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Abstract We present results on the unique reconstruction of a semi-infinite
Jacobi operator from the spectra of the operator with two different boundary
conditions. This is the discrete analogue of the Borg–Marchenko theorem
for Schrödinger operators on the half-line. Furthermore, we give necessary
and sufficient conditions for two real sequences to be the spectra of a Jacobi
operator with different boundary conditions.
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1 Introduction

In the Hilbert space l2(N) let us single out the dense subset lf in(N) of se-
quences which have a finite number of non-zero elements. Consider the
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operator J defined for every f = { fk}∞k=1 in lf in(N) by means of the recurrence
relation

(J f )k := bk−1 fk−1 + qk fk + bk fk+1 k ∈ N \ {1} (1.1)

(J f )1 := q1 f1 + b1 f2 , (1.2)

where, for every n ∈ N, bn is positive, while qn is real. J is symmetric, therefore
closable, and in the sequel we shall consider the closure of J and denote it by
the same letter.

Notice that we have defined the Jacobi operator J in such a way that
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

q1 b1 0 0 · · ·
b1 q2 b2 0 · · ·
0 b2 q3 b3

0 0 b3 q4
. . .

...
...

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(1.3)

is the matrix representation of J with respect to the canonical basis in l2(N) (we
refer the reader to [2] for a discussion on matrix representation of unbounded
symmetric operators).

It is known that the symmetric operator J has deficiency indices (1, 1) or
(0, 0) [1, Chap. 4, Sec. 1.2] and [23, Corollary 2.9]. In the case (1, 1) we can
always define a linear set D(g) ⊂ dom(J∗) parametrized by g ∈ R ∪ {+∞} such
that

J∗ � D(g) =: J(g)

is a self-adjoint extension of J. Moreover, for any self-adjoint extension (von
Neumann extension) J̃ of J, there exists a g̃ ∈ R ∪ {+∞} such that

J(̃g) = J̃ ,

[25, Lemma 2.20]. We shall show later (see the Appendix) that g defines a
boundary condition at infinity.

To simplify the notation, even in the case of deficiency indices (0, 0), we shall
use J(g) to denote the operator J = J∗. Thus, throughout the paper J(g) stands
either for a self-adjoint extension of the nonself-adjoint operator J, uniquely
determined by g, or for the self-adjoint operator J.

In what follows we shall consider the inverse spectral problem for the self-
adjoint operator J(g).

It turns out that if J �= J∗ (the case of indices (1, 1)), then for all g ∈
R ∪ {+∞} the Jacobi operator J(g) has discrete spectrum with eigenvalues of
multiplicity one, i. e., the spectrum consists of eigenvalues of multiplicity one
that can accumulate only at ±∞, [25, Lemma 2.19]. Throughout this work we
shall always require that the spectrum of J(g), denoted σ(J(g)), be discrete,
which is not an empty assumption only for the case J(g) = J. Notice that the
discreteness of σ(J(g)) implies that J(g) has to be unbounded.

For the Jacobi operators J(g) one can define boundary conditions at
the origin in complete analogy to those of the half-line Sturm–Liouville
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operator (see the Appendix). Different boundary conditions at the origin
define different self-adjoint operators Jh(g), h ∈ R ∪ {+∞}. J0(g) corresponds
to the Dirichlet boundary condition, while the operator J∞(g) has Neumann
boundary condition. If J(g) has discrete spectrum, the same is true for
Jh(g), ∀h ∈ R ∪ {+∞} (for the case of h finite see Section 2 and for h = ∞,
Section 4).

In this work we prove that a Jacobi operator J(g) with discrete spectrum
is uniquely determined by σ(Jh1(g)), σ(Jh2(g)), with h1, h2 ∈ R and h1 �= h2,
and either h1 or h2. If h1, respectively, h2 is given, the reconstruction method
also gives h2, respectively, h1. Saying that J(g) is determined means that we
can recover the matrix (1.3) and the boundary condition g at infinity, in the
case of deficiency indices (1, 1). We will also establish (the precise statement
is in Theorem 3.2) that if two infinite real sequences {λk}k and {μk}k that can
accumulate only at ±∞ satisfy

(a) {λk}k and {μk}k interlace, i. e., between two elements of a sequence there
is one and only one element of the other. Thus, we assume below that
λk < μk < λk+1.

(b) The series
∑

k(μk − λk) converges, so
∑

k

(μk − λk) =: � < ∞ .

By (b) the product
∏
k�=n

μk − λn

λk − λn
is convergent, so define

τ−1
n := μn − λn

�

∏
k�=n

μk − λn

λk − λn
.

(c) The sequence {τn}n is such that, for m = 0, 1, 2, . . . ,

∑
k

λ2m
k

τk
converges.

(d) For a sequence of complex numbers {βk}k, such that the series

∑
k

|βk|2
τk

converges

and
∑

k

βkλ
m
k

τk
= 0, m = 0, 1, 2, . . .

it must hold true that βk = 0 for all k.

Then, for any real number h1, there exists a unique Jacobi operator J, a unique
h2 > h1, and if J �= J∗, a unique g ∈ R ∪ {+∞}, such that σ(Jh2(g)) = {λk}k and
σ(Jh1(g)) = {μk}k. Moreover, we show that if the sequences {λk}k and {μk}k are
the spectra of a Jacobi operator J(g) with two different boundary conditions
h1 < h2 (h2 ∈ R), then (a), (b), (c), (d) hold for � = h2 − h1.
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Necessary and sufficient conditions for two sequences to be the spectra of
a Jacobi operator J(g) with Dirichlet and Neumann boundary conditions are
also given. Conditions (b) and (c) differ in this case (see Section 4).

Our necessary and sufficient conditions give a characterization of the spec-
tral data for our two spectra inverse problem.

Our proofs are constructive and they give a method for the unique recon-
struction of the operator J, the boundary condition at infinity, g, and either h1

or h2.
The two-spectra inverse problem for Jacobi matrices has also been studied

in several papers [10, 14, 15, 24]. There are also results on this problem in [9].
We shall comment on these results in the following sections.

The problem that we solve here is the discrete analogue of the two-spectra
inverse problem for Sturm–Liouville operators on the half-line. The classical
result is the celebrated Borg–Marchenko theorem [6, 20]. Let us briefly explain
this result. Consider the self-adjoint Schrödinger operator,

B f = − f ′′(x) + Q(x) f (x), x ∈ R+ , (1.4)

where Q(x) is real-valued and locally integrable on [0, ∞), and the following
boundary condition at zero is satisfied,

cos α f (0) + sin α f ′(0) = 0, α ∈ [0, π).

Moreover, the boundary condition at infinity, if any, is considered fixed.
Suppose that the spectrum is discrete for one (and then for all) α, and denote
by {λk(α)}k∈N the corresponding eigenvalues.

The Borg–Marchenko theorem asserts that the sets {λk(α1)}k∈N and
{λk(α2)}k∈N for some α1 �= α2 uniquely determine α1, α2, and Q. Thus, the
differential expression and the boundary conditions are determined by two
spectra. Other results here are the necessary and sufficient conditions for a
pair of sequences to be the eigenvalues of a Sturm–Liouville equation with
different boundary conditions found by Levitan and Gasymov in [19].

Other settings for two-spectra inverse problems can be found in [3, 4, 11].
A resonance inverse problem for Jacobi matrices is considered in [7]. Recent
local Borg–Marchenko results for Schrödinger operators and Jacobi matrices
[13, 27] are also related to the problem we discuss here.

Jacobi matrices appear in several fields of quantum mechanics and con-
densed matter physics (see for example [8]).

