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Abstract
For target searching with robot in large search area, path planning spends long time and is affected by the surrounding 
environment, which makes the efficiency of the whole searching is not high. In this way, a shortest path control method for 
target searching using robot in a large range of complex tasks is proposed. This method utilizes environmental information 
collected by laser sensors to establish an environmental map for searching, and uses slime mold optimization algorithm to 
find the shortest path and avoids collision with obstacles. The objective function for robot's target path searching is estab-
lished to obtain the shortest path. To ensure the robot’s movement is optimal, a path controller is applied during the robot's 
target searching process. The experimental results show that the proposed method effectively avoids obstacles in the path, 
the planned path distance is kept within 5 m, and the path planning time is less than 50 s, which indicates that the proposed 
method has high path planning efficiency.

Keywords Environmental map · Slime optimization algorithm · Target searching · Path planning · Mobile control

1 Introduction

Robots are mainly used in the industrial field to replace peo-
ple to complete search, rescue, and other complex works in 
dangerous or harsh environment. They can also be used in 
the military field to complete reconnaissance, demining and 
other tasks, as well as in the other fileds like medical and 
aerospace [1]. The tasks in the above fields are classified 
from the perspectives, mainly including target searching, 
rescuing, mechanical activities, exploration and humanoid 
applications like football etc. [2]. When working in complex 
and dangerous environments, there are more dangerous fac-
tors in manual operations, which threaten the life safety of 
workers. The multi-robot system collaborative target search-
ing has broad application prospects in resource exploration, 
military anti-terrorism, post-disaster search and rescue, and 

replacing human beings to perform dangerous tasks in spe-
cial environments [3].

Wang et al. [4] simplified obstacles into two situations: 
continuous and non-continuous obstacles, and moved to a 
specific boundary according to the situation. Particle swarm 
optimization (PSO) for target position estimation used the 
acquired target signal to estimate the target position, and 
reached the vicinity of the target, so as to achieve target 
search. There were obstacles in the planned path of this 
method, and the obstacle avoidance ability was poor. Gao 
et al. [5] provided a probability calculation model based on 
the actual working environment, built a probability map 
based on the model, and then proposed a robot target search 
path planning method with the expected shortest time as 
the optimization index. The method adopted a hierarchical 
planning mode and carried out topological point sequence 
planning in the upper topological map. The local path plan-
ning between topological points in the lower feature map 
was too long, and the path planning effect was not ideal. 
Fan et al. [6] proposed a target search and rounding frame-
work for swarm robots based on consensus initiative, which 
improved the anti-ant colony algorithm and added a variety 
of pheromones to help swarm robots cooperate to explore 
the environment and generate pheromone maps. At the 
same time, the framework combined the pheromone map 
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generated in the previous stage with the hierarchical gene 
regulatory network model to complete the task of searching 
and rounding up the dynamic target of swarm robots in the 
scene with unknown environmental information and lim-
ited communication. The path planning time required by this 
method was too long, and there were problems of low plan-
ning efficiency. Kumar et al. [7] proposed a path planning 
method for autonomous robots based on an improved grey 
wolf optimization method. By modifying and optimizing the 
traditional grey wolf optimization algorithm, the improved 
method can find the optimal path and maintain a safe dis-
tance from other objects and robots, with high efficiency and 
feasibility. However, this method required multiple iterations 
to achieve good results, resulting in a longer execution time. 
Nascimento et al. [8] proposed probabilistic foam based safe 
path planning algorithm for mobile robots, which ensured a 
safe path through a series of bubble structure constraints and 
provided a safe area. However, when performing path plan-
ning, the probabilistic foam method needed to build a series 
of bubble structures to limit the safe path and cover the free 
configuration space. This process required much calculation 
and time. Durakl et al. [9] proposed a new path planning 
method for mobile robots based on Bezier curves, using grid 
graphs to model the environment and traditional algorithms 
to find paths between the starting and ending points. By 
pruning based on Bezier curves to discard excess nodes and 
smoothing peaks, path planning was achieved. This method 
had high computational complexity and required a signifi-
cant amount of computing resources and time, resulting in 
reduced planning efficiency.

The existing methods have some problems such as poor 
obstacle avoidance ability, long path and low planning effi-
ciency. Therefore, the shortest path control method for robot 
target search in a large range of complex tasks is proposed. 
The main contributions of this article's method are shown 
as below.

