On the Two Spectra Inverse Problem for Semi-infinite Jacobi Matrices

Luis O. Silva · Ricardo Weder

Received: 4 January 2006 / Accepted: 29 December 2006 / Published online: 27 January 2007 © Springer Science + Business Media B.V. 2007

Abstract We present results on the unique reconstruction of a semi-infinite Jacobi operator from the spectra of the operator with two different boundary conditions. This is the discrete analogue of the Borg–Marchenko theorem for Schrödinger operators on the half-line. Furthermore, we give necessary and sufficient conditions for two real sequences to be the spectra of a Jacobi operator with different boundary conditions.

Key words semi-infinite Jacobi matrices **·** two-spectra inverse problem

Mathematics Subject Classifications (2000) 47B36 **·** 49N45 **·** 81Q10 **·** 47A75 **·** 47B37 **·** 47B39

1 Introduction

In the Hilbert space $l_2(\mathbb{N})$ let us single out the dense subset $l_{fin}(\mathbb{N})$ of sequences which have a finite number of non-zero elements. Consider the

L. O. Silva · R. Weder

Departamento de Métodos Matemáticos y Numéricos, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, México D.F. C.P. 04510, Mexico e-mail: silva@leibniz.iimas.unam.mx

R. Weder (\boxtimes)

Research partially supported by Universidad Nacional Autónoma de México under Project PAPIIT-DGAPA IN 105799, and by CONACYT under Project P42553F.

R. Weder is a fellow of Sistema Nacional de Investigadores.

IIMAS Universidad Nacional Autónoma de México, Apartado Postal 20-726, México D.F. 01000, Mexico e-mail: weder@servidor.unam.mx

operator *J* defined for every $f = \{f_k\}_{k=1}^{\infty}$ in $l_{fin}(\mathbb{N})$ by means of the recurrence relation

$$
(Jf)_k := b_{k-1} f_{k-1} + q_k f_k + b_k f_{k+1} \qquad k \in \mathbb{N} \setminus \{1\} \tag{1.1}
$$

$$
(Jf)_1 := q_1 f_1 + b_1 f_2, \tag{1.2}
$$

where, for every $n \in \mathbb{N}$, b_n is positive, while q_n is real. *J* is symmetric, therefore closable, and in the sequel we shall consider the closure of *J* and denote it by the same letter.

Notice that we have defined the Jacobi operator *J* in such a way that

$$
\begin{pmatrix}\nq_1 & b_1 & 0 & 0 & \cdots \\
b_1 & q_2 & b_2 & 0 & \cdots \\
0 & b_2 & q_3 & b_3 & \\
0 & 0 & b_3 & q_4 & \cdots \\
\vdots & \vdots & \ddots & \ddots\n\end{pmatrix}
$$
\n(1.3)

is the matrix representation of *J* with respect to the canonical basis in $l_2(\mathbb{N})$ (we refer the reader to [\[2\]](#page-26-0) for a discussion on matrix representation of unbounded symmetric operators).

It is known that the symmetric operator J has deficiency indices $(1, 1)$ or $(0, 0)$ [\[1](#page-26-0), Chap. 4, Sec. 1.2] and [\[23,](#page-27-0) Corollary 2.9]. In the case $(1, 1)$ we can always define a linear set $D(g) \subset \text{dom}(J^*)$ parametrized by $g \in \mathbb{R} \cup \{+\infty\}$ such that

$$
J^* \restriction D(g) =: J(g)
$$

is a self-adjoint extension of *J*. Moreover, for any self-adjoint extension (von Neumann extension) *J* of *J*, there exists a $\tilde{g} \in \mathbb{R} \cup \{+\infty\}$ such that

$$
J(\widetilde{g})=\widetilde{J},
$$

[\[25](#page-27-0), Lemma 2.20]. We shall show later (see the [Appendix\)](#page-25-0) that *g* defines a boundary condition at infinity.

To simplify the notation, even in the case of deficiency indices (0, 0), we shall use $J(g)$ to denote the operator $J = J^*$. Thus, throughout the paper $J(g)$ stands either for a self-adjoint extension of the nonself-adjoint operator *J*, uniquely determined by *g*, or for the self-adjoint operator *J*.

In what follows we shall consider the inverse spectral problem for the selfadjoint operator *J*(*g*).

It turns out that if $J \neq J^*$ (the case of indices (1, 1)), then for all $g \in$ $\mathbb{R} \cup \{+\infty\}$ the Jacobi operator $J(g)$ has discrete spectrum with eigenvalues of multiplicity one, i. e., the spectrum consists of eigenvalues of multiplicity one that can accumulate only at $\pm \infty$, [\[25](#page-27-0), Lemma 2.19]. Throughout this work we shall always require that the spectrum of $J(g)$, denoted $\sigma(J(g))$, be discrete, which is not an empty assumption only for the case $J(g) = J$. Notice that the discreteness of $\sigma(J(g))$ implies that $J(g)$ has to be unbounded.

For the Jacobi operators $J(g)$ one can define boundary conditions at the origin in complete analogy to those of the half-line Sturm–Liouville $\textcircled{2}$ Springer

operator (see the [Appendix\)](#page-25-0). Different boundary conditions at the origin define different self-adjoint operators $J_h(g)$, $h \in \mathbb{R} \cup \{+\infty\}$. $J_0(g)$ corresponds to the Dirichlet boundary condition, while the operator $J_{\infty}(g)$ has Neumann boundary condition. If $J(g)$ has discrete spectrum, the same is true for *J_h*(*g*), ∀*h* ∈ ℝ ∪ {+∞} (for the case of *h* finite see Section [2](#page-4-0) and for $h = \infty$, Section [4\)](#page-18-0).

In this work we prove that a Jacobi operator $J(g)$ with discrete spectrum is uniquely determined by $\sigma(J_{h_1}(g))$, $\sigma(J_{h_2}(g))$, with $h_1, h_2 \in \mathbb{R}$ and $h_1 \neq h_2$, and either h_1 or h_2 . If h_1 , respectively, h_2 is given, the reconstruction method also gives h_2 , respectively, h_1 . Saying that $J(g)$ is determined means that we can recover the matrix (1.3) and the boundary condition *g* at infinity, in the case of deficiency indices (1, 1). We will also establish (the precise statement is in Theorem 3.2) that if two infinite real sequences $\{\lambda_k\}_k$ and $\{\mu_k\}_k$ that can accumulate only at $\pm\infty$ satisfy

- (a) $\{\lambda_k\}_k$ and $\{\mu_k\}_k$ interlace, i. e., between two elements of a sequence there is one and only one element of the other. Thus, we assume below that $λ_k < μ_k < λ_{k+1}$.
- (b) The series $\sum_k (\mu_k \lambda_k)$ converges, so

$$
\sum_k (\mu_k - \lambda_k) =: \Delta < \infty.
$$

By (b) the product \prod *k*=*n* μ*^k* − λ*ⁿ* $\frac{\partial \mathcal{L}_k}{\partial k - \lambda_n}$ is convergent, so define $\tau_n^{-1} := \frac{\mu_n - \lambda_n}{\Delta}$ Δ П *k*=*n* $\mu_k - \lambda_n$ $\frac{\lambda_k - \lambda_n}{\lambda_k - \lambda_n}$.

(c) The sequence $\{\tau_n\}_n$ is such that, for $m = 0, 1, 2, \ldots$,

$$
\sum_{k} \frac{\lambda_k^{2m}}{\tau_k}
$$
 converges.

(d) For a sequence of complex numbers $\{\beta_k\}_k$, such that the series

$$
\sum_{k} \frac{|\beta_k|^2}{\tau_k}
$$
 converges

and

$$
\sum_{k} \frac{\beta_k \lambda_k^m}{\tau_k} = 0, \qquad m = 0, 1, 2, \dots
$$

it must hold true that $\beta_k = 0$ for all *k*.

Then, for any real number h_1 , there exists a unique Jacobi operator J , a unique $h_2 > h_1$, and if $J \neq J^*$, a unique $g \in \mathbb{R} \cup \{+\infty\}$, such that $\sigma(J_{h_2}(g)) = {\lambda_k}_k$ and $\sigma(J_{h_1}(g)) = {\mu_k}_k$. Moreover, we show that if the sequences ${\lambda_k}_k$ and ${\mu_k}_k$ are the spectra of a Jacobi operator $J(g)$ with two different boundary conditions $h_1 < h_2$ ($h_2 \in \mathbb{R}$), then (a), (b), (c), (d) hold for $\Delta = h_2 - h_1$.

Necessary and sufficient conditions for two sequences to be the spectra of a Jacobi operator $J(g)$ with Dirichlet and Neumann boundary conditions are also given. Conditions (b) and (c) differ in this case (see Section [4\)](#page-18-0).

Our necessary and sufficient conditions give a characterization of the spectral data for our two spectra inverse problem.

Our proofs are constructive and they give a method for the unique reconstruction of the operator *J*, the boundary condition at infinity, *g*, and either h_1 or h_2 .

The two-spectra inverse problem for Jacobi matrices has also been studied in several papers [\[10](#page-27-0), [14,](#page-27-0) [15,](#page-27-0) [24](#page-27-0)]. There are also results on this problem in [\[9\]](#page-27-0). We shall comment on these results in the following sections.

The problem that we solve here is the discrete analogue of the two-spectra inverse problem for Sturm–Liouville operators on the half-line. The classical result is the celebrated Borg–Marchenko theorem [\[6,](#page-27-0) [20](#page-27-0)]. Let us briefly explain this result. Consider the self-adjoint Schrödinger operator,

$$
\mathcal{B}f = -f''(x) + Q(x)f(x), \qquad x \in \mathbb{R}_+, \tag{1.4}
$$

where $O(x)$ is real-valued and locally integrable on $[0, \infty)$, and the following boundary condition at zero is satisfied,

$$
\cos \alpha f(0) + \sin \alpha f'(0) = 0, \qquad \alpha \in [0, \pi).
$$

Moreover, the boundary condition at infinity, if any, is considered fixed. Suppose that the spectrum is discrete for one (and then for all) α , and denote by $\{\lambda_k(\alpha)\}_{k\in\mathbb{N}}$ the corresponding eigenvalues.

The Borg–Marchenko theorem asserts that the sets $\{\lambda_k(\alpha_1)\}_{k\in\mathbb{N}}$ and ${\lambda_k(\alpha_2)}_{k \in \mathbb{N}}$ for some $\alpha_1 \neq \alpha_2$ uniquely determine α_1, α_2 , and *Q*. Thus, the differential expression and the boundary conditions are determined by two spectra. Other results here are the necessary and sufficient conditions for a pair of sequences to be the eigenvalues of a Sturm–Liouville equation with different boundary conditions found by Levitan and Gasymov in [\[19](#page-27-0)].

Other settings for two-spectra inverse problems can be found in [\[3](#page-26-0), [4,](#page-26-0) [11\]](#page-27-0). A resonance inverse problem for Jacobi matrices is considered in [\[7](#page-27-0)]. Recent local Borg–Marchenko results for Schrödinger operators and Jacobi matrices [\[13](#page-27-0), [27](#page-27-0)] are also related to the problem we discuss here.

Jacobi matrices appear in several fields of quantum mechanics and condensed matter physics (see for example [\[8](#page-27-0)]).

The paper is organized as follows. In Section [2](#page-4-0) we present some preliminary results that we need. In Section [3](#page-9-0) we prove our results of uniqueness, reconstruction, and necessary and sufficient conditions (characterization) in the case where h_1 and h_2 are real numbers. In Section [4](#page-18-0) we obtain similar results for the Dirichlet and Neumann boundary conditions. Finally, in the [Appendix](#page-25-0) we briefly describe – for the reader's convenience – how the boundary conditions are interpreted when *J* is considered as a difference operator.

