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Abstract This paper is a follow-up of our recent papers Chulaevsky and
Suhov (Commun Math Phys 283:479–489, 2008) and Chulaevsky and Suhov
(Commun Math Phys in press, 2009) covering the two-particle Anderson
model. Here we establish the phenomenon of Anderson localisation for a
quantum N-particle system on a lattice Z

d with short-range interaction and
in presence of an IID external potential with sufficiently regular marginal
cumulative distribution function (CDF). Our main method is an adaptation of
the multi-scale analysis (MSA; cf. Fröhlich and Spencer, Commun Math Phys
88:151–184, 1983; Fröhlich et al., Commun Math Phys 101:21–46, 1985; von
Dreifus and Klein, Commun Math Phys 124:285–299, 1989) to multi-particle
systems, in combination with an induction on the number of particles, as was
proposed in our earlier manuscript (Chulaevsky and Suhov 2007). Recently,
Aizenman and Warzel (2008) proved spectral and dynamical localisation for
N-particle lattice systems with a short-range interaction, using an extension of
the Fractional-Moment Method (FMM) developed earlier for single-particle
models in Aizenman and Molchanov (Commun Math Phys 157:245–278, 1993)
and Aizenman et al. (Commun Math Phys 224:219–253, 2001) (see also
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references therein) which is also combined with an induction on the number of
particles.

Keywords Anderson localisation · Multi-particle systems

Mathematics Subject Classifications (2000) Primary 47B80 · 47A75 ·
Secondary 35P10

1 Introduction and the Main Result

The status of the multi-particle Anderson localisation problem has been
described in [3], Section 1.1; the reader is advised to consult this reference.

The configuration space of the N-particle lattice system is the Cartesian
product Z

d × · · · × Z
d of N copies of a cubic lattice Z

d, which we denote for
brevity by Z

Nd. The Hilbert space of the N-particle lattice system is �2(Z
Nd).

The Hamiltonian H
(
= H(N)

U,V,g(ω)
)

is a lattice Schrödinger operator acting on

functions φ ∈ �2(Z
Nd) by

H(N)φ(x) = H0φ(x) + (U(x) + gW(x; ω))φ(x)

=
∑

y∈ZNd :
‖y−x‖=1

φ(y) + [U(x) + gW(x; ω)
]
φ(x),

where W(x; ω) =
∑N

j=1
V(x j; ω),

x = (x1, . . . , xN), y = (y1, . . . , yN) ∈ Z
Nd.

(1.1)

Here and below we use boldface letters such as x, y, H, etc., referring to a
multi-particle system, where the particle number enters as an index or specified
verbally. For example, small-case boldface letters x, y, etc., will stand for
designate points in Z

Nd, called N-particle configurations. Letters x, y will
be systematically used for points in Z

d or R
d, referred to as single-particle

positions (or briefly, positions).
Our proof of N-particle Anderson localisation is organised as an induction

in N, as has been explained in earlier presentations (see, e.g., [5]). Thus, we
will have to deal with systems with smaller number of particles, 1 � n < N.
The respective objects, viz., points in Z

nd, n < N, are still denoted by boldface
letters: x ∈ Z

nd, y ∈ Z
nd, etc.

Next, x j = (x(1)

j , . . . , x(d)

j

)
and y j = (y(1)

j , . . . , y(d)

j

)
stand for the positions of

individual particles in Z
d, j = 1, . . . , N, and ‖ · ‖ denotes the sup-norm: for v =

(v1, . . . , vN) ∈ R
d × · · · × R

d = R
Nd,

‖v‖ = max
j=1,2

‖v j‖, (1.2)
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where, for v = (v(1), . . . , v(d)) ∈ R
d,

‖v‖ = max
i=1,...,d

∣∣v(i)
∣∣ . (1.3)

We will consider the distance on R
Nd, Z

Nd and R
d, Z

d generated by the norm
‖ · ‖.

Throughout this paper, the random external potential V(x; ω), x ∈ Z
d, is

assumed to be real IID, with a common CDF FV on R. The condition on FV

guaranteeing the validity of our results is as follows:

sup
ε∈(0,1)

[
1

εA
sup
a∈R

(
FV(a + ε) − FV(a)

)]
< +∞, (1.4)

for some A > 0. In other words, the marginal distribution of the random
potential is Hölder-continuous.1 Clearly, this does not require the absolute
continuity of FV .

Parameter g ∈ R is traditionally called the coupling, or amplitude, constant.
The interaction energy function U is assumed to be of the form

U(x) =
∑

1� j1< j2�N

Φ
(
x j1, x j2

)
, x = (x1, . . . , xN) ∈ Z

Nd, (1.5)

where function Φ : Z
d × Z

d → R (the two-body interaction potential) satisfies
the following properties.

(i) Φ is a bounded symmetric function:

sup
[|Φ (x, x′) | : x, x′ ∈ Z

d]<+∞, Φ
(
x, x′)=Φ

(
x′, x

)
, x, x′ ∈ Z

d.

(1.6)

(ii) Φ has a finite range:

Φ
(
x, x′) = 0, if ‖x − x′‖ > r0, (1.7)

where r0 ∈ [0, +∞) is a given value.

It is then obvious that function U : Z
Nd → R is symmetric under any

permutation of positions x j: U(x) = U(Sσ x). Here σ is an arbitrary element
of the symmetric group SN , and, given x = (x1, . . . , xN) ∈ Z

Nd,

Sσ x = (xσ(1), . . . , xσ(N)

)
.

The same is true for function W (see Eq. 1.1).
We consider binary interaction potentials in order not to make our notations

excessively cumbersome. The reader will see that, actually, more general
bounded short-range many-body interactions can be treated in the same way.
The symmetry does not play an important role, but is convenient technically
(and natural from the physical point of view).

1One can easily show that the main result of this paper remains valid for log-Hölder continuous
CDF Fv , satisfying |FV(a + ε) − FV(a)| � C ln−A |ε|−1 with A > 0 large enough.
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Throughout the paper, P stands for the joint probability distribution of RVs
{V(x; ω), x ∈ Z

d}. The main assertion of this paper is

Theorem 1 Consider the random Hamiltonian H(N)(ω) given by Eq. 1.1. Sup-
pose that U satisfies conditions (1.4) and (1.5), and the random potential
{V(x; ω), x ∈ Z

d} is IID obeying Eq. 1.3. Then there exists g∗ ∈ (0, +∞) such
that for any g with |g| � g∗, the spectrum of operator H(N)(ω) is P-a.s. pure
point. Furthermore, there exists a nonrandom constant m+ = m+(g) > 0 such
that all eigenfunctions Ψ j(x; ω) of H(N)(ω) admit an exponential bound:

|Ψ j(x; ω)| � Cj(ω) e−m+‖x‖. (1.8)

The assertion of Theorem 1 can also be stated in the form where ∀ given
m+ > 0, ∃ g∗ = g∗(m+) ∈ (0, +∞) such that ∀ g with |g| � g∗, the eigenfunc-
tions Ψ j(x; ω) of H(N)(ω) admit exponential bound (1.6).

Remarks

1. The threshold value g∗ in Theorem 1 depends on N: g∗ = g∗(N). (It also
depends on FV and Φ.) The important question is how g∗ grows with N.
We plan to address this problem in a separate paper.

2. It suffices to prove Theorem 1 for any bounded interval I ⊂ R of length
� δ0 with a given, suitably chosen δ0 > 0. This is convenient (albeit not
crucial) in some arguments used below.

The conditions of Theorem 1 are assumed throughout the paper. As was
said earlier, the Proof of Theorem 1 uses mainly MSA, in its N-particle version.
The MSA scheme for N particles does not differ in principle from that for two
particles; for that reason, we will often refer to paper [7].