(1) Establishment of environmental map: Collect environ-
mental information through laser sensors, and use line 
extraction, line matching, and line fitting techniques to 
establish an environmental map for target search. This 
method can accurately describe obstacles and target 
points in the environment, providing an important data 
foundation for subsequent path planning.

(2) Application of slime mold optimization: By using slime 
mold optimization algorithm, the shortest path is found 
by establishing an objective function for target search-
ing path, avoiding collision with obstacles. Compared 
to other shortest path planning algorithms, slime mold 
optimization algorithms has certain advantages in han-
dling complex environments and large-scale tasks.

(3) Path control design: By designing a controller, the robot 
is ensured to move along the optimal path and com-

plete the target search task. This controller can respond 
in real-time to environmental changes and obstacle 
dynamics, ensuring that the robot can efficiently and 
safely complete tasks.

2  The Construction of Environment Map

The sensor carried by the robot detects environmental infor-
mation, extracts the features of obstacles and targets, and 
generates a map that the robot can recognize. Maps are rep-
resented differently due to different sensors. The proposed 
method uses a laser sensor [10, 11], which collects a large 
number of information points per cycle with high accuracy, 
and can quickly collect data points at a higher frequency, 
making it suitable for extracting straight line features. More-
over, the linear map has low-level topological information 
and is suitable for a wide range of environments, a straight 
line is a line segment with a simple geometric shape, which 
is more convenient in description and modeling. In con-
trast, curves have complex shapes that require more data 
to describe and are more complex in processing and calcu-
lation. And line maps provide intuitive path information, 
making it easier for robots to plan and navigate, improv-
ing planning efficiency, so the linear map is chosen as the 
description method of the environmental model.

The construction of environmental maps is mainly 
divided into three steps: line extraction, line matching, 
and line fitting. The information about obstacles and target 
points collected through laser sensors is processed to extract 
straight line segments. Match these line segments with the 
generated line segments in the global map to determine if 
they are related. If there is no correlation, directly import 
the global map; If there is correlation, perform line fitting, 
generate new line segments, and update the global line map.

2.1  Straight‑Line Extraction

2.1.1  Data Preprocessing

The laser sensor can obtain the distance information of the 
object within a range of 180°to ensure the accuracy of the 
measurement, only the monitoring data of the object within 
a certain range of the distance robot is extracted. These data 
are represented by the polar coordinates of the robot. In 
order to facilitate calculation, the data represented by polar 
coordinates are converted into data information in Cartesian 
coordinate system. The schematic diagram of coordinate 
transformation is shown in Fig. 1.

In Fig. 1, the point J is the information point of an object 
detected by the laser sensor, � indicates the angle of OJ to 
the pole axis, OX and the point J Cartesian coordinates are:
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where r represents the distance between the point J and 
the origin O of the coordinate system. Through the above 
method, the polar coordinates of the objects detected by the 
laser sensor are converted to Cartesian coordinates.

2.1.2  Regional Division

After obtaining the right-angle coordinates of the obstacle, 
the coordinates of these points are divided into disconnected 
areas according to the size of the straight-line distance 
between the two points, and they are processed separately. 
The schematic diagram of regional division is shown in 
Fig. 2. There are obvious spacing between different obsta-
cles E1 , E2 E3 , which belong to the three regions that are not 
connected.

For the robot, after extracting the information of the 
points, a threshold F1 is set to judge whether they are the 
same object. If the distance between two points is less than 
the threshold F1 , the two points are considered to be continu-
ous and belong to the same object. If the distance between 
two points is greater than the threshold value F1 , the two 
points are considered to be the division points of the region, 
respectively representing an object, is not connected.

The specific judgment process is as follows:

(1) Calculate the distance fi between the two points:
(2) To judge the relationship between fi and the thresh-

old value Fi , the region is divided into two parts 

(1)
{

x = r cos �

y = r sin �

Fig. 1  Diagram of coordinate transformation

when fi > F1 takes 
(

xi, yi
)

 as the split points, 
the regions E1

{(

x0, y0
)

,
(

x1, y1
)

, Z
(

x1, y1
)}

 and 
EN

{(

xi+1, yi+1
)

,
(

xi+2, yi+2
)

, Z
}

 can be obtained, and the 
EN is treated in the same way, thus obtaining E2 and E3 . 
And so on, and the whole area 

(

E1,E2,E3, L,En−1,En

)

 
can be eventually get.

