 : 1]
corresponds to the value u0 = 1/2). The set of the normal vectors to the arc
(a, b) ⊂ ∂ E0,1 coincides with the set of the normal vectors to (a′, b ′) ∈ ∂ E1,1,
the same holds for the pair of arcs (b , c) and (b ′, c′). The tangents at the points
of the arc (b , c) lie higher than parallel to them tangents at the points of (b ′, c′),
the tangents at the points of (a, b) and (a′, b ′). It follows from Statement 2 that
the maximal value of the entropy Su for 0 < u < u0 corresponds to a solution
z(u) projected on the arc (a′, b ′), and it is from the domain {|z| > 1}.

However, the combinatorial interpretation of W(a) forbids us to consider
the domain {|z| > 1} because all the occupation numbers in (11) for z > 1
and some of them for z < −1 are negative. Moreover, the partition function
is negative at the points that project on the boundary ∂ E1,1.

Fig. 3 Amoebas for the graph of the partition function 1 + z2/(1 − z): the full amoeba (on the
left), its pieces over |z| < 1 and over |z| > 1 (in the middle) and with a common tangent segment
[b , b ′] to ∂ E0,1 and ∂ E1,1 (on the right)
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The next example shows that in several dimensions we can overcome such
limitations.

Example 2 Consider the spectrum

S = {(0, 0)} ∪ {(2, 2) + S} + {(4, 4) + S},
where S is the semigroup (2, 1) · N + (1, 2) · N (see Fig. 4 on the left).

The partition function
∑

α∈S zα converges in the domain D = {|z2
1z2| < 1,

|z1z2
2| < 1} and equals

Z (z) = 1 + (1 + z2
1z2

2)z
2
1z2

2

(1 − z2
1z2)(1 − z1z2

2)
.

The development of Z (z) in the domain D′ = {|z2
1z2| > 1, |z1z2

2| > 1} is again
a partition function, i.e. it is a power series

Z (z) =
∑
α∈S′

zα

with summation over the spectrum

S′ = {(0, 0)} ∪ {(−1, −1) − S} ∪ {(1, 1) − S}
(see Fig. 4 in the middle).

The full amoeba of the graph �Z corresponds to the polynomial

(w − 1)(1 − z2
1z2)(1 − z1z2

2) − z2
1z2

2 − z4
1z4

2

in three variables z1, z2, w. Points (0, 0, 1) and (3, 3, 1) are vertices of the
Newton polytope for this polynomial, therefore the complement to the full
amoeba of the graph �Z contains connected components E0,0,1 and E3,3,1.
Since the Laurent coefficients of the developments of Z in the domains D and
D′ are positive, the boundaries ∂ E0,0,1 and ∂ E3,3,1 are the Log-images of the
graph �Z over the real domains D ∩ R

2+ and D′ ∩ R
2+. Consider the “diagonal”

function

Z (t, t) = 1 + (1 + t4)t4

(1 − t3)2
.

Fig. 4 “Twin-spectra” S (on the left) and S′ (in the middle) and their convex hulls (on the right)
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The amoeba of its graph can be embedded in the amoeba A�Z by the
mapping

i : (log |t|, log |Z (t, t)|) �→ (log(t), log(t), log |Z (t, t)|).

The boundaries of the components E0,1 and E6,1 of the complement to the
amoeba of the graph of Z (t, t) are the Log-images of pieces of the graph over
the intervals 0 < t < 1 and 1 < t < ∞, respectively. The amoeba A�Z lives in
the space R

3 of variables x1, x2, x3; the plane x1 = x2 cuts out in the surfaces
∂ E0,0,1 and ∂ E3,3,1 two pieces, the images i(∂ E0,1) and i(∂ E6,1), respectively.
As in Example 1, the curves ∂ E0,1 and ∂ E6,1 have a common tangent line,
lying below these curves, since they are convex.

In view of the symmetry of A�Z with respect to the plane x1 = x2, there
exists a common tangent plane τ to surfaces ∂ E0,0,1 and ∂ E3,3,1 with the
property that τ crosses the common tangent line to the embeddings i(∂ E0,1)

and i(∂ E6,1) symmetrically with respect to the plane x1 = x2. As follows from
the results of Section 7, the vector [u1 : u2 : 1] is normal to the tangent plane
τ if u = (u1, u2) belongs to the intersection of interiors of convex hulls of the
spectra S and S′, i.e. to the double-shaded rhombus on the right of Fig. 4. In
general, the rhombus is divided by some curve γ into two domains such that
the value of the entropy Su (corresponding to the ensemble with the spectrum
S) is greater than that of the entropy S′

u (corresponding to the ensemble with
the spectrum S′) in the first domain and is less in the second one. Perhaps, this
phenomenon may be considered as a tunnelling transition from one ensemble
to another in a way to increase the entropy, when we choose the value of the
energy u on γ .

At the end of this section, we show that the notion of multidimensional spec-
trum, our starting point, leads to the notions of multidimensional temperature
and the vector of thermodynamic forms. For this purpose, we compute the
differential of logarithm of a partition function assuming that the variables
z1, . . . , zn are positive and entries εk of the spectrum {εk} vary in some
neighbourhood of lattice points in R

n, i.e. we consider the spectrum {εk} to
be variable.

