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Abstract The classical Mittag-Leffler functions, involving one- and two-pa-
rameter, play an important role in the study of fractional-order differential
(and integral) equations. The so-called generalized Mittag-Leffler function, a
function with three-parameter which generalizes the classical ones, appear in
the fractional telegraph equation. Here we introduce some integral transforms
associated with this generalized Mittag-Leffler function. As particular cases
some recent results are recovered.
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1 Introduction

In a recent paper Langlands et al. [1] present a discussion involving the so-
called cable equation models, particularly associated with the study of anom-
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alous electrodiffusion in nerve cells. They present the solution of fractional
Nernst–Planck equation in terms of the Fox’s H-function. Another recent
paper [2] presents the solution of a modified fractional diffusion equation also
in terms of a Fox’s H-function. In both papers, the authors use juxtaposition of
integral transform, namely, the Laplace transform in time variable and Fourier
(Mellin) in space variable. On the other hand, the fundamental solutions of
the space and space-time Riesz fractional equations with periodic conditions
were recently discussed by means of the Laplace transform technique [3] and
the solutions of the problem associated with the diffusion-wave equations on
finite interval was presented in terms of the Fox’s H-function [4].

The machinery of the fractional calculus is still growing up and the functions
associated with it must be developed, specifically; functions of Mittag-Leffler
type that appear in several areas, among them, in Biology [1], in Physics [2],
particularly, in fractional diffusion equation [5–7] and in Statistics [8], just to
mention a few.

The classical Mittag-Leffler function, as introduced by himself, is a gener-
alization of the exponential function [9]. In the fifthies it was introduced a
first generalization of the classical Mittag-Leffler, the two-parameter Mittag-
Leffler function [10]. In the seventies was introduced a more general three-
parameter Mittag-Leffler function [11], a function that arises on problems
involving the fractional telegraph equation [12], for example. Mathematically,
there are several other generalizations, some of them, which can be seen in the
book of Srivastava et al. [13].

As we have already said, functions of Mittag-Leffler type arise naturally in
the solution of several fractional differential equations. In the paper [5] the au-
thors introduce another function of Mittag-Leffler type which is important in
the study of kinetic equation [14], random walks and anomalous diffusion [15].
On the other hand, the methodology of the juxtaposition of integral transforms
is the most important tool to affront many fractional differential equations,
particularly, the so-called wave-diffusion equation and the telegraph equation.
Thus, the Laplace transform, the Mellin transform and the Fourier transform
of the three parameter Mittag-Leffler function play an important role on this
theme.

This paper proposes to discuss these integral transform in the context of
the fractional differential equations, in the sense of to study a fractional
differential (and integral) equation by means of the juxtaposition of integral
transforms. The structure of the article is: In Section 2, we recover the
definition and some particular cases of the three-parameter Mittag-Leffler
function; in Section 3, we calculate the integral transform (Laplace, Mellin and
Fourier) of the three-parameter Mittag-Leffler function, presenting all results
in terms of the Fox’s H-function. In Section 4, we discuss some few applications
and finally we present our concluding remarks. An appendix involving the
definition and some properties associated with the Fox’s H-function and the
particular case, the Meijer’s G-function, close the paper.
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2 Three-Parameter Mittag-Leffler Function

The three-parameter Mittag-Leffler function, also called generalized Mittag-
Leffler function, was introduced by Prabhakar [11] by means of the following
series representation

Eρ
α,β(z) =

∞∑

k=0

(ρ)k

�(αk + β)

zk

k! (1)

with Re(α) > 0, Re(β) > 0, Re(ρ) > 0, z ∈ C and (a)k is the Pochhammer sym-
bol. Recently, this function was introduced in the calculation of the Green’s
function associated with the fractional telegraph equation [12]. Some addition
theorems, involving this function, were presented at [16]. Other applications
of it can be found in [17, 18].