2.1.3  Straight Line Segmentation

The IEPF algorithm is used to segment the line segment. 
The algorithm is an iterative algorithm, and the line seg-
ment is segmented by setting a fixed threshold. The region 
segmentation diagram is shown in Fig. 3.

All the points in Fig. 3(a) are the set of one of the regions 
Ei . Take the first point A and the last point D as the line 
segment Z1 , and calculate the distance from the remaining 
points in this region to Z1 . As can be seen from the figure, 
the maximum value P1 is obtained at point P , and a distance 
threshold F2 for line segment segmentation is set. If P1 is 
less than threshold F2 , the region can be represented by a 
straight line segment; if P1 is greater than threshold F2 , the 
region is divided into S1 and S1 by using point C as the seg-
mentation point, and then the region S1 and S1 are processed 
by the same method.

As shown in Fig. 3(b), connect points A and C to form A 
straight segment Z2 in the region S1 , the maximum distance 
from B point to Z2 is P2 , and then the size of it and threshold 
F2 is determined. By this on, until the maximum distance 
between the beginning and the end of the region is less than 
the threshold value F2 , to obtain a set of N points that can 
be represented by a straight segment. The schematic repre-
sentation of the region  Ei segmentation is shown in Fig. 4.

Fig. 2  Diagram of region division
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In Fig. 4, two segmentation points B and C are obtained 
after the segmentation of Ei , thus dividing the region into 
three point sets, which are red, black and blue respectively.

After the above method, N  point set Zi can be repre-
sented by a straight line segment is obtained. However, 
due to the existence of noise, these points are not strictly 
linear and need to be fitted. The least square method [12] 
was used to complete the parameter estimation of line seg-
ment features.

Suppose that the function relation of x and y is:

There are two undetermined parameters in the above 
equation, s0 represents the intercept and s1 represents the 
slope. For the N group of measurements to be fitted, their x 
values are considered to be fixed, and the error is related to y.

When using the least square method to estimate the param-
eters, the deviation weighted sum of squares of yi should be 
minimized. For each set of observations, minimizing formula 

(2)y = s0 + s1x

(2) is the optimal estimate 
∑N

i=1
yi −

�

s0 + s1x1
�2
�

�

�s=ŝ
 of s ( s0 

and s1 ). In order to minimize the deviation-weighted sum of 
squares of yi , the following requirements need to be met:

Solve the above formula to obtain the best estimates ŝ0 
and ŝ1 of ŝ0 and s1:

After fitting calculation by least square method, the 
optimal solution y = ŝ0 + ŝ1x of the line is obtained, 
which is converted into the standard linear equation 
Ax + By + C = 0 , and the two endpoints of the fitted line 
segment are the projection point [13, 14] from the begin-
ning and end point of the point set Zi to the line, that is, 
the vertical point from the beginning and end point of the 
line. The calculation of vertical coordinates is shown in 
Fig. 5. The vertical line is drawn from point A

(

x0, y0
)

 to 
line, Zi the vertical foot is point B, and the coordinates of 
point B are:

After the above steps, parameters of the fitted line 
segment are obtained: slope, intercept, starting coordi-
nates, ending coordinates and length of the line segment. 
The linear segment is extracted by the object data col-
lected by the laser sensor, and the local map generated 
by the object information collected in the current period 
is obtained.

(3)
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(5)
{

x1 =
(

B2x0 − ABy0 − AC
)

∕
(

A2 + B2
)

y1 =
(

A2y0 − ABx0 − AC
)

∕
(

A2 + B2
)

Fig. 3  Schematic diagram of 
region segmentation

Fig. 4  Schematic representation of region  Ei segmentation
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2.2  Straight Line Matching

After extracting the line segments, these line segments are 
matched with the existing line segments in the global map 
according to the correlation conditions. Suppose that the two 
endpoints of a line segment in the global map are Pk1 and 
Pk2 , the two endpoints of a newly detected line segment in 
the local map are P1 and P2 , and the Angle between the two 
line segments is � . The relationship between two endpoints 
and another line segment exists in the following two cases:

(1) The vertical point is in the line segment.
(2) The vertical point is on the extension of the line seg-

ment.