The paper is organized as follows. In Section 2 we present some preliminary
results that we need. In Section 3 we prove our results of uniqueness, recon-
struction, and necessary and sufficient conditions (characterization) in the case
where h1 and h2 are real numbers. In Section 4 we obtain similar results for
the Dirichlet and Neumann boundary conditions. Finally, in the Appendix we
briefly describe – for the reader’s convenience – how the boundary conditions
are interpreted when J is considered as a difference operator.
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2 Preliminaries

Let us denote by γ the second order symmetric difference expression (see
(1.1), (1.2)) such that γ : f = { fk}k∈N 
→ {(γ f )k}k∈N, by

(γ f )k := bk−1 fk−1 + qk fk + bk fk+1, k ∈ N \ {1}, (2.1)

(γ f )1 := q1 f1 + b1 f2 . (2.2)

Then, it is proven in Section 1.1, Chapter 4 of [1] and in Theorem 2.7 of [23]
that

dom(J∗) = { f ∈ l2(N) : γ f ∈ l2(N)}, J∗ f = γ f, f ∈ dom(J∗).

The solution of the difference equation,

(γ f ) = ζ f, ζ ∈ C , (2.3)

is uniquely determined if one gives f1 = 1. For the elements of this solution
the following notation is standard [1, Chap. 1, Sec. 2.1]

Pn−1(ζ ) := fn, n ∈ N ,

where the polynomial Pk(ζ ) (of degree k) is referred to as the kth orthogonal
polynomial of the first kind associated with the matrix (1.3).

The sequence {Pk(ζ )}∞k=0 is not in lf in(N) but it may happen that

∞∑
k=0

|Pk(ζ )|2 < ∞ , (2.4)

in which case ζ is an eigenvalue of J∗ and f (ζ ) the corresponding eigenvector.
Since the eigenspace is always one-dimensional, the eigenvalue of J∗ is of
multiplicity one . Moreover, since the (von Neumann) self-adjoint extensions
of J, J(g), are restrictions of J∗, it follows that the point spectrum of J(g), g ∈
R ∪ {+∞}, has multiplicity one.

The polynomials of the second kind {Qk(ζ )}∞k=0 associated with the matrix
(1.3) are defined as the solutions of

bk−1 fk−1 + qk fk + bk fk+1 = ζ fk, k ∈ N \ {1},
under the assumption that f1 = 0 and f2 = b−1

1 . Then

Qn−1(ζ ) := fn, n ∈ N .

Qk(ζ ) is a polynomial of degree k − 1.
By construction the Jacobi operator J is a closed symmetric operator. It is

well known, [1, Chap. 4, Sec. 1.2] and [23, Corollary 2.9], that this operator has
either deficiency indices (1, 1) or (0, 0). In terms of the polynomials of the first
kind, J has deficiency indices (1, 1) when

∞∑
k=0

|Pk(ζ )|2 < ∞, for ζ ∈ C \ R
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(this holds for all ζ ∈ C \ R if and only if it holds for one ζ ∈ C \ R), and
deficiency indices (0, 0) otherwise. Since J is closed, deficiency indices (0, 0)

mean that J = J∗. The symmetric operator J with deficiency indices (1, 1) has
always self-adjoint extensions, which are restrictions of J∗. When studying
the self-adjoint extensions of J in a more general context the self-adjoint
restrictions of J∗ are called von Neumann self-adjoint extensions of J [2, 23].
All self-adjoint extensions considered in this paper are von Neumann.

Let us now introduce a convenient way of parametrizing the self-adjoint
extensions of J in the nonself-adjoint case. We first define the Wronskian
associated with J for any pair of sequences ϕ = {ϕk}∞k=1 and ψ = {ψk}∞k=1 in
l2(N) as follows

Wk(ϕ, ψ) := bk(ϕkψk+1 − ψkϕk+1), k ∈ N .

Now, consider the sequences v(g) = {vk(g)}∞k=1 such that ∀k ∈ N

vk(g) := Pk−1(0) + gQk−1(0), g ∈ R (2.5)

and

vk(+∞) := Qk−1(0) . (2.6)

All the self-adjoint extensions J(g) of the nonself-adjoint operator J are
restrictions of J∗ to the set [25, Lemma 2.20]

D(g) := {
f = { fk}∞k=1 ∈ dom(J∗) : lim

n→∞ Wn
(
v(g), f

) = 0
}

= {
f ∈ l2(N) : γ f ∈ l2(N), lim

n→∞ Wn
(
v(g), f

) = 0
}
. (2.7)

Different values of g imply different self-adjoint extensions. If J is self-adjoint,
we define J(g) := J, for all g ∈ R ∪ {+∞}; otherwise J(g) is a self-adjoint
extension of J uniquely determined by g. We have defined the domains D(g) in
such a way that g defines a boundary condition at infinity (see the Appendix).

It is worth mentioning that if J �= J∗ then, for all g ∈ R ∪ {+∞}, J(g) has
discrete spectrum. This follows from the fact that the resolvent of J(g) turns
out to be a Hilbert–Schmidt operator [25, Lemma 2.19].

Let us now define the self-adjoint operator Jh(g) by

Jh(g) := J(g) − h〈·, e1〉e1, h ∈ R ,

where {ek}∞k=1 is the canonical basis in l2(N) and 〈·, ·〉 denotes the inner product
in this space. Clearly, J0(g) = J(g).

We define J∞(g) as follows. First consider the space l2
(
(2, ∞)

)
of square

summable sequences { fn}∞n=2 and the sequence v(g) = {vk(g)}∞k=1 given by (2.5)
and (2.6) with g fixed. Let us denote J∞(g) the operator in l2

(
(2, ∞)

)
such that

J∞(g) f = γ f ,

where (γ f )k is considered for any k � 2 and f1 = 0 in the definition of (γ f )2,
with domain given by

dom(J∞(g)) := {
f ∈ l2

(
(2, ∞)

) : γ f ∈ l2
(
(2, ∞)

)
, lim

n→∞ Wn
(
v(g), f

) = 0
}
.



On the two spectra inverse problem for Jacobi matrices 269

Clearly, the matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

q2 b2 0 0 · · ·
b2 q3 b3 0 · · ·
0 b3 q4 b4

0 0 b4 q5
. . .

...
...

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

which is our original matrix (1.3) with the first column and row removed, is the
matrix representation of J∞(g) with respect to the canonical basis in l2

(
(2, ∞)

)
.

It follows easily from the definition of Jh(g) that if J(g) has discrete
spectrum, the same is true for Jh(g) (h ∈ R ∪ {+∞}). Indeed, for h ∈ R this
is a consequence of the invariance of the essential spectrum – that is empty in
our case – under a compact perturbation [22]. We shall show in Section 4 that it
is also true that J∞(g) has discrete spectrum provided that σ(J(g)) is discrete.

For the self-adjoint operator Jh(g), we can introduce the right-continuous
resolution of the identity EJh(g)(t), such that

Jh(g) =
∫

R

tdEJh(g)(t) .

Let us define the function ρ(t) as follows:

ρ(t) := 〈EJh(g)(t)e1, e1〉, t ∈ R . (2.8)

Consider the function (see [24] and [25, Chap. 2, Sec. 2.1])

mh(ζ, g) := 〈(Jh(g) − ζ I)−1e1, e1〉, ζ �∈ σ(Jh(g)) . (2.9)

mh(ζ, g) is called the Weyl m-function of Jh(g). We shall use below the
simplified notation m(ζ, g) := m0(ζ, g). The functions ρ(t) and mh(ζ, g) are
related by the Stieltjes transform (also called Borel transform):

mh(ζ, g) =
∫

R

dρ(t)
t − ζ

.

It follows from the definition that the Weyl m-function is a Herglotz func-
tion,i. e.,

Im mh(ζ, g)

Im ζ
> 0, Im ζ > 0 .

