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Abstract In this paper, we consider an n-dimensional compact Riemannian
manifold (M, g) of constant scalar curvature and show that the presence of a
non-Killing conformal vector field ξ on M that is also an eigenvector of the
Laplacian operator acting on smooth vector fields with eigenvalue λ together
with a condition on Ricci curvature of M, that the Ricci curvature in the
direction of a certain vector field is greater than or equal to (n − 1)λ, forces
M to be isometric to the n-sphere Sn(λ).

Keywords Conformal vector field · Laplacian of vector fields ·
Ricci curvature · Scalar curvature
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1 Introduction

The interaction of analysis with geometry of Riemannian manifold has been
subject of interest since the famous work of Lichnerowicz (cf. [4]) and Obata
(cf. [13, 14]). Lichnerowicz initiated the study of the relation between the
geometry of a compact Riemannian manifold and the bounds of eigenvalues
of the Laplacian operator acting on smooth functions on the Riemannian
manifold. He proved that if the Ricci curvature of the compact Riemannian
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manifold (M, g) satisfies Ric � (n − 1)k for a constant k, then the first nonzero
eigenvalue λ1 of the Laplacian � acting on smooth functions on M satisfies
λ1 � nk. Then question of equality λ1 = nk is addressed by the result of Obata
[13], this equality holds if and only if M is isometric to the n-sphere Sn(k) of
constant curvature k. The work of Obata is the starting point of characterizing
specific Riemannian manifolds by second order differential equations, his
main result states “a necessary and sufficient condition for an n-dimensional
complete and connected Riemannian manifold (M, g) to be isometric to the
n-sphere Sn(c) is that there exists a non constant smooth function f on M that
satisfies the differential equation

H f = −cfg

where H f is the Hessian of the smooth function f ”. Then Tashiro [19] has
shown that the Euclidean spaces Rn are characterized by the differential equa-
tion H f = cg, and Tanno [17] obtained a similar characterization of spheres.
Kanai [10] has shown that the differential equation H f = 0 characterizes the
Riemannian product R × M, where M is a complete Riemannian manifold.
Using the Riemannian submersion of the unit sphere π : S2n+1 → CPn onto
a complex projective space CPn and Obata’s differential equation, Blair [3]
has obtained a differential equation that characterizes the complex projective
space CPn among complete connected complex manifolds. There are other
generalizations of Obata’s Theorem characterizing the complex projective
space CPn (cf. [12, 16]). Recently Garcia-Rio et al. [8, 9] have introduced
the Laplacian operator � acting on smooth vector fields on a Riemannian
manifold (M, g) and generalized the result of Obata using the differential
equation satisfied by a vector field to characterize the n-sphere Sn(c) (cf.
Theorem 3.5 in [9]). These authors also have proved that the differential
equation

�Z = −cZ , c = S
n(n − 1)

where Z is a smooth vector field on an n-dimensional compact Einstein
manifold (M, g) of constant scalar curvature S > 0, (that is Z is the eigenvector
of the Laplacian operator �), is a necessary and sufficient condition for M to
be isometric to the n-sphere Sn(c) (cf. Theorem 6 in [8]).

A smooth vector field ξ on a Riemannian manifold (M, g) is said to be a
conformal vector field if there exists a smooth function f on M that satisfies

£ξ g = 2 fg

where £ξ g is the Lie derivative of g with respect ξ . We say that ξ a nontrivial
conformal vector field if the potential function f is a not a constant (note that
on a compact M, if f is a constant it has to be zero and consequently ξ is
Killing). If in addition ξ is a closed vector field, then ξ is said to be a closed
conformal vector field. Riemannian manifolds admitting closed conformal
vector fields or conformal gradient vector fields have been investigated in
(cf. [1, 2, 6, 11, 15, 18, 19]) and it has been observed that there is a close
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relationship between the potential functions of conformal vector fields and
Obata’s differential equation.