The line where the line segment AB is located at point C is 
the vertical segment, and the vertical foot is D . If AD > BD 
and AD > AB D, or BD > AD = and BD > AB , the vertical 
point is on the extension of the line segment, otherwise the 
vertical point is on the line segment.

The vertical distance from the point to the line seg-
ment is represented by dv , and the projection distance from 
the point to the line segment is represented by dp [15]. 
The vertical distance and projection distance are shown 

in Fig. 6. In Fig. 6(a), no matter in the first or second case, 
vertical distance represents the distance dv1 and dv2 from 
Pk1 and Pk2 to the line where line segment Zn is located. 
Vertical distance d can be calculated by the following 
formula:

In Fig. 6(b), for the first case, the projected distance is 
the distance dv2 from point Pk2 to line segment Zn , which 
can be calculated by formula (8). For the second case, the 
projected distance dp1 is the distance between Pk1 and P1.

The distance between two points pi and pj is denoted by 
�

pi, pj
�

= ‖pi − pj‖ . The projected distance from point Pi to line 
segment z is represented by 

�

pi, z
�

=
min

pi�z
‖pi − pj‖ , and the 

vertical distance from point pi to line segment z is represented by 
dp =

min

pi�z ∪ z+
‖pi − pj‖, where z+ is the extension line of z.

The distance relationship between two line segments is 
defined by the Hausdorff distance, which represents the maxi-
mum distance value in the projected distance between any 
point on one and another line segments [16, 17], that is, 

dH
(

zi, zj
)

= min
pi��i

{

min
pi��i

d
(

pi, pj
)

}

 . The Hausdorff distance is 

oriented rather than symmetric, that is, dH
(

zi, zj
)

≠ dH
(

zi, zj
)

 . 
Hausdorff distance is used to define an undirected distance 
measure dH

(

zi, zj
)

= max
[

dH
(

zi, zj
)

, dH
(

zj, zi
)]

.
The straight-line matching process is as follows:

(1) Take out a newly detected line segment, calculate its 
length, if less than 20 mm, it is considered to be inter-
ference line segment, delete it, and then take the next 
line segment for calculation until the line segment that 
meets the conditions is found;

(2) Match the qualified line segments with each line seg-
ment in the global map in turn. If the following formula 
is met, it is considered that there is correlation between 
them and the matching is successful. Otherwise, the 
match fails:

where, F3 represents the distance threshold.
(3) Repeat the above steps to complete the correlation judg-

ment for each newly detected straight line segment.

(6)d =
�

�

�

Ax0 + By0
+ C

�

�

�

∕
√

A2 + B2

(7)d(zi, zj) < F3

Fig. 5  Calculation of vertical coordinates

Fig. 6  Vertical and projected 
distance
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2.3  Line Fitting

By matching the lines, determine the correlation between 
each newly detected line segment and the line segment in 
the global map. If the matching fails, it indicates that the 
line segment has not been detected before and is directly 
imported to the global map. If the match is successful, the 
least square method will be used to fit the two straight lines 
[18, 19], the fitted straight lines will be added to the straight 
line map, and the corresponding two straight lines in the 
global map and the local map will be deleted. The specific 
flow chart of the map update is shown in Fig. 7.

3  Robot Target Search Shortest Path Control

3.1  Shortest Path Planning

3.1.1  Path Planning Objective Function

The slime mold optimization algorithm (SMOA) is used to 
plan the shortest path of the robot in the process of target 
search. The slime mold optimization algorithm is an algo-
rithm for finding the shortest path. Compared with other 
methods, this algorithm transforms the robot search path 
problem into a problem of finding the optimal solution in the 
search space by simulating the behavior of slime molds in 
nature when searching for food. During this process, slime 
molds continuously update their location and environmental 

information, and use pheromones to guide other slime molds 
to better locations. In this process, this method can greatly 
avoid falling into local optima and find the shortest path.

It is assumed that the robot moves in a finite area on 
a two-dimensional plane where there are finite static and 
dynamic obstacles. According to the map established in Sec-
tion 2, the information of obstacles and targets within the 
range can be obtained, and the size and location of obsta-
cles can be judged and estimated, and the moving speed and 
direction of moving objects can be estimated.

The task of path planning is to obtain the best path to 
avoid all obstacles between the robot's position and the local 
target position according to the real-time information of the 
environment [20, 21].