Using the Neumann expansion for the resolvent (cf. [25, Chap. 6, Sec. 6.1])

(Jh(g) − ζI)−1 = −
N−1∑
k=0

(Jh(g))k

ζ k+1
+ (Jh(g))N

ζ N
(Jh(g) − ζ I)−1 ,
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where ζ ∈ C \ σ(J(g)), one can easily obtain the following asymptotic
formula

mh(ζ, g) = − 1

ζ
− q1 − h

ζ 2
− b 2

1 + (q1 − h)2

ζ 3
+ O(ζ−4) , (2.10)

as ζ → ∞ (Im ζ � ε, ε > 0).
An important result in the theory of Jacobi operators is the fact that m(ζ, g)

completely determines J(g) (the same is of course true for the pair mh(ζ, g)

and Jh(g)). There are two ways for recovering the operator from the Weyl
m-function. One way consists in obtaining first ρ(t) from m(ζ, g) by means of
the inverse Stieltjes transform (cf. [25, Appendix B]), namely,

ρ(b) − ρ(a) = lim
δ↓0

lim
ε↓0

1

π

∫ b+δ

a+δ

(Im m(x + iε, g)) dx .

The function ρ is such that all the moments of the corresponding measure are
finite [1, 23]. Hence, all the elements of the sequence {tk}∞k=0 are in L2(R, dρ)

and one can apply, in this Hilbert space, the Gram–Schmidt procedure of
orthonormalization to the sequence {tk}∞k=0. One, thus, obtains a sequence
of polynomials {Pk(t)}∞k=0 normalized and orthogonal in L2(R, dρ). These
polynomials satisfy a three term recurrence equation [23]

tPk−1(t) = bk−1 Pk−2(t) + qk Pk−1(t) + bk Pk(t) k∈N \{1} (2.11)

tP0(t) = q1 P0(t) + b1 P1(t) , (2.12)

where all the coefficients bk (k ∈ N) turn out to be positive and qk (k ∈ N) are
real numbers. The system (2.11) and (2.12) defines a matrix which is the matrix
representation of J. We shall refer to this procedure for recovering J as the
method of orthogonal polynomials. The other method for determining J from
m(ζ, g) was developed in [12] (see also [24]). It is based on the asymptotic
behavior of m(ζ, g) and the Ricatti equation [24],

b2
nm(n)(ζ, g) = qn − ζ − 1

m(n−1)(ζ, g)
, n ∈ N , (2.13)

where m(n)(ζ, g) is the Weyl m-function of the Jacobi operator associated with
the matrix (1.3) with the first n columns and n rows removed.

After obtaining the matrix representation of J, one can easily obtain the
boundary condition at infinity which defines the domain of J(g) in the nonself-
adjoint case. Indeed, take an eigenvalue, λ, of J(g), i. e., λ is a pole of m(ζ, g).
Since the corresponding eigenvector f (λ) = { fk(λ)}∞k=1 is in dom(J(g)), it must
be that

lim
n→∞ Wn

(
v(g), f (λ)

) = 0 .
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This implies that either limn→∞ Wn
({Qk−1(0)}∞k=1, f (λ)

) = 0, which means that
g = +∞, or

g = − limn→∞ Wn
({Pk−1(0)}∞k=1, f (λ)

)

limn→∞ Wn
({Qk−1(0)}∞k=1, f (λ)

) .

If the spectrum of Jh(g) is discrete, say σ(Jh(g)) = {λk}k, the function ρ(t)
defined by (2.8) can be written as follows

ρ(t) =
∑
λk�t

1

αk
,

where the coefficients {αk}k are called the normalizing constants and are
given by

αn =
∞∑

k=0

|Pk(λn)|2 . (2.14)

Thus,
√

αn equals the l2 norm of the eigenvector f (λn) := {Pk(λn)}∞k=0 cor-
responding to λn. The eigenvector f (λn) is normalized in such a way that
f1(λn) = 1.

Clearly,

1 = 〈e1, e1〉 =
∫

R

dρ =
∑

k

1

αk
. (2.15)

The Weyl m-function in this case is given by

mh(ζ, g) =
∑

k

1

αk(λk − ζ )
. (2.16)

From this we have that

(λn − ζ )mh(ζ, g) = (λn − ζ )
∑

k

1

αk(λk − ζ )
=

∑
k�=n

λn − ζ

αk(λk − ζ )
+ 1

αn
.

Therefore,

α−1
n = lim

ζ→λn

(λn − ζ )m(ζ, g) = −Res
ζ=λn

m(ζ, g) . (2.17)

Let us now introduce an appropriate way for enumerating sequences that we
shall use. Consider a pair of infinite real sequences {λk}k and {μk}k that have
no finite accumulation points and that interlace, i. e., between two elements of
one sequence there is one and only one element of the other. We use M, a
subset of Z to be defined below, for enumerating the sequences as follows

∀k ∈ M λk < μk < λk+1, (2.18)

where

(a) If infk{λk}k = −∞ and supk{λk}k = ∞,

M := Z and we require μ−1 < 0 < λ1 . (2.19)
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(b) If 0 < supk{λk}k < ∞,

M :={k}kmax
k=−∞ , (kmax � 1) and we require μ−1 <0< λ1 . (2.20)

(c) If supk{λk}k � 0,

M := {k}0
k=−∞ . (2.21)

(d) If infk{μk}k � 0,

M := {k}∞k=0 . (2.22)

(e) If −∞ < infk{μk}k < 0,

M :={k}∞k=kmin
, (kmin � −1) and we require μ−1 <0<λ1 . (2.23)

Notice that, by this convention for enumeration, the only elements of {λk}k∈M

and {μk}k∈M allowed to be zero are λ0 or μ0.

3 Rank One Perturbations with Finite Coupling Constants

In this section we consider a pair of operators Jh1(g) and Jh2(g), where h1, h2 ∈
R, that is, rank one perturbations of the Jacobi operator J(g) with finite
coupling constants.

3.1 Recovering the Matrix from Two Spectra

Let g ∈ R ∪ {+∞} be fixed. Since Jh(g) is a rank one perturbation of J(g), the
domain of J(g) coincides with the domain of Jh(g) for all h ∈ R. Moreover,
since the perturbation is analytic in h, the multiplicity-one eigenvalues, λk(h),
and the corresponding eigenvectors, are analytic functions of h [16].

Lemma 3.1 Let {λk(h)}k be the set of eigenvalues of Jh(g) (h ∈ R). For a fixed k
the following holds

d
dh

λk(h) = − 1

αk(h)
, (3.1)

where αk(h) is the normalizing constant corresponding to λk(h).

Proof For the sake of simplifying the formulae, we write Jh and λ(h) instead
of Jh(g) and λk(h), respectively (k is fixed). Let us denote by f (h) the
eigenvector of Jh corresponding to λ(h). Take any δ > 0, taking into account
that dom(Jh+δ) = dom(Jh) and that Jh is symmetric for any h ∈ R, we have that

(λ(h + δ) − λ(h))〈 f (h + δ), f (h)〉
= 〈Jh+δ f (h + δ), f (h)〉 − 〈 f (h + δ), Jh f (h)〉
= 〈(Jh+δ − Jh + Jh) f (h + δ), f (h)〉 − 〈 f (h + δ), Jh f (h)〉
= 〈(Jh+δ − Jh) f (h + δ), f (h)〉 = −δ .
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Therefore,

lim
δ→0

λ(h + δ) − λ(h)

δ
= − lim

δ→0

1

〈 f (h + δ), f (h)〉 = − 1

αk(h)
. ��

The cornerstone of our analysis below is the Weyl m-function. Let us
establish the relation between mh(ζ, g) and m(ζ, g). Consider the second
resolvent identity [26]:

(Jh(g) − ζ I)−1 − (J(g) − ζ I)−1

= (J(g) − ζ I)−1(J(g) − Jh(g))(Jh(g) − ζ I)−1 , (3.2)

where ζ ∈ C \ {σ(J(g)) ∪ σ(Jh(g))}. Then, for h ∈ R,

mh(ζ, g) − m(ζ, g) = 〈 (
(Jh(g) − ζ I)−1 − (J(g) − ζ I)−1

)
e1, e1

〉

= 〈
(J(g) − ζ I)−1(h〈·, e1〉e1)(Jh(g) − ζ I)−1e1, e1

〉

= 〈
h〈(Jh(g) − ζ I)−1e1, e1〉(J(g) − ζ I)−1e1, e1

〉

= hmh(ζ, g)m(ζ, g) .