Most of the time we work with finite-volume approximation operators

H(N)

Λ
(N)

L (u)

(
= H(N)

Λ
(N)

L (u)
(ω)
)

given by

H(N)

Λ
(N)

L (u)
= H(N) �

Λ
(N)

L (u)
+ Dirichlet boundary conditions on ∂Λ

(N)

L (u) (1.9)

and acting on vectors φ ∈ C
Λ

(N)

L (u) by

H(N)

Λ
(N)

L (u)
φ(x) = ∑

y∈Λ
(N)

L (u):
‖y−x‖=1

φ(y) + [U(x) + gW(x; ω)
]
φ(x),

(1.10)

with the external N-particle random potential W(x; ω) as in Eq. 1.1. Here and
below, Λ

(N)

L (u) stands for an ‘N-particle lattice box’ (a box, for short) of size L
around u = (u1, . . . , uN), where u j = (u(1)

j , . . . , u(d)

j ) ∈ Z
d:

Λ
(N)

L (u) = N×
j=1

ΛL
(
u j
)

(1.11)
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where ΛL(u j) is a ‘single-particle box’ around u j =
(

u1)

j , . . . , ud)

j

)
∈ Z

d:

ΛL
(
u j
) =

( d×
i=1

[
u(i)

j − L/2, u(i)
j + L/2

])
∩ Z

d. (1.12)

For a box Λ
(N)

L (u) as in Eq. 1.11, we will also use the notation:


 jΛ
(N)

L (u) = ΛL
(
u j
)

and


Λ
(N)

L (u) = ∪N
j=1
 jΛ

(N)

L (u); (1.13)

set ΠΛ
(N)

L (u) ⊂ Z
d describes the single-particle ‘base’ of Λ

(N)

L (u).
Next, ∂Λ

(N)

L (u) in Eq. 1.7 stands for the interior boundary (or briefly, the
boundary) of box Λ

(N)

L (u): ∂Λ
(N)

L (u) is formed by points y ∈ Λ
(N)

L (u) such that
∃ a site v ∈ (ZNd

) \ Λ
(N)

L (u) with ‖y − v‖ = 1. These definitions remain valid if
we replace N with n = 1, . . . , N − 1.

As follows from Eqs. 1.7, 1.8, H(N)

Λ
(N)

L (u)
is a Hermitian operator in the Hilbert

space �2(Λ
(N)

L (u)). In fact, the approximation (1.7) can be used for any finite
subset Λ(N) ⊂ Z

Nd of cardinality |Λ(N)| and with boundary ∂Λ(N), producing
Hermitian operator H(N)

Λ
(N) in �2(Λ

(N)).

Hamiltonian H(N) and its approximants H(N)

Λ
(N) admit the permutation sym-

metry. Namely, let Sσ be the unitary operator in �2(Z
Nd) induced by map Sσ :

Sσφ(x) = φ(Sσ x). (1.14)

Then S−1
σ H(N)Sσ = H(N) and S−1

σ H(N)

Λ
(N)Sσ = H(N)

SσΛ
(N) . This implies, in

particular, that for any finite Λ(N) ⊂ Z
Nd, the eigenvalues of operators

H(N)

Λ
(N) and H(N)

SσΛ
(N) are identical.

Like its two-particle counterpart (see [6, 7]), the N-particle MSA scheme
involves a number of technical parameters borrowed from the single-particle
MSA; see [8]. Following [8] and [6, 7], given a number α ∈ (1, 2) and starting
with L0 � 2 and m0 > 0, we define an increasing positive sequence Lk:

Lk = Lαk

0 , k � 1, (1.15)

and a decreasing positive sequence mk (depending on a positive number γ):

mk = m0

k∏
j=1

(
1 − γL−1/2

k

)
, k � 1. (1.16)

In fact, it suffices to set α = 3/2, albeit we will use the symbolic form of
parameter α instead of its value: this makes our notations less cumbersome.
Besides, it will make our notation agreed with that of [8].

We will also make use of parameters

p = p(N, g) > d and q = q(N, p(N, g)) > p, (1.17)
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varying with the number of particles N. The roles of parameters p and q (and
the choice of their values) have been discussed in [7]: they appear systemati-
cally in the exponents of power-law bounds for probabilities of “unwanted”,
or “unlikely” events defined in terms of finite-volume Hamiltonians H(N)

Λ
.

These bounds also depend on d, α and γ (which could be added to the list
of arguments for p and q) and are specified, for a given value of N, recursively,
depending on the values {p(n) and q(n, p(n)) for n-particle systems, where
n = 1, . . . , N − 1}. In the course of presentation, it will be made clear (and
used in various places) that, for any N � 1,

p(n, g), q(n, g) → +∞ as |g| → ∞, n = 1, . . . , N. (1.18)

Note that sequence mk in Eq. 1.12 is indeed positive, and the limit lim
k→∞

mk �
m0/2 when L0 is sufficiently large. (A similar observation was, in fact, made in
the Appendix in [8].) We will also assume that L0 > r0.

The single-particle MSA scheme was used in [8] to check, for IID po-
tentials, decay properties of the Green’s functions (GFs) for single-particle
Hamiltonians with IID external potentials. As was said before, for a two-
particle model, the MSA scheme was established in [6, 7]. In this paper we
adopt a similar strategy for the N-particle model. Here, the GFs in a box
Λ

(N)

L (u) are defined by:

G(N)

Λ
(N)

L (u)
(E; x, y) =

〈(
H(N)

Λ
(N)

L (u)
− E

)−1

δx, δy

〉
, x, y ∈ Λ

(N)

L (u), (1.19)

where δx(v) is the lattice delta-function and 〈·, ·〉 stands for the scalar product
in �2(Λ

(N)

L (u)).

Definition 1 Fix E ∈ R and m > 0. An N-particle box Λ
(N)

L (u) is said to be
(E, m)-non-singular (in short: (E, m)-NS) if the GFs G(N)

Λ
(N)

L (u)
(E; u, u′) defined

by Eq. 1.15 for the Hamiltonian H(N)

Λ
(N)

L (u)
from Eq. 1.8 satisfy

max
y∈∂Λ

(N)

L (u)

∣∣∣∣G(N)

Λ
(N)

L (u)
(E; u, y)

∣∣∣∣ � e−mL. (1.20)

Otherwise, it is called (E, m)-singular (or (E, m)-S).
A similar concept can be introduced for any finite set Λ(N) ⊂ Z

Nd.

Definition 2 Let n be a positive integer and J be a non-empty subset of
{1, . . . , n}. We say that box Λ

(n)

L (y) is J -separable from a box Λ
(n)

L (x) (or,
equivalently, a point y ∈ Z

d is called (J , L)-separable from a point x) if
⎛
⎝⋃

j∈J

 jΛ

(n)

L (y)

⎞
⎠ ∩

⎛
⎝⋃

i �∈J

iΛ

(n)

L (y) ∪ 
Λ
(n)

L (x)

⎞
⎠ = ∅. (1.21)
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A pair of boxes Λ
(n)

L (x), Λ
(n)

L (y) is said to be separable (or, equivalently, a pair
of points x, y ∈ Z

nd is called L-separable) if, for some J ⊆ {1, . . . , n}, either
Λ

(n)

L (y) is J -separable from a box Λ
(n)

L (x), or Λ
(n)

L (x) is J -separable from a box
Λ

(n)

L (y).

The notion of separability of boxes is designed so as to enable us to establish
Wegner–Stollmann type bounds2 (cf. [5, 12, 13]); see Eqs. 2.2, 2.3.

In Lemma 1 we give a geometrical upper bound for the set of points y which
are not separable from a given point x.