A Springer

2 Preliminaries

Let us denote by γ the second order symmetric difference expression (see $(1.1), (1.2)$ $(1.1), (1.2)$ $(1.1), (1.2)$ such that $\gamma : f = \{f_k\}_{k \in \mathbb{N}} \mapsto \{(\gamma f)_k\}_{k \in \mathbb{N}},$ by

$$
(\gamma f)_k := b_{k-1} f_{k-1} + q_k f_k + b_k f_{k+1}, \qquad k \in \mathbb{N} \setminus \{1\}, \tag{2.1}
$$

$$
(\gamma f)_1 := q_1 f_1 + b_1 f_2. \tag{2.2}
$$

Then, it is proven in Section 1.1, Chapter 4 of [\[1\]](#page-26-0) and in Theorem 2.7 of [\[23](#page-27-0)] that

$$
dom(J^*) = \{ f \in l_2(\mathbb{N}) : \gamma f \in l_2(\mathbb{N}) \}, \qquad J^* f = \gamma f, \qquad f \in dom(J^*).
$$

The solution of the difference equation,

$$
(\gamma f) = \zeta f, \qquad \zeta \in \mathbb{C}, \tag{2.3}
$$

is uniquely determined if one gives $f_1 = 1$. For the elements of this solution the following notation is standard $[1, Chap. 1, Sec. 2.1]$ $[1, Chap. 1, Sec. 2.1]$

$$
P_{n-1}(\zeta) := f_n, \qquad n \in \mathbb{N},
$$

where the polynomial $P_k(\zeta)$ (of degree k) is referred to as the kth orthogonal polynomial of the first kind associated with the matrix [\(1.3\)](#page-1-0).

The sequence $\{P_k(\zeta)\}_{k=0}^{\infty}$ is not in $l_{fin}(\mathbb{N})$ but it may happen that

$$
\sum_{k=0}^{\infty} |P_k(\zeta)|^2 < \infty \,, \tag{2.4}
$$

in which case ζ is an eigenvalue of J^* and $f(\zeta)$ the corresponding eigenvector. Since the eigenspace is always one-dimensional, the eigenvalue of J^* is of multiplicity one . Moreover, since the (von Neumann) self-adjoint extensions of *J*, *J*(*g*), are restrictions of *J*^{*}, it follows that the point spectrum of *J*(*g*), *g* ∈ $\mathbb{R} \cup \{+\infty\}$, has multiplicity one.

The polynomials of the second kind ${Q_k(\zeta)}_{k=0}^\infty$ associated with the matrix [\(1.3\)](#page-1-0) are defined as the solutions of

$$
b_{k-1} f_{k-1} + q_k f_k + b_k f_{k+1} = \zeta f_k, \qquad k \in \mathbb{N} \setminus \{1\},\
$$

under the assumption that $f_1 = 0$ and $f_2 = b_1^{-1}$. Then

$$
Q_{n-1}(\zeta) := f_n, \qquad n \in \mathbb{N}.
$$

 $Q_k(\zeta)$ is a polynomial of degree $k-1$.

By construction the Jacobi operator *J* is a closed symmetric operator. It is well known, [\[1,](#page-26-0) Chap. 4, Sec. 1.2] and [\[23,](#page-27-0) Corollary 2.9], that this operator has either deficiency indices $(1, 1)$ or $(0, 0)$. In terms of the polynomials of the first kind, *J* has deficiency indices (1, 1) when

$$
\sum_{k=0}^{\infty} |P_k(\zeta)|^2 < \infty, \qquad \text{for } \zeta \in \mathbb{C} \setminus \mathbb{R}
$$

2 Springer

(this holds for all $\zeta \in \mathbb{C} \setminus \mathbb{R}$ if and only if it holds for one $\zeta \in \mathbb{C} \setminus \mathbb{R}$), and deficiency indices $(0, 0)$ otherwise. Since *J* is closed, deficiency indices $(0, 0)$ mean that $J = J^*$. The symmetric operator *J* with deficiency indices (1, 1) has always self-adjoint extensions, which are restrictions of *J*[∗]. When studying the self-adjoint extensions of *J* in a more general context the self-adjoint restrictions of *J*[∗] are called von Neumann self-adjoint extensions of *J* [\[2](#page-26-0), [23\]](#page-27-0). All self-adjoint extensions considered in this paper are von Neumann.

Let us now introduce a convenient way of parametrizing the self-adjoint extensions of *J* in the nonself-adjoint case. We first define the Wronskian associated with *J* for any pair of sequences $\varphi = {\varphi_k}_{k=1}^{\infty}$ and $\psi = {\psi_k}_{k=1}^{\infty}$ in $l_2(\mathbb{N})$ as follows

$$
W_k(\varphi, \psi) := b_k(\varphi_k \psi_{k+1} - \psi_k \varphi_{k+1}), \qquad k \in \mathbb{N}.
$$

Now, consider the sequences $v(g) = \{v_k(g)\}_{k=1}^{\infty}$ such that $\forall k \in \mathbb{N}$

$$
v_k(g) := P_{k-1}(0) + g Q_{k-1}(0), \qquad g \in \mathbb{R} \tag{2.5}
$$

and

$$
v_k(+\infty) := Q_{k-1}(0). \tag{2.6}
$$

All the self-adjoint extensions $J(g)$ of the nonself-adjoint operator *J* are restrictions of *J*[∗] to the set [\[25,](#page-27-0) Lemma 2.20]

$$
D(g) := \left\{ f = \{ f_k \}_{k=1}^{\infty} \in \text{dom}(J^*) : \lim_{n \to \infty} W_n(v(g), f) = 0 \right\}
$$

=
$$
\left\{ f \in l_2(\mathbb{N}) : \gamma f \in l_2(\mathbb{N}), \lim_{n \to \infty} W_n(v(g), f) = 0 \right\}.
$$
 (2.7)

Different values of *g* imply different self-adjoint extensions. If *J* is self-adjoint, we define $J(g) := J$, for all $g \in \mathbb{R} \cup \{+\infty\}$; otherwise $J(g)$ is a self-adjoint extension of *J* uniquely determined by *g*. We have defined the domains $D(g)$ in such a way that *g* defines a boundary condition at infinity (see the [Appendix\)](#page-25-0).

It is worth mentioning that if $J \neq J^*$ then, for all $g \in \mathbb{R} \cup \{+\infty\}$, $J(g)$ has discrete spectrum. This follows from the fact that the resolvent of $J(g)$ turns out to be a Hilbert–Schmidt operator [\[25](#page-27-0), Lemma 2.19].

Let us now define the self-adjoint operator $J_h(g)$ by

$$
J_h(g) := J(g) - h\langle \cdot, e_1 \rangle e_1, \qquad h \in \mathbb{R},
$$

where $\{e_k\}_{k=1}^{\infty}$ is the canonical basis in $l_2(\mathbb{N})$ and $\langle \cdot, \cdot \rangle$ denotes the inner product in this space. Clearly, $J_0(g) = J(g)$.

We define $J_{\infty}(g)$ as follows. First consider the space $l_2((2,\infty))$ of square summable sequences $\{f_n\}_{n=2}^{\infty}$ and the sequence $v(g) = \{v_k(g)\}_{k=1}^{\infty}$ given by (2.5) and (2.6) with *g* fixed. Let us denote $J_{\infty}(g)$ the operator in $l_2((2,\infty))$ such that

$$
J_{\infty}(g)f=\gamma f,
$$

where $(\gamma f)_k$ is considered for any $k \geq 2$ and $f_1 = 0$ in the definition of $(\gamma f)_2$, with domain given by

dom
$$
(J_{\infty}(g)) := \{ f \in l_2((2, \infty)) : \gamma f \in l_2((2, \infty)), \lim_{n \to \infty} W_n(v(g), f) = 0 \}.
$$

 $\underline{\&}$ Springer

Clearly, the matrix

$$
\begin{pmatrix} q_2 & b_2 & 0 & 0 & \cdots \\ b_2 & q_3 & b_3 & 0 & \cdots \\ 0 & b_3 & q_4 & b_4 & \\ 0 & 0 & b_4 & q_5 & \cdots \\ \vdots & \vdots & \ddots & \ddots & \ddots \end{pmatrix},
$$

which is our original matrix (1.3) with the first column and row removed, is the matrix representation of $J_\infty(g)$ with respect to the canonical basis in $l_2\big((2,\infty)\big).$

It follows easily from the definition of $J_h(g)$ that if $J(g)$ has discrete spectrum, the same is true for *J_h*(*g*) ($h \in \mathbb{R} \cup \{+\infty\}$). Indeed, for $h \in \mathbb{R}$ this is a consequence of the invariance of the essential spectrum – that is empty in our case – under a compact perturbation [\[22\]](#page-27-0). We shall show in Section [4](#page-18-0) that it is also true that $J_{\infty}(g)$ has discrete spectrum provided that $\sigma(J(g))$ is discrete.

For the self-adjoint operator $J_h(g)$, we can introduce the right-continuous resolution of the identity $E_{J_h(g)}(t)$, such that

$$
J_h(g) = \int_{\mathbb{R}} t dE_{J_h(g)}(t) .
$$

Let us define the function $\rho(t)$ as follows:

$$
\rho(t) := \langle E_{J_h(g)}(t)e_1, e_1 \rangle, \qquad t \in \mathbb{R}.
$$
 (2.8)

Consider the function (see [\[24\]](#page-27-0) and [\[25](#page-27-0), Chap. 2, Sec. 2.1])

$$
m_h(\zeta, g) := \langle (J_h(g) - \zeta I)^{-1} e_1, e_1 \rangle, \qquad \zeta \notin \sigma(J_h(g)). \tag{2.9}
$$

 $m_h(\zeta, g)$ is called the Weyl *m*-function of $J_h(g)$. We shall use below the simplified notation $m(\zeta, g) := m_0(\zeta, g)$. The functions $\rho(t)$ and $m_h(\zeta, g)$ are related by the Stieltjes transform (also called Borel transform):

$$
m_h(\zeta,g)=\int_{\mathbb{R}}\frac{d\rho(t)}{t-\zeta}.
$$

It follows from the definition that the Weyl *m*-function is a Herglotz function,i. e.,

$$
\frac{\operatorname{Im} m_h(\zeta, g)}{\operatorname{Im} \zeta} > 0, \qquad \operatorname{Im} \zeta > 0.
$$

Using the Neumann expansion for the resolvent (cf. $[25,$ Chap. 6, Sec. 6.1])

$$
(J_h(g) - \zeta I)^{-1} = -\sum_{k=0}^{N-1} \frac{(J_h(g))^k}{\zeta^{k+1}} + \frac{(J_h(g))^N}{\zeta^N} (J_h(g) - \zeta I)^{-1},
$$

 \mathcal{Q} Springer

where $\zeta \in \mathbb{C} \setminus \sigma(J(g))$, one can easily obtain the following asymptotic formula

$$
m_h(\zeta, g) = -\frac{1}{\zeta} - \frac{q_1 - h}{\zeta^2} - \frac{b_1^2 + (q_1 - h)^2}{\zeta^3} + O(\zeta^{-4}), \tag{2.10}
$$

as $\zeta \to \infty$ (Im $\zeta \geqslant \epsilon, \epsilon > 0$).