In this paper we are interested in a nontrivial conformal vector field ξ

on an n-dimensional compact Riemannian manifold (M, g) that is also an
eigenvector of the Laplacian operator � acting on smooth vector fields on M
that is �ξ = −λξ . There are many vector fields of this type on the sphere Sn(c).
For instance if we treat Sn(c) as hypersurface of the Euclidean space Rn+1 with
unit normal vector field N and take a constant vector field Z on Rn+1, which
can be expressed as Z = ξ + f N, where ξ is the tangential component of Z to
Sn(c) and f = 〈Z , N〉 is the smooth function on Sn(c), 〈, 〉 being the Euclidean
metric on Rn+1. Then it can be shown that

£ξ g = −2cfg, �ξ = −cξ

where � is the Laplacian operator acting on the smooth vector fields on Sn(c),
that is ξ is a conformal vector field on Sn which is also an eigenvector of the
Laplacian operator with nonzero eigenvalue c . It is not difficult to verify that
the function f = 〈Z , N〉 is not a constant for at least one constant vector field
Z on Rn+1 and thus the corresponding vector field ξ is nontrivial conformal
vector field. This example leads to a question: Is an n -dimensional compact
Riemannian manifold (M, g) that admits a nontrivial conformal vector field ξ

satisfying �ξ = −cξ for a constant c > 0 necessarily isometric to Sn(c)? In this
paper we show that the answer to this question is in affirmative for compact
Riemannian manifolds of constant scalar curvature and Ricci curvature in
certain direction is greater than or equal to (n − 1)c. We prove the following:

Theorem Let ξ be a nontrivial conformal vector f ield on an n-dimensional
compact Riemannian manifold (M, g) of constant scalar curvature and potential
function f . If ξ satisf ies

�ξ = −λξ

for a constant λ > 0, where � is the Laplacian operator acting on smooth vector
f ields on M, and the Ricci curvature of M in the direction of the gradient of
potential function ∇ f is greater than or equal to (n − 1)λ, then the Riemannian
manifold (M, g) is isometric to Sn(λ).

2 Preliminaries

Let (M, g) be an n-dimensional Riemannian manifold with Lie algebra X(M)

of smooth vector fields on M. Recently Garcia-Rio et al. [6] have initiated the
study of the Laplacian operator � : X(M) → X(M), defined by

�X =
n∑

i=1

(
∇ei∇ei X − ∇∇ei ei X

)

where ∇ is the Riemannian connection and {e1, .., en} is a local orthonormal
frame on M. This operator is self adjoint elliptic operator with respect to the
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inner product 〈, 〉 on XC(M) the set of compactly supported vector fields in
X(M), defined by

〈X, Y〉 =
∫

M

g(X, Y), X, Y ∈ XC(M)

A vector field X is said to be an eigenvector of the Laplacian operator �

if there is a constant μ such that �X = −μX. On a compact Riemannian
manifold (M, g), using the properties of � with respect to the inner product
〈, 〉, it is easy to conclude that the eigenvalue μ � 0. We shall denote by � both
the Laplacian operators, the one acting on smooth functions on M as well as
that acting on the smooth vector fields. For a smooth function f ∈ C∞(M) on
the Riemannian manifold (M, g), we denote by ∇ f the gradient of f . For a
smooth function f on M, we define the Hessian operator A : X(M) → X(M)

by A(X) = ∇X∇ f , ∇ f being the gradient of f . The Ricci operator Q is a
symmetric (1, 1)-tensor field that is defined by g(QX, Y) = Ric(X, Y), X, Y ∈
X(M), where Ric is the Ricci tensor of the Riemannian manifold. Then we
have the following proved in ([5]).

Lemma 2.1 Let (M, g) be a Riemannian manifold and f be a smooth function
on M. Then the Hessian operator A of the function f satisf ies∑

i

(∇ A)(ei, ei) = ∇(� f ) + Q(∇ f )

where {e1, .., en} is a local orthonormal frame, � is the Laplacian operator acting on
smooth functions on M and (∇ A)(X, Y) = ∇X AY − A(∇XY), X, Y ∈ X(M).