Lemma 1 Given an n � 2, let x ∈ Z
nd be an n-particle configuration. For

any L > 1, there exists a finite collection of n-particle boxes ΛL̃(l) (̃x(l)), l =
1, . . . , K(x, n), K(x, n) � K̂(n) < ∞, of sides L̃(l) � 5nL such that if a config-
uration y ∈ Z

nd satisfies

y �∈
K(x,n)⋃
�=1

Λ̃
(l)

(1.22)

then the boxes Λ
(n)

L (x) and Λ
(n)

L (y) are separable.

The Proof of Lemma 1 is given in Appendix A.
The following Theorem 2 is completely analogous to Theorem 2.3 in [8]

and to Theorem 2 in [6], and so is its proof, which we omit. The reader can
check, by inspecting the proofs in the single-particle case [8] and in the two-
particle case [6] that the only modification which causes concern is the choice
of intermediate constants, depending on N. However, the core argument of
the proof remains unchanged.

Theorem 2 Let I ⊆ R be a bounded interval. Assume that for some m0 > 0 and
L0/2 > 1, lim

k→∞
mk � m0/2, and for any k � 0 the following properties hold:

(DS.k, I, N)

If two boxes Λ
(N)

Lk
(u), Λ

(N)

Lk
(v) are separable, then

P

{
∀ E ∈ I : Λ

(N)

Lk
(u) or Λ

(N)

Lk
(v) is (mk, E)−NS

}
� 1 − L−2p(N)

k .

(1.23)

Here Lk and mk are defined in Eqs. 1.11, 1.12, with p, α and γ satisfying
Eq. 1.14. Then, for |g| large enough, with probability one, the spectrum of
operator H(N)(ω) in I is pure point. Furthermore, there exists a constant m+ �

2For random potentials admitting a (bounded) marginal probability density, W. Kirsch has proved
an analog of Eq. 2.2, as well as the existence of the DoS for multi-particle systems.
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m0/2 such that all eigenfunctions  j(x; ω) of H(N)(ω) with eigenvalues E j(ω) ∈
I decay exponentially fast at infinity, with the effective mass m+:

| j(x; ω)| � C j(ω) e−m+‖x‖. (1.24)

In future, the eigenvectors of finite-volume Hamiltonians appearing in
arguments and calculations, will be assumed normalised.

We stress that it is the property (DS.k, I, N) encapsulating decay of the
GFs which enables the N-particle MSA scheme to work. (Here and below, DS
stands for ‘double singularity’).

Clearly, Theorem 1.1 would be proved, once the validity of property
(DS.k, I, N) is established for all k � 0.

Our strategy, as indicated in the title of this paper and mentioned earlier
in this section, is an induction on the number of particles N � 1. The base of
this induction had been established earlier, starting from papers [8–10], with
the help of the MSA, and also in [1, 2], in a different way, with the help of the
FMM. This allows us to use results of the single-particle localisation theory.
We show in this paper that, assuming a certain number of facts established
for systems with n = 1, . . . , N − 1 particles, one can establish similar facts for
N-particle systems. Once these facts, mostly concerning the decay properties
of Green’s functions in finite boxes, are established for N-particle systems,
they imply, in a fairly standard way (essentially, in the same way as in the
single-particle and in the two-particle [7] theories) the spectral localization
for N-particle systems. So, according to this plan, we assume established
all necessary properties of n-particle systems, 1 � n � N − 1, and use them
whenever necessary. Of course, these properties have to be re-established for
n = N. When appropriate, we discuss technical details of proofs in previous
works, where the required properties have been proved for n = 1.

In other words, our paper is organised as a proof of the induction step from
N − 1 to N particles. Within this induction step, we use another inductive
scheme—the MSA—where some properties of Green’s functions are proved
first at an initial scale L0, and then recursively derived for N-particle boxes of
sizes Lk, k � 1.

The main property that we have to verify for a given N and for all Lk,
k � 0, is (DS.k, I, N). Further, the main technical parameter is the exponent
p = p(N) = p(N, g) figuring in the RHS of (DS.k, I, N). At the initial step
of induction in N, we use an important fact from the single-particle theory
[8]: one can guarantee any (arbitrarily large) value p(1, g), provided that |g|
is large enough. Cf. Eq. 1.14. Then we show that a similar property holds for
any N and for k = 0, i.e., for the scale L0 (cf. Theorem 3). Therefore, in our
double induction scheme (on N and, for a given N, on k), we require |g| to be
sufficiently large so as to guarantee:

(i) property (DS.k, I, n) for all k � 0 and for n = 1, . . . , N − 1 (this property
is defined verbatim, following Eq. 1.20 mutatis mutandis);

(ii) property (DS.k, I, N) for k = 0.
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Parameter q = q(N) = q(N, g) is controlled via Wegner–Stollmann type
bounds (WS1.n), (WS2.n) in Eqs. 2.2, 2.3, which are proved for all scales Lk at
once, without induction in k.

2 The N-Particle MSA Scheme

In view of Theorem 2, our aim is to check property (DS.k, I, N) in
Eq. 1.20. We now outline the N-particle MSA which is used for this purpose.
In both single- and N-particle versions, the MSA scheme is an elaborate
scale induction in k dealing with GFs G

Λ
(N)

Lk
(u)

= G(N)

Λ
(N)

Lk
(u)

and involving several

mutually related parameters; some of them have been used in Sections 1 and 2.
For a detailed discussion of the role of each parameter, see [7].

We will focus in the rest of the paper on the aforementioned scale induction
in k, along sequences {(Lk, mk)} outlined in Eqs. 1.11, 1.12. Consequently,
in some definitions below we refer to the particle number parameter n � 1,
whereas in other definitions - where we want to stress the passage from N − 1
to N - we will use the capital letter.

Definition 3 Given n � 1, E ∈ R, v ∈ Z
nd and L � 2, we call the n-particle box

Λ
(n)

L (v) E-resonant (briefly: E-R) if the spectrum of the Hamiltonian H(n)

Λ
(n)

L (v)

satisfies

dist
[

E, spec
(

H(n)

Λ
(n)

L (v)

)]
< e−Lβ

, where β = 1/2. (2.1)

Box Λ
(n)

L (v) is called E-completely non-resonant (briefly: E-CNR) if it is E-NR
and does not contain any E-R box of size � L1/α .

Throughout this paper, we use parameter β instead of its value, 1/2. As
with α = 3/2, this may be helpful to readers familiar with [8] and make our
notations less cumbersome.

Given n � 1 and L0 � 2, introduce the following properties (WS1.n) and
(WS2.n) of random Hamiltonians H(n)

Λ
(n)

l

, l � L0.

(WS1.n) ∀ l� L0, box Λ
(n)

l (x) and E∈R: P

{
Λ

(n)

l (x) is not E-CNR
}
< l−q.

(2.2)

(WS2.n)
∀ l � L0 and separable boxes Λ

(n)
� (x) and Λ

(n)
� (y),

P

{
∃ E ∈ R : neither Λ

(n)

l (x) nor Λ
(n)

l (y) is E−CNR
}
< l−q.