An important result in the theory of Jacobi operators is the fact that $m(\zeta, g)$ completely determines $J(g)$ (the same is of course true for the pair $m_h(\zeta, g)$) and $J_h(g)$). There are two ways for recovering the operator from the Weyl *m*-function. One way consists in obtaining first $\rho(t)$ from $m(\zeta, g)$ by means of the inverse Stieltjes transform (cf. [\[25](#page-27-0), Appendix B]), namely,

$$
\rho(b) - \rho(a) = \lim_{\delta \downarrow 0} \lim_{\epsilon \downarrow 0} \frac{1}{\pi} \int_{a+\delta}^{b+\delta} (\operatorname{Im} m(x + i\epsilon, g)) dx.
$$

The function ρ is such that all the moments of the corresponding measure are finite [\[1,](#page-26-0) [23](#page-27-0)]. Hence, all the elements of the sequence $\{t^k\}_{k=0}^{\infty}$ are in $L_2(\mathbb{R}, d\rho)$ and one can apply, in this Hilbert space, the Gram–Schmidt procedure of orthonormalization to the sequence $\{t^k\}_{k=0}^{\infty}$. One, thus, obtains a sequence of polynomials $\{P_k(t)\}_{k=0}^{\infty}$ normalized and orthogonal in $L_2(\mathbb{R}, d\rho)$. These polynomials satisfy a three term recurrence equation [\[23](#page-27-0)]

$$
tP_{k-1}(t) = b_{k-1}P_{k-2}(t) + q_kP_{k-1}(t) + b_kP_k(t) \qquad k \in \mathbb{N} \setminus \{1\} \tag{2.11}
$$

$$
tP_0(t) = q_1P_0(t) + b_1P_1(t), \qquad (2.12)
$$

where all the coefficients b_k ($k \in \mathbb{N}$) turn out to be positive and q_k ($k \in \mathbb{N}$) are real numbers. The system (2.11) and (2.12) defines a matrix which is the matrix representation of *J*. We shall refer to this procedure for recovering *J* as the method of orthogonal polynomials. The other method for determining *J* from $m(\zeta, g)$ was developed in [\[12\]](#page-27-0) (see also [\[24\]](#page-27-0)). It is based on the asymptotic behavior of $m(\zeta, g)$ and the Ricatti equation [\[24\]](#page-27-0),

$$
b_n^2 m^{(n)}(\zeta, g) = q_n - \zeta - \frac{1}{m^{(n-1)}(\zeta, g)}, \qquad n \in \mathbb{N},
$$
 (2.13)

where $m^{(n)}(\zeta, g)$ is the Weyl *m*-function of the Jacobi operator associated with the matrix [\(1.3\)](#page-1-0) with the first *n* columns and *n* rows removed.

After obtaining the matrix representation of *J*, one can easily obtain the boundary condition at infinity which defines the domain of $J(g)$ in the nonselfadjoint case. Indeed, take an eigenvalue, λ , of $J(g)$, i.e., λ is a pole of $m(\zeta, g)$. Since the corresponding eigenvector $f(\lambda) = {f_k(\lambda)}_{k=1}^{\infty}$ is in dom(*J*(*g*)), it must be that

$$
\lim_{n\to\infty}W_n(v(g),\,f(\lambda))=0.
$$

This implies that either $\lim_{n\to\infty} W_n(\{Q_{k-1}(0)\}_{k=1}^{\infty}, f(\lambda)) = 0$, which means that $g = +\infty$, or

$$
g = -\frac{\lim_{n \to \infty} W_n(\{P_{k-1}(0)\}_{k=1}^{\infty}, f(\lambda))}{\lim_{n \to \infty} W_n(\{Q_{k-1}(0)\}_{k=1}^{\infty}, f(\lambda))}.
$$

If the spectrum of $J_h(g)$ is discrete, say $\sigma(J_h(g)) = {\lambda_k}_k$, the function $\rho(t)$ defined by (2.8) can be written as follows

$$
\rho(t) = \sum_{\lambda_k \leqslant t} \frac{1}{\alpha_k},
$$

where the coefficients $\{\alpha_k\}_k$ are called the normalizing constants and are given by

$$
\alpha_n = \sum_{k=0}^{\infty} |P_k(\lambda_n)|^2 \ . \tag{2.14}
$$

Thus, $\sqrt{\alpha_n}$ equals the *l*₂ norm of the eigenvector $f(\lambda_n) := {P_k(\lambda_n)}_{k=0}^{\infty}$ corresponding to λ_n . The eigenvector $f(\lambda_n)$ is normalized in such a way that $f_1(\lambda_n) = 1.$

Clearly,

$$
1 = \langle e_1, e_1 \rangle = \int_{\mathbb{R}} d\rho = \sum_{k} \frac{1}{\alpha_k} \,. \tag{2.15}
$$

The Weyl *m*-function in this case is given by

$$
m_h(\zeta, g) = \sum_k \frac{1}{\alpha_k(\lambda_k - \zeta)}.
$$
 (2.16)

From this we have that

$$
(\lambda_n - \zeta)m_h(\zeta, g) = (\lambda_n - \zeta)\sum_k \frac{1}{\alpha_k(\lambda_k - \zeta)} = \sum_{k \neq n} \frac{\lambda_n - \zeta}{\alpha_k(\lambda_k - \zeta)} + \frac{1}{\alpha_n}.
$$

Therefore,

$$
\alpha_n^{-1} = \lim_{\zeta \to \lambda_n} (\lambda_n - \zeta) m(\zeta, g) = -\underset{\zeta = \lambda_n}{\text{Res }} m(\zeta, g). \tag{2.17}
$$

Let us now introduce an appropriate way for enumerating sequences that we shall use. Consider a pair of infinite real sequences $\{\lambda_k\}_k$ and $\{\mu_k\}_k$ that have no finite accumulation points and that interlace, i. e., between two elements of one sequence there is one and only one element of the other. We use *M*, a subset of $\mathbb Z$ to be defined below, for enumerating the sequences as follows

$$
\forall k \in M \qquad \lambda_k < \mu_k < \lambda_{k+1}, \tag{2.18}
$$

where

(a) If
$$
\inf_k \{\lambda_k\}_k = -\infty
$$
 and $\sup_k \{\lambda_k\}_k = \infty$,
\n
$$
M := \mathbb{Z} \text{ and we require } \mu_{-1} < 0 < \lambda_1. \tag{2.19}
$$
\n
$$
\textcircled{2.19} \text{ Springer}
$$

(b) If $0 < \sup_k {\{\lambda_k\}_k} < \infty$,

 $M := \{k\}_{k=-\infty}^{k_{\text{max}}}$, $(k_{\text{max}} \ge 1)$ and we require $\mu_{-1} < 0 < \lambda_1$. (2.20)

(c) If $\sup_k {\{\lambda_k\}_k \leq 0}$,

$$
M := \{k\}_{k=-\infty}^{0} \,. \tag{2.21}
$$

(d) If $\inf_k {\mu_k}_k \geq 0$,

$$
M := \{k\}_{k=0}^{\infty} \,. \tag{2.22}
$$

(e) If $-\infty < \inf_k \{u_k\}_k < 0$,

 $M := \{k\}_{k=k_{\text{min}}}^{\infty}$, $(k_{\text{min}} \le -1)$ and we require $\mu_{-1} < 0 < \lambda_1$. (2.23)

Notice that, by this convention for enumeration, the only elements of $\{\lambda_k\}_{k \in M}$ and $\{\mu_k\}_{k \in M}$ allowed to be zero are λ_0 or μ_0 .

3 Rank One Perturbations with Finite Coupling Constants

In this section we consider a pair of operators $J_{h_1}(g)$ and $J_{h_2}(g)$, where $h_1, h_2 \in$ R, that is, rank one perturbations of the Jacobi operator $J(g)$ with finite coupling constants.

3.1 Recovering the Matrix from Two Spectra

Let *g* ∈ R ∪ {+∞} be fixed. Since $J_h(g)$ is a rank one perturbation of $J(g)$, the domain of *J*(*g*) coincides with the domain of *J_h*(*g*) for all $h \in \mathbb{R}$. Moreover, since the perturbation is analytic in *h*, the multiplicity-one eigenvalues, $\lambda_k(h)$, and the corresponding eigenvectors, are analytic functions of *h* [\[16](#page-27-0)].

Lemma 3.1 *Let* $\{\lambda_k(h)\}_k$ *be the set of eigenvalues of* $J_h(g)$ ($h \in \mathbb{R}$)*. For a fixed k the following holds*

$$
\frac{d}{dh}\lambda_k(h) = -\frac{1}{\alpha_k(h)},\tag{3.1}
$$

where $\alpha_k(h)$ *is the normalizing constant corresponding to* $\lambda_k(h)$ *.*

Proof For the sake of simplifying the formulae, we write J_h and $\lambda(h)$ instead of $J_h(g)$ and $\lambda_k(h)$, respectively (*k* is fixed). Let us denote by $f(h)$ the eigenvector of J_h corresponding to $\lambda(h)$. Take any $\delta > 0$, taking into account that dom($J_{h+\delta}$) = dom(J_h) and that J_h is symmetric for any $h \in \mathbb{R}$, we have that

$$
(\lambda(h+\delta) - \lambda(h)) \langle f(h+\delta), f(h) \rangle
$$

= $\langle J_{h+\delta} f(h+\delta), f(h) \rangle - \langle f(h+\delta), J_h f(h) \rangle$
= $\langle (J_{h+\delta} - J_h + J_h) f(h+\delta), f(h) \rangle - \langle f(h+\delta), J_h f(h) \rangle$
= $\langle (J_{h+\delta} - J_h) f(h+\delta), f(h) \rangle = -\delta.$

A Springer

Therefore,

$$
\lim_{\delta \to 0} \frac{\lambda(h+\delta) - \lambda(h)}{\delta} = -\lim_{\delta \to 0} \frac{1}{\langle f(h+\delta), f(h) \rangle} = -\frac{1}{\alpha_k(h)}.
$$

The cornerstone of our analysis below is the Weyl *m*-function. Let us establish the relation between $m_h(\zeta, g)$ and $m(\zeta, g)$. Consider the second resolvent identity [\[26\]](#page-27-0):

$$
(J_h(g) - \zeta I)^{-1} - (J(g) - \zeta I)^{-1}
$$

= $(J(g) - \zeta I)^{-1} (J(g) - J_h(g))(J_h(g) - \zeta I)^{-1}$, (3.2)

where $\zeta \in \mathbb{C} \setminus {\sigma(J(g)) \cup \sigma(J_h(g))}$. Then, for $h \in \mathbb{R}$,

$$
m_h(\zeta, g) - m(\zeta, g) = \left\{ \left((J_h(g) - \zeta I)^{-1} - (J(g) - \zeta I)^{-1} \right) e_1, e_1 \right\}
$$

= $\left\langle (J(g) - \zeta I)^{-1} (h(\cdot, e_1)e_1)(J_h(g) - \zeta I)^{-1} e_1, e_1 \right\rangle$
= $\left\langle h \langle (J_h(g) - \zeta I)^{-1} e_1, e_1 \rangle (J(g) - \zeta I)^{-1} e_1, e_1 \right\rangle$
= $hm_h(\zeta, g)m(\zeta, g)$.

Hence,

$$
m_h(\zeta, g) = \frac{m(\zeta, g)}{1 - hm(\zeta, g)}.
$$
\n(3.3)

Remark 3.2 If $J(g)$ has discrete spectrum, then $m(\zeta, g)$ is meromorphic and, by (3.3), so is $m_h(\zeta, g)$. The poles of $m_h(\zeta, g)$ are the eigenvalues of $J_h(g)$. Since the poles of the denominator and numerator in (3.3) coincide, assuming that $h \neq 0$, the poles of $m_h(\zeta, g)$ are given by the zeros of $1 - hm(\zeta, g)$ and the zeros of $m_h(\zeta, g)$ by the zeros of $m(\zeta, g)$. Thus, $J_{h_1}(g)$ and $J_{h_2}(g)$ have different eigenvalues, provided that $h_1 \neq h_2$.

Theorem 3.3 *Consider the Jacobi operator J*(*g*) *with discrete spectrum. The sequences* $\{\mu_k\}_k = \sigma(J_{h_1}(g))$ *and* $\{\lambda_k\}_k = \sigma(J_{h_2}(g))$, $h_1 \neq h_2$, together with h_1 (*respectively,* h_2) *uniquely determine the operator J,* h_2 *, (respectively,* h_1) *and, if* $J \neq J^*$, the boundary condition g at infinity.