We note that, for ρ = 1 we recover the two-parameter Mittag-Leffler
function, i.e.,

E1
α,β(z) ≡ Eα,β(z) =

∞∑

k=0

zk

�(αk + β)
,

whereas for ρ = 1 = β we recover the classical Mittag-Leffler function

E1
α,1(z) ≡ Eα(z) =

∞∑

k=0

zk

�(αk + 1)
,

as introduced by Mittag-Leffler himself, which for α = 1 reproduces the
exponential function, E1(z) = exp(z).

We mention also the formal relation [17]

Eρ
α,β(z) = 1

�(ρ)
1�1

[
z

∣∣∣∣
(ρ, 1)

(β, α)

]
= 1

�(γ )
H1,1

1,2

[
−z

∣∣∣∣
(1 − γ, 1)

(0, 1), (1 − β, α)

]
,

where 1�1

[
z

∣∣∣∣
(a, b)

(p, q)

]
is the Wright’s function which was presented as solution

of the fractional equation associated with the renewal processes of Mittag-
Leffler and Wright type [19]. This function generalizes the classical confluent
hypergeometric function, 1 F1(a; c; z), since we can write

Eρ

1,β(z) = 1
�(ρ)

1 F1(β; ρ; z),

for Re(β) > 0 and Re(ρ) > 0.
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3 Integrals of Mittag-Leffler Function

In this section we present our main results: the Laplace transform, the Mellin
transform and the Fourier transform of the three-parameter Mittag-Leffler
function. We begin with the Laplace transform, then we consider the Mellin
transform and using a convenient relation involving the Mellin and Fourier
transforms, we calculate the Fourier transform of the three-parameter Mittag-
Leffler function. In what follow, we consider the modified generalized Mittag-
Leffler function

Eρ
α,β(t, y, γ ) ≡ tβ−1 Eρ

α,β(−K|y|γ tα), (2)

where Re(α) > 0, Re(β) > 0, Re(ρ) > 0, K is a positive constant, γ is a con-
stant with 0 < γ � 1, and y = (y1, y2, · · · , yn) ∈ R

n. We associate t as a time
variable and y as a space variable. We also note that in all three transforms,
for ρ = 1, we will recover the results obtained by Yu and Zhang [5].

3.1 The Laplace Transform

Denoting by Fρ
α,β(p) the Laplace transform of generalized Mittag-Leffler

function, we have

Fρ
α,β(p) ≡ L

[
Eρ

α,β(t, y, γ ); p
]

=
∫ ∞

0
e−ptEρ

α,β(t, y, γ )dt,

with Re(p) > 0. Substituting (1) in this last equation and evaluating formally
the integral in the variable t, we get

Fρ
α,β(p) = 1

pβ

∞∑

k=0

(ρ)k

pαk

(−K|y|γ )k

k! .

Considering the geometric series we can write

Fρ
α,β(p) = pαρ−β

(pα + K|y|γ )ρ
.

Thus, we obtain the pair of the Laplace transforms associated with the gener-
alized Mittag-Leffler function, i.e.,

L

[
Eρ

α,β(t, y, γ ); p
]

= pαρ−β

(pα + K|y|γ )ρ
. (3)

3.2 The Mellin Transform

In order to evaluate the Mellin transform of the generalized Mittag-Leffler
function we first present a relation involving the Laplace transform and the
Mellin transform. Let p and s be the parameters associated with the Laplace



Generalized Mittag-Leffler Function 5

and Mellin transform, respectively. The Mellin transform is defined formaly by
the following improper integral

M[ f (t); s] =
∫ ∞

0
f (t) ts−1dt.

Thus, we calculate the Mellin transform of a convenient Laplace transform,
i.e.,

M {L[ f (x); p]; 1 − s} =
∫ ∞

0
f (x) dx

∫ ∞

0
e−px p−sdp.

Performing the integral in the variable p, we get the relation

M {L[ f (x); p]; 1 − s} = �(1 − s)M[ f (x); s].