On an Einstein manifold (M, g) of constant scalar curvature, each eigen-
function f of the Laplacian operator � : C∞(M) → C∞(M) gives rise to the
eigenvector of the Laplacian operator � : X(M) → X(M) as is seen in the
following Lemma which in fact follows from Weitzenbock formula.

Lemma 2.2 On an Einstein manifold (M, g) of constant scalar curvature S,
� f = −λ f for a f ∈ C∞(M) implies �∇ f = −μ∇ f , where ∇ f is the gradient
of f and the constants λ and μ are related by n(λ − μ) = S.

Proof Suppose � f = −λ f for a f ∈ C∞(M) and constant λ. Then by Lemma
2.1, we have

n∑

i=1

(∇ A) (ei, ei) =
(

S
n

− λ

)
∇ f (2.1)

where we used the fact Ric(X, Y) = Sn−1g(X, Y) for the Einstein manifold
(M, g). Now we use (2.1) to compute �∇ f as

�∇ f =
n∑

i=1

(
∇ei∇ei∇ f − ∇∇ei ei∇ f

)
=

n∑

i=1

(∇ A) (ei, ei) =
(

S
n

− λ

)
∇ f

= −μ∇ f

that finishes the proof. �	
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A vector field ξ ∈ X(M) is said to be a conformal vector field if

£ξ g = 2 fg (2.2)

for a smooth function f ∈ C∞(M), called the potential function, where £ξ

is the Lie derivative with respect to ξ . Using Kozul’s formula (cf. [2]), we
immediately obtain the following for a vector field ξ on M

2g(∇Xξ, Y) = (
£ξ g

)
(X, Y) + dη(X, Y), X, Y ∈ X(M) (2.3)

where η is the 1-form dual to ξ that is η(X) = g(X, ξ), X ∈ X(M). Define a
skew symmetric tensor field ϕ of type (1, 1) on M by

dη(X, Y) = 2g(ϕX, Y), X, Y ∈ X(M) (2.4)

Then using (2.2), (2.3) and (2.4) we immediately get the following (cf. [4]):

Lemma 2.3 [5] Let ξ be a conformal vector f ield on an n-dimensional Rie-
mannian manifold (M, g) with potential function f . Then,

∇Xξ = f X + ϕX, X ∈ X(M), div ξ = nf

Now we discuss some examples of Riemannian manifolds (M, g) with con-
formal vector fields which are eigenvectors of the Laplacian operator acting on
smooth vector fields on M.

Example 1 Let (M, g) be an n-dimensional connected Einstein manifold of
constant scalar curvature S. Let ξ = ∇ϕ, for a ϕ ∈ C∞(M) be the gradient
conformal vector field on M with potential function f . Since ξ is closed vector
field by Lemma 2.3 we have

∇Xξ = f X, X ∈ X(M) (2.5)

which gives

�ϕ = div(∇ϕ) = divξ = nf (2.6)

Also the Hessian operation A of the function ϕ satisfies AX = f X and con-

sequently for a local orthonormal frame {e1, .., en}, we have
n∑

i=1
(∇ A) (ei, ei) =

∇ f and combining this with Lemma 2.1 for Einstein manifold and (2.6), we get

−n(n − 1)∇ f = S∇ϕ (2.7)

and

� f = − S
(n − 1)

f (2.8)

Using (2.5) and (2.7), we get ∇X∇ f = hX, X ∈ X(M), where h = − S
n(n−1)

f is
a smooth function, that is u = ∇ f is a gradient conformal vector field and by
Lemma 2.2 together with (2.8) we have �u = − S

n(n−1)
u. Thus on the Einstein
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manifold (M, g) the conformal vector field u is eigenvector of the Laplacian
operator � acting on the smooth vector fields on M.