Proof Without loss of generality we can assume that $h_1 < h_2$. Consider the Weyl *m*-function $m(\zeta, g)$ of the operator $J(g)$. Let us define the function

$$
\mathfrak{m}(\zeta,g) = \frac{m_{h_2}(\zeta,g)}{m_{h_1}(\zeta,g)}, \qquad \zeta \in \mathbb{C} \setminus \mathbb{R}.
$$
 (3.4)

Notice first that the zeros of $m(\zeta, g)$ are the eigenvalues of $J_{h_1}(g)$ while the poles of $m(\zeta, g)$ are the eigenvalues of $J_{h_2}(g)$. This follows from Remark 3.2 and (3.4). Let us now show that $m(\zeta, g)$ is a Herglotz or an anti-Herglotz function. Indeed, since $m(\zeta, g)$ is Herglotz, then

$$
\mathfrak{m}(\zeta, g) = \frac{1 - h_1 m}{1 - h_2 m} = 1 + \frac{-1}{\frac{h_2}{h_2 - h_1} + \frac{-1}{(h_2 - h_1)m(\zeta, g)}}.
$$
(3.5)

 \mathcal{Q} Springer

Therefore, $m(\zeta, g)$ is Herglotz or anti-Herglotz depending on the sign of $h_2 - h_1$. Recall that if a function *f* is Herglotz, then, $-\frac{1}{f}$ is also Herglotz. Since $h_2 - h_1 > 0$, $m(\zeta, g)$ is a Herglotz function.

Thus, the zeros $\{\mu_k\}_k$ of $m(\zeta, g)$ and its poles $\{\lambda_k\}_k$ interlace. Let us use the convention [\(2.18](#page-8-0)[–2.23\)](#page-9-0) for enumerating the zeros and poles of $m(\zeta, g)$. By this convention, if the sequence $\{\lambda_k\}_k$ (or $\{\mu_k\}_k$) is bounded from below, the least of all zeros is greater than the least of all poles, while, if $\{\lambda_k\}_k$ is bounded from above, the greatest of all poles is less than the greatest of all zeros. It is easy to verify, using for instance (3.1) , that this is what we have for the zeros and poles of $m(\zeta, g)$ when $J(g)$ is semi-bounded.

According to [\[18](#page-27-0), Chap. 7, Sec.1, Theorem 1], the meromorphic Herglotz function $m(\zeta, g)$, with its zeros and poles enumerated as convened, can be written as follows

$$
\mathfrak{m}(\zeta, g) = C \frac{\zeta - \mu_0}{\zeta - \lambda_0} \prod_{k \in M} \left(1 - \frac{\zeta}{\mu_k} \right) \left(1 - \frac{\zeta}{\lambda_k} \right)^{-1}, \qquad C > 0, \tag{3.6}
$$

where the prime in the infinite product means that it does not include the factor $k = 0$.

From the asymptotic behavior of $m(\zeta, g)$, given by [\(2.10\)](#page-7-0), one easily obtains that, as $\zeta \to \infty$ with Im $\zeta \geq \epsilon$ ($\epsilon > 0$),

$$
m(\zeta, g) = 1 + (h_1 - h_2)\zeta^{-1} + (h_1 - h_2)(q_1 - h_2)\zeta^{-2} + O(\zeta^{-3}).
$$
 (3.7)

Therefore,

$$
\lim_{\substack{\zeta \to \infty \\ \text{Im } \zeta \geq \epsilon}} \mathfrak{m}(\zeta, g) = 1.
$$

Then, using (3.6) , we have

$$
C^{-1} = \lim_{\substack{\zeta \to \infty \\ \text{Im}\,\zeta \geq \epsilon}} \prod_{k \in M} \left(1 - \frac{\zeta}{\mu_k}\right) \left(1 - \frac{\zeta}{\lambda_k}\right)^{-1}, \qquad \epsilon > 0. \tag{3.8}
$$

Thus, $m(\zeta, g)$ is completely determined by the spectra $\sigma(J_{h_1}(g))$ and $\sigma(J_{h_2}(g))$. Having found $m(\zeta, g)$, we can determine h_2 , respectively, h_1 , by means of (3.7). Hence, from (3.5) one obtains $m(\zeta, g)$ and, using the methods introduced in the preliminaries, *J* is uniquely determined. In the case when $J \neq J^*$, we can also find the boundary condition *g* at infinity as indicated in Section [2.](#page-4-0)

In [\[24](#page-27-0)] (see also [\[9](#page-27-0)]) it is proven that the discrete spectra of $J_{h_1}(g)$ and $J_{h_2}(g)$, together with h_1 and h_2 uniquely determine *J* and the boundary condition *g* in the $(1, 1)$ case. Our result shows that it is not necessary to know both h_1 and h_2 , one of them is enough.

It turns out that if one knows the spectra $\sigma(J_{h_1}(g))$ and $\sigma(J_{h_2}(g))$ together with q_1 , the first element of the matrix's main diagonal, it is possible to recover uniquely the matrix, the boundary conditions h_1 , h_2 and the boundary condition at infinity, *g*, if any. Indeed, the term of order ζ^{-1} in the asymptotic *A* Springer

expansion of m(ζ , *g*) [\(3.7\)](#page-11-0) determines $h_1 - h_2$. Since the coefficient of ζ^{-2} term is $(h_1 - h_2)(q_1 - h_2)$, if we know q_1 one finds h_2 , and then h_1 .

3.2 Necessary and Sufficient Conditions

Theorem 3.4 *Given* $h_1 \in \mathbb{R}$ *and two infinite sequences of real numbers* $\{\lambda_k\}_k$ *and* $\{u_k\}_k$ *without finite points of accumulation, there is a unique real* $h_2 > h_1$ *, a unique operator* $J(g)$ *, and if* $J \neq J^*$ *also a unique* $g \in \mathbb{R} \cup \{+\infty\}$ *, such that,* ${\mu_k}_k = \sigma(J_{h_1}(g))$ *and* ${\lambda_k}_k = \sigma(J_{h_2}(g))$ *if and only if the following conditions are satisfied.*

- (a) $\{\lambda_k\}_k$ *and* $\{\mu_k\}_k$ *interlace and, if* $\{\lambda_k\}_k$ *is bounded from below,* $\min_k{\{\mu_k\}_k} >$ $\min_k {\lambda_k}_{k}$, while if ${\lambda_k}_{k}$ is bounded from above, $\max_k {\lambda_k}_{k} < \max_k {\mu_k}_{k}$. *So we use below the convention* [\(2.18](#page-8-0)[–2.23\)](#page-9-0) *for enumerating the sequences.*
- (b) *The following series converges*

$$
\sum_{k\in M}(\mu_k-\lambda_k)=\Delta<\infty.
$$

By condition (b) *the product k*∈ *M k*=*n* μ*^k* − λ*ⁿ* $\frac{\partial u}{\partial x_k}$ *is convergent, so define*

$$
\tau_n^{-1} := \frac{\mu_n - \lambda_n}{\Delta} \prod_{\substack{k \in M \\ k \neq n}} \frac{\mu_k - \lambda_n}{\lambda_k - \lambda_n}, \qquad \forall n \in M. \tag{3.9}
$$

(c) *The sequence* $\{\tau_n\}_{n \in M}$ *is such that, for m* = 0, 1, 2, ..., *the series*

$$
\sum_{k\in M}\frac{\lambda_k^{2m}}{\tau_k}\quad converges.
$$

(d) *If a sequence of complex numbers* {β*k*}*k*∈*^M is such that the series*

$$
\sum_{k \in M} \frac{|\beta_k|^2}{\tau_k} \quad converges
$$

and, for m = 0, 1, 2, ...

$$
\sum_{k\in M}\frac{\beta_k\lambda_k^m}{\tau_k}=0\,,
$$

then $\beta_k = 0$ *for all* $k \in M$.

Proof We first prove that if $\{\lambda_k\}_k$ and $\{\mu_k\}_k$ are the spectra of J_h _(*g*) and J_h _(*g*), with $h_2 > h_1$, then (a), (b), (c), and (d) hold true. The condition (a) follows directly from the proof of the previous theorem. To prove that (b) holds, observe that (3.1) implies

$$
\mu_k - \lambda_k = \int_{h_1}^{h_2} \frac{dh}{\alpha_k(h)}.
$$

2 Springer

Consider a sequence ${M_n}_{n=1}^{\infty}$ of subsets of *M*, such that $M_n \subset M_{n+1}$ and $\bigcup_n M_n = M$, then, using [\(2.15\)](#page-8-0), we have

$$
s_n := \sum_{k \in M_n} (\mu_k - \lambda_k) = \sum_{k \in M_n} \int_{h_1}^{h_2} \frac{dh}{\alpha_k(h)} = \int_{h_1}^{h_2} \sum_{k \in M_n} \frac{dh}{\alpha_k(h)} \leqslant h_2 - h_1 \,.
$$

The sequence ${s_n}_{n=1}^{\infty}$ is then convergent and clearly

$$
\sum_{k\in M} (\mu_k - \lambda_k) = \lim_{n\to\infty} s_n = h_2 - h_1.
$$

Thus, $\Delta = h_2 - h_1$.

The convergence of the series in (b) allows us to write (3.8) as follows

$$
C^{-1} = \prod_{k \in M} \frac{\lambda_k}{\mu_k} \lim_{\substack{\zeta \to \infty \\ \text{Im}\,\zeta \geq \epsilon}} \prod_{k \in M} \frac{\mu_k - \zeta}{\lambda_k - \zeta}, \qquad \epsilon > 0.
$$

Now, using again (b), it easily follows that for any $\epsilon > 0$

$$
\lim_{\substack{\zeta \to \infty \\ \ln \zeta \ge \epsilon}} \prod_{k \in M} \frac{\mu_k - \zeta}{\lambda_k - \zeta} = \lim_{\substack{\zeta \to \infty \\ \ln \zeta \ge \epsilon}} \prod_{k \in M} \left(1 + \frac{\mu_k - \lambda_k}{\lambda_k - \zeta} \right) = 1.
$$

Thus, $C = \prod_{k \in M}^{\prime} \mu_k / \lambda_k$ and by [\(3.6\)](#page-11-0),

$$
\mathfrak{m}(\zeta, g) = \prod_{k \in M} \frac{\mu_k - \zeta}{\lambda_k - \zeta} \,. \tag{3.10}
$$

.

Let us now find formulae for the normalizing constants in terms of the sets of eigenvalues for different boundary conditions. By [\(2.17\)](#page-8-0),

$$
\alpha_n^{-1}(h_2,g)=\lim_{\zeta\to\lambda_n}(\lambda_n-\zeta)m_{h_2}(\zeta,g).
$$

Using the second resolvent identity, as we did to obtain (3.3) , we have that

$$
m_{h_1}(\zeta, g) = \frac{m_{h_2}(\zeta, g)}{1 - (h_1 - h_2)m_{h_2}(\zeta, g)}
$$

Therefore,

$$
\mathfrak{m}(\zeta,g) = \frac{m_{h_2}(\zeta,g)}{m_{h_1}(\zeta,g)} = 1 - (h_1 - h_2)m_{h_2}, \qquad \zeta \in \mathbb{C} \setminus \mathbb{R}. \tag{3.11}
$$

Then, the normalizing constants are given by

$$
\alpha_n^{-1}(h_2, g) = \lim_{\zeta \to \lambda_n} (\lambda_n - \zeta) \frac{\mathfrak{m}(\zeta, g) - 1}{h_2 - h_1} = \frac{1}{h_2 - h_1} \lim_{\zeta \to \lambda_n} (\lambda_n - \zeta) \mathfrak{m}(\zeta, g).
$$

A Springer

Now,

$$
\lim_{\zeta \to \lambda_n} (\lambda_n - \zeta) \mathfrak{m}(\zeta, g) = \lim_{\zeta \to \lambda_n} (\lambda_n - \zeta) \prod_{k \in M} \frac{\mu_k - \zeta}{\lambda_k - \zeta}
$$
\n
$$
= (\mu_n - \lambda_n) \prod_{\substack{k \in M \\ k \neq n}} \frac{\mu_k - \lambda_n}{\lambda_k - \lambda_n}.
$$
\n(3.12)

Hence,

$$
\alpha_n^{-1}(h_2, g) = \frac{\mu_n - \lambda_n}{h_2 - h_1} \prod_{\substack{k \in M \\ k \neq n}} \frac{\mu_k - \lambda_n}{\lambda_k - \lambda_n} \,. \tag{3.13}
$$

Notice that, since $\Delta = h_2 - h_1$, it follows from (3.13) that $\tau_n = \alpha_n$ for all $n \in M$. Hence the spectral function ρ of the self-adjoint extension $J_{h_2}(g)$ is given by the expression $\rho(t) = \sum_{\lambda_k \leq t} \tau_k^{-1}$. Thus (c) follows from the fact that all the moments of ρ are finite $\left[1, 23\right]$ $\left[1, 23\right]$ $\left[1, 23\right]$. Similarly, (d) stems from the density of polynomials in $L_2(\mathbb{R}, d\rho)$, which takes place since ρ is *N*-extremal [\[1\]](#page-26-0), [\[23,](#page-27-0) Proposition 4.15].