Hence,

mh(ζ, g) = m(ζ, g)

1 − hm(ζ, g)
. (3.3)

Remark 3.2 If J(g) has discrete spectrum, then m(ζ, g) is meromorphic and,
by (3.3), so is mh(ζ, g). The poles of mh(ζ, g) are the eigenvalues of Jh(g).
Since the poles of the denominator and numerator in (3.3) coincide, assuming
that h �= 0, the poles of mh(ζ, g) are given by the zeros of 1 − hm(ζ, g) and the
zeros of mh(ζ, g) by the zeros of m(ζ, g). Thus, Jh1(g) and Jh2(g) have different
eigenvalues, provided that h1 �= h2.

Theorem 3.3 Consider the Jacobi operator J(g) with discrete spectrum. The
sequences {μk}k = σ(Jh1(g)) and {λk}k = σ(Jh2(g)), h1 �= h2, together with h1

(respectively, h2) uniquely determine the operator J, h2, (respectively, h1) and,
if J �= J∗, the boundary condition g at infinity.

Proof Without loss of generality we can assume that h1 < h2. Consider the
Weyl m-function m(ζ, g) of the operator J(g). Let us define the function

m(ζ, g) = mh2(ζ, g)

mh1(ζ, g)
, ζ ∈ C \ R . (3.4)

Notice first that the zeros of m(ζ, g) are the eigenvalues of Jh1(g) while the
poles of m(ζ, g) are the eigenvalues of Jh2(g). This follows from Remark 3.2
and (3.4). Let us now show that m(ζ, g) is a Herglotz or an anti-Herglotz
function. Indeed, since m(ζ, g) is Herglotz, then

m(ζ, g) = 1 − h1m
1 − h2m

= 1 + −1
h2

h2−h1
+ −1

(h2−h1)m(ζ,g)

. (3.5)
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Therefore, m(ζ, g) is Herglotz or anti-Herglotz depending on the sign of
h2 − h1. Recall that if a function f is Herglotz, then, − 1

f is also Herglotz. Since
h2 − h1 > 0, m(ζ, g) is a Herglotz function.

Thus, the zeros {μk}k of m(ζ, g) and its poles {λk}k interlace. Let us use the
convention (2.18–2.23) for enumerating the zeros and poles of m(ζ, g). By this
convention, if the sequence {λk}k (or {μk}k) is bounded from below, the least
of all zeros is greater than the least of all poles, while, if {λk}k is bounded from
above, the greatest of all poles is less than the greatest of all zeros. It is easy to
verify, using for instance (3.1), that this is what we have for the zeros and poles
of m(ζ, g) when J(g) is semi-bounded.

According to [18, Chap. 7, Sec.1, Theorem 1], the meromorphic Herglotz
function m(ζ, g), with its zeros and poles enumerated as convened, can be
written as follows

m(ζ, g) = C
ζ − μ0

ζ − λ0

∏′

k∈M

(
1 − ζ

μk

) (
1 − ζ

λk

)−1

, C > 0 , (3.6)

where the prime in the infinite product means that it does not include the factor
k = 0.

From the asymptotic behavior of m(ζ, g), given by (2.10), one easily obtains
that, as ζ → ∞ with Im ζ � ε (ε > 0),

m(ζ, g) = 1 + (h1 − h2)ζ
−1 + (h1 − h2)(q1 − h2)ζ

−2 + O(ζ−3) . (3.7)

Therefore,

lim
ζ →∞

Im ζ �ε

m(ζ, g) = 1 .

Then, using (3.6), we have

C−1 = lim
ζ →∞

Im ζ �ε

∏′

k∈M

(
1 − ζ

μk

) (
1 − ζ

λk

)−1

, ε > 0 . (3.8)

Thus, m(ζ, g) is completely determined by the spectra σ(Jh1(g)) and σ(Jh2(g)).
Having found m(ζ, g), we can determine h2, respectively, h1, by means of (3.7).
Hence, from (3.5) one obtains m(ζ, g) and, using the methods introduced in the
preliminaries, J is uniquely determined. In the case when J �= J∗, we can also
find the boundary condition g at infinity as indicated in Section 2. ��

In [24] (see also [9]) it is proven that the discrete spectra of Jh1(g) and Jh2(g),
together with h1 and h2 uniquely determine J and the boundary condition g in
the (1, 1) case. Our result shows that it is not necessary to know both h1 and
h2, one of them is enough.

It turns out that if one knows the spectra σ(Jh1(g)) and σ(Jh2(g)) together
with q1, the first element of the matrix’s main diagonal, it is possible to
recover uniquely the matrix, the boundary conditions h1, h2 and the boundary
condition at infinity, g, if any. Indeed, the term of order ζ−1 in the asymptotic
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expansion of m(ζ, g) (3.7) determines h1 − h2. Since the coefficient of ζ−2 term
is (h1 − h2)(q1 − h2), if we know q1 one finds h2, and then h1.

3.2 Necessary and Sufficient Conditions

Theorem 3.4 Given h1 ∈ R and two infinite sequences of real numbers {λk}k

and {μk}k without finite points of accumulation, there is a unique real h2 > h1,
a unique operator J(g), and if J �= J∗ also a unique g ∈ R ∪ {+∞}, such that,
{μk}k = σ(Jh1(g)) and {λk}k = σ(Jh2(g)) if and only if the following conditions
are satisfied.

(a) {λk}k and {μk}k interlace and, if {λk}k is bounded from below, mink{μk}k >

mink{λk}k, while if {λk}k is bounded from above, maxk{λk}k < maxk{μk}k.
So we use below the convention (2.18–2.23) for enumerating the sequences.

(b) The following series converges
∑
k∈M

(μk − λk) = � < ∞ .

By condition (b) the product
∏

k∈ M
k �=n

μk − λn

λk − λn
is convergent, so define

τ−1
n := μn − λn

�

∏
k∈ M
k �=n

μk − λn

λk − λn
, ∀n ∈ M . (3.9)

(c) The sequence {τn}n∈M is such that, for m = 0, 1, 2, . . . , the series

∑
k∈M

λ2m
k

τk
converges.

(d) If a sequence of complex numbers {βk}k∈M is such that the series

∑
k∈M

|βk|2
τk

converges

and, for m = 0, 1, 2, . . . ,
∑
k∈M

βkλ
m
k

τk
= 0 ,

then βk = 0 for all k ∈ M.

Proof We first prove that if {λk}k and {μk}k are the spectra of Jh2(g) and Jh1(g),
with h2 > h1, then (a), (b), (c), and (d) hold true. The condition (a) follows
directly from the proof of the previous theorem. To prove that (b) holds,
observe that (3.1) implies

μk − λk =
∫ h2

h1

dh
αk(h)

.
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Consider a sequence {Mn}∞n=1 of subsets of M, such that Mn ⊂ Mn+1 and
∪n Mn = M, then, using (2.15), we have

sn :=
∑

k∈Mn

(μk − λk) =
∑

k∈Mn

∫ h2

h1

dh
αk(h)

=
∫ h2

h1

∑
k∈Mn

dh
αk(h)

� h2 − h1 .