In accordance with (10) and (11)

d log Z = (dz + dε) log Z =
∑

j

z j

Z ′
z j

Z
dz j

z j
+

∑
k

∑
j

Z ′
ε

j
k

Z
dε

j
k

= 〈u, d log z〉 +
∑

j

∑
k

zε
j
k

Z
log z jdε

j
k

= 〈u, d log z〉 +
〈

log z,
1

N

∑
k

akdεk

〉
.
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Hence, we get the following expression for the differential of the entropy

dS = d (log Z − 〈u, log z〉) = 〈− log z, du〉 +
〈

log z,
1

N

∑
k

akdεk

〉
=

〈
1

T
, ω

〉
,

where

ω = (ω1, . . . , ωn), T = (T1, . . . , Tn)

denote the vector of the thermodynamic forms and the vector of temperature
with components

ω j = du j − 1/N
∑

k

akdεk, T j = −1/ log z j.

6 The Average Value a of the Admissible Collections {a}

In the preceding section we gave a description, following Botzmann, of the
most probable distributions of the ensemble. However, the method that was
used is somewhat limited, since the extremal points (11) for (6) are obtained
by applying the Stirling formula to ak!, and this is only justified for large
values of ak. In the case of a scalar spectrum, the Darwin–Fowler method
offers a possibility to avoid this drawback. It consists in a description of the
asymptotics of the averages of the occupation numbers. We shall analogously
describe the asymptotics of the averages of the occupation numbers, when
the energy spectrum is composed of vector quantities. In this section we show
that this problem is equivalent to the problem of describing the asymptotics of
the diagonal coefficients of a Laurent expansion of the meromorphic function
w/(w − Z (z)).

Definition 3 [7, 10] The average value of the admissible collections {a} is the
collection a = (ak) of numbers

ak =
∑

a akW(a)∑
a W(a)

,

where the summation is over all admissible collections a = (ak).

For the study of the averages ak we introduce the sum

∑
a

W(a, ω) =
∑

a

N!
a0!a1! . . . ak! . . .ω

a0
0 ω

a1
1 . . . ω

ak
k . . . (13)

over all admissible collections a = (ak). Here the ω j are real parameters,
all varying in a small neighborhood of 1. We remark that W(a, I) = W(a),
where I = (1, 1, . . . ) is the all ones vector. Hence, for ω = I the quantity (13)
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expresses the total number of states of the ensemble. It is not difficult to see
that

ak = ∂

∂ωk
log

∑
a

W(a, ω)

∣∣∣∣∣
ω=I

. (14)

As in [7, 10] one proves the integral representation

∑
a

W(a, ω) = 1

(2π i)n

∫
Tr

f N(z)z−E
n∧
1

dz j

z j
, (15)

where Tr = {|z1| = r1, . . . , |zn| = rn}, and the r j are chosen so small that on Tr

one has convergence of the series

f (z) = f (z, ω) =
∑

k

ωkzεk =
∑

k

ωkz
ε1

k
1 · . . . · z

εn
k

n .

Since f (z, I) = Z (z) we refer this series to be a variation of partition function.
Since the condition 0 < ωk < 1 + δ is fulfilled, the domain of convergence G′
of this series is non-empty and contains the origin z = 0.

We now introduce the function of n + 1 variables

F(z, w) = w

w − f (z)
,

which is meromorphic in the domain G = G′ × Cw. The polar hypersurface of
F is the graph

� f = {(z, w) ∈ G : w = f (z)}.
Due to the fact that ε0 = 0̄, the closure N of the convex hull of the summation
support of the series w − f (z) contains the vertex ν = (0̄, 1). According to
Theorem 1 this vertex corresponds to a connected component E0̄,1 of the
complement of the amoeba AV . Using a geometric progression we expand F
in a Laurent series, convergent in Log−1(E0̄,1) ⊂ {(z, w) ∈ G : |w| > | f (z)|}:

F(z, w) =
∞∑

N=0

f N

wN
=

∑
N

∑
E

CE,−NzEw−N. (16)

For the Laurent coefficients CE,−N of this series one has the integral
representation

CE,−N = 1

(2π i)n+1

∫
Log−1(x)

w

w − f (z)
z−EwN

n∧
1

dz j

z j
∧ dw

w
,

where x ∈ E0̄,1. Performing the integration with respect to w in this last
integral, we immediately obtain (15).

We thus find that the problem of describing the asymptotics of the sum (13)
is equivalent to the same problem for the coefficients CE,−N of the series (16),
for E = u · N, with u being the vector of average energies. That is, it amounts
to finding the asymptotics of the diagonal coefficients C(u,−1)·N with direction
vector q = (u, −1).
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7 The Asymptotics of the Average Values ak

Let the point (z∗, w∗) on the graph � f of the variation f of partition function
be such that Log(z∗, w∗) ∈ ∂ E0̄,1.