We now prove that conditions (a), (b), (c), and (d) are sufficient. Let $\{\lambda_k\}_k$ and $\{\mu_k\}_k$ be sequences as in (a) and (b). Then,

$$
0 < \prod_{\substack{k \in M \\ k \neq n}} \frac{\mu_k - \lambda_n}{\lambda_k - \lambda_n} < \infty. \tag{3.14}
$$

The convergence of this product allows us to define the sequence of numbers ${\tau_n}_{n \in M}$. Observe that for all $n \in M$, $\tau_n > 0$. Indeed, $\Delta > 0$ and [\(2.18–](#page-8-0)[2.23\)](#page-9-0) yield $\mu_n - \lambda_n > 0$ for all $n \in M$. Thus, taking into account (3.14), we obtain

$$
\tau_n > 0, \qquad \forall \, n \in M \,. \tag{3.15}
$$

Let us now define the function

$$
\rho(t) := \sum_{\lambda_k \leq t} \frac{1}{\tau_k}, \qquad t \in \mathbb{R}.
$$
\n(3.16)

Since (3.15) holds, ρ is a monotone non-decreasing function and has an infinite number of points of growth. Notice also that ρ is right continuous. Now, we want to show that for the measure corresponding to ρ all the moments are finite and

$$
\int_{\mathbb{R}} d\rho(t) = 1.
$$
\n(3.17)

.

The fact that the moments are finite follows directly from condition (c). Indeed,

$$
\int_{\mathbb{R}} t^m d\rho(t) = \sum_{k \in M} \frac{\lambda_k^m}{\tau_k}
$$

 \mathcal{Q} Springer

We show next that [\(3.17\)](#page-14-0) holds true. Given the sequences $\{\lambda_k\}_k$ and $\{\mu_k\}_k$ satisfying (a) and (b) we can define the function

$$
\widetilde{\mathfrak{m}}(\zeta) := \prod_{k \in M} \frac{\mu_k - \zeta}{\lambda_k - \zeta} \,. \tag{3.18}
$$

Taking into account [\(3.9\)](#page-12-0), one obtains that

$$
\operatorname{Res}_{\zeta=\lambda_n}(\widetilde{\mathfrak{m}}(\zeta)-1)=-\frac{\Delta}{\tau_n}.
$$

In view of (b), we easily find that

$$
\lim_{\substack{\zeta \to \infty \\ \ln \zeta \ge \epsilon}} (\widetilde{\mathfrak{m}}(\zeta) - 1) = \lim_{\substack{\zeta \to \infty \\ \ln \zeta \ge \epsilon}} \prod_{k \in M} \frac{\mu_k - \zeta}{\lambda_k - \zeta} - 1
$$
\n
$$
= \lim_{\substack{\zeta \to \infty \\ \ln \zeta \ge \epsilon}} \prod_{k \in M} \left(1 + \frac{\mu_k - \lambda_k}{\lambda_k - \zeta} \right) - 1 = 0. \tag{3.19}
$$

Thus, on the basis of Čebotarev's theorem on the representation of meromorphic Herglotz functions [\[18,](#page-27-0) Chap. VII, Section 1 Theorem 2], one obtains

$$
\widetilde{\mathfrak{m}}(\zeta) - 1 = \sum_{k \in M} \frac{\Delta}{(\lambda_k - \zeta)\tau_k} \,. \tag{3.20}
$$

We now define the function $\widetilde{m}(\zeta) := \frac{\widetilde{m}(\zeta) - 1}{\Delta}$. Then, (3.20) yields

$$
\widetilde{m}(\zeta) = \sum_{k \in M} \frac{1}{\tau_k(\lambda_k - \zeta)}.
$$
\n(3.21)

We next show that

$$
\lim_{\substack{\zeta \to \infty \\ \text{Im}\,\zeta \geq \epsilon}} \zeta \widetilde{m}(\zeta) = -1 \, .
$$

Indeed,

$$
\frac{\widetilde{m}(\zeta)}{\Delta} = \frac{1}{\Delta} \prod_{k \in M} \frac{\mu_k - \zeta}{\lambda_k - \zeta}
$$
\n
$$
= \frac{1}{\Delta} \exp \left\{ \sum_{k \in M} \ln \left(\frac{\mu_k - \zeta}{\lambda_k - \zeta} \right) \right\}
$$
\n
$$
= \frac{1}{\Delta} \exp \left\{ \sum_{k \in M} \ln \left(1 + \frac{\mu_k - \lambda_k}{\lambda_k - \zeta} \right) \right\}
$$
\n
$$
= \frac{1}{\Delta} \exp \left\{ \sum_{k \in M} \sum_{p=1}^{\infty} (-1)^{p-1} \left(\frac{\mu_k - \lambda_k}{\lambda_k - \zeta} \right)^p \right\}.
$$

2 Springer

Thus, as $\zeta \to \infty$ with Im $\zeta \geq \epsilon$ ($\epsilon > 0$),

$$
\frac{\widetilde{m}(\zeta)}{\Delta} = \frac{1}{\Delta} + \frac{1}{\Delta} \sum_{k \in M} \frac{\mu_k - \lambda_k}{\lambda_k - \zeta} + O(\zeta^{-2}).
$$

Then,

$$
\lim_{\substack{\zeta \to \infty \\ \operatorname{Im}\zeta \ge \epsilon}} \zeta \widetilde{m}(\zeta) = \lim_{\substack{\zeta \to \infty \\ \operatorname{Im}\zeta \ge \epsilon}} \zeta \frac{1}{\Delta} \sum_{k \in M} \frac{\mu_k - \lambda_k}{\lambda_k - \zeta}
$$
\n
$$
= -\frac{1}{\Delta} \sum_{k \in M} (\mu_k - \lambda_k) = -1.
$$

Also, from (3.21) one has

$$
\lim_{\substack{\zeta \to \infty \\ \text{Im}\,\zeta \geq \epsilon}} \zeta \widetilde{m}(\zeta) = -\sum_{k \in M} \frac{1}{\tau_k}.
$$

Therefore,

$$
1 = \sum_{k \in M} \frac{1}{\tau_k} = \int_{\mathbb{R}} d\rho(t).
$$

Having found a function ρ with infinitely many growing points and such that [\(3.17\)](#page-14-0) is satisfied and all the moments exist, one can obtain, applying the method of orthogonal polynomials (see Section [2\)](#page-4-0), a tridiagonal semi-infinite matrix. Let us denote by *^J* the operator whose matrix representation is the obtained matrix. By what has been explained before, this operator is closed and symmetric. Now, define $h_2 := \Delta + h_1$ and $J := \widehat{J} + h_2 \langle \cdot, e_1 \rangle e_1$.

If $\widehat{J} = \widehat{J}^*$, we know that $\rho(t) = \langle E(t)\hat{\tau}e_1, e_1 \rangle$, where $E_{\hat{I}}(t)$ is the spectral decomposition of the self-adjoint Jacobi operator \widehat{J} . Then, obviously, $\widehat{J} = J_h$.

If $\hat{J} \neq \hat{J}^*$, the Stieltjes transform of ρ is the Weyl *m*-function, we denote it by $w(\zeta)$, of some self-adjoint extension of \widehat{J} that we denote by \widetilde{J} . This is true because of the density of polynomials in $L_2(\mathbb{R}, d\rho)$. Indeed, (d) means that the polynomials are dense in $L_2(\mathbb{R}, d\rho)$. Thus, $w(\zeta)$ lies on the Weyl circle, and then, it is the Weyl *m*-function of some self-adjoint extension of \widehat{J} [\[1\]](#page-26-0), [\[23,](#page-27-0) Proposition 4.15. Therefore, $\tilde{J} + h_2 \langle \cdot, e_1 \rangle e_1$ is a self-adjoint extension of *J* and hence, $\widetilde{J} + h_2 \langle \cdot, e_1 \rangle e_1 = J(g)$ for some unique $g \in \mathbb{R} \cup \{\infty\}$. Furthermore, we obviously have that, $\widetilde{J} = J_{h_2}(g)$ and $w(\zeta) = m_{h_2}(\zeta, g)$. We uniquely reconstruct $m(\zeta, g)$ from $m_{h_2}(\zeta, g)$ using [\(3.3\)](#page-10-0) and then, we uniquely reconstruct *g* as explained in Section [2.](#page-4-0)

Notice that we have

$$
m_{h_2}(\zeta, g) = \int_{\mathbb{R}} \frac{d\rho(t)}{t - \zeta} = \widetilde{m}(\zeta).
$$

It remains to show that $\sigma(J_{h_2}(g)) = {\lambda_k}_k$ and $\sigma(J_{h_1}(g)) = {\mu_k}_k$. To this end consider the function $m(\zeta, g)$ for the pair J_{h_2} and J_{h_1} :

$$
\mathfrak{m}(\zeta,g)=\frac{m_{h_2}(\zeta,g)}{m_{h_1}(\zeta,g)},\qquad \zeta\in\mathbb{C}\setminus\mathbb{R}.
$$

 \mathcal{Q} Springer

Let the sequence $\{\gamma_k\}_k$ denote the spectrum of J_h . Then, arguing as in the proof of (3.10) we obtain that

$$
\mathfrak{m}(\zeta,g)=\prod_{k\in M}\frac{\gamma_k-\zeta}{\lambda_k-\zeta}.
$$

Since we have already proven that (a) and (b) are necessary conditions, we have that

$$
\sum_{k\in M}(\gamma_k-\lambda_k)=\Delta<\infty.
$$

Then, as in the proof of [\(3.19\)](#page-15-0), it follows that

$$
\lim_{\substack{\zeta \to \infty \\ \text{Im}\,\zeta \geq \epsilon}} (\mathfrak{m}(\zeta) - 1) = 0.
$$

Hence by Cebotarev's theorem $[18, Chap. VII, Section 1 Theorem 2]$ $[18, Chap. VII, Section 1 Theorem 2]$ $[18, Chap. VII, Section 1 Theorem 2]$,

$$
\mathfrak{m}(\zeta,g) = 1 + \sum_{k \in M} \frac{h_2 - h_1}{(\lambda_k - \zeta)\alpha_k(h_2,g)},
$$

where we compute the residues of $m(\zeta)$ as in [\(3.12\)](#page-14-0). Thus, since $\alpha_k(h_2, g) = \tau_k$, ∀*k* ∈ *M*,

$$
\mathfrak{m}(\zeta,g) = 1 + \sum_{k \in M} \frac{\Delta}{(\lambda_k - \zeta) \tau_k} = \widetilde{\mathfrak{m}}(\zeta,g).
$$

But {λ*k*}*k* and {μ*k*}*k* are the poles and zeros of $\tilde{m}(\zeta, g)$ and then, the eigenvalues of $J_h(g)$ and $J_h(g)$, respectively. of $J_{h_2}(g)$ and $J_{h_1}(g)$, respectively.

Remark 3.5 We draw the reader's attention to the fact that the matrix associated with the function ρ , constructed in the proof of the previous theorem, may have deficiency indices $(1, 1)$ $[1, 23, 25]$ $[1, 23, 25]$ $[1, 23, 25]$ $[1, 23, 25]$ $[1, 23, 25]$.

If we drop the condition of the density of polynomials in $L_2(\mathbb{R}, d\rho)$ and our reconstruction method yields a nonself-adjoint operator *J*, then the sequences ${\lambda_k}_k$ and ${\mu_k}_k$ correspond to the spectra of some generalized self-adjoint extensions of J_{h_2} and J_{h_1} , respectively (see [\[23\]](#page-27-0)). The generalized extensions of symmetric operators, which are not von Neumann extensions, were first introduced by Naimark (see Appendix I in [\[2](#page-26-0)] on Naimark's theory).