The sequence {sn}∞n=1 is then convergent and clearly

∑
k∈M

(μk − λk) = lim
n→∞ sn = h2 − h1 .

Thus, � = h2 − h1.
The convergence of the series in (b) allows us to write (3.8) as follows

C−1 =
∏′

k∈M

λk

μk
lim

ζ →∞
Im ζ �ε

∏′

k∈M

μk − ζ

λk − ζ
, ε > 0 .

Now, using again (b), it easily follows that for any ε > 0

lim
ζ →∞

Im ζ �ε

∏′

k∈M

μk − ζ

λk − ζ
= lim

ζ →∞
Im ζ �ε

∏′

k∈M

(
1 + μk − λk

λk − ζ

)
= 1 .

Thus, C =
∏′

k∈M
μk/λk and by (3.6),

m(ζ, g) =
∏
k∈M

μk − ζ

λk − ζ
. (3.10)

Let us now find formulae for the normalizing constants in terms of the sets of
eigenvalues for different boundary conditions. By (2.17),

α−1
n (h2, g) = lim

ζ→λn

(λn − ζ )mh2(ζ, g) .

Using the second resolvent identity, as we did to obtain (3.3), we have that

mh1(ζ, g) = mh2(ζ, g)

1 − (h1 − h2)mh2(ζ, g)
.

Therefore,

m(ζ, g) = mh2(ζ, g)

mh1(ζ, g)
= 1 − (h1 − h2)mh2 , ζ ∈ C \ R . (3.11)

Then, the normalizing constants are given by

α−1
n (h2, g) = lim

ζ→λn

(λn − ζ )
m(ζ, g) − 1

h2 − h1
= 1

h2 − h1
lim

ζ→λn

(λn − ζ )m(ζ, g) .
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Now,

lim
ζ→λn

(λn − ζ )m(ζ, g) = lim
ζ→λn

(λn − ζ )
∏
k∈M

μk − ζ

λk − ζ

= (μn − λn)
∏

k∈ M
k �= n

μk − λn

λk − λn
. (3.12)

Hence,

α−1
n (h2, g) = μn − λn

h2 − h1

∏
k∈ M
k �=n

μk − λn

λk − λn
. (3.13)

Notice that, since � = h2 − h1, it follows from (3.13) that τn = αn for all n ∈ M.
Hence the spectral function ρ of the self-adjoint extension Jh2(g) is given
by the expression ρ(t) = ∑

λk�t τ
−1
k . Thus (c) follows from the fact that all

the moments of ρ are finite [1, 23]. Similarly, (d) stems from the density of
polynomials in L2(R, dρ), which takes place since ρ is N-extremal [1], [23,
Proposition 4.15].

We now prove that conditions (a), (b), (c), and (d) are sufficient. Let {λk}k

and {μk}k be sequences as in (a) and (b). Then,

0 <
∏

k∈ M
k �=n

μk − λn

λk − λn
< ∞ . (3.14)

The convergence of this product allows us to define the sequence of numbers
{τn}n∈M. Observe that for all n ∈ M, τn > 0. Indeed, � > 0 and (2.18–2.23) yield
μn − λn > 0 for all n ∈ M. Thus, taking into account (3.14), we obtain

τn > 0, ∀ n ∈ M . (3.15)

Let us now define the function

ρ(t) :=
∑
λk�t

1

τk
, t ∈ R . (3.16)

Since (3.15) holds, ρ is a monotone non-decreasing function and has an infinite
number of points of growth. Notice also that ρ is right continuous. Now, we
want to show that for the measure corresponding to ρ all the moments are
finite and ∫

R

dρ(t) = 1 . (3.17)

The fact that the moments are finite follows directly from condition (c). Indeed,
∫

R

tmdρ(t) =
∑
k∈M

λm
k

τk
.
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We show next that (3.17) holds true. Given the sequences {λk}k and {μk}k

satisfying (a) and (b) we can define the function

m̃(ζ ) :=
∏
k∈M

μk − ζ

λk − ζ
. (3.18)

Taking into account (3.9), one obtains that

Res
ζ=λn

(m̃(ζ ) − 1) = −�

τn
.

In view of (b), we easily find that

lim
ζ →∞

Im ζ �ε

(m̃(ζ ) − 1) = lim
ζ →∞

Im ζ �ε

∏
k∈M

μk − ζ

λk − ζ
− 1

= lim
ζ →∞

Im ζ �ε

∏
k∈M

(
1 + μk − λk

λk − ζ

)
− 1 = 0 . (3.19)

Thus, on the basis of Čebotarev’s theorem on the representation of meromor-
phic Herglotz functions [18, Chap. VII, Section 1 Theorem 2], one obtains

m̃(ζ ) − 1 =
∑
k∈M

�

(λk − ζ )τk
. (3.20)

We now define the function m̃(ζ ) := m̃(ζ )−1
�

. Then, (3.20) yields

m̃(ζ ) =
∑
k∈M

1

τk(λk − ζ )
. (3.21)

We next show that

lim
ζ →∞

Im ζ �ε

ζ m̃(ζ ) = −1 .

Indeed,

m̃(ζ )

�
= 1

�

∏
k∈M

μk − ζ

λk − ζ

= 1

�
exp

{∑
k∈M

ln

(
μk − ζ

λk − ζ

)}

= 1

�
exp

{∑
k∈M

ln

(
1 + μk − λk

λk − ζ

)}

= 1

�
exp

⎧⎨
⎩

∑
k∈M

∞∑
p=1

(−1)p−1

(
μk − λk

λk − ζ

)p
⎫⎬
⎭ .
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Thus, as ζ → ∞ with Im ζ � ε (ε > 0),

m̃(ζ )

�
= 1

�
+ 1

�

∑
k∈M

μk − λk

λk − ζ
+ O(ζ−2) .

Then,

lim
ζ →∞

Im ζ �ε

ζ m̃(ζ ) = lim
ζ →∞

Im ζ �ε

ζ
1

�

∑
k∈M

μk − λk

λk − ζ

= − 1

�

∑
k∈M

(μk − λk) = −1 .

Also, from (3.21) one has

lim
ζ →∞

Im ζ �ε

ζ m̃(ζ ) = −
∑
k∈M

1

τk
.

Therefore,

1 =
∑
k∈M

1

τk
=

∫
R

dρ(t) .

Having found a function ρ with infinitely many growing points and such that
(3.17) is satisfied and all the moments exist, one can obtain, applying the
method of orthogonal polynomials (see Section 2), a tridiagonal semi-infinite
matrix. Let us denote by Ĵ the operator whose matrix representation is the
obtained matrix. By what has been explained before, this operator is closed
and symmetric. Now, define h2 := � + h1 and J := Ĵ + h2〈·, e1〉 e1.

If Ĵ = Ĵ∗, we know that ρ(t) = 〈E(t) Ĵ e1, e1〉, where EĴ (t) is the spectral
decomposition of the self-adjoint Jacobi operator Ĵ. Then, obviously, Ĵ = Jh2 .