We then evaluate the Mellin transform of the modified generalized Mittag-
Leffler function given by (2)

M[Eρ
α,β(t, y, γ ); s] = 1

�(1 − s)
M

{
L[Eρ

α,β(t, y, γ ); p]; 1 − s
}

= 1
�(1 − s)

∫ ∞

0

pαρ−β−s

(pα + K|y|γ )ρ
dp. (4)

Introducing a new variable ξ defined by means of the relation p = (K|y|γ )
1
α ξ

we can write

M[Eρ
α,β(t, y, γ ); s] = (K|y|γ )

1
α
(1−β−s)

�(1 − s)

∫ ∞

0

ξαρ−β−s

(ξα + 1)ρ
dξ,

which, by means of the definition of beta function, furnishes

M[Eρ
α,β(t, y, γ ); s] = (K|y|γ )

1
α
(1−β−s)

α�(1 − s)
B

(
β + s − 1

α
, ρ + 1 − β − s

α

)
. (5)

where B(p, q) is the beta function.

3.3 The Fourier Transform

Finally, we discuss the Fourier transform of the modified generalized Mittag-
Leffler function. Denoting by E(y) this Fourier transform we have

E(y) ≡ F

[
Eρ

α,β(t, x, γ ); y
]

=
∫

Rn
ei�x·�yEρ

α,β(t, x, γ ) dnx,
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with n � 1, whose corresponding inverse is given by

Êρ
α,β(t, x, γ ) ≡ F−1

[
Eρ

α,β(t, y, γ ); x
]

= 1
(2π)n

∫

Rn
e−i�x·�yEρ

α,β(t, y, γ ) dn y.

Then, taking the Mellin transform we get

M[Êρ
α,β(t, x, γ ); s] = F−1

{
M[Eρ

α,β(t, y, γ ); s]; x
}

= F−1

{
(K|y|γ )

1−β−s
α

α�(1 − s)
B

(
β + s − 1

α
, ρ + 1 − β − s

α

)
; x

}

= (K|y|γ )
1−β−s

α

α�(1 − s)
B

(
β + s − 1

α
, ρ + 1 − β − s

α

)

(x), (6)

where we have introduced the function


(x) ≡ F−1
[
|y| γ

α
(1−β−s); x

]
,

which can be interpreted as the complex inverse Fourier transform of the
function |y| γ

α
(1−β−s).

In what follow, we introduce spherical coordinates [20] and integrating in
the angular variables we get

F−1
[
|y| γ

α
(1−β−s); x

]
= (1/2π)n/2

|x|−1+n/2

∫ ∞

0
r

n
2 + γ

α
(1−β−s) J n

2 −1(r|x|) dr,

where Jμ(z) is the first kind Bessel function and x = (x1, x2, · · · , xn).
Performing the integral [21] in the last equation we obtain

F−1
[
|y| γ

α
(1−β−s); x

]
= (2/|x|) γ

α
(1−β−s)

(
√

π |x|)n

�
[ n

2 + γ

2α
(1 − β − s)

]

�
[

γ

2α
(β + s − 1)

] .

Using the relation involving the gamma function and the beta function, we
obtain the Mellin transform of the inverse Fourier transform as follows

M

[
Êρ

α,β(t, x, γ ); s
]

= (2K1/γ /|x|) γ

α
(1−β−s)

α (
√

π |x|)n�(1 − s)

×
�

(
β+s−1

α

)
�

(
ρ + 1−β−s

α

)

�(ρ)

�
[ n

2 + γ

2α
(1 − β − s)

]

�
[

γ

2α
(β + s − 1)

] .