In [\[15](#page-27-0)] the case of Jacobi operators bounded from below is considered. A uniqueness result is proven, and some sufficient conditions for a pair of sequences to be the spectra of a Jacobi operator with different boundary conditions are given.

4 Dirichlet–Neumann Conditions

4.1 Recovering the Matrix from Two Spectra

In this section we shall consider the pair of Jacobi operators $J_0(g) = J(g)$ and $J_{\infty}(g)$. Here, as before, we keep the convention of writing $J(g)$ even if $J = J^*$. The matrix representation of $J_{\infty}(g)$ corresponds to the matrix representation of $J(g)$ with the first column and row removed. From the Ricatti equation [\(2.13\)](#page-7-0), taking into account that $m^{(0)}(\zeta, g) = m(\zeta, g)$ and $m^{(1)}(\zeta, g) = m_{\infty}(\zeta, g)$, we have

$$
m_{\infty}(\zeta, g) = -\frac{1}{b_1^2} \left((\zeta - q_1) + \frac{1}{m(\zeta, g)} \right). \tag{4.1}
$$

As before, we assume that the spectrum of $J = J(g)$ is discrete.

If $m(\zeta, g)$ is a meromorphic function, then, by (4.1), $m_\infty(\zeta, g)$ is also meromorphic and the spectrum of $J_{\infty}(g)$ is discrete. The poles of $m(\zeta, g)$ are the eigenvalues of $J(g)$, while the zeros of $m(\zeta, g)$ are the eigenvalues of $J_{\infty}(g)$. Since $m(\zeta, g)$ is always a Herglotz function, under our assumption on the discreteness of $\sigma(J(g))$, $m(\zeta, g)$ is a meromorphic Herglotz function. This implies that $\sigma(J(g))$ and $\sigma(J_{\infty}(g))$ are interlaced, that is, between two successive eigenvalues of one operator there is exactly one eigenvalue of the other.

Let the sequence $\{\lambda_k\}_k$ denote the eigenvalues of $J(g)$ (the poles of $m(\zeta, g)$). Furthermore, $\{\mu_k\}_k$ will stand for the eigenvalues of $J_\infty(g)$ (the zeros of $m(\zeta, g)$). It is worth remarking that, in contrast to the case of boundary conditions being rank one perturbations with finite coupling constant, here our convention for enumerating the sequences $\{\lambda_k\}_k$ and $\{\mu_k\}_k$ does not work in the case when $J(g)$ is semi-bounded from above. Indeed, it follows from the minimax principle $[21]$ $[21]$ that if $J(g)$ is bounded from below, the smallest of all poles is less than the smallest of all zeros of $m(\zeta, g)$, and if $J(g)$ is bounded from above, the min–max principle applied to $-J(g)$ implies that the greatest of all zeros is less than the greatest of all poles of $m(\zeta, g)$.

So let us consider first the case when $J(g)$ is not semi-bounded or semibounded from below and enumerate the sequences $\{\lambda_k\}_k$ and $\{\mu_k\}_k$ by [\(2.18\)](#page-8-0), (2.19) , (2.22) , and (2.23) . Then, by the same theorem we used to obtain (3.6) [18], $m(\zeta, g)$ can be written as follows

$$
m(\zeta, g) = C \frac{\zeta - \mu_0}{\zeta - \lambda_0} \prod_{k \in M} \left(1 - \frac{\zeta}{\mu_k} \right) \left(1 - \frac{\zeta}{\lambda_k} \right)^{-1}, \qquad C > 0, \tag{4.2}
$$

where, as before, the prime in the infinite product means that it does not include the factor $k = 0$.

If $J(g)$ is bounded from above, then we are still able to use (2.18) , (2.20) and [\(2.21\)](#page-9-0) for enumerating the zeros and poles of the meromorphic Herglotz function $-\frac{1}{m(\zeta,g)}$. Thus,

$$
-\frac{1}{m(\zeta, g)} = \widetilde{C} \frac{\zeta - \lambda_0}{\zeta - \mu_0} \prod_{k \in M} \left(1 - \frac{\zeta}{\lambda_k} \right) \left(1 - \frac{\zeta}{\mu_k} \right)^{-1}, \qquad \widetilde{C} > 0. \tag{4.3}
$$

Notice that, since we have enumerated zeros and poles of $-\frac{1}{m(\zeta,g)}$ by our convention, we have now

 $∀k ∈ M, \t\t \mu_k < λ_k < μ_{k+1},$ (4.4)

and

(a) If $0 < \sup_k {\{\mu_k\}_k} < \infty$, *M* := ${k \atop k=−\infty}$, (*k*_{max} ≥ 1) requiring $\lambda_{-1} < 0 < \mu_1$, (4.5)

(b) If $\sup_k {\{\mu_k\}_k \leq 0}$,

$$
M := \{k\}_{k=-\infty}^{0} \,. \tag{4.6}
$$

Here again λ_0 or μ_0 are the only ones allowed to be zero.

Equations (4.2) and (4.3) can be written in one formula

$$
m(\zeta, g) = K \frac{\zeta - \mu_0}{\zeta - \lambda_0} \prod_{k \in M} \left(1 - \frac{\zeta}{\mu_k} \right) \left(1 - \frac{\zeta}{\lambda_k} \right)^{-1}, \tag{4.7}
$$

where, if $J(g)$ is not semi-bounded from above, $K = C$ and $\{\lambda_k\}_k$ and $\{\mu_k\}_k$ are enumerated by (2.18) , (2.19) , (2.22) , and (2.23) , while $K = -\tilde{C}^{-1}$ and $\{\lambda_k\}_k$ and $\{\mu_k\}_k$ and $\{\mu_k\}_k$ and $\{\mu_k\}_k$ and $\{\mu_k\}_k$ and $\{\mu_k\}_k$. $\{\mu_k\}_k$ are enumerated by (4.4–4.6) if $J(g)$ is semi-bounded from above.

We give now, for the reader's convenience, a simple proof of a theorem that was proven by Fu and Hochstadt [\[10](#page-27-0)] for regular Jacobi operators (a regular Jacobi matrix is defined in [\[10](#page-27-0)]), and by Teschl [\[24](#page-27-0)] in the general case.

Theorem 4.1 (Fu and Hochstadt, Teschl) *Consider the Jacobi operator J*(*g*) *with discrete spectrum. The sequences* $\{\lambda_k\}_k = \sigma(J(g))$ *and* $\{\mu_k\}_k = \sigma(J_\infty(g))$ *uniquely determine the operator J and, if* $J \neq J^*$ *, the boundary condition, g, at infinity.*

Proof From [\(2.10\)](#page-7-0) we know that

$$
\lim_{\substack{\zeta \to \infty \\ \text{Im}\,\zeta \geq \epsilon}} \zeta m(\zeta, g) = -1, \qquad \epsilon > 0.
$$

Then, if $J(g)$ is not semi-bounded from above, (4.2) yields

$$
C^{-1} = -\lim_{\substack{\zeta \to \infty \\ \ln \zeta \ge \epsilon}} \zeta \prod_{k \in M} \left(1 - \frac{\zeta}{\mu_k} \right) \left(1 - \frac{\zeta}{\lambda_k} \right)^{-1}, \qquad \epsilon > 0, \qquad (4.8)
$$

A Springer

where $\{\lambda_k\}_k$ and $\{\mu_k\}_k$ are enumerated by [\(2.18\)](#page-8-0), [\(2.19\)](#page-8-0), [\(2.22\)](#page-9-0), and [\(2.23\)](#page-9-0). On the other hand, in the semi-bounded from above case (4.3) implies

$$
\widetilde{C}^{-1} = \lim_{\substack{\zeta \to \infty \\ \text{Im}\,\zeta \geq \epsilon}} \frac{1}{\zeta} \prod_{k \in M} \left(1 - \frac{\zeta}{\lambda_k}\right) \left(1 - \frac{\zeta}{\mu_k}\right)^{-1}, \qquad \epsilon > 0. \tag{4.9}
$$

where $\{\lambda_k\}_k$ and $\{\mu_k\}_k$ are enumerated by [\(4.4–4.6\)](#page-19-0). Thus, in any case, one can find *K*, the constant in [\(4.7\)](#page-19-0), from the sequences $\{\lambda_k\}_k$ and $\{\mu_k\}_k$. Therefore, the spectra $\sigma(J(g))$ and $\sigma(J_{\infty}(g))$ uniquely determine $m(\zeta, g)$. Having found $m(\zeta, g)$ we can, using the methods introduced in Section [2,](#page-4-0) determine *J* and, in the case when $J \neq J^*$, also find uniquely the boundary condition at infinity, *g*.

Remark 4.2 It turns out that, by [\(4.8\)](#page-19-0) and (4.9), *K* can be written as

$$
K^{-1} = -\lim_{\substack{\zeta \to \infty \\ \text{Im}\,\zeta \geq \epsilon}} \zeta \prod_{k \in M} \left(1 - \frac{\zeta}{\mu_k}\right) \left(1 - \frac{\zeta}{\lambda_k}\right)^{-1}, \qquad \epsilon > 0, \tag{4.10}
$$

where the sequences $\{\lambda_k\}_k$ and $\{\mu_k\}_k$ have been enumerated by [\(2.18\)](#page-8-0), [\(2.19\)](#page-8-0), (2.22) , and (2.23) , when $J(g)$ is not semi-bounded from above and by $(4.4-4.6)$, otherwise.

In what follows the Weyl *m*-function will be written through [\(4.7\)](#page-19-0) with *K* given by (4.10). From [\(4.7\)](#page-19-0) one can obtain straightforward formulae for the normalizing constants [\(2.14\)](#page-8-0) in terms of the sequences $\{\lambda_k\}_k$ and $\{\mu_k\}_k$. Indeed, when $n \neq 0$

$$
\lim_{\zeta \to \lambda_n} (\lambda_n - \zeta) m(\zeta, g) = \lim_{\zeta \to \lambda_n} (\lambda_n - \zeta) K \frac{\zeta - \mu_0}{\zeta - \lambda_0} \prod_{k \in M} \frac{1 - \frac{\zeta}{\mu_k}}{1 - \frac{\zeta}{\lambda_k}}
$$

$$
= K \frac{\lambda_n}{\mu_n} (\mu_n - \lambda_n) \frac{\lambda_n - \mu_0}{\lambda_n - \lambda_0} \prod_{\substack{k \in M \\ k \neq n}} \frac{1 - \frac{\lambda_n}{\mu_k}}{1 - \frac{\lambda_n}{\lambda_k}}.
$$

Formulae (2.17) and (4.10) then give, for $n \neq 0$,

$$
\alpha_n^{-1} = -\frac{\sum\limits_{\mu_n}^{\lambda_n} (\mu_n - \lambda_n) \frac{\lambda_n - \mu_0}{\lambda_n - \lambda_0} \prod\limits_{\substack{k \in M \\ k \neq n}}' \left(1 - \frac{\lambda_n}{\mu_k}\right) \left(1 - \frac{\lambda_n}{\lambda_k}\right)^{-1}}{\lim_{\substack{\zeta \to \infty \\ \text{Im } \zeta \ge \epsilon}} \zeta \prod\limits_{k \in M} \left(1 - \frac{\zeta}{\mu_k}\right) \left(1 - \frac{\zeta}{\lambda_k}\right)^{-1}}.
$$
(4.11)

 \mathcal{Q} Springer

Analogously,

$$
\alpha_0^{-1} = -\frac{(\mu_0 - \lambda_0) \prod_{k \in M} ' \left(1 - \frac{\lambda_0}{\mu_k}\right) \left(1 - \frac{\lambda_0}{\lambda_k}\right)^{-1}}{\lim_{\substack{\xi \to \infty \\ \ln \xi \ge \epsilon}} \xi \prod_{k \in M} ' \left(1 - \frac{\xi}{\mu_k}\right) \left(1 - \frac{\xi}{\lambda_k}\right)^{-1}}.
$$
(4.12)

4.2 Necessary and Sufficient Conditions

The following result establishes necessary and sufficient conditions for two given sequences of real numbers to be the spectra of $J(g)$ and $J_{\infty}(g)$.