With a balance between convergence speed, faster deci-
sion-making ability and accuracy to achieve superior forag-
ing ability and avoid falling into local minima, slime molds 
adapt to random search situations based on the source of 
food quality. In the case of abundant food quality, slime 
molds will forage near it and concentrate on the encircle-
ment of the food source. When food quality is insufficient, 
slime molds explore other spaces in search of food.

The main stage of slime is the period of nutrient cap-
ture. During this period, the cytoplasm in the slime mold 
seeks out food, surrounds it, and secretes enzymes to 
digest it. During movement, the front end extends into a 
fan and then forms a network of interconnected veins that 
allow the cytoplasm to flow inside. Due to their unique 
patterns and characteristics, they can utilize multiple food 

Fig. 7  Map update flow chart
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sources at the same time, forming a network of intercon-
nected veins.

Explore and find nutrients and food sources: slime bac-
teria follow the food odor in the air. Circular, this structure 
allows slime obacteria to explore food in all potential direc-
tions near the optimal solution. The population of myxobac-
teria is treated by initialization below Xi(t):

where, LB , UB are the upper and lower bound of the popula-
tion, and N indicates the population size.

The food search behavior of the population can be 
described by:

where, �⃗X(t) and �⃗X(t + 1) are the positions of individual myx-
obacteria before and after the search respectively. �⃗XA(t) and 
�⃗XB(t) are randomly selected individuals. W  represents the 
weight coefficient; �⃗Xb(t) is the position of the best fitness; 
�⃗vb and �⃗vc both represent the learning factor.

The parameters r and p are calculated by the following 
formula:

where, t is the number of current iterations. maxt represents 
the maximum number of iterations. D(i) is the fitness of the 
next generation. DF is the current best fitness.

Wrapping food: In this step, slime molds surround and 
devour food sources by extending their veins. The positive and 
negative feedback WS(i) between myxomycetes vein width and 
food quality was calculated by the following formula

where, bF is the best fitness of this generation. wF indicates 
the worst fitness of this generation.

The search population X at iteration i is updated with 
reference to the best position Xb at iteration i , whose posi-
tion can be changed by fine-tuning �⃗vb , �⃗vc , and W  . The 
logarithmic factor increases the rate of change of the value 
to avoid random perturbations in the frequency of venous 
contraction. Slime molds adjust their exploration process 
according to the quality of the food. When the food source 
is larger, the weight near it becomes larger. When food is 
insufficient, the weight of the nearby area is reduced and 
other areas are explored.

(8)Xi(t) = unifrnd(LB,UB, 1,N)

(9)�⃗X(t + 1) =

{

�⃗Xb(t) + �⃗vb + [W �⃗XA(t) −
�⃗XB(t)] r < p

�⃗vc �⃗X(t) r ≥ p

(10)
{

r = arctanh[−(t∕maxt) + 1]

p = tan|D(i) − DF|

(11)

WS(i) =

{

1 + rlog{[bF − D(i)]∕[bF + wF]} condition

1 − rlog{[bF − D(i)]∕[bF + wF]} other

Prey capture/Oscillation: Biological oscillators emit 
waves to locations with higher concentrations of food to alter 
cytoplasmic flow in the veins of the slime mold. The oscilla-
tion frequency in the SMO algorithm depends on W . Where 
the concentration of food is higher, the oscillation frequency 
is higher. And where the concentration of food is lower, the 
oscillation frequency is lower, so the speed of reaching the 
food is slower. This process increases the proficiency of the 
SMO algorithm and results in a globally optimal solution 
(high concentration food source). The advantage of this 
approach is that even after the best food source is obtained, 
it still strives to explore nearby locations to obtain a higher 
optimal solution, thus avoiding local minima and early erro-
neous convergence.

Taking finding the shortest path and avoiding obstacles 
and collision [22, 23] as targets, the robot target search 
path planning objective function F is established

where, OV represents the target value, PL represents the path 
length, � represents the scale factor, and D represents the 
average distance value between all insertion points and all 
obstacles. This value is zero when the maximum number of 
insertion points is outside the obstacle.

The above objective function is intended to be mini-
mized through all iterations of nature-inspired algorithm 
evolution. This minimizes the path length that satisfies the 
first constraint. The second goal is achieved by minimiz-
ing D . Scale factors are used to determine the influence 
of path distance obstacles. The larger the scale factor, the 
more emphasis is placed on excluding paths that contain 
collisions.