Thus, we must calculate the inverse Mellin transform to get the inverse Fourier
transform of the generalized Mittag-Leffler function. To this end, we first
introduce the notation

z =
( |x|γ

2γKtα

) 1
α

,
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and then we can write

Êρ
α,β(t, x, γ ) = (2K1/γ /|x|) γ

α
(1−β)

α(
√

π |x|)n�(ρ)

× 1
2π i

∫

Br

�
(

β+s−1
α

)
�

(
ρ + 1−β−s

α

)
�

[ n
2 + γ

2α
(1 − β − s)

]

�(1 − s)�
[

γ

2α
(β + s − 1)

] zs ds,

where Br is a modified Bromwich contour [22].
The above integral can be written in terms of the Fox’s H-function (see

Appendix). Identifying with the Fox’s H-function we have, for the integral on
the Bromwich contour, only

H2,1
2,3

⎛

⎜⎜⎜⎜⎝
z

∣∣∣∣∣∣∣∣∣∣

(
1 + 1 − β

α
,

1
α

)
(1, 1)

(
ρ + 1 − β

α
,

1
α

) [n
2

+ γ

2α
(1 − β),

γ

2α

] [
1 + γ

2α
(1 − β),

γ

2α

]

⎞

⎟⎟⎟⎟⎠
.

Using (15) in Appendix we can write the last equation in the following form

α H2,1
2,3

⎛

⎜⎜⎜⎜⎝
|x|γ

2γKtα

∣∣∣∣∣∣∣∣∣∣

(
1 + 1 − β

α
, 1

)
(1, α)

(
ρ + 1 − β

α
, 1

) [n
2

+ γ

2α
(1 − β),

γ

2

] [
1 + γ

2α
(1 − β),

γ

2

]

⎞

⎟⎟⎟⎟⎠
.

Finally, taking into account (16) in Appendix and rearrange the terms we
obtain

Êρ
α,β(t, x, γ ) = tβ−1

(
√

π |x|)n�(ρ)
H2,1

2,3

⎛

⎜⎝
|x|γ

2γKtα

∣∣∣∣∣∣∣

(1, 1) (β, α)

(ρ, 1)
(n

2
,
γ

2

) (
1,

γ

2

)

⎞

⎟⎠ , (7)

which is the inverse Fourier transform of the generalized Mittag-Leffler func-
tion. The corresponding Fourier transform can be obtained by the following
expression

Eρ
α,β(t, y, γ ) = F[Êρ

α,β(t, x, γ )],

where Êρ
α,β(t, x, γ ) is given by (7).

As we have already said, in all above equations, (3), (5) and (7), if we
consider ρ = 1 we recover the results presented in [5].
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4 Fractional Telegraph Equation

In this section we discuss, as an application, the so-called tridimensional
fractional telegraph equation. The procedure used is a general one, but to
specify the calculation we present the tridimensional case, n = 3, only, i.e., the
spacial dimension is equal to three.

The general case is given by the fractional differential equation

aD2α
t u + bDβ

t u = −K(−�)γ u, t > 0; x ∈ R
n; (8)

with D ≡ ∂/∂t, 1/2 < α � 1, 0 < β � 1 and 0 < γ � 1, with u = u(t, x; α, β, γ ),
x = x(x1, . . . , xn). Here (−�)γ denotes the fractional Laplace operator [23],
a, b ∈ R, K a real physical constant, t is the time variable and x is the space
variable. In the case with α = β = γ = 1 we recover the classical telegraph
equation as we will see below. Thus, (8) can be considered as a generalization
of the classical differential equation associated with the telegraph problem.
Here, we do not discuss the problem associated with the physical unities. We
refer the reader to the Inizan’s paper [24] where the problem is discussed.

The boundary and initial conditions are taken as follow

lim|x|→∞ u(t, x; α, β, γ ) = 0 and Dk
t u(t, x; α, β, γ ) = fk(x),

respectively, for k = 0, 1, . . . , m − 1. Considering the time-fractional deriva-
tives in the Caputo’s sense,1 the space-fractional derivative in the Riesz’s sense
and using the relation [23]

F
[
(−�)γ u(t, x; α, β, γ ); ω

] = |ω|2γ F
[
u(t, x; α, β, γ ); ω

]
,

where ω is the parameter associated with the Fourier transform, we get another
fractional differential equation

aD2α
t û + bDβ

t û = −K|ω|2γ û, (9)

satisfying the following initial conditions

Dk
t û(t, ω, α, β, γ ) = Fk(ω),

with k = 0, 1, . . . , m − 1, where û = û(t, ω; α, β, γ ) is the Fourier transform of
u = u(t, x; α, β, γ ) and Fk(ω) is the Fourier transform of fk(x).