Since ∂ E0,1 is a part of the amoeba contour, the first coordinates z∗ of the
given point on the graph satisfy (2) for some u ∈ R

n+, and the coordinate w∗ is
uniquely determined by z∗. As we let ω tend to the vector I = (1, 1, . . .), we
get f → Z , and the point (z∗, w∗) moves to the point (z, w) = (z(u), w(u)),
whose logarithmic image lies on the boundary ∂ E0̄,1 of the component E0̄,1 of
the complement to the amoeba of the graph �Z = {w = Z (z)} of the partition
function of the ensemble. Besides that, z(u) satisfies system (10).

Theorem 3 Suppose that the spectrum S = {εk} generates the lattice Z
n, and

that the point z = z(u) ∈ R
n+ satisf ies system (10). Then, as N → ∞, the average

values ak for the occupation numbers of energy εk has the form

ak ∼ N
zεk

Z (z)

∣∣∣∣
z=z(u)

(17)

and they coincide with most probable values of ak.

Proof By assumption the spectrum S generates the lattice Z
n and hence,

according to Proposition 3 the boundary ∂ E0̄,1 is simple. Therefore we can
apply Theorem 2 for the asymptotics of the diagonal sequence of Laurent
coefficients of the series (16):

C(u,−1)·N ∼ C(q) · N− n
2 · (z−u

∗ (u)w∗(u))N, N → +∞ .

Hence, taking into account the summary in Section 6, we find that the
asymptotics of the total number of states, as N → +∞, has the form∑

a

W(a, ω) ∼ C(q) · N− n
2 · (z−u

∗ (u) · f (z∗(u)))N.

Now, direct calculation leads us to the asymptotic equality

∂

∂ωk
log

∑
a

W(a, ω) ∼ N ·
〈
∇zϕ(z∗(u)),

∂

∂ωk
z∗(u)

〉
+ N · zεk∗ (u)

f (z∗(u))
,

where ϕ = log(z−u f (z)) denotes the phase (see the proof of Theorem 2). On
the right hand side of the last formula the first term is equal to zero, because z∗
is a critical point for the phase ϕ. Therefore, setting ω = I, we get from formula
(14) the desired asymptotics (17). ��

Let us now raise the question about what the admissible values for the vector
u of average energies are that guarantee the existence of a solution z(u) ∈ R

n+
to system (10), and hence provide asymptotics (17).

In the work of Darwin and Fowler [10, 11] this question was not considered.
Apparently, it was first paid attention to in [22, Section 4.5.1], where it was
observed that if the partition function is a polynomial of degree d, then the
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admissible average energies must be taken within the interval 0 < u < d, that
is, in the interior of the convex hull of the numbers 0 = ε0 < ε1 < . . . < εk = d.

The raised question is answered by the following theorem, where we use the
notation N ◦ for the interior of the convex hull in R

n of the spectrum S = {εk}.

Theorem 4 Suppose that the spectrum S = {εk} generates the lattice Z
n. Then

for every value of the average energy u ∈ N ◦ system (10) has a unique solution
z = z(u) in R

n+, and hence for u ∈ N ◦ the average values ak coincide with the
most probable ones.

Proof Lifting the solutions z(u) of the system of equations (10) for u ∈ R
n

to the graph �Z of the partition function of the ensemble, we obtain the
critical values for the mapping Log

∣∣
V . On the amoeba A�Z of the graph these

solutions parametrize its contour. In particular, the solutions z(u) ∈ R
n+ that

are of interest to us parametrize the boundary of the complement component
E0̄,1. Thanks to the fact that the spectrum generates the lattice Z

n, we know
from Proposition 3 that to each point on ∂ E0̄,1 there corresponds a unique
vector q ∈ KE0̄,1

. Therefore, in order to obtain all solutions z(u) from R
n+ one

must go through all vectors q from the component cone E0̄,1.
By Theorem 1 the recession cone of the component E0̄,1 is the dual cone

to N̂ at the vertex ν = (0̄, 1), where N̂ denotes the closure of the convex hull
of the summation support of the series Q = w − Z (z). (See Fig. 5 where the
recession cone is bounded by dashed lines.) The outward normals of those
facets of the polyhedron N̂ that come together at the vertex ν span this dual
cone. Therefore, the sought cone KE0̄,1

is spanned by the edges of N̂ that
emanate from the vertex ν, and thus KE0̄,1

consists of all vectors of the form
q = (u, −1), with u ∈ N ◦. ��

Fig. 5 The relations between N ◦, KE0̄,1
and E0̄,1 for a finite (right) and an infinite (left) spectrum
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We conclude with some remarks and illustrations to Theorem 4. First,
the statement of the theorem still holds if one shifts the spectrum S by a
noninteger vector. For example, the domain of admissible average values of
energy in the case of the Plank oscillator with the spectrum {1/2 + N} equals
{u > 1/2}. Such domain for the Fermi oscillator with the spectrum S = {0, 1}
is the interval {0 < u < 1} (see [7, Chapter 4]). The latter case is depicted on
the right of Fig. 5. Example 2 of Section 5 deals with the “twin-spectra”, and
the sectors on Fig. 4 are the domains of admissible average values of energy
in the corresponding cases. These sectors have a non-empty intersection: the
double-shaded rhombus (Fig. 4, on the right).
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