(2.3)

Here q = q(n) is the parameter mentioned in Eqs. 1.13, 1.14.
As we already said, the initial step of the N-particle MSA scheme con-

sists in establishing properties (S.0, I, N) and (DS.0, I, N); see Eqs. 2.4
and 1.20. The inductive step of the N-particle MSA consists in deducing
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property (DS.k + 1, I, N) from property (DS.k, I, N); again see Eq. 1.20.
Both the initial and the inductive step will be done with the assistance of
properties (WS1.n) and/or (WS2.n), n = 1, . . . , N, which have to be proved
independently of the scale induction. In our context, properties (WS1.n) and
(WS2.n) have been established in [6], Theorems 1, 2. (Despite the fact that
properties (WS1.n) and (WS2.n) had been stated [6] for n = 2, their proof is
automatically extended to the case of a general n.) A bound similar to (WS1.n)
was independently proved by Kirsch [11]. The assumption of independence of
potential V can be relaxed; see [4]. For reader’s convenience we repeat the
corresponding assertion from [6]:

Lemma 2 Under the above assumptions on {V(x; ω)} and U (see Eqs. 1.3–1.5),
properties (WS1.n), (WS2.n) hold true ∀ positive integer n.

Let I ⊆ R be an interval. Given m0 > 0 and L0 � 2, consider property
(S.0, I, N) :

(S.0, I, N) ∀ x∈Z
Nd, P

{
∃ E∈ I : Λ

(N)

L0
(x) is (E, m0)−S

}
< L−2p

0 . (2.4)

Here p = p(N) is the parameter mentioned in Eqs. 1.13, 1.14.
The initial MSA step is summarised in the Theorem 3 below. It is completely

analogous to Proposition A.1.2 in [8], and so is its proof. Note as well that
multi-particle analogs of Propositions A.1.1 and A.1.3 from [8] can also be
proved in the same way as in [8]. The reason for that is that the multi-particle
structure of the external potential W(x; ω) and the presence of a bounded
interaction potential U(x) (as well as the form of U(x) in Eq. 1.4) are virtually
irrelevant for these statements.

Theorem 3 ∀ given m0 and L0 � 2 and ∀ bounded interval I ⊂ R, there exists
g∗

0 = g∗
0(N, m0, L0, I) ∈ (0, +∞) such that for |g| � g∗

0:

(A) Properties (S.0, I, N) and (DS.0, I, N) hold true.
(B) Moreover, there exists a function g̃ : p̃ ∈ (d, +∞) �→ g̃( p̃) ∈ [g∗

0, +∞)

such that if |g| � g̃( p̃), then Eq. 2.4 is satisfied with p = p̃. Equivalently,
there exists a function p(N, g) of parameter g ∈ [g∗

0, +∞) (referred to in
Eqs. 1.13, 1.14) such that p(N, g) → ∞ as |g| → ∞ and Eq. 2.4 is satisfied
with p = p(N, g).

To complete the inductive MSA step, we will prove

Theorem 4 ∀ given m0 > 0, there exist g∗
1 ∈ (0, +∞) and L∗

1 ∈ (0, +∞) such
that the following statement holds. Suppose that |g| � g∗

1 and L0 � L∗
1.

Then, ∀ k = 0, 1, . . . and ∀ interval I ⊆ R, property (DS.k, I, N) implies
(DS.k + 1, I, N).
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The Proof of Theorem 4 occupies the rest of the paper. Before we proceed
further, let us repeat that the property (DS.k, I, N) for ∀ k � 0 and ∀ unit
interval I ⊂ R, follows directly from Theorems 3 and 4.

To deduce property (DS.k + 1, I, N) from (DS.k, I, N), we introduce

Definition 4 Given R > 0, consider the following set in Z
Nd:

DR =
{

x = (x1, . . . , xN) ∈ Z
Nd : max

1� j1, j2�N
‖x j1 − x j2‖ � NR

}
(2.5)

It is plain that, with R = r0 + 2L, if u is not in DR and x is in �L(u), then there
is a subset J of {1, . . . , N} with 1 � card J < N and

min
j1∈J , j2 �∈J

‖x j1 − x j2‖ > r0.

An N-particle box Λ
(N)

L (u) is called fully interactive when Λ
(N)

L (u) ∩ Dr0 �= ∅,
and partially interactive if Λ

(N)

L (u) ∩ Dr0 = ∅. For brevity, we use the terms an
FI-box and a PI-box, respectively.

The procedure of deducing property (DS.k + 1, I, N) from (DS.k, I, N) is
done here separately for the following three cases.

(I) Both Λ
(N)

Lk+1
(x) and Λ

(N)

Lk+1
(y) are PI-boxes.

(II) Both Λ
(N)

Lk+1
(x) and Λ

(N)

Lk+1
(y) are FI-boxes.

(III) One of the boxes is FI, while the other is PI.

These three cases are treated in Sections 3, 4 and 5, respectively. The end of
Section 5 will mark the end of the Proof of Theorem 4. We repeat that all cases
require the use of property (WS1.N) and/or (WS2.N).

3 Case I: Partially Interactive Pairs of Singular Boxes

In this section, we aim to derive property (DS.k + 1, I, N) for a pair of
partially interactive and separable boxes Λ

(N)

Lk+1
(x), Λ

(N)

Lk+1
(y). Recall, we are

allowed to assume property (DS.k, I, N) for every pair of separable boxes
Λ

(N)

Lk
(̃x), Λ

(N)

Lk
(̃y), where x, y, x̃, ỹ ∈ Z

Nd. In fact, we will be able to establish

property (DS.k + 1, I, N) for partially interactive separable boxes Λ
(N)

Lk+1
(x),

Λ
(N)

Lk+1
(y) directly, without referring to (DS.k, I, N). (However, in cases (II)

and (III) such a reference will be needed.)
Let Λ

(N)

Lk+1
(u) be an PI-box and write u = (u1, . . . , uN) as a pair (u′, u′′)

where J is a non-empty subset of {1, . . . , N} figuring in Definition 4, and
u′ = uJ ∈ Z

J and u′′ = uJ c ∈ Z
J c

are the corresponding sub-configurations in
u: u′ = (u j, j ∈ J ) and u′′ = (u j, j �∈ J ). Set: n′ = card J and n′′ = N − n′. It
is convenient to represent Λ

(N)

L (u) as the Cartesian product

Λ
(N)

Lk+1
(u) = Λ

(n′)
Lk+1

(
u′)× Λ

(n′′)
Lk+1

(
u′′)
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and write x = (x′, x′′) in the same fashion as (u′, u′′). Correspondingly, the
Hamiltonian H(N)

Λ
(N)

Lk+1
(u)

can be written in the form

Hφ(x) =
∑

y∈Λ
(N)

Lk+1
(u):

‖y−x‖=1

φ(y) + [U (x′)+ gW
(
x′; ω

)+ U
(
x′′)+ gW

(
x′′; ω

)]
φ (x) ,

(3.1)
or, algebraically,

H(N)

Λ
(N)

Lk+1
(u)

= H(n′)
1;Λ(N)

Lk+1(u′)
⊗ I + I ⊗ H(n′′)

2;Λ(N)

Lk+1(u′′)
. (3.2)

Here I is the identity operator on the complementary variable.
Due to the symmetry of terms U and W, in the forthcoming argument we

can assume, without loss of generality, that

J = {1, . . . , n′}, J c = {n′ + 1, . . . , N}.

Definition 5 Let be n ∈ {1, . . . , N − 1}, k � 0 and u′ = (u1, . . . , un) ∈ Z
nd.

Given a bounded interval I ⊂ R and m > 0, the n-particle box Λ
(n)

Lk
(u′)

is called m-tunneling (m-T, for short) if ∃ E ∈ I and disjoint n-particle
boxes Λ

(n)

Lk−1
(v1), Λ

(n)

Lk−1
(v2) ⊂ Λ

(n)

Lk
(u′) which are (E, m)-S. An N-particle box

of the form Λ
(N)

Lk
(u) = Λ

(n′)
Lk−1

(u′) × Λ
(n′′)
Lk−1

(u′′), with n′ + n′′ = N, u = (u′, u′′),
u′ = (u1, . . . , un′), u′′ = (un′+1, . . . , uN), is called (m, n′, n′′)-partially tunelling
( (m, n′, n′′)-PT) if either Λ

(n′
Lk−1

(u′) or Λ
(n′′)
Lk−1

(u′′) is m-T. Otherwise, it is called

(m, n′, n′′)-NPT. Finally, a box Λ
(N)

Lk
(u) is called m-PT if it is (m, n′, n′′)-PT for

some n′, n′′ � 1 with n′ + n′′ = N, and m-NPT, otherwise.