As we have already said, in what follow, we consider the case n = 3, only.
Then, taking the Laplace transform in (9) and using the initial conditions we
have an algebraic equation whose solution is given by

Û(p, ω; α, β, γ ) = F0(ω)
a p2α−1 + b pβ−1

a p2α + b pβ + K|ω|2γ
, (10)

1In the Caputo sense, the Laplace transform associated with the fractional deriva-

tive is L[Dμ
t f (t); p] = pμL[ f (t); p] −

n−1∑

k=0

f (k)(0) pμ−k−1. For the Fourier transform we have

F[Dμ
t f (t);ω] = (−iω)μ−nF[[Dn

t f (t);ω].
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where p is the parameter of the Laplace transform and Û(p, ω; α, β, γ ) is
the juxtaposition of the inverse transform of u(t, x; α, β, γ ). To obtain the last
expression we have explicitly the conditions

u(0, x; α, β, γ ) = f0(x) ⇐⇒ û(0, ω; α, β, γ ) = F0(ω),

and

∂

∂t
u(t, x; α, β, γ )

∣∣∣∣
t=0

= f1(x) = 0 ⇐⇒ ∂

∂t
û(t, ω; α, β, γ )

∣∣∣∣
t=0

= F1(ω) = 0.

Thus, we now proceed with the inversion. Taking the corresponding inverse
Laplace transform, we can write [25]

û(t, ω; α, β, γ ) = F0(ω)

∞∑

r=0

(
−b

a

)r

t(2α−β)r Er+1
2α,(2α−β)r+1

(
−K

a
|ω|2γ t2α

)

+ b
a

F0(ω)

∞∑

r=0

(
−b

a

)r

t(2α−β)(r+1)

× Er+1
2α,(2α−β)(r+1)+1

(
−K

a
|ω|2γ t2α

)
,

with Re(α) > 1/2, Re(β) > 0, Re(s) > 0, α > β, |b sβ/(a sα + K|ω|2γ )| < 1 and
Eγ

α,β(z) is the three-parameter Mittag-Leffler function presented in Section 2.
Using (2) we can rewrite (11) as follows

û(t, ω; α, β, γ ) = F0(ω)

∞∑

r=0

(
−b

a

)r {
Er+1

2α,μr+1(t, ω; γ ) + b
a
Er+1

2α,μ(r+1)+1(t, ω; γ )

}
,

where we have introduced the parameter μ = 2α − β.
To perform the corresponding inverse Fourier transform, we take into

account the convolution theorem and (7) with n = 3,

u(t, x; α, β, γ ) ≡ F−1[̂u(t, ω; α, β, γ ); ω]

=
∞∑

r=0

(
−b

a

)r ∫

R3
F0(ξ)G(t; x − ξ)dξ, (11)

where the function G(t, x), as in the integer case, is known as the fundamental
solution, which is given by

G(t; x) = Êr+1
2α,μr+1(t, x; γ ) + b

a
Êr+1

2α,μ(r+1)+1(t, x; γ ), (12)

which can be written in terms of the Fox’s H-function (see Appendix), as
follows

u(t, x; α, β, γ ) = 1
(
√

π |x|)3

∞∑

r=0

(
−b

a

)r tμr

r!
∫

R3
F0(ξ)H

2,1
2,3(x − ξ) dξ,
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where we have introduced

H
2,1
2,3(x) = H2,1

2,3

⎛

⎝ a|x|2γ

22γKt2α

∣∣∣∣∣∣

(1, 1) (μr + 1, 2α)

(r + 1, 1)

(
3
2
, γ

)
(1, γ )

⎞

⎠

+ b
a

tμ H2,1
2,3

⎛

⎝ a|x|2γ

22γKt2α

∣∣∣∣∣∣

(1, 1) (μ(r + 1) + 1, 2α)

(r + 1, 1)

(
3
2
, γ

)
(1, γ )

⎞

⎠ , (13)

with μ = 2α − β.