Example 2 Consider the Euclidean space (Rn, g) and define a metric g on
Rn by

gu =
(

2

1 + ‖u‖2

)2

gu, u ∈ Rn

Then the Riemannian connection ∇ on the Riemannian manifold (Rn, g) and
the Euclidean connection ∇ on (Rn, g) are related by

∇XY = ∇XY − X( f )Y − Y( f )X + g(X, Y)∇ f (2.9)

where f = log(1 + ‖u‖2) − log 2. Let � be the position vector field on Rn. Then
using (2.9) we get

∇X� =
(

1 − ‖u‖2

1 + ‖u‖2

)
X, X ∈ X(Rn) (2.10)

which proves that � is a conformal vector field on the Riemannian manifold
(Rn, g). Using (2.10) we see that

∇X∇X� − ∇∇X X� = X(h)X (2.11)

where

h =
(

1 − ‖u‖2

1 + ‖u‖2

)

For a local orthonormal frame {e1, .., en} on (Rn, g), we get the local orthonor-
mal frame

{
e f e1, .., e f en

}
on (Rn, g) and using the fact that the gradient ∇h of

the function h on the Euclidean space (Rn, g) is given by

∇h = −4

(1 + ‖u‖2)2
�

and consequently by (2.11) we conclude �� = −�, that is the conformal
vector field � on the Riemannian manifold (Rn, g) is an eigenvector of the
Laplacian operator � acting on the smooth vector fields on Rn.

Example 3 Consider a 3-dimensional Sasakian manifold M(ϕ, ξ, η, g), where
ϕ is a (1,1) tensor field, ξ a unit vector field, η a smooth 1-form dual to ξ with
respect to the Riemannian metric g. The structure (ϕ, ξ, η, g) satisfies

ϕ2 = −I + η ⊗ ξ , ϕξ = 0, η ◦ ϕ = 0,

g(ϕX, ϕY) = g(X, Y) − η(X)η(Y), (2.12)

X, Y ∈ X(M) (cf. [2]). These manifolds are in abundance for example the unit
sphere S3, the Euclidean space R3, the unit tangent bundle T1S2 of the unit
sphere S2, the special unitary group SU(2), the Hiesenberg group nil3 and the
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special linear group SL(2, R) are 3-dimensional Sasakian manifolds. If ∇ is
the Riemannian connection on the Sasakian manifold M(ϕ, ξ, η, g), we have
(cf. [2])

(∇ϕ
)
(X, Y) = g(X, Y)ξ − η(Y)X, ∇Xξ = −ϕX, X, Y ∈ X(M). (2.13)

Let M be an orientable totally umbilical and non-totally geodesic connected
surface in the Sasakian manifold M(ϕ, ξ, η, g) which is neither tangential nor
normal to the vector field ξ . We denote the induced metric on M by g and
denote by N the unit normal vector field, by ∇ the Riemannian connection on
(M, g). Then the Gauss and Weingarten formulas for the surface M are

∇XY = ∇XY + λg(X, Y)N, ∇X N = −λX, X, Y ∈ X(M), (2.14)

where λ is the constant mean curvature of M. As ϕ is skew symmetric ϕN is
tangential to M and thus gives a vector field v ∈ X(M) defined by v = −ϕN.
Also define a smooth function ρ on M by ρ = g(ξ, N) = 0 (by our assumption),
and consequently, the restriction of the vector field ξ to M can be expressed as
ξ = u + ρN, where u ∈ X(M) is the tangential component of ξ . Let α and β be
the smooth 1-forms dual to the vector fields u and v on M. Then for X ∈ X(M),
we can express the restriction of ϕX to M as

ϕX = ψ X + β(X)N, (2.15)

where ψ(X) is the tangential component of ϕ(X) and it follows that ψ :
X(M) → X(M) is a skew symmetric operator. Using ξ = u + ρN, v = −ϕN,
and the (2.15) we get

ψu = ρv, g(u, v) = 0 and ψ(v) = −ρu. (2.16)

Also, if ∇ρ denotes the gradient of the function ρ, using (2.13) and (2.14),
we get

∇ρ = −λu − v (2.17)