Theorem 4.3 *Given two infinite sequences of real numbers* $\{\lambda_k\}_k$ *and* $\{\mu_k\}_k$ *without finite points of accumulation, there is a unique operator J*(*g*)*, and if* $J \neq J^*$ *also a unique* $g \in \mathbb{R} \cup \{+\infty\}$ *, such that* $\{\lambda_k\}_k = \sigma(J(g))$ *and* $\{\mu_k\}_k =$ $\sigma(J_{\infty}(g))$ *if and only if the following conditions are satisfied.*

(a) $\{\lambda_k\}_k$ *and* $\{\mu_k\}_k$ *interlace and, if* $\{\lambda_k\}_k$ *is bounded from below,* min $_k\{\mu_k\}_k$ > $\min_k {\lambda_k}_{k}$ *if* ${\lambda_k}_{k}$ *k is bounded from above,* $\max_k {\lambda_k}_{k} > \max_k {\mu_k}_{k}$ *. So we use below the convention* [\(2.18\)](#page-8-0)*,* [\(2.19\)](#page-8-0)*,* [\(2.22\)](#page-9-0)*, and* [\(2.23\)](#page-9-0) *for enumerating the sequences when* $J(g)$ *is not semi-bounded from above, and* $(4.4-4.6)$ *otherwise.*

By condition (a) *the product*

$$
\prod_{k \in M} \left(1 - \frac{\zeta}{\mu_k} \right) \left(1 - \frac{\zeta}{\lambda_k} \right)^{-1}
$$

converges uniformly on compact subsets of C (*see the proof below and* [\[18,](#page-27-0) *Chap.* 7, *Section* 1]*.*

(b) *The limit*

$$
\lim_{\substack{\xi \to \infty \\ \xi \in \mathbb{R}}} i\xi \prod_{k \in M}' \left(1 - \frac{i\xi}{\mu_k}\right) \left(1 - \frac{i\xi}{\lambda_k}\right)^{-1} \tag{4.13}
$$

is finite and negative when the sequences $\{\lambda_k\}_k$ *and* $\{\mu_k\}_k$ *are not bounded from above, and it is finite and positive otherwise.*

(c) *Let* {τ*n*}*n*∈*^M be defined by*

$$
\tau_n^{-1} = -\frac{\frac{\lambda_n}{\mu_n}(\mu_n - \lambda_n) \frac{\lambda_n - \mu_0}{\lambda_n - \lambda_0} \prod_{\substack{k \in M \\ k \neq n}}' \left(1 - \frac{\lambda_n}{\mu_k}\right) \left(1 - \frac{\lambda_n}{\lambda_k}\right)^{-1}}{\lim_{\substack{\xi \to \infty \\ \xi \in \mathbb{R} \\ k \in M}} \text{ i } \xi \prod_{k \in M} ' \left(1 - \frac{\text{i} \xi}{\mu_k}\right) \left(1 - \frac{\text{i} \xi}{\lambda_k}\right)^{-1}}
$$

A Springer

for $n \in M$, $n \neq 0$, and

$$
\tau_0^{-1} = -\frac{(\mu_0 - \lambda_0) \prod_{k \in M} \left(1 - \frac{\lambda_0}{\mu_k}\right) \left(1 - \frac{\lambda_0}{\lambda_k}\right)^{-1}}{\lim_{\substack{\xi \to \infty \\ \xi \in \mathbb{R}}} i \xi \prod_{k \in M} \left(1 - \frac{i\xi}{\mu_k}\right) \left(1 - \frac{i\xi}{\lambda_k}\right)^{-1}}.
$$

The sequence $\{\tau_n\}_{n \in \mathbb{N}}$ *is such that, for m* = 0, 1, 2, ..., *the series*

$$
\sum_{k \in M} \frac{\lambda_k^{2m}}{\tau_k}
$$
 converges.

(d) *If a sequence of complex numbers* {β*k*}*k*[∈]*M, is such that the series*

$$
\sum_{k \in M} \frac{|\beta_k|^2}{\tau_k} \quad converges
$$

and, for $m = 0, 1, 2, \ldots$ *,*

$$
\sum_{k\in M}\frac{\beta_k\lambda_k^m}{\tau_k}=0\,,
$$

then $\beta_k = 0$ *for all* $k \in M$.

Proof We begin the proof by showing that the sequences $\sigma(J(g)) = {\lambda_k}_k$ and $\sigma(J_{\infty}(g)) = {\mu_k}_k$ satisfy (a), (b), (c), and (d). Since the Weyl *m* function is Herglotz, the eigenvalues of *J*(*g*) and *J*_∞(*g*) interlace as indicated in (a). To prove that (b) holds, consider first the case when $J(g)$ is not semi-bounded or only bounded from below, then (4.8) yields (b). If $J(g)$ is semi-bounded from above, (4.9) implies (b).

On the basis of (4.11) and (4.12) , τ_n coincides with the normalizing constant α_n for all $n \in M$. Hence the spectral function ρ of the self-adjoint extension *J*(*g*) is given by the expression $\rho(t) = \sum_{\lambda_k \leq t} \tau_k^{-1}$. Thus (c) follows from the fact that all the moments of ρ are finite $\left[1, 23\right]$ $\left[1, 23\right]$ $\left[1, 23\right]$ $\left[1, 23\right]$ $\left[1, 23\right]$. Similarly, (d) stems from the density of polynomials in $L_2(\mathbb{R}, d\rho)$, which takes place since ρ is *N*-extremal [\[1\]](#page-26-0), [\[23,](#page-27-0) Proposition 4.15].

Let us now suppose that we are given two real sequences $\{\lambda_k\}_k$ and $\{\mu_k\}_k$ that satisfy (a). It can be shown that

$$
0 < \prod_{\substack{k \in M \\ k \neq n}} \left(1 - \frac{\lambda_n}{\mu_k} \right) \left(1 - \frac{\lambda_n}{\lambda_k} \right)^{-1} < \infty \,. \tag{4.14}
$$

Indeed, the convergence of the infinite product follows from (a) and is part of the Theorem 1 in $[18, Chap. 7, Sec.1]$ $[18, Chap. 7, Sec.1]$ used to obtain (3.6) . We give here, for \mathcal{D} Springer

the reader's convenience, some details. The product in [\(4.14\)](#page-22-0) converges if and only if

$$
\sum_{\substack{k \in M \\ k \neq n}} \left\{ \left(1 - \frac{\lambda_n}{\mu_k}\right) \left(1 - \frac{\lambda_n}{\lambda_k}\right)^{-1} - 1 \right\} = \lambda_n \sum_{\substack{k \in M \\ k \neq n}} \left(\frac{1}{\lambda_k} - \frac{1}{\mu_k} \right) \left(1 - \frac{\lambda_n}{\lambda_k}\right)^{-1} < \infty,
$$

where prime means that the summand $k = 0$ is excluded. Thus, we have to prove that

$$
\sum_{k\in M}'\left(\frac{1}{\lambda_k}-\frac{1}{\mu_k}\right)<\infty.
$$

It will suffice to consider that in (a) the sequences are ordered by [\(2.18\)](#page-8-0) with *M* given by [\(2.19\)](#page-8-0). For any $k \in \mathbb{N}$, [\(2.18\)](#page-8-0) implies

$$
0 < \left(\frac{1}{\lambda_k} - \frac{1}{\mu_k}\right) < \left(\frac{1}{\lambda_k} - \frac{1}{\lambda_{k+1}}\right), \qquad \forall k \in \mathbb{N}.
$$

Clearly, $\sum_{k \in \mathbb{N}} \left(\frac{1}{\lambda_k} - \frac{1}{\lambda_{k+1}} \right)$ is convergent. Analogously, it can be proven that

$$
\sum_{k\in\mathbb{N}}\left(\frac{1}{\lambda_{-k}}-\frac{1}{\mu_{-k}}\right)<\infty.
$$

Having established the convergence of the the product in [\(4.14\)](#page-22-0), its positivity follows easily.

We have, therefore, a sequence of real numbers $\{\tau_k\}_{k \in M}$ and let us now show that $\tau_n > 0$, $\forall n \in M$. First notice that (2.18) , (2.19) , (2.22) , and (2.23) , yield

$$
\frac{\lambda_n}{\mu_n}(\mu_n - \lambda_n) \frac{\lambda_n - \mu_0}{\lambda_n - \lambda_0} > 0 \quad (n \neq 0) \quad \text{and} \quad \mu_0 - \lambda_0 > 0.
$$

On the other hand [\(4.4–4.6\)](#page-19-0) imply

$$
\frac{\lambda_n}{\mu_n}(\mu_n - \lambda_n) \frac{\lambda_n - \mu_0}{\lambda_n - \lambda_0} < 0 \quad (n \neq 0) \quad \text{and} \quad \mu_0 - \lambda_0 < 0 \, .
$$

From these last inequalities, taking into account [\(4.14\)](#page-22-0) and condition (b) we obtain

$$
\tau_n > 0, \qquad \forall \, n \in M \,. \tag{4.15}
$$

Let us now define the function

$$
\rho(t) := \sum_{\lambda_k \leq t} \frac{1}{\tau_k}, \qquad \forall t \in \mathbb{R} \,.
$$
\n(4.16)

In view of (4.15) , ρ is a monotone non-decreasing function and has an infinite number of points of growth. Now, we want to show that, for the measure corresponding to ρ , all the moments are finite and

$$
\int_{\mathbb{R}} d\rho(t) = 1.
$$
\n(4.17)

The fact that the moments are finite follows directly from condition (c). Indeed,

$$
\int_{\mathbb{R}} t^m d\rho(t) = \sum_{k \in M} \frac{\lambda_k^m}{\tau_k}.
$$

We show next that [\(4.17\)](#page-23-0) is true. Given the sequences $\{\lambda_k\}_k$ and $\{\mu_k\}_k$ satisfying (a) and (b), we can define the function

$$
\widetilde{m}(\zeta) := -\frac{\frac{\zeta - \mu_0}{\zeta - \lambda_0} \prod'_{k \in M} \left(1 - \frac{\zeta}{\mu_k}\right) \left(1 - \frac{\zeta}{\lambda_k}\right)^{-1}}{\lim_{\substack{\xi \to \infty \\ \xi \in \mathbb{R}}} \mathrm{i}\xi \prod'_{k \in M} \left(1 - \frac{\mathrm{i}\xi}{\mu_k}\right) \left(1 - \frac{\mathrm{i}\xi}{\lambda_k}\right)^{-1}}\,. \tag{4.18}
$$

Now, arguing as in the proof of [\(4.11\)](#page-20-0) and [\(4.12\)](#page-21-0), we obtain

$$
\operatorname{Res}_{\zeta=\lambda_n} \widetilde{m}(\zeta) = -\tau_n^{-1}.
$$

On the other hand,

$$
\lim_{\substack{\xi \to \infty \\ \xi \in \mathbb{R}}} \widetilde{m}(\mathrm{i}\xi) = -\lim_{\substack{\xi \to \infty \\ \xi \in \mathbb{R}}} \frac{\prod_{k \in M}' \left(1 - \frac{\mathrm{i}\xi}{\mu_k}\right) \left(1 - \frac{\mathrm{i}\xi}{\lambda_k}\right)^{-1}}{\mathrm{i}\xi \prod_{k \in M}' \left(1 - \frac{\mathrm{i}\xi}{\mu_k}\right) \left(1 - \frac{\mathrm{i}\xi}{\lambda_k}\right)^{-1}} = 0.
$$

Thus, using again Cebotarev's theorem $[18]$ $[18]$ $[18]$ we find that

$$
\widetilde{m}(\zeta) = \sum_{k \in M} \frac{1}{\tau_k(\lambda_k - \zeta)}.
$$
\n(4.19)