If Ĵ �= Ĵ∗, the Stieltjes transform of ρ is the Weyl m-function, we denote it
by w(ζ ), of some self-adjoint extension of Ĵ that we denote by J̃. This is true
because of the density of polynomials in L2(R, dρ). Indeed, (d) means that the
polynomials are dense in L2(R, dρ). Thus, w(ζ ) lies on the Weyl circle, and
then, it is the Weyl m-function of some self-adjoint extension of Ĵ [1], [23,
Proposition 4.15]. Therefore, J̃ + h2〈·, e1〉 e1 is a self-adjoint extension of J and
hence, J̃ + h2〈·, e1〉 e1 = J(g) for some unique g ∈ R ∪ {∞}. Furthermore, we
obviously have that, J̃ = Jh2(g) and w(ζ ) = mh2(ζ, g). We uniquely reconstruct
m(ζ, g) from mh2(ζ, g) using (3.3) and then, we uniquely reconstruct g as
explained in Section 2.

Notice that we have

mh2(ζ, g) =
∫

R

dρ(t)
t − ζ

= m̃(ζ ) .

It remains to show that σ(Jh2(g)) = {λk}k and σ(Jh1(g)) = {μk}k. To this end
consider the function m(ζ, g) for the pair Jh2 and Jh1 :

m(ζ, g) = mh2(ζ, g)

mh1(ζ, g)
, ζ ∈ C \ R .
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Let the sequence {γk}k denote the spectrum of Jh1 . Then, arguing as in the
proof of (3.10) we obtain that

m(ζ, g) =
∏
k∈M

γk − ζ

λk − ζ
.

Since we have already proven that (a) and (b) are necessary conditions, we
have that

∑
k∈M

(γk − λk) = � < ∞ .

Then, as in the proof of (3.19), it follows that

lim
ζ →∞

Im ζ �ε

(m(ζ ) − 1) = 0 .

Hence by Čebotarev’s theorem [18, Chap. VII, Section 1 Theorem 2],

m(ζ, g) = 1 +
∑
k∈M

h2 − h1

(λk − ζ )αk(h2, g)
,

where we compute the residues of m(ζ ) as in (3.12). Thus, since αk(h2, g) = τk,
∀k ∈ M,

m(ζ, g) = 1 +
∑
k∈M

�

(λk − ζ )τk
= m̃(ζ, g) .

But {λk}k and {μk}k are the poles and zeros of m̃(ζ, g) and then, the eigenvalues
of Jh2(g) and Jh1(g), respectively. ��

Remark 3.5 We draw the reader’s attention to the fact that the matrix asso-
ciated with the function ρ, constructed in the proof of the previous theorem,
may have deficiency indices (1, 1) [1, 23, 25].

If we drop the condition of the density of polynomials in L2(R, dρ) and our
reconstruction method yields a nonself-adjoint operator J, then the sequences
{λk}k and {μk}k correspond to the spectra of some generalized self-adjoint
extensions of Jh2 and Jh1 , respectively (see [23]). The generalized extensions
of symmetric operators, which are not von Neumann extensions, were first
introduced by Naimark (see Appendix I in [2] on Naimark’s theory).

In [15] the case of Jacobi operators bounded from below is considered.
A uniqueness result is proven, and some sufficient conditions for a pair of
sequences to be the spectra of a Jacobi operator with different boundary
conditions are given.
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4 Dirichlet–Neumann Conditions

4.1 Recovering the Matrix from Two Spectra

In this section we shall consider the pair of Jacobi operators J0(g) = J(g) and
J∞(g). Here, as before, we keep the convention of writing J(g) even if J = J∗.
The matrix representation of J∞(g) corresponds to the matrix representation
of J(g) with the first column and row removed. From the Ricatti equation
(2.13), taking into account that m(0)(ζ, g) = m(ζ, g) and m(1)(ζ, g) = m∞(ζ, g),
we have

m∞(ζ, g) = − 1

b2
1

(
(ζ − q1) + 1

m(ζ, g)

)
. (4.1)

As before, we assume that the spectrum of J = J(g) is discrete.
If m(ζ, g) is a meromorphic function, then, by (4.1), m∞(ζ, g) is also

meromorphic and the spectrum of J∞(g) is discrete. The poles of m(ζ, g)

are the eigenvalues of J(g), while the zeros of m(ζ, g) are the eigenvalues
of J∞(g). Since m(ζ, g) is always a Herglotz function, under our assumption
on the discreteness of σ(J(g)), m(ζ, g) is a meromorphic Herglotz function.
This implies that σ(J(g)) and σ(J∞(g)) are interlaced, that is, between two
successive eigenvalues of one operator there is exactly one eigenvalue of the
other.

Let the sequence {λk}k denote the eigenvalues of J(g) (the poles of m(ζ, g)).
Furthermore, {μk}k will stand for the eigenvalues of J∞(g) (the zeros of
m(ζ, g)). It is worth remarking that, in contrast to the case of boundary
conditions being rank one perturbations with finite coupling constant, here our
convention for enumerating the sequences {λk}k and {μk}k does not work in the
case when J(g) is semi-bounded from above. Indeed, it follows from the mini-
max principle [21] that if J(g) is bounded from below, the smallest of all poles
is less than the smallest of all zeros of m(ζ, g), and if J(g) is bounded from
above, the min–max principle applied to −J(g) implies that the greatest of all
zeros is less than the greatest of all poles of m(ζ, g).

So let us consider first the case when J(g) is not semi-bounded or semi-
bounded from below and enumerate the sequences {λk}k and {μk}k by (2.18),
(2.19), (2.22), and (2.23). Then, by the same theorem we used to obtain (3.6)
[18], m(ζ, g) can be written as follows

m(ζ, g) = C
ζ − μ0

ζ − λ0

∏′

k∈M

(
1 − ζ

μk

) (
1 − ζ

λk

)−1

, C > 0 , (4.2)

where, as before, the prime in the infinite product means that it does not
include the factor k = 0.
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If J(g) is bounded from above, then we are still able to use (2.18), (2.20)
and (2.21) for enumerating the zeros and poles of the meromorphic Herglotz
function − 1

m(ζ,g)
. Thus,

− 1

m(ζ, g)
= C̃

ζ − λ0

ζ − μ0

∏′

k∈M

(
1 − ζ

λk

) (
1 − ζ

μk

)−1

, C̃ > 0 . (4.3)

Notice that, since we have enumerated zeros and poles of − 1
m(ζ,g)

by our
convention, we have now

∀k ∈ M, μk < λk < μk+1 , (4.4)

and

(a) If 0 < supk{μk}k < ∞,

M := {k}kmax
k=−∞ , (kmax � 1) requiring λ−1 < 0 < μ1 , (4.5)

(b) If supk{μk}k � 0,

M := {k}0
k=−∞ . (4.6)

Here again λ0 or μ0 are the only ones allowed to be zero.
Equations (4.2) and (4.3) can be written in one formula

m(ζ, g) = K
ζ − μ0

ζ − λ0

∏′

k∈M

(
1 − ζ

μk

)(
1 − ζ

λk

)−1

, (4.7)

where, if J(g) is not semi-bounded from above, K = C and {λk}k and {μk}k are
enumerated by (2.18), (2.19), (2.22), and (2.23), while K = −C̃−1 and {λk}k and
{μk}k are enumerated by (4.4–4.6) if J(g) is semi-bounded from above.

We give now, for the reader’s convenience, a simple proof of a theorem that
was proven by Fu and Hochstadt [10] for regular Jacobi operators (a regular
Jacobi matrix is defined in [10]), and by Teschl [24] in the general case.

Theorem 4.1 (Fu and Hochstadt, Teschl) Consider the Jacobi operator J(g)

with discrete spectrum. The sequences {λk}k = σ(J(g)) and {μk}k = σ(J∞(g))

uniquely determine the operator J and, if J �= J∗, the boundary condition, g, at
infinity.

Proof From (2.10) we know that

lim
ζ →∞

Im ζ �ε

ζm(ζ, g) = −1, ε > 0 .