The following statement will be sometimes referred to as the NITRoNS
property of PI-boxes: Non-Interacting boxes are Tunneling, Resonant or (oth-
erwise) Non-Singular. Cf. [7].

Lemma 3 Consider an N-particle box Λ
(N)

Lk
(u) of the form Λ

(n′)
Lk

(u′) × Λ
(n′′)
Lk

(u′′),
where u = (u′, u′′), u′ = (u1, . . . , un′) ∈ Z

n′d, u′′ = (un′+1, . . . , uN) ∈ Z
n′′d. As-

sume that ∀ j1, j2 with 1 � j1 � n′, n′ + 1 � j2 � N, we have ‖u j1 − u j2‖ > r0,
so that Λ

(N)

Lk
(u) is PI. Assume also that Λ

(N)

Lk
(u) is E-CNR and m-NPT. Let

{
(λa, ϕa) , a = 1, . . . , |Λ(n′)

Lk

(
u′) |

}
,

{
(μb , ψb ) , b = 1, . . . , |Λ(n′′)

Lk

(
u′′) |

}
,

be the eigenvalues and eigenvectors of H(n′)

Λ
(n′)
Lk

(u′)
and H(n′′)

Λ
(n′′)
Lk

(u′′)
, respectively. Set

m′ = m
(

1 − L−(1−β)

k − L−1
k ln LN(d−1)

k

)
.

Then we have

max
1�a�|Λ(n′)

Lk
(u′)|

max
v′′∈∂Λ

(n′′)
Lk

(u′′)
|G(n′′) (u′′, v′′; E − λa

) | � e−m′ Lk
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and, similarly,

max
1�b�|Λ(n′′)

Lk
(u′′)|

max
v′∈∂Λ

(n′)
Lk

(u′)
|G(n′) (u′, v′; E − μb

) | � e−m′ Lk .

Moreover, this implies that the N-particle box Λ
(N)

Lk
(u) is (E, m′)-NS.

The Proof of Lemma 3 is given in Appendix B. (It is fairly straightforward
and based on the representations (7.1)–(7.3).)

Lemma 4 Let n, k be positive integers and suppose that (DS.k, I, n) holds true.
Then

P

{
Λ

(n)

Lk
(y) is m-PT

}
� 1

2
|Λ(n)

Lk(y)|2 L−2p(n)

k−1 = 1

2
L

− 2p(n)

α
+2d

k . (3.3)

Here p(n) is the parameter figuring in Eqs. 1.13, 1.14.

Proof Combine (DS.k, I, n) with a straightforward (albeit not sharp) up-
per bound 1

2 |Λ(n)

Lk(y)|2 for the number of pairs of centers v1, v2 of boxes

Λ
(n)

Lk−1
(v1), Λ

(n)

Lk−1
(v2) ⊂ Λ

(n)

Lk
(y). ��

In Lemma 5 we assume for simplicity that a PI box Λ
(N)

Lk
(y) corresponds to an

N-particle system that splits into two subsystems, with particles 1, . . . , n′ and
n′ + 1, . . . , n′ + n′′ = N, respectively, and the two subsystems do not interact
with each other.

Lemma 5 Let Λ
(N)

Lk
(y) be an N-particle PI box, with

Λ
(N)

Lk
(y) = Λ

(n′)
Lk

(
y′)× Λ

(n′′)
Lk

(
y′′) ,

where n′, n′′ �1, n′+n′′ = N; y=(y′, y′′), y′=(y1, . . . yn′) ∈ Z
n′d, y′′ =

(yn′+1, . . . yN) ∈ Z
n′′d, and

min
1�i�n′ min

n′+1� j�N
‖yi − y j‖ > r0.

Then for any given value p(N) > 0 there exists g∗
2 ∈ (0, +∞) such that if |g| �

g∗
2, then

P

{
Λ

(N)

Lk
(y) is m-PT

}
� 1

4
L−2p(N)

k . (3.4)

Proof By Definition 5, box Λ
(N)

Lk
(y) is m-PT iff at least one of constituent

boxes Λ
(n′)
Lk

(y′), Λ
(n′′)
Lk

(y′′) is m-T. By Lemma 4, inequality (3.3) holds for both
n = n′ and n = n′′. Since ∀ n < N p(n, g) → ∞, this leads to the assertion of
Lemma 5. ��
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Remark The assertion of Lemma 5 remains true for a general type of interac-
tion (with appropriate modifications), but is simpler and more transparent in
the case of two-body interaction of the form (1.4). This explains our choice of
the interaction energy function U(x). Besides, in applications to the electron
transport problems, such a choice is perfectly justified: here, a commonly
accepted form of interaction is two-body Coulomb.

We repeat that, according to the structure of the MSA scheme, for any given
number of particles n = 1, . . . , N, any (i.e., arbitrarily large) values p(n), q(n)

can be used, provided that |g| is sufficiently large. In other words, parameters
p(n), q(n) follow Eq. 1.14. Indeed, for p(n) this can be guaranteed, by direct
inspection, for the boxes of initial size L0. Cf. Appendix in [8]. The same
property is then reproduced inductively at any scale Lk, k � 1. As to q(n),
one can actually obtain a stronger bound:

P

{
Λ

(N)

Lk
(u) is E-R

}
� e−Lβ

k � L−s
k

for any a priori given s ∈ (0, ∞) including s = q(N), provided that β > 0 and
L0 (hence, any Lk) is large enough.

Lemma 6 Assume that property (WS2.N) and Eqs. 3.3, 3.4 hold true. Suppose
also that |g| is sufficiently large, so that for all n = 1, . . . , N − 1 the bound (3.3)
holds with p(n) � 2p(N) + 2d, and that L0 is sufficiently large, so that for any
k � 0 we have

L
− 2p(n)

α
+2d

k � 1

4
L−2p(N)

k .

Then, ∀ interval I ⊆ R, ∀ integer k � 0 and ∀ pair of separable PI N-particle
boxes Λ

(N)

Lk
(x) and Λ

(N)

Lk
(y),

P

{
∃ E ∈ I : Λ

(N)

Lk
(x) and Λ

(N)

Lk
(y) are (E, mk)−S

}
� 1

2
L−2p(N)

k + L−q(N)

k .

(3.5)
Here p(N), q(N) are the parameters from Eq. 1.13.

Proof of Lemma 6 By virtue of Lemma 3 (NITRoNS property),

P

{
∃ E ∈ I : Λ

(N)

Lk
(x) and Λ

(N)

Lk
(y) are (E, mk)−S

}

� P

{
Λ

(N)

Lk
(x) or Λ

(N)

Lk
(y) is mk−PT

}
+

+ P

{
∃ E ∈ I : neither Λ

(N)

Lk
(x) nor Λ

(N)

Lk
(y) is E−CNR

}
. (3.6)

Now the assertion of Lemma 6 follows from Eqs. 3.6, 2.3 and Lemma 5. ��

Remark It is readily seen that the RHS of Eq. 3.5 is bounded by L−2p(N)

k ,
provided that L−q(N)

k < L−2p(N)

k /2, i.e., for q(N) large enough.
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An immediate corollary of Lemma 6 is the following

Theorem 5 ∀ given interval I ⊆ R and k = 0, 1, . . ., property (DS.k, I, N)
holds for all pairs of separable PI-boxes Λ

(N)

Lk
(x), Λ

(N)

Lk
(y).