3.1.2  Implementation of Path Planning Based on SMO

The path planning task is decomposed into multiple local 
planning tasks, and the local path planning is performed by 
moving the window in the established environment map.

The current position of the robot is the starting point S , 
the target position is the target point T  , and a set of equally 
spaced points L1, L2,⋯ , Ln−1 on the starting point and the 
target point line ST  is defined as the subtarget.

Define a moving window Qi , i = 0, 1,⋯ , n − 1 , with 
length ||Li+1 − Li|| and width 2I  , where L0 = S , Ln = T  , 
and the window size is determined by the scope of the 
environment map.

The robot performs path planning in each scrolling win-
dow Q0,Q1,⋯ ,Qn−1 in turn. When the robot reaches the 
sub-target Li , the following procedure is performed:

(12)F(OV) = PL + �pPLD
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(1) Perceive obstacles in window Qi and save parameters 
about obstacles.

(2) With Li as the starting point and Li+1 as the target point, 
the slime mold optimization algorithm is used to plan 
the path, and a collision-free path with the shortest dis-
tance was planned.

(3) The robot moves from the starting point Li to the target 
point Li+1 at a constant speed along the shortest path 
planned in the previous step.

(4) i + 1 → i , return to (1) for the path planning for the next 
window.

  This process continues until the robot reaches its target.

3.2  Translational Control

During the robot target search process, the controller shown 
in Fig. 8 is designed to control the robot to move along the 
optimal path obtained in Section 3.1. Based on the opti-
mal path information, the controller will generate motion 
instructions for the robot, including forward, backward, 
turning, and other actions. Based on the node order of the 

optimal path, the controller will determine when the robot 
will turn and move forward to maintain movement on the 
optimal path, while guiding the robot to bypass obstacles 
to ensure that the robot can continue to move along the 
optimal path.

In Fig. 8, od represents the desired position vector. It can 
be expressed either as a fixed point or as a continuous tra-
jectory. o represents the current position vector of the robot. 
The error e between od and o is called the tracking error. 
Ke is a diagonal matrix with dimensions consistent with 
the degree of freedom of the robot, called the compensa-
tion gain. The symbol 

∑

 represents the accumulator, which 
adds up the the points Kee on the trajectory that have been 
tracked. The output of the accumulator is added to od to 
obtain a new command or a corrected reference trace oe . 
The controller then adjusts the robot motion according to 
the command error �o , and �o is the error between oe and o . 
When Ke = 0 , oe = od , �o = e.

Assuming that the trajectory of each joint is discrete to 
an infinite number of points, the sampling time interval 
between adjacent points is T  . According to Fig. 8, the error 
between the first desired point and its current position is 
e1 = o

(1)

d
− o(1) , and the new instruction o(1)

e
= o

(1)

d
+ K(1)

e
e1 

and instruction error �o(1) = o(1)
e

− o(1) after the first 
compensation.

The relationship between the first point tracking error and 
the instruction error is obtained from the above analysis:

After the first point compensation, the joints of the robot 
reach position o(2) after the action of the controller. Similar 
to before, we can get:

On the basis of the following:

By the same token, we obtain:

Subtract the two formulas in formula (16) to obtain the 
following formula:

where, I is the identity matrix. En+1 represents the difference 
of the instruction error.

(13)e1 = �o(1) − K(1)
e
e1

(14)

⎧

⎪

⎨

⎪

⎩

e2 = o
(2)

d
− o(2)

o(2)
e

= o
(2)

d
+ K(1)

e
e1 + K(2)

e
e2

�o(2) = o(2)
e

− o(2)

(15)e2 = �o(2) − K(1)
e
e1 − K(2)

e
e2

(16)

{

en = �o(n) − K(1)
e
e1 − K(2)

e
e2 −⋯ − K(n−1)

e
en−1 − K(n)

e
en

en+1 = �o(n+1) − K(1)
e
e1 − K(2)

e
e2 −⋯ − K(n)

e
en − K(n+1)

e
en+1

(17)en+1 = (I + K(n+1)
e

)
−1
(en + En+1)

Fig. 8  Diagram of Controller
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For convenient description, E is used to represent 
the difference of the instruction error obtained in each 
compensation.