5 Particular Cases

In this section, as particular cases of our results, we present four cases, only,
i.e., (i) a = 0 and b = 1, the fractional diffusion equation; (ii) a = 1 and b = 0,
the fractional wave equation; (iii) a = 0, b = 1 and β = 1 = γ , the classical
diffusion equation and (iv) α = 1 = γ , the integer case, classical telegraph
equation.

5.1 Fractional Diffusion Equation

Here, we discuss a particular case associated with the fractional diffusion equa-
tion. To this end, we consider in (8) a = 0 and b = 1 and in consequence the
results are α-independent, and in our notation we put α = 0. It is inappropriate
to derive the standard diffusion equation from the telegraph equation.

With this consideration, after the juxtaposition of the Laplace and Fourier
transforms, we obtain an algebraic equation whose solution can be written as
follows

Û(p, ω; 0, β, γ ) = F0(ω)
pβ−1

pβ + K|ω|2γ
.

Taking the inverse Laplace transform, using (3), we obtain

û(t, ω; 0, β, γ ) = F0(ω)Eβ(−K|y|2γ , tβ),

where Eβ(η) is the classical Mittag-Leffler function, as showed in Section 2.
Taking the inverse Fourier transform we can write the solution of the fractional
diffusion equation in terms of the Fox’s H-function, as we will see in next
subsection.

5.2 Fractional Wave Equation

In this section we present a calculation involving the fractional wave equation.
Putting a = 1 and b = 0 in (8) we get

D2α
t u(t, x; α, 0, γ ) = −K(−�)γ u(t, x; α, 0, γ ),
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with 1/2 < α � 1 and 0 < γ � 1. The solution of the corresponding algebraic
equation is given by

Û(p, ω; α, 0, γ ) = F0(ω)
p2α−1

p2α + K|ω|2γ
.

To proceed with the inversion, firstly, we take the inverse Laplace transform,
using (3), we have

û(t, ω; α, 0, γ ) = F0(ω)E2α(−K|y|2γ t2α),

where Eβ(η) is the classical Mittag-Leffler function. Secondly, performing the
inverse Fourier transform, using (11) and (13), we obtain

u(t, x; α, 0, γ ) = 1
(
√

π |x|)3

∫

R3
F0(ξ)H

2,1
2,3(x − ξ) dξ,

where

H
2,1
2,3 = H2,1

2,3

⎛

⎝ |x|2γ

22γKt2γ

∣∣∣∣∣∣

(1, 1) (1, 2α)

(1, 1)

(
3
2
, γ

)
(1, γ )

⎞

⎠ ,

which is the solution given in terms of the Fox’s H-function.

5.3 Classical Diffusion Equation

To recover the classical diffusion equation, we consider a = 0, b = 1 and
β = 1 = γ . Substituting those values in (8) we obtain the following partial
differential equation

Dtu(t, x; 0, 1, 1) = −K(−�)u(t, x; 0, 1, 1).

With the same considerations, i.e., after the juxtaposition of the Laplace and
Fourier transforms, we obtain an algebraic equation whose solution can be
written as follows

Û(p, ω; 0, 1, 1) = F0(ω)

p + K|ω|2 .

Taking the corresponding inverse Laplace transform, we obtain

û(t, ω; 0, 1, 1) = F0(ω)E1(−K|y|2t) ≡ F0(ω)exp(−K|y|2t),

where E1(η) = exp(η) is the exponential function. Taking the inverse Fourier
transform we can write the solution in terms of the Fox’s H-function, as we
will see in next subsection.