Summarising the above argument: as was said earlier, verifying property
(DS.k + 1, I, N) for a pair of N-particle PI-boxes did not force us to assume
(DS.k, I, N). However, in the course of deriving (DS.k + 1, I, N) for PI-
boxes we used property (WS2.N).

This completes the analysis of the case (I) where both boxes Λ
(N)

Lk+1
(x) and

Λ
(N)

Lk+1
(y) are PI.

For future use, we also give

Lemma 7 Consider a N-particle box Λ
(N)

Lk+1
(u). Let M = M(Λ

(N)

Lk+1
(u); E) be

the maximal number of (E, mk)-S, pair-wise separable PI-boxes Λ
(N)

Lk
(u(l)) ⊂

ΛLk+1(u). The following property holds

P

{
∃E ∈ I : M(Λ

(N)

Lk+1
(u); E) � 2

}
� L2d α

k ·
(

1

2
L−2p′(N−1)

k + L−q(N)

k

)
, (3.7)

where

p′(N − 1, g) := min{p(n, g), 1 � n � N − 1} −→
|g|→∞ + ∞. (3.8)

As before, p(N), q(N) are the parameters from in Eqs. 1.13, 1.14.

Proof of Lemma 6 The number of possible pairs of centres (u(l1), u(l2)), 1 �
l1 < l2 � M, is bounded by L2d

k+1/2, while for a given pair of centres one can
apply Lemma 6. This leads to the assertion of Lemma 7. ��

4 Fully Interactive Pairs of Singular Boxes

The main outcome in case (II) is Theorem 6 placed at the end of this section.
Before we proceed further, let us state a geometric assertion (see Lemma 8
below) which we prove in Section 6.

Lemma 8 Let be n � 1, L > r0 and consider two separable n-particle FI-boxes

Λ
(n)

L (u′) and Λ
(n)

L (u′′), with dist
[
Λ

(n)

L (u′), Λ(n)

L (u′′)
]

> 8L. Then

ΠΛ
(n)

L

(
u′) ∩ ΠΛ

(n)

L

(
u′′) = ∅. (4.1)
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Lemma 8 is used in the Proof of Lemma 9 which, in turn, is important in
establishing Theorem 6. In fact, Lemma 8 is a natural development of Lemma
2.2 in [6]. Let I ⊆ R be an interval. Consider the following assertion

(IS.k.N) :
∀ pair of interactive separable boxes Λ

(N)

Lk
(x) and Λ

(N)

Lk
(y):

P

{
∃ E ∈ I : both Λ

(N)

Lk
(x), Λ

(N)

Lk
(y) are (E, mk)-S

}
� L−2p(N)

k ,

(4.2)
with p(N) as in Eqs. 1.13, 1.14. (This is a particular case of (DS.k, I, N)).

Lemma 9 Given k � 0, assume that property (IS.k.N) holds true. Consider a
box Λ

(N)

Lk+1
(u) and let Ñ(Λ

(N)

Lk+1
(u); E) be the maximal number of (E, mk)-S, pair-

wise separable FI-boxes Λ
(N)

Lk
(u( j)) ⊂ Λ

(N)

Lk+1
(u). Then ∀ � � 1,

P

{
∃ E ∈ I : Ñ(Λ

(N)

Lk+1
(u); E) � 2�

}
� L2�(1+dα)

k · L−2�p(N)

k . (4.3)

Proof of Lemma 9 Suppose ∃ FI-boxes Λ
(N)

Lk
(u(1)), . . ., Λ

(N)

Lk
(u(2n))

⊂ Λ
(N)

Lk+1
(u) such that any two of them are separable. By virtue of Lemma 8, it

is readily seen that

(a) ∀ pair Λ
(N)

Lk
(u(2i−1)), Λ

(N)

Lk
(u(2i)), the respective (random) operators

H(N)

Λ
(N)

Lk
(u(2i−1))

(ω) and H(N)

Λ
(N)

Lk
(u(2i))

(ω) are mutually independent, and so are

their spectra and Green’s functions G(N)

Λ
(N)

Lk
(u(2i−1))

and G(N)

Λ
(N)

Lk
(u(2i))

.

(b) Moreover, the following pairs of operators form an independent family:
(

H(N)

Λ
(N)

Lk
(u(2i−1))

(ω), H(N)

Λ
(N)

Lk
(u(2i))

(ω)

)
, i = 1, . . . , �, (4.4)

Indeed, operator H(N)

Λ
(N)

Lk
(u(i))

, with i ∈ {1, . . . , 2n}, is measurable relative to the

sigma-algebra B(Λ
(N)

Lk
(u(i)) generated by {V(x), x ∈ Π Λ

(N)

Lk
(u(i))}, i = 1, . . . , 2�.

Now, by Lemma 4.2, the sets Π Λ
(N)

Lk
(u(i)), i ∈ {1, . . . , 2�}, are pairwise disjoint,

so that all sigma-algebras B(Λ
(N)

Lk
(u(i)), i ∈ {1, . . . , 2�}, are independent.

Thus, any collection of events A1, . . ., A� related to the corresponding pairs
(

H(N)

Λ
(N)

Lk
(u(2i−1))

, H(N)

Λ
(N)

Lk
(u(2i))

)
, i = 1, . . . , �,

also form an independent family. Now, for i = 1, . . . , � − 1, set

Ai =
{

∃ E ∈ I : Λ
(N)

Lk

(
u(2i+1)

)
and Λ

(N)

Lk

(
u(2i+2)

)
are (E, mk) -S

}
. (4.5)

Then, by virtue of (IS.k.N)(see Eq. 4.3),

P

{
A j

}
� L−2p(N)

k , 0 � j � � − 1, (4.6)
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and by virtue of independence of events A0, . . ., An−1, we obtain

P

⎧⎨
⎩

�−1⋂
j=0

A j

⎫⎬
⎭ =

�−1∏
j=0

P
{
A j
}

�
(

L−2p(N)

k

)�

. (4.7)

To complete the proof, note that the total number of different families of 2�

boxes Λ
(N)

Lk
⊂ Λ

(N)

Lk+1
(u) with required properties is bounded from above by

1

(2�)!
[
2 (Lk/2 + r0 + 1) Ld

k+1

]2� � 1

(2�)!
(
2LkLd

k+1

)2� � L2�(1+dα)

k ,

since their centres must belong to the subset DLk+r0 ∩ Λ
(N)

Lk+1
(u) (see Eq. 2.5).

Recall also that r0 < L0 � Lk ∀ k � 0, by our assumption and by construction.
This yields Lemma 9. ��

Lemma 10 Let K(u, Lk+1; E) be the maximal number of (E, mk)-S, pair-
wise separable boxes Λ

(N)

Lk
(u( j)) ⊂ Λ

(N)

Lk+1
(u) (fully or partially interactive). Then

∀ � � 1,

P { ∃E∈ I : K(u, Lk+1; E)�2�+2 }� L4dα
k · L−2p(N−1)

k +L2�(1+dα)

k · L−2�p(N)

k ,

(4.8)

where p(N − 1) and p(N) are parameters from Eqs. 1.13, 1.14, for the system
with N − 1 and N particles, respectively.

Proof of Lemma 10 Assume that K(u, Lk+1; E) � 2� + 2. Let M(Λ
(N)

Lk+1(u); E)

be as in Lemma 7 and N(Λ
(N)

Lk+1(u); E) as in Lemma 9. Obviously,

K (u, Lk+1; E) � M
(
Λ

(N)

Lk+1(u); E
)

+ N
(
Λ

(N)

Lk+1(u); E
)

.