Then, if J(g) is not semi-bounded from above, (4.2) yields

C−1 = − lim
ζ →∞

Im ζ �ε

ζ
∏′

k∈M

(
1 − ζ

μk

) (
1 − ζ

λk

)−1

, ε > 0 , (4.8)
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where {λk}k and {μk}k are enumerated by (2.18), (2.19), (2.22), and (2.23). On
the other hand, in the semi-bounded from above case (4.3) implies

C̃−1 = lim
ζ →∞

Im ζ �ε

1

ζ

∏′

k∈M

(
1 − ζ

λk

)(
1 − ζ

μk

)−1

, ε > 0 . (4.9)

where {λk}k and {μk}k are enumerated by (4.4–4.6). Thus, in any case, one can
find K, the constant in (4.7), from the sequences {λk}k and {μk}k. Therefore,
the spectra σ(J(g)) and σ(J∞(g)) uniquely determine m(ζ, g). Having found
m(ζ, g) we can, using the methods introduced in Section 2, determine J
and, in the case when J �= J∗, also find uniquely the boundary condition at
infinity, g. ��

Remark 4.2 It turns out that, by (4.8) and (4.9), K can be written as

K−1 = − lim
ζ →∞

Im ζ �ε

ζ
∏′

k∈M

(
1 − ζ

μk

)(
1 − ζ

λk

)−1

, ε > 0 , (4.10)

where the sequences {λk}k and {μk}k have been enumerated by (2.18), (2.19),
(2.22), and (2.23), when J(g) is not semi-bounded from above and by (4.4–4.6),
otherwise.

In what follows the Weyl m-function will be written through (4.7) with K
given by (4.10). From (4.7) one can obtain straightforward formulae for the
normalizing constants (2.14) in terms of the sequences {λk}k and {μk}k. Indeed,
when n �= 0

lim
ζ→λn

(λn − ζ )m(ζ, g) = lim
ζ→λn

(λn − ζ )K
ζ − μ0

ζ − λ0

∏′

k∈M

1 − ζ

μk

1 − ζ

λk

= K
λn

μn
(μn − λn)

λn − μ0

λn − λ0

∏′

k∈ M
k �=n

1 − λn
μk

1 − λn
λk

.

Formulae (2.17) and (4.10) then give , for n �= 0,

α−1
n = −

λn
μn

(μn − λn)
λn−μ0

λn−λ0

∏′

k∈ M
k �=n

(
1 − λn

μk

) (
1 − λn

λk

)−1

lim
ζ →∞

Im ζ �ε

ζ
∏′

k∈M

(
1 − ζ

μk

) (
1 − ζ

λk

)−1 . (4.11)
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Analogously,

α−1
0 = −

(μ0 − λ0)
∏′

k∈M

(
1 − λ0

μk

) (
1 − λ0

λk

)−1

lim
ζ →∞

Im ζ �ε

ζ
∏′

k∈M

(
1 − ζ

μk

) (
1 − ζ

λk

)−1 . (4.12)

4.2 Necessary and Sufficient Conditions

The following result establishes necessary and sufficient conditions for two
given sequences of real numbers to be the spectra of J(g) and J∞(g).

Theorem 4.3 Given two infinite sequences of real numbers {λk}k and {μk}k

without finite points of accumulation, there is a unique operator J(g), and if
J �= J∗ also a unique g ∈ R ∪ {+∞}, such that {λk}k = σ(J(g)) and {μk}k =
σ(J∞(g)) if and only if the following conditions are satisfied.

(a) {λk}k and {μk}k interlace and, if {λk}k is bounded from below, mink{μk}k >

mink{λk}k, if {λk}k is bounded from above, maxk{λk}k > maxk{μk}k. So we
use below the convention (2.18), (2.19), (2.22), and (2.23) for enumerating
the sequences when J(g) is not semi-bounded from above, and (4.4–4.6)
otherwise.
By condition (a) the product

∏′

k∈M

(
1 − ζ

μk

)(
1 − ζ

λk

)−1

converges uniformly on compact subsets of C (see the proof below and [18,
Chap. 7, Section 1].

(b) The limit

lim
ξ →∞
ξ ∈R

iξ
∏′

k∈M

(
1 − iξ

μk

)(
1 − iξ

λk

)−1

(4.13)

is finite and negative when the sequences {λk}k and {μk}k are not bounded
from above, and it is finite and positive otherwise.

(c) Let {τn}n∈M be defined by

τ−1
n = −

λn
μn

(μn − λn)
λn−μ0

λn−λ0

∏′

k∈ M
k �=n

(
1 − λn

μk

) (
1 − λn

λk

)−1

lim
ξ →∞
ξ ∈R

iξ
∏′

k∈M

(
1 − iξ

μk

) (
1 − iξ

λk

)−1
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for n ∈ M , n �= 0, and

τ−1
0 = −

(μ0 − λ0)
∏′

k∈M

(
1 − λ0

μk

) (
1 − λ0

λk

)−1

lim
ξ →∞
ξ ∈R

iξ
∏′

k∈M

(
1 − iξ

μk

) (
1 − iξ

λk

)−1 .

The sequence {τn}n∈M is such that, for m = 0, 1, 2 . . . , the series

∑
k∈M

λ2m
k

τk
converges.

(d) If a sequence of complex numbers {βk}k∈M, is such that the series

∑
k∈M

|βk|2
τk

converges

and, for m = 0, 1, 2, . . . ,

∑
k∈M

βkλ
m
k

τk
= 0 ,

then βk = 0 for all k ∈ M.

Proof We begin the proof by showing that the sequences σ(J(g)) = {λk}k and
σ(J∞(g)) = {μk}k satisfy (a), (b), (c), and (d). Since the Weyl m function is
Herglotz, the eigenvalues of J(g) and J∞(g) interlace as indicated in (a). To
prove that (b) holds, consider first the case when J(g) is not semi-bounded or
only bounded from below, then (4.8) yields (b). If J(g) is semi-bounded from
above, (4.9) implies (b).

On the basis of (4.11) and (4.12), τn coincides with the normalizing constant
αn for all n ∈ M. Hence the spectral function ρ of the self-adjoint extension
J(g) is given by the expression ρ(t) = ∑

λk�t τ
−1
k . Thus (c) follows from the fact

that all the moments of ρ are finite [1, 23]. Similarly, (d) stems from the density
of polynomials in L2(R, dρ), which takes place since ρ is N-extremal [1], [23,
Proposition 4.15].

Let us now suppose that we are given two real sequences {λk}k and {μk}k

that satisfy (a). It can be shown that

0 <
∏′

k∈ M
k �=n

(
1 − λn

μk

) (
1 − λn

λk

)−1

< ∞ . (4.14)

Indeed, the convergence of the infinite product follows from (a) and is part of
the Theorem 1 in [18, Chap. 7, Sec.1] used to obtain (3.6). We give here, for
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the reader’s convenience, some details. The product in (4.14) converges if and
only if

∑′

k∈ M
k �=n

{(
1 − λn

μk

)(
1 − λn

λk

)−1

− 1

}
= λn

∑′

k∈ M
k �=n

(
1

λk
− 1

μk

)(
1 − λn

λk

)−1

<∞ ,

where prime means that the summand k = 0 is excluded. Thus, we have to
prove that

∑′

k∈M

(
1

λk
− 1

μk

)
< ∞ .

It will suffice to consider that in (a) the sequences are ordered by (2.18) with
M given by (2.19). For any k ∈ N, (2.18) implies

0 <

(
1

λk
− 1

μk

)
<

(
1

λk
− 1

λk+1

)
, ∀k ∈ N .

Clearly,
∑

k∈N

(
1
λk

− 1
λk+1

)
is convergent. Analogously, it can be proven that

∑
k∈N

(
1

λ−k
− 1

μ−k

)
< ∞ .