5.4 Classical Telegraph Equation

Here we consider all parameter as equal, α = β = γ = 1, and we obtain the
partial differential equation

aD2
t u + bDtu = −K(−�)u, t > 0; x ∈ R

n,

with u = u(t, x; 1, 1, 1).
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Taking the Laplace and Fourier transforms in the last equation we obtain
an algebraic equation whose solution can be written as follows

Û(p, ω; 1, 1, 1) = F0(ω)
ap + b

ap2 + b p + K|ω|2 ,

with a, b and K are real parameters.
Proceed with the inversion, we first consider the inverse Laplace transform,

then,

û(t, ω; 1, 1, 1) = F0(ω)

∞∑

r=0

(
−b

a

)r

tr
(r),

with


(r) = Er+1
2,r+1

(
−K

a
|ω|2t2

)
+ b

a
t Er+2

2,r+1

(
−K

a
|ω|2t2

)
,

where Eγ

α,β(z) is the three-parameter Mittag-Leffler function, presented in
Section 2.

Second, taking the corresponding inverse Fourier transform of the equation
above we have

u(t, x; 1, 1, 1) = 1
(
√

π |x|)3

∞∑

r=0

(
−b

a

)r tr

r!
∫

R3
F0(ξ)H

2,1
2,3(x − ξ) dξ,

with

H
2,1
2,3(x) = H2,1

2,3

⎛

⎝η

∣∣∣∣∣∣

(1, 1) (r + 1, 2)

(r + 1, 1)

(
3
2
, 1

)
(1, 1)

⎞

⎠

+ b
a

t H2,1
2,3

⎛

⎝η

∣∣∣∣∣∣

(1, 1) (r + 2, 2)

(r + 1, 1)

(
3
2
, 1

)
(1, 1)

⎞

⎠ ,

where we have defined η = a|x|2
4Kt2 , and H2,1

2,3(z) are the Fox’s H-functions.
The last equation can also be written as follows (see (17), Appendix)

H
2,0
1,2(x) = H2,0

1,2

⎛

⎝η

∣∣∣∣∣∣

(r + 1, 2)

(r + 1, 1)

(
3
2
, 1

)
⎞

⎠ + b
a

t H2,0
1,2

⎛

⎝η

∣∣∣∣∣∣

(r + 2, 2)

(r + 1, 1)

(
3
2
, 1

)
⎞

⎠ .

6 Concluding Remarks

Some consequences involving the generalized Mittag-Leffler function were
presented. Using the juxtaposition of integral transforms, namely, the Laplace
transform in time variable and Fourier transform in space variable, we dis-
cussed the fractional telegraph equation and the solution obtained in terms of
the Fox’s H-function. Several particular cases were recovered. As a natural
continuation of this paper we’ll discuss the Green’s function associated with
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the fractional telegraph equation to obtain a possible relation between the
Green’s function associated with the diffusion equation and the wave equation,
both obtained as a particular cases [26].

Acknowledgements RFC is grateful to Capes for financial support. ECO is grateful to Fapesp
(06/52475-8) for a research grant. We are grateful to Dr. F. S. Costa for interesting discussions and
also the referee for the suggestions, particularly for some important references, that improve the paper.

Appendix: Fox’s H-Function

The Fox’s H-function, also known as H-function or Fox’s function, was
introduced in the literature as an integral of Mellin–Barnes type [13]. We
mention also the important books on the subject [27–30].

Let m, n, p and q be integer numbers. Consider the function


(s) =

m∏

i=1

�(bi − Bi s)
n∏

i=1

�(1 − ai + Ai s)

q∏

i=m+1

�(1 − bi + Bi s)
p∏

i=n+1

�(ai − Ai s)

, (14)

with 1 � m � q and 0 � n � p. The coefficients Ai and Bi are positive real
numbers; ai and bi are complex parameters.