Expand the formula (18) iteratively to obtain:

(18)
en+1 = (I ⋯ (I(e1 + E1)⋯+

(I ⋯ (IEj ⋯ + (IEn+1

where, e1 is the error between the joint position in the initial 
state and the expected trajectory. The above equation shows 
that as long as Ke is a positive definite matrix and the differ-
ence E of the instruction error equals zero, the tracking error 
e1 will converge and will not be affected by e1 , and the larger 
the element value in Ke , the faster the convergence rate.

4  Experiment and Discussion

In order to verify the overall effectiveness of the shortest 
path control method for robot target search in a large range 
of complex tasks, it is necessary to test it, select the Robotics 
System Toolbox in MATLAB for simulation, and establish 
an environment with a size of 50 m × 50 m, including obsta-
cles and target devices. Select the LiDAR sensor and set its 
scanning range to 360 degrees with a maximum detection 
range of 30 m. Reference [4], reference [5] and reference [6] 
methods are introduced into the test process as comparison 
methods to ensure the authenticity of the test. The robot 
target search environment is shown in Fig. 9.

In the environment shown in Fig. 9, the proposed method, 
the reference [4] method, the reference [5] method and the 
reference [6] method are used, and the path planning results 
of the four methods are shown in Fig. 10

Analyzing Fig. 10, it was found that the path planned by 
the proposed method can successfully avoid dynamic and 
static obstacles in the environment, which proves that the 

Fig. 9  The target search environment

Fig. 10  Path planning results
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proposed method has strong obstacle avoidance ability. The 
path planned by the method in reference [4] did not suc-
cessfully avoid static obstacles, indicating that this method 
has certain limitations in avoiding static obstacles. Although 
the method in reference [5] can successfully avoid obstacles 

in the environment, the path is too long, which can affect 
the operational efficiency and time of the robot. The path 
planned by the method in reference [6] did not successfully 
avoid dynamic obstacles, indicating that this method has cer-
tain shortcomings in avoiding dynamic obstacles. Through 

Fig. 11  Path length

Fig. 12  Path planning time
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the above tests, it has been verified that the proposed method 
has strong obstacle avoidance ability. In the field of indus-
trial automation, this method can autonomously navigate 
through busy production lines, avoiding workpieces or other 
mobile devices, to ensure the stability and safety of the pro-
duction process.

10 experimental environments are set up, use the above 
method to expand the path planning, and test the path length 
of the four methods. The results are shown in Fig. 11.

From Fig. 11, it can be seen that in different environ-
ments, the path length planned by the proposed method 
is the shortest, always within 6, while the path length 
planned by the methods in reference [4, 5], and [6] are all 
greater than the proposed method. Through comparison, it 
can be seen that the path length planned by the proposed 
method is the shortest. This is because the proposed 
method takes the shortest path length as the optimiza-
tion objective when establishing the path planning objec-
tive function, so it can reach the search target with the 
shortest distance in complex environments. In practical 
applications, the proposed method has broad application 
potential in path planning. It can be applied in fields such 
as autonomous vehicles, drones, industrial robots, etc. to 
achieve more efficient, safe, and reliable path planning 
and navigation functions.

In the above path planning test, the time required by the 
four methods to plan the path is as following Fig. 12.

Analyzing Fig. 12, it can be seen that in path planning 
testing, under the same testing environment conditions, the 
proposed method takes much less time to plan the path than 
the methods in reference [4], reference [5], and reference 
[6], and overall remains within 55 s. This is because the 
proposed method establishes an environmental map before 
path planning, which can directly obtain the positions of 
obstacles and search targets in the environment. Based on 
this, the shortest path is planned, thus shortening the path 
planning time and improving the efficiency of path planning. 
In fields such as emergency rescue and industrial automa-
tion, rapid path planning can help robots quickly reach target 
points, execute corresponding tasks, and improve application 
effectiveness.

5  Conclusion

At present, robot target search path control methods have 
problems such as poor obstacle avoidance ability, too long 
path and low planning efficiency. A shortest path control 
method for robot target search under a large range of com-
plex tasks is proposed. The environment map of robot target 
search is established by the proposed method, and the objec-
tive function of path planning is established on this basis, 
so as to obtain the shortest distance and effective obstacle 

avoidance path. The controller is designed to control the 
robot to move along the optimal path. It is proved that the 
proposed method can effectively realize the obstacle avoid-
ance of the robot, and the planned path length is short and 
the path planning efficiency is high, which provides a guar-
antee for the development of robot technology.
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