It follows from (4.18) that

$$
\lim_{\substack{\xi \to \infty \\ \xi \in \mathbb{R}}} \mathrm{i} \xi \widetilde{m}(\mathrm{i} \xi) = - \lim_{\substack{\xi \to \infty \\ \xi \in \mathbb{R}}} \frac{\mathrm{i} \xi \prod_{k \in M}' \left(1 - \frac{\mathrm{i} \xi}{\mu_k}\right) \left(1 - \frac{\mathrm{i} \xi}{\lambda_k}\right)^{-1}}{\mathrm{i} \xi \prod_{k \in M}' \left(1 - \frac{\mathrm{i} \xi}{\mu_k}\right) \left(1 - \frac{\mathrm{i} \xi}{\lambda_k}\right)^{-1}} = -1 \,.
$$

Also from (4.19) one has

$$
\lim_{\substack{\xi \to \infty \\ \xi \in \mathbb{R}}} \mathrm{i} \xi \widetilde{m}(\mathrm{i} \xi) = - \sum_{k \in M} \frac{1}{\tau_k} \, .
$$

Therefore,

$$
1 = \sum_{k \in M} \frac{1}{\tau_k} = \int_{\mathbb{R}} d\rho(t).
$$

We have found a function $\rho(t)$ with infinitely many growing points, such that all the moments exist for the corresponding measure and [\(4.17\)](#page-23-0) holds. Therefore one can obtain, applying the method of orthogonal polynomials (see Section [2\)](#page-4-0), a tridiagonal semi-infinite matrix. Let us denote by *J* the operator whose matrix representation is the obtained matrix. As was mentioned before, *J* is symmetric and closed. Now, if $J = J^*$, we know that $\rho(t) = \langle E_J(t)e_1, e_1 \rangle$, where $E_J(t)$ is the spectral decomposition of the self-adjoint Jacobi operator *J*. If $J \neq J^*$, then the Stieltjes transform of $\rho(t)$ is the Weyl *m*-function $m(\zeta, g)$ \mathcal{D} Springer

of some self-adjoint extension of *J* with boundary conditions at infinity given by *g*, that is,

$$
m(\zeta, g) = \int_{\mathbb{R}} \frac{d\rho(t)}{t - \zeta}.
$$

This last assertion is true because of the density of polynomials in $L_2(\mathbb{R}, d\rho)$, which follows from (d). Hence ρ is *N*-extremal [\[1\]](#page-26-0). This implies that $m(\zeta, g)$ lies on the Weyl circle, and then it is the Weyl *m*-function of some self-adjoint extension $J(g)$ [\[1\]](#page-26-0), [\[23](#page-27-0)].

It remains to show that $\sigma(J(g)) = {\lambda_k}_k$ and $\sigma(J_{\infty}(g)) = {\mu_k}_k$.

So we start from (4.16) and find the Weyl *m*-function of $J(g)$ using (4.19)

$$
m(\zeta, g) = \int_{\mathbb{R}} \frac{d\rho(t)}{t - \zeta} = \sum_{k \in M} \frac{1}{\tau_k(\lambda_k - \zeta)} = \widetilde{m}(\zeta).
$$

But $\{\lambda_k\}_k$ and $\{\mu_k\}_k$ are the poles and zeros of \widetilde{m} and then the eigenvalues of $I(\sigma)$ and $I_{\sigma}(\sigma)$ respectively $J(g)$ and $J_{\infty}(g)$, respectively.

For Jacobi operators semi-bounded from below, necessary and sufficient conditions are given in [\[14\]](#page-27-0). Note that Remark 3.5 can also be made here.

It is worth mentioning that, from (4.8) and (4.9) , it follows that, when (b) is seen as a necessary condition, one could write

$$
\lim_{\substack{\zeta \to \infty \\ \text{Im}\zeta \ge \epsilon}} \zeta \prod_{k \in M} \left(1 - \frac{\zeta}{\mu_k} \right) \left(1 - \frac{\zeta}{\lambda_k} \right)^{-1}, \qquad \epsilon > 0,
$$

instead of [\(4.13\)](#page-21-0).

Appendix

Boundary Conditions for Jacobi Operators

The difference expression γ defined by [\(2.1\)](#page-4-0) and [\(2.2\)](#page-4-0) can be written together in one equation with the help of some conditions. Indeed, consider the difference expression $\tilde{\gamma}$ given by

$$
(\tilde{\gamma} f)_k = b_{k-1} f_{k-1} + q_k f_k + b_k f_{k+1}, \qquad k \in \mathbb{N} \quad (b_0 = 1).
$$
 (A.1)

Clearly, γf is equal to $\tilde{\gamma}f$ provided that

$$
f_0 = 0. \tag{A.2}
$$

This requirement can be considered as a boundary condition for the difference equation $(A.1)$. Notice that, although f_0 is not an element of the sequence ${f_k}_{k=1}^{\infty}$, it can be used to introduce boundary conditions for (A.1) which turn out to be completely analogous to the boundary conditions at the origin for the Sturm–Liouville operator on the semi-axis. We shall refer to $(A.2)$ as the *A* Springer

Dirichlet boundary condition. Thus, *J* is the closure of the operator which acts on sequences of $l_{fin}(\mathbb{N})$ by [\(A.1\)](#page-25-0) with the Dirichlet boundary condition [\(A.2\)](#page-25-0).

Suppose that the deficiency indices of J are $(1, 1)$ and consider now the following solution of (2.1)

$$
\tilde{v}_k(\beta) := Q_{k-1}(0) \cos \beta + P_{k-1}(0) \sin \beta, \qquad \beta \in [0, \pi).
$$

Let us define the set

$$
\left\{f = \{f_k\}_{k=1}^{\infty} \in l_2(\mathbb{N}) : \tilde{\gamma}f \in l_2(\mathbb{N}), \lim_{n \to \infty} W_n(\tilde{\upsilon}(g), f) = 0\right\}.
$$
 (A.3)

Notice that $D(g)$, defined by [\(2.7\)](#page-5-0), coincides with (A.3) as long as $g = \cot \beta$. As pointed out in Section [2,](#page-4-0) the domain of every self-adjoint extension of *J* is given by $(A.3)$ for some β , and different β 's define different self-adjoint extensions [\[25\]](#page-27-0). Let us denote these self-adjoint extensions by $J(g)$, as we did in Section [2,](#page-4-0) bearing in mind that $g = \cot \beta$. The condition

$$
\lim_{n \to \infty} W_n(\tilde{\nu}(g), f) = 0, \qquad f \in \text{dom}(J^*)
$$
\n(A.4)

determining the restriction of *J*[∗] is considered to be a boundary condition at infinity.

In analogy with the case of Sturm–Liouville operators one can define general boundary conditions at zero for the difference expression [\(A.1\)](#page-25-0). To this end, consider the operator $J(\alpha, g)$ defined by the difference expression $(A.1)$ with boundary condition at infinity $(A.4)$ if necessary, and boundary condition 'at the origin'

$$
f_1 \cos \alpha + f_0 \sin \alpha = 0, \qquad \alpha \in [0, \pi). \tag{A.5}
$$

Thus, if $\alpha \in (0, \pi)$,

$$
J(\alpha, g) = J(g) - \cot \alpha \langle \cdot, e_1 \rangle e_1.
$$

Therefore $J(\alpha, g) = J_h(g)$, provided that $h = \cot \alpha$.

When $\alpha = 0$, from (A.5), one has $f_1 = 0$ and [\(A.1\)](#page-25-0) is used to define the action of the operator for $k \ge 2$. $J(0, g)$ is said to be operator $J(g)$ with Neumann boundary condition. For this case we have that $J(0, g)$ is equal to $J_{\infty}(g)$.

Acknowledgement We thank Rafael del Rio for a hint on the literature.

References

- 1. Akhiezer, N.I.: The Classical Moment Problem and Some Related Questions in Analysis. Hafner, New York (1965)
- 2. Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Space. Dover, New York (1993)
- 3. Aktosun, T., Weder, R.: Inverse spectral-scattering problem with two sets of discrete spectra for the radial Schrödinger equation. Inverse Problems **22**, 89–114 (2006)
- 4. Aktosun, T., Weder, R.: The Borg–Marchenko theorem with a continuous spectrum. In: Recent Advances in Differential Equations and Mathematical Physics, Contemp. Math., **412**, 15–30. AMS, Providence, RI (2006)
- 5. Berezans'ki˘ı, J.M.: Expansions in Eigenfunctions of Selfadjoint Operators. Transl. Math. Monogr. Amer. Math. Soc. Providence, R.I. **17** (1968)
- 6. Borg, G.: Uniqueness theorems in the spectral theory of $y'' + (\lambda q(x))y = 0$. In: Proceedings of the 11th Scandinavian Congress of Mathematicians. Johan Grundt Tanums Forlag, Oslo pp. 276–287 (1952)
- 7. Brown, B.M., Naboko, S., Weikard, R.: The inverse resonance problem for Jacobi operators. Bull. London Math. Soc. **37**, 727–737 (2005)
- 8. Cycon, H.L., Froese, R.G., Kirsch, W., Simon, B.: Schrödinger operators with application to quantum mechanics and global geometry. Texts and Monographs in Physics. Springer, Berlin Heidelberg New York (1987)
- 9. Donoghue, Jr., W.F.: On the perturbation of spectra. Comm. Pure Appl. Math. **18**, 559–579 (1965)
- 10. Fu, L., Hochstadt, H.: Inverse theorems for Jacobi matrices. J. Math. Anal. Appl. **47**, 162–168 (1974)
- 11. Gesztesy, F., Simon, B.: Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators. Trans. Amer. Math. Soc. **348**, 349–373 (1996)
- 12. Gesztesy, F., Simon, B.: *m*-functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices. J. Anal. Math. **73**, 267–297 (1997)
- 13. Gesztesy, F., Simon, B.: On local Borg–Marchenko uniqueness results. Comm. Math. Phys. **211**, 273–287 (2000)
- 14. Guse˘ınov, G.Š.: The determination of the infinite Jacobi matrix from two spectra. Mat. Zametki **23**, 709–720 (1978)
- 15. Halilova, R.Z.: An inverse problem. Izv. Akad. Nauk Azerbaĭdžan. SSR Ser. Fiz.-Tehn. Mat. Nauk **3–4**, 169–175 (1967)
- 16. Kato, T.: Perturbation Theory of Linear Operators. Second Edition. Springer, Berlin Heidelberg New York (1976)
- 17. Koelink, E.: Spectral theory and special functions. In: Laredo Lectures on Orthogonal Polynomials and Special Functions. Adv. Theory Spec. Funct. Orthogonal Polynomials, pp. 45–84. Nova, Hauppauge, NY (2004)
- 18. Levin, B.Ja.: Distribution of zeros of entire functions. Transl. Math. Monogr. Am. Math. Soc. Providence **5** (1980)
- 19. Levitan, B.M., Gasymov, M.G.: Determination of a differential equation by two spectra. Uspekhi Mat. Nauk **19**, 3–63 (1964)
- 20. Marchenko, V.A.: Some questions in the theory of one-dimensional linear differential operators of the second order. I, Tr. Mosk. Mat. Obš. **1**, 327–420 (1952) [Amer. Math. Soc. Transl. (Ser. 2) **101**, 1–104 (1973)]
- 21. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV Analysis of Operators. Academic, New York (1978)
- 22. Schechter, M.: Spectra of Partial Differential Operators. Second Edition. Applied Mathematics and Mechanics **14**. North Holland, Amsterdam (1986)
- 23. Simon, B.: The classical moment problem as a self-adjoint finite difference operator. Adv. Math. **137**, 82–203 (1998)
- 24. Teschl, G.: Trace formulas and inverse spectral theory for Jacobi operators. Comm. Math. Phys. **196**, 175–202 (1998)
- 25. Teschl, G.: Jacobi operators and completely integrable nonlinear lattices, Mathematical Surveys and Monographs. Amer. Math. Soc., Providence **72**, 2000
- 26. Weidmann, J.: Linear Operators in Hilbert Spaces. Graduate Texts in Mathematics **68**. Springer, Berlin Heidelberg New York (1980)
- 27. Weikard, R.: A local Borg–Marchenko theorem for difference equations with complex coefficients. In: Partial differential equations and inverse problems. Contemp. Math., vol. 362, pp. 403–410. AMS, Providence, RI (2004)