Now, for X, Y ∈ X(M), computing the covariant derivative
(∇ϕ

)
(X, Y), using

(2.13)–(2.15), and equating tangential and normal components we obtain

(∇Xψ) (Y) = g(X, Y)u − λg(X, Y)v + λβ(Y)X − α(Y)X (2.18)

and

∇Xv = ρX + λψ X (2.19)

Similarly, computing ∇Xξ with ξ = u + ρN and X ∈ X(M), the tangential
component gives

∇Xu = λρX − ψ X (2.20)

Using (2.17)–(2.20), it is easy to check that

(£ug) = 2λρg, (£vg) = 2ρg, �u = −(1 + λ2)u, �v = −(1 + λ2)v
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Since M is non-totally geodesic, we see that both vector fields u and v are
conformal vector fields on (M, g), which are eigenvectors of the Laplacian
operator �.

3 Proof of the Theorem

Let ξ be a nontrivial conformal vector field on an n-dimensional compact
Riemannian manifold (M, g) of constant scalar curvature S with potential
function f . Then by Lemma 2.3, we have

(∇ϕ) (X, Y) = ∇X∇Yξ − ∇∇X Yξ − X( f )Y, X, Y ∈ X(M), (3.1)

where (∇ϕ) (X, Y) = ∇XϕY − ϕ(∇XY). Summing above equation over a local
orthonormal frame {e1, .., en} on M and using �ξ = −λξ , we get

n∑

i=1

(∇ϕ) (ei, ei) = �ξ − ∇ f = −λξ − ∇ f (3.2)

We use (3.1) to arrive at

(∇ϕ) (X, Y) − (∇ϕ) (Y, X) = R(X, Y)ξ + Y( f )X − X( f )Y

in which we choose X = ei and take inner product with ei and add these n
equations corresponding to a local orthonormal frame {e1, .., en} on M, to get

−g

(
n∑

i=1

(∇ϕ) (ei, ei), Y

)
= Ric(Y, ξ) + (n − 1)g(Y, ξ) (3.3)

where we used the fact that ϕ is skew-symmetric and consequently
∑

g(ϕei, ei) =
0 and that g((∇ϕ) (X, Y), Z ) = −g(Y, (∇ϕ) (X, Z )). Combining (3.2) and
(3.3) we arrive at

Qξ = λξ − (n − 2)∇ f (3.4)

Since, the scalar curvature S is a constant, using Lemma 2.3 and symmetry of
Q, we immediately get that

div Qξ = f S (3.5)

which together with the (3.4) gives

Sf = nλ f − (n − 2)� f (3.6)

Using the Weitzenbock formula, we have

δdξ + dδξ = −�ξ + Qξ ,

where δ = −div. Taking divergence on both sides in the above Weitzenbock
formula together with Lemma 2.3 and (3.5) and the eigenvalue assumption on
the conformal field shows that

n� f = −λnf − Sf . (3.7)
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The (3.6) and (3.7) immediately give

� f = −nλ f (3.8)

and consequently
∫

M

‖∇ f‖2 = nλ

∫

M

f 2. (3.9)

The Bochner formula gives
∫

M

(
‖A‖2 + Ric(∇ f, ∇ f ) − nλ ‖∇ f‖2

)
= 0,

which can be rearranged as
∫

M

((
‖A‖2 − 1

n
(� f )2

)
+ Ric(∇ f, ∇ f ) − (n − 1)λ ‖∇ f‖2

)
= 0 (3.10)

where we used (3.8) and (3.9). Note that as Tr A = � f , the Schwarz inequality
implies ‖A‖2 � 1

n (� f )2 with equality holding if and only if A = � f
n I. Thus

using the bound on the Ricci curvature in the statement of the Theorem and
above inequality in the integral (3.10) together with (3.8), we conclude that
the equality A = −λ f I holds, that is for the non-constant function f (as ξ is
nontrivial conformal vector field) the following hold

∇X∇ f = −λ f X, X ∈ X(M)

for a positive constant λ and which by Obata’s Theorem implies that M is
isometric to Sn(λ).
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