Then either M(Λ
(N)

Lk+1(u); E) � 2 or N(Λ
(N)

Lk+1(u); E) � 2�. Therefore,

P { ∃E ∈ I : K(u, Lk+1; E) � 2� + 2 }
� P

{
∃E ∈ I : M(Λ

(N)

Lk+1(u); E) � 2
}

+

+ P

{
∃E ∈ I : N(Λ

(N)

Lk+1(u); E) � 2�
}

� L4dα
k · L−2p(N−1)

k + L2�(1+dα)

k · L−2�p(N)

k ,

by virtue of Eqs. 3.8 and 4.3. ��

An elementary calculation now gives rise to the following

Corollary 1 Under assumptions of Lemma 10, with � � 4, p(N − 1) and p(N)

large enough and for L0 large enough, we have, ∀ integer k � 0,

P { ∃E ∈ I : K(u, Lk+1; E) � 2� + 2 } � L−2p(N)−1
k+1 . (4.9)
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Now the Wegner–Stollmann bound (WS2.N) implies

Lemma 11 If N-particle boxes Λ
(N)

Lk+1
(u′), Λ

(N)

Lk+1
(u′′) (fully or partially interac-

tive) are separable, then ∀ L0 > (J + 1)2,

P

{
∀ E ∈ I : either Λ

(N)

Lk+1

(
u′) or Λ

(N)

Lk+1

(
u′′) is (E, J)−CNR

}

� 1 − (J + 1)2L−(q(N)α−1−2α)

k+1 > 1 − L
−(q′(N)−4)
k+1 . (4.10)

Here q(N) is the parameter from Eq. 1.13 and q′(N) := q(N)/α.

The statement of Lemma 12 below is a simple reformulation of Lemma 4.2
from [8], adapted to our notations. Indeed, the reader familiar with the proof
given in [8] can see that the structure of the external potential is irrelevant
to this completely deterministic statement. So it applies directly to our model
with potential energy U(x) + gW(x; ω). For that reason, the Proof of Lemma
12 is omitted.

Lemma 12 Fix an odd positive integer J and suppose that the following proper-
ties are fulfilled:

(i) Λ
(N)

Lk+1
(v) is (E, J)−CNR, and (ii) K

(
Λ

(N)

Lk+1(u); E
)

� J.

Then for sufficiently large L0, box Λ
(N)

Lk+1
(v) is (E, mk+1)-NS with

mk+1 � mk

(
1 − 5J + 6

L1/2
k

)
> m0/2 > 0. (4.11)

Taking into account Corollary 1, we set J = 2� + 1.
Now the main result of this section:

Theorem 6 Fix a bounded interval I ⊂ R. For p(N) large enough there exists
L∗

0 ∈ (0, +∞) such that if L0 � L∗
0 and p(N − 1) is large enough, then, ∀ k � 0,

property (IS.k.N) in Eq. 4.2 implies (IS.k + 1.N) , with the same p(N).

Proof of Theorem 6 Let x, y ∈ Z
Nd and assume that Λ

(N)

Lk+1
(x) and Λ

(N)

Lk+1
(y) are

separable FI-boxes. Consider the following two events:

B =
{
∃ E ∈ I : both Λ

(N)

Lk+1
(x) and Λ

(N)

Lk+1
(y) are (E, mk+1)-S

}
,

and, for a given odd integer J,

R =
{
∃ E ∈ I : neither Λ

(N)

Lk+1
(x) nor Λ

(N)

Lk+1
(y) is (E, J)−CNR

}
.

By virtue of Lemma 11, for L0 � (J + 1)2 and α = 3/2, we have:

P { R } < L−(q′(N)−4)

k+1 , q′(N) := q(N)/α. (4.12)
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Further, P { B } � P { R } + P { B ∩ Rc }, and we know that P { R } � L−q′(N)+4
k+1 .

So, it suffices now to estimate P { B ∩ Rc }. Within the event B ∩ Rc, for any E ∈
I, either Λ

(N)

Lk+1
(x) or Λ

(N)

Lk+1
(y) must be (E, J)-CNR. Without loss of generality,

assume that for some E ∈ I, Λ
(N)

Lk+1
(x) is (E, J)-CNR and (E, mk+1)-S. By

Lemma 12, for such value of E, K(Λ
(N)

Lk+1
(x); E) � J + 1. We see that

B ∩ Rc ⊂
{
∃E ∈ I : K(Λ

(N)

Lk+1
(x); E) � J + 1

}

and, therefore, by Lemma 10, with J = 2� + 2, and Corollary 1,

P
{

B ∩ Rc } � P

{
∃E ∈ I : K(Λ

(N)

Lk+1
(x); E) � J + 1

}
� L−2p(N)

k . (4.13)

��

Remark The integer J figuring throughout Section 4 depends on N, d, and the
choice of parameter p(N). In turn, p(N) is determined by dimension d and the
choice of value � from Lemma 9. In addition, parameter p(N − 1) should be
large enough (as was stated in Theorem 6).

5 Mixed Pairs of Singular N-Particle Boxes

It remains to derive the property (DS.k + 1, I, N) in case (III), i.e., for mixed
pairs of N-particle boxes (where one is FI and the other PI). Here we use
several properties which have been established earlier in this paper for all
scale lengths, namely, (WS1.n), (WS2.n) for n = 1, . . . , N, NITRoNS, and
the inductive assumption (IS.k + 1.N) which we have already derived from
(IS.k.N) in Section 4.

A natural counterpart of Theorem 6 for mixed pairs of boxes is the following

Theorem 7 ∀ given interval I ⊆ R, there exists a constant L∗
1 ∈ (0, +∞) with the

following property. Assume that L0 � L∗
1 and, for a given k � 0, the property

(DS.k, I, N) holds (i) ∀ pair of separable PI-boxes Λ
(N)

Lk
(̃x), Λ

(N)

Lk
(̃y), and (ii) ∀

pair of separable FI-boxes Λ
(N)

Lk
(̃x), Λ

(N)

Lk
(̃y).

Let Λ
(N)

Lk+1
(x), Λ(N)

Lk+1
(y) be a pair of separable boxes, where Λ

(N)

Lk+1
(x) is FI and

Λ
(N)

Lk+1
(y) PI. Then

P

{
∃ E ∈ I : both Λ

(N)

Lk+1
(x), Λ

(N)

Lk+1
(y) are (E, mk+1)−S

}
� L−2p(N)

k+1 . (5.1)
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Proof of Theorem 7 Recall that the Hamiltonian H(N)

Λ
(N)

Lk+1
(y)

is decomposed as

in Eqs. 3.1, 3.2. Consider the following three events:

B =
{
∃ E ∈ I : both Λ

(N)

Lk+1
(x), Λ

(N)

Lk+1
(y) are (E, mk+1)-S

}
,

T =
{

ΛLk+1(y) is m0-PT
}
,

R =
{
∃ E ∈ I : neither Λ

(N)

Lk+1
(x) nor Λ

(N)

Lk+1
(y) is (E, J)-CNR

}
.

Recall that by virtue of Eq. 3.4, we have

P { T } � 1

4
L−2p(N)

k+1 (5.2)

For the event R we have, by virtue of Lemma 11 and inequality (4.13),

P { R } � L−q(N)+2
k+1 ; (5.3)

as before, q(N) is the parameter from Eq. 1.13. Further, P { B } � P { T } +
P { B ∩ Tc } � 1

4 L−2p(N)

k+1 + P { B ∩ Tc }, and we have

P
{

B ∩ Tc } � P { R } + P
{

B ∩ Tc ∩ Rc } � L−q(N)+2
k+1 + P

{
B ∩ Tc ∩ Rc }.