Having established the convergence of the the product in (4.14), its positivity
follows easily.

We have, therefore, a sequence of real numbers {τk}k∈M and let us now show
that τn > 0, ∀n ∈ M. First notice that (2.18), (2.19), (2.22), and (2.23), yield

λn

μn
(μn − λn)

λn − μ0

λn − λ0
> 0 (n �= 0) and μ0 − λ0 > 0 .

On the other hand (4.4–4.6) imply

λn

μn
(μn − λn)

λn − μ0

λn − λ0
< 0 (n �= 0) and μ0 − λ0 < 0 .

From these last inequalities, taking into account (4.14) and condition (b) we
obtain

τn > 0, ∀ n ∈ M . (4.15)

Let us now define the function

ρ(t) :=
∑
λk�t

1

τk
, ∀t ∈ R . (4.16)

In view of (4.15), ρ is a monotone non-decreasing function and has an infinite
number of points of growth. Now, we want to show that, for the measure
corresponding to ρ, all the moments are finite and

∫
R

dρ(t) = 1 . (4.17)
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The fact that the moments are finite follows directly from condition (c). Indeed,
∫

R

tmdρ(t) =
∑
k∈M

λm
k

τk
.

We show next that (4.17) is true. Given the sequences {λk}k and {μk}k satisfying
(a) and (b), we can define the function

m̃(ζ ) := −
ζ−μ0

ζ−λ0

∏′
k∈M

(
1 − ζ

μk

) (
1 − ζ

λk

)−1

lim ξ →∞
ξ ∈R

iξ
∏′

k∈M

(
1 − iξ

μk

) (
1 − iξ

λk

)−1 . (4.18)

Now, arguing as in the proof of (4.11) and (4.12), we obtain

Res
ζ=λn

m̃(ζ ) = −τ−1
n .

On the other hand,

lim
ξ →∞
ξ ∈R

m̃(iξ) = − lim
ξ →∞
ξ ∈R

∏′
k∈M

(
1 − iξ

μk

) (
1 − iξ

λk

)−1

iξ
∏′

k∈M

(
1 − iξ

μk

) (
1 − iξ

λk

)−1 = 0 .

Thus, using again Čebotarev’s theorem [18] we find that

m̃(ζ ) =
∑
k∈M

1

τk(λk − ζ )
. (4.19)

It follows from (4.18) that

lim
ξ →∞
ξ ∈R

iξm̃(iξ) = − lim
ξ →∞
ξ ∈R

iξ
∏′

k∈M

(
1 − iξ

μk

) (
1 − iξ

λk

)−1

iξ
∏′

k∈M

(
1 − iξ

μk

) (
1 − iξ

λk

)−1 = −1 .

Also from (4.19) one has

lim
ξ →∞
ξ ∈R

iξm̃(iξ) = −
∑
k∈M

1

τk
.

Therefore,

1 =
∑
k∈M

1

τk
=

∫
R

dρ(t) .

We have found a function ρ(t) with infinitely many growing points, such that
all the moments exist for the corresponding measure and (4.17) holds. There-
fore one can obtain, applying the method of orthogonal polynomials (see
Section 2), a tridiagonal semi-infinite matrix. Let us denote by J the operator
whose matrix representation is the obtained matrix. As was mentioned before,
J is symmetric and closed. Now, if J = J∗, we know that ρ(t) = 〈EJ(t)e1, e1〉,
where EJ(t) is the spectral decomposition of the self-adjoint Jacobi operator
J. If J �= J∗, then the Stieltjes transform of ρ(t) is the Weyl m-function m(ζ, g)
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of some self-adjoint extension of J with boundary conditions at infinity given
by g, that is,

m(ζ, g) =
∫

R

dρ(t)
t − ζ

.

This last assertion is true because of the density of polynomials in L2(R, dρ),
which follows from (d). Hence ρ is N-extremal [1]. This implies that m(ζ, g)

lies on the Weyl circle, and then it is the Weyl m-function of some self-adjoint
extension J(g) [1], [23].

It remains to show that σ(J(g)) = {λk}k and σ(J∞(g)) = {μk}k.
So we start from (4.16) and find the Weyl m-function of J(g) using (4.19)

m(ζ, g) =
∫

R

dρ(t)
t − ζ

=
∑
k∈M

1

τk(λk − ζ )
= m̃(ζ ) .

But {λk}k and {μk}k are the poles and zeros of m̃ and then the eigenvalues of
J(g) and J∞(g), respectively. ��

For Jacobi operators semi-bounded from below, necessary and sufficient
conditions are given in [14]. Note that Remark 3.5 can also be made here.

It is worth mentioning that, from (4.8) and (4.9), it follows that, when (b) is
seen as a necessary condition, one could write

lim
ζ →∞

Im ζ �ε

ζ
∏′

k∈M

(
1 − ζ

μk

) (
1 − ζ

λk

)−1

, ε > 0 ,

instead of (4.13).

Appendix

Boundary Conditions for Jacobi Operators

The difference expression γ defined by (2.1) and (2.2) can be written together
in one equation with the help of some conditions. Indeed, consider the
difference expression γ̃ given by

(γ̃ f )k = bk−1 fk−1 + qk fk + bk fk+1, k ∈ N (b0 = 1) . (A.1)

Clearly, γ f is equal to γ̃f provided that

f0 = 0 . (A.2)

This requirement can be considered as a boundary condition for the difference
equation (A.1). Notice that, although f0 is not an element of the sequence
{ fk}∞k=1, it can be used to introduce boundary conditions for (A.1) which turn
out to be completely analogous to the boundary conditions at the origin for
the Sturm–Liouville operator on the semi-axis. We shall refer to (A.2) as the



On the two spectra inverse problem for Jacobi matrices 289

Dirichlet boundary condition. Thus, J is the closure of the operator which acts
on sequences of l f in(N) by (A.1) with the Dirichlet boundary condition (A.2).

Suppose that the deficiency indices of J are (1, 1) and consider now the
following solution of (2.1)

ṽk(β) := Qk−1(0) cos β + Pk−1(0) sin β, β ∈ [0, π) .

Let us define the set
{

f = { fk}∞k=1 ∈ l2(N) : γ̃ f ∈ l2(N), lim
n→∞ Wn(ṽ(g), f ) = 0

}
. (A.3)

Notice that D(g), defined by (2.7), coincides with (A.3) as long as g = cot β.
As pointed out in Section 2, the domain of every self-adjoint extension of
J is given by (A.3) for some β, and different β’s define different self-adjoint
extensions [25]. Let us denote these self-adjoint extensions by J(g), as we did
in Section 2, bearing in mind that g = cot β. The condition

lim
n→∞ Wn(ṽ(g), f ) = 0, f ∈ dom(J∗) (A.4)

determining the restriction of J∗ is considered to be a boundary condition at
infinity.

In analogy with the case of Sturm–Liouville operators one can define
general boundary conditions at zero for the difference expression (A.1). To
this end, consider the operator J(α, g) defined by the difference expression
(A.1) with boundary condition at infinity (A.4) if necessary, and boundary
condition ‘at the origin’

f1 cos α + f0 sin α = 0, α ∈ [0, π) . (A.5)

Thus, if α ∈ (0, π),

J(α, g) = J(g) − cot α〈·, e1〉e1 .

Therefore J(α, g) = Jh(g), provided that h = cot α.
When α = 0, from (A.5), one has f1 = 0 and (A.1) is used to define the

action of the operator for k � 2. J(0, g) is said to be operator J(g) with
Neumann boundary condition. For this case we have that J(0, g) is equal to
J∞(g).

Acknowledgement We thank Rafael del Rio for a hint on the literature.
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