The Fox’s H-function, denoted by,

Hm,n
p,q (x) = Hm,n

p,q

(
x

∣∣∣∣
(ap, Ap)

(b q, Bq)

)
= Hm,n

p,q

(
x

∣∣∣∣
(a1, A1) · · · (ap, Ap)

(b 1, B1) · · · (b q, Bq)

)
,

is defined as the inverse Mellin transform, i.e.,

Hm,n
p,q (x) = 1

2π i

∫

L

(s) xs ds,

where 
(s) is given by (14), and the contour L runs from L − i∞ to L + i∞
separating the poles of �(1 − ai + Ai s), (i = 1, . . . , n) from those of �(bi −
Bi s), (i = 1, . . . , m). The complex parameters ai and bi are taken with the
imposition that no poles in the integrand coincide.

Here, in this appendix, we mention three properties associated with the
Fox’s H-function, and we mention also an important particular case, the so-
called Meijer’s G-function.

P.1. Change the Independent Variable

Let c be a positive constant. We have

Hm,n
p,q

(
x

∣∣∣∣
(ap, Ap)

(b q, Bq)

)
= c Hm,n

p,q

(
xc

∣∣∣∣
(ap, c Ap)

(b q, c Bq)

)
. (15)

To show this expression one introduce a change of variable s → c s in the
integral of inverse Mellin transform.
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P.2. Change the First Argument

Set α ∈ R. Then we can write

xα Hm,n
p,q

(
x

∣∣∣∣
(ap, Ap)

(b q, Bq)

)
= Hm,n

p,q

(
x

∣∣∣∣
(ap + αAp, Ap)

(b q + αBq, Bq)

)
. (16)

To show this expression first we introduce the change ap → ap + αAp and take
s → s − α in the integral of inverse Mellin transform.

P.3. Lowering of Order

If the first factor (a1, A1) is equal to the last one, (b q, Bq), we have

Hm,n
p,q

(
x

∣∣∣∣
(a1, A1) · · · (ap, Ap)

(b 1, B1) · · · (b q−1, Bq−1)(a1, A1)

)

= Hm,n−1
p−1,q−1

(
x

∣∣∣∣
(a2, A2) · · · (ap, Ap)

(b 1, B1) · · · (b q−1, Bq−1)

)
. (17)

To show this identity is sufficient to simplify the common arguments in the
Mellin-Barnes integral.

P.4. Reciprocity

To complete the list of the important properties, we mention also the reci-
procity. If the parameters m and n interchanged, the p and q also change but
the argument converts into the corresponding inverse, we have

Hm,n
p,q

(
x

∣∣∣∣
(ap, Ap)

(b q, Bq)

)
= Hn,m

q,p

(
1
x

∣∣∣∣
(1 − b q, Bq)

(1 − ap, Ap)

)
. (18)

To show this identity is sufficient to introduce a change of variable s → −s in
the integral of inverse Mellin transform. This is an important property because
it enables us to transform a Fox’s H-function into another Fox’s H-function
whose argument is the corresponding inverse, which is important in the study
of the asymptotic expansions, for example.

The Meijer’s G-Function

To close this appendix, we present an important particular case obtained with
Ap = 1 = Bq, i.e., we have the Meijer’s G-function,

Hm,n
p,q

(
x

∣∣∣∣
(a1, 1) · · · (ap, 1)

(b 1, 1) · · · (b q, 1)

)
≡ Gm,n

p,q

(
x

∣∣∣∣
(a1) · · · (ap)

(b 1) · · · (b q)

)
= 1

2π i

∫

L
�(s) xs ds,
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where we have defined

�(s) =

m∏

i=1

�(bi − s)
n∏

i=1

�(1 − ai + s)

q∏

i=m+1

�(1 − bi + s)
p∏

i=n+1

�(ai − s)

,

with 0 � m � q and 0 � n � p. The ai and bi are complex parameters.
A recent study involving the Meijer’s G-function, particularly, a discussion

on the contour L, can be seen in [31].
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