Within the event B ∩ Tc ∩ Rc, either Λ
(N)

Lk+1
(x) or Λ

(N)

Lk+1
(y) is E-CNR. It must

be the FI-box Λ
(N)

Lk+1
(x). Indeed, by NITRoNS (Lemma 3), had box Λ

(N)

Lk+1
(y)

been both E-CNR and m0-NPT, it would have been (E, mk+1)-NS, which is
not allowed within the event B. Thus, the box Λ

(N)

Lk+1
(x) must be E-CNR, but

(E, mk+1)-S:

B ∩ Tc ∩ Rc ⊂ {∃ E ∈ I : Λ
(N)

Lk+1
(x) is (E, mk+1)-S and E-CNR}.

However, applying Lemma 12, we see that
{
∃ E ∈ I : Λ

(N)

Lk+1
(x) is (E, mk+1)-S and E-CNR

}

⊂
{
∃ E ∈ I : K(Λ

(N)

Lk+1
(x); E) � J + 1

}
.

Therefore, with the same values of parameters as in Corollary 1 (J = 2� + 1,
� � 4),

P
{

B ∩ Tc ∩ Rc } � P

{
∃ E ∈ I : K

(
Λ

(N)

Lk+1
(x); E

)
� 2� + 2

}

� 2L−1
k+1 L−2p(N)

k+1 . (5.4)

Finally, we get, with q′(N) := q(N)/α,

P { B } � P { B ∩ T } + P { R } + P
{

B ∩ Tc ∩ Rc }

� 1

2
L−2p(N)

k+1 + L−q′(N)+4
k+1 + 2L−1

k+1 L−2p(N)

k+1 � L−2p(N)

k+1 , (5.5)
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for sufficiently large L0, if we can guarantee, by taking |g| large enough, that
q′(N) > 2p(N) + 5. This completes the Proof of Theorem 7. ��

Remark The Proof of Theorem 7 practically repeats that of Theorem 5.1 from
[7]; the only difference is in specification of constants in the exponents.

Therefore, Theorem 4 is also proven.
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Appendix A

Proof of Lemma 1 Consider two N-particle configurations x and y and intro-
duce the following notion: we shall say that the set of positions {x j, j ∈ J },
J ⊆ {1, . . . , N}, form an R-connected cluster (or simply an R-cluster) iff
the set

⋃
j∈J

ΛR
(
yj
) ⊂ Z

d (6.1)

is connected. Otherwise, this set of particles is called R-disconnected, in which
case it can be decomposed into two or more R-clusters. Now, we proceed as
follows.

(1) Decompose the configuration y into L-clusters (of diameter � 2NL).
(2) To each position yj there corresponds precisely one cluster, denoted by

Γ ( j). Let Y = {Γ ( j) : j ∈ J } stand for the collection of clusters, with
card Y � N.

(3) Consider any of the clusters Γ ( j) ∈ Y. By definition, Γ ( j) is disjoint from
all other clusters:

Γ ( j) ∩ Γ (i) =
{

Γ ( j), if Γ (i) = Γ ( j),
∅, otherwise.

(6.2)

Therefore, for any two distinct clusters Γ ′, Γ ′′ ∈ Y, the respective sigma-
algebras B(Γ ′), B(Γ ′′) are independent.
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(4) Suppose that ∃ j ∈ {1, . . . , N} : Γ ( j) ∩ ΠΛ
(N)

L (x) = ∅. Set

B̄ j(y) := B
(∪Γ (i)�=Γ ( j)Γ (i)

)
.

Then the sigma-algebra B(Γ ( j)) is independent of B(Λ
(N)

L (x)) and of
B̄ j(y):

B (Γ ( j))
∐

B

(
Λ

(N)

L (x)
)

, B(Γ ( j))
∐

B̄ j(y). (6.3)

In other words, the box Λ
(N)

L (y) is separable from Λ
(N)

L (x).
(5) Suppose (4) is wrong, and let’s deduce from the negation of (4) a

necessary condition on possible locations of the configuration y, so as to
show that the number of possible choices is finite. Indeed our hypothesis
reads as follows:

∀ j ∈ {1, . . . , N} Y( j) ∩ ΠΛ
(N)

L (x) �= ∅. (6.4)

Therefore,

∀ j ∈ {1, . . . , N} ∃ i : ‖y j − xi‖ � 4NL + L = (4N + 1)L � 5NL

⇒ ∀ j ∈ {1, . . . , N} y j ∈ ΠΛ
(N)

AL(x), A = A(N) = 5N.

We see that if a configuration y is not separable from x, then every
position y j must belong to one of the boxes ΠiΛ

(N)

AL(x) = ΛAL(xi) ⊂ Z
d.

The total number k of these boxes is bounded by N. There are at most
kN/k! choices of the boxes ΛAL(xi) for the N positions y1, . . . , yN . For
any given choice among J(N) = J(N, K̂) � kN/k! � K̂(N) possibilities,
with K̂(N) < ∞, the point y = (y1, . . . , yN) must belong to the Cartesian
product of N boxes of size AL, i.e. to an Nd-dimensional box of size AL.
The assertion of Lemma 1 now follows. ��

Appendix B: Finite-Volume Localisation Bounds

Here we give the proof of Lemma 3. Recall, we consider operator H(N)

ΛLk (u)

in a box Λ
(N)

Lk
(u). Let Ψ j, j = 1, . . . , |Λ(N)

Lk
|, be its normalised EFs and E j the

respective EVs. Fix j and consider the GFs G(N)(v, y; E j), v, y ∈ Λ(N).

Proof of Lemma 3 Recall that the CNR property implies NR. Observe that
E − λa − μb = (E − λa) − μb . Further, by the hypothesis of the lemma,
Λ

(N)

Lk
(u) is E-CNR. Therefore, for all λa, the n′′-particle box Λ

(n′′)
Lk

(u′′) is

(E − λa)-NR. By the assumption of m-NPT, ∀ E ∈ I box Λ
(n′′)
Lk

(u′′) must not
contain two disjoint (E − λa, m)-S sub-boxes of size Lk−1. Therefore, the MSA
procedure proves that Λ

(n′′)
Lk

(u′′) is (E − λa)-NS, yielding the required upper
bound.
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Let us now prove the second assertion of the lemma. If v = (v′, v′′) ∈
∂Λ

(N)

Lk
(u), then either ‖u′ − v′‖ = Lk, or ‖u′′ − v′′‖ = Lk. In the former case we

can write

G(N)(u, v; E) =
∑

a

ϕa
(
u′)ϕa

(
v′) ∑

b

ψb
(
u′′)ψb

(
v′′)

(E − λa) − μb

=
∑

a

ϕa
(
u′)ϕa

(
v′) G(n′′)

Λ
(n′′)
Lk

(u′′)

(
u′′, v′′; E − λa

)
. (7.1)

Since ‖ϕa‖ = 1, we see that

|G(N) (u, v; E) | �
∣∣∣Λ(n′)

Lk

(
u′)∣∣∣ max

λa

|G(n′′)
Λ

(n′′)
Lk

(u′′)

(
u′′, v′′; E − λa

) |. (7.2)

In the case where ‖u′′ − v′′‖ = L, we can use the representation

G(N) (u, v; E) =
∑

b

ψb
(
u′′)ψb

(
v′′) G(n′)

Λ
(n′)
Lk

(u′)

(
u′, v′; E − μb

)
. (7.3)

��

Now, as was said before, Lemma 4 follows from Lemma 3 combined with
the bounds (DS.k, I, n′), (DS.k, I, n′′), for 1 � n′, n′′